A Robust Control of Fuel Injection Servo System

A Robust Control of Fuel Injection Servo System

Copyright © IFAC Design Mcthod s of Control Systcms. Zurich. Switzerland. 1991 A ROBUST CONTROL OF FUEL INJECTION SERVO SYSTEM Y. Yanagita, T. Eisaka...

920KB Sizes 1 Downloads 157 Views

Copyright © IFAC Design Mcthod s of Control Systcms. Zurich. Switzerland. 1991

A ROBUST CONTROL OF FUEL INJECTION SERVO SYSTEM Y. Yanagita, T. Eisaka and R. Tagawa Department of E/eccrica/ Engineering. Hokkaido University. Sapporo. Japan

£\bst~~t:t,

In t h is P~f1"I, 1, ,, iJu s t :'I l,,
fll el in jecli"ll jllI11 11 ' "fdi""~l ' II' !l gillC car. T he p ~ I ';[ lll ell' r ~ uf thi s pl:llI t

V;H )'

u will g tu lh e chang e

vf temperature, lL is de~ir,d,j,; tll;I L. e\'ell i f pa r~ lI11 ete r ::; "f plant the l'h:lnge . the spil l pvs iti v n Lrncks Lil e rt.'fcrcnc e input r ' '1 ,idl:,' ~1Il( 1 c"lTe d iy, 1(;\1 ;\ 1 is n d es ig n lIl e th ud " f r e ali zin g Ill ud e l m atc hin g fr olll r efl'n 'l le'" inplll s t" C(, "l rtliie d v~ ri ;[ iJi es a n d a ssuri n g high l " h u stn css fi) r th e p:lr;lIneler unq; r t a inti ('~ i, v lh" ndlll s t. c U l1lpe n s ~lt.u r s illlui t'1I 1el'lls iy, Since Lh is pl'l nt is ~ n u n minimum p h " sl' 'lIld s i n g lv illPlll s in g le ll Ut.put Sy St.l' lll, the r"bu s t. 1·" nlp e ll S:l Lu r is d es ign e d a s f() l lo\Vs : (1) '1\) a,: iti ('v(' rtd)lI SI s\ <" :ldy ·s tat.e pro pe r ly. t h e r obu st Cl) /lll 'l' n ~rl t,,, r is d es ig n ed so as to minimi ze If :? n pl'ln (,f ". \I'" .; wit hi n the des ire d bpll nd c d fr cq ue n e'Y r~ n ge,

(2 )

T o main tain

s talJi li ty . l lt r.' r" b u n (' u n 1l' cJlsalu r is d e si g n e d s uc h L1 w t th e Lr:1I1 " fe r fu" eli,, " 11 \\' '''11 fr olll the COnl'cplu ,,j inpul t n Llt l' ", ," t nd \'"ri;l iJI l' h a s s u ita h le Ill~ r g ill \)rg~l i ll ,"](1 ph'lsl', Si mu laL io ll u nd expe rim e n L r esu l t" s lll'\\' ti1; ll, Lh(' Jl wtlwd pr" pused in thi s p; '1 )(; r is effc L'Li vl.' lh e l'os iLi l) n co nL r o l o f fu (' I i !ljfT!. i"n I'U IllP ,

1!'iTI W lJ l i e Tl ():\

S imulati lln n n d l'XpCr illl e n l. l'C.' sulLs s h ow that it is cffe l,t i ve fo r th e co n t ;'u l o f pl a n ts w i l h param e t e r

D iese I en gi n E'

c~

I' is ('I'(, n um il'" I il l l he u ~l' u i' fUI' I an d

v " riati o n s , S till, lh e fll ll ()w in g pl'u blem s remain:

us ed in th e wo rl d wi d e , In th e futu r (' . t ill ' l· xpans io n o f

( I ) lL is diffi c ul t L" show co n t r u l s pe cificati o ns

i ls a ppli ca Lio n s is eXj1f:l'led ,

ba se d nn a Lim e d ll maill, (2 )

Th e fuc l inj e,:li"n s (' I'\'" " l(','I" l lli ~ lil " C d ies ,, 1 pUIllP

It is diffi culL

( 11

adju s t d eli,.'nle ly the property

f)fc o n t r o l sy ",Le m ,

r eg ul ;ltcs t h e V()lllllll: " I' fl le l s (' n l. tn l'<.lmiJus li u n th e c ham be r of diesc'l e n f~ i n (', Til (' r" f" re II C0. i n p u L of Lh e

IU l l\ 1 tl\.. Tn gaw a 198 (i ) is fn vo r nh le fo r l renling these

se r vo sysLe m is d ec ided ba s ed .. " si g n al s o f vari o u s

pr o bl e m s, Thi s is a d es ig n JJl e th ud of r e alizing model

se n so rs so a s t li se nd til " d csi r :lbl e vo lulll e , Thi s

matchin g fr o m r e fer c n ce input s t o control l ed

s y s Le m is r(' quesled t" pos ses s rapid a nd co rr ec t

va r i ab les ,l n d

~ s 5 llrin g

hi gh r o bu s tne ss fo r the

r e fe r e n ce in put prnppdy , Sine'p th" 51' 1'\'1) II1 ech[l ni s Il1

param e le r un certa in t ies by th e r obu s t compe n sato r

is so ak e d in fu e l (,il . l.he P:1I':LIIl (' l" r s nf th e pl a n t " "ry

s imul t an e o u s ly , Th e r u bu s t

ow in g Lo l h e ch a n g e o f tll<: l' ,,(· f'lj c il'llt " f \' is cos i ly by

lll :ll\es t h e tra ns fe r fu n l,t i" n I{Wd;' from funcl a menta l

\Vid e vari [l l.i o n o f lC II1p e r :llll r e, Thus , i l. is im pO l' Lant

e quival e nL ci is l.url'l;[ nl' Cs to th e co n t roll e cl va riables

compe n s~to r

whic h

thaL, ev e if pa r;III1 Plpr s ch";l ,lY , th e c" ntro l systeIl1

r Inse to Ze n ) is ;l(ldcd to l h e m ndel n18 Lching contro lle r

has n o tr ac kin g e IT,) r n n d i ts r ci'el'l.' n ('e inpuL r esp')J1se

d es igne d by u su alm e l h ocis ,

hardl y chan g es, B y a p pl y in g Rn b ll s t ;\'l ode l ;Vl n tchin g to the min im um

11..> o ptim a l d es ig n o f fu e l injec Li c li r u m p ba sed o n

phn se planl. , in C[l s C o f cll nLinu o us -data syste m, low

mixed sen s iti v ity pro ble m h:l s be e n cl o n e Ol.Kur[lo ica

s e n s iti vity ~lnd rub u s t s ta b i lity can be g ua r anteed for

and other s . 1989) , In th is m el h od. lh e co n l l'oll er

an y bo u n d e d parame le r va riativn s unless the number

s ati s fy in g the foll o win g co ndil ion s is des igne d:

o f un s t a ble po le ehan g es ( y, Z h o n g and othe r s, 1989).

DC se r vo m o tor, its efficacy is

( 1) internall y sta bili ty o f cl os ed·l ollp s y s te lll,

In l he a pp licatio n La a

(2 ) lo w se n s iti v ity .

co nfirm e d with com p liLe r simulati on5 and labo r ato ry

(3) hi g h l'I)b us l s t.nbili ty,

exp e rimenls ('1'. Ei s a k a a nd ot h e r s, J 989 ),

185

The fuel injection servo mechanism is non-minimum pha~e

plant. If this syste m was designed in the same

way as minimum phase plant, it becomes unstable system. In this paper. we propose IUvL'vl meth od applicable to the non -minimum ph;1se and single input single output (8 180) plant. (1) To achieve l o w sensitivity. the robust

co mpe nsat.or is desi gne d so

~s

to minimize J[2

n orm of I! IF, i.\" . To

(2)

lllainL~in

sLability,

the

Fi g .l gnin I'r lll'p rt y "fLhe plnnLs

r obusL

cO lllpen satl) r is desi g ned such thaL Lhe Lrans["er ["uncLi o n 1;lV l . ,,, fr om conceptual

Assullle L1wt when the' par:1lllelers of plnnt vary from

input to cl1nLrol variable has suitable margin

A. 13.

of gai n and phase.

U' I-6U'

e'

and

to 1\ -I "" 1\. 13 16 1]. C' -16.C" ancl

f)'

r e~pectively.

the sU ILes , co ntrol variab les

and measuremenL vnrinbles of Lhe and y'" to

pl~lI1t

chnl1ge from

:111'[ y' respecl.ively under the

Computer simulatio ns and experiment shows that

x"'

RI\1I\1 is effective fur pan1meler variaLions.

same n'fercnce input and the srlIlle zer o initial the

iL "

.1'.

IJ

states of the "<.InLI'lII sysLem. At this time, the state equation is described as fuliows.

IDENTIFICATION

i:

= A .x -/

/3 u I d I

(4)

'

y'· =C"·x-/-J)'·x /- «("

Ollr fuel injection pump is different from Lhe one

(5)

where el l = 6/\ -,r-l o.iJ ·u,

Rura oka and others (1989) used, buL h as the same

lG)

d? = o.C'x/-6/Yu.

sLructure. This pinnL was identified as same way. The transfer fUllction of the pump at 25"C is as follows.

(7)

ell and ,12 are defined as l.he equivalent disturbances corresponding to the p:uallleters vnr ia tions 6A. 6D,

/'

12:'1= ",'

o.C,6D*

S:I -I· 11I89·,'/+8 .J:'9x IO: 1·5-1 l .159x lO"

197 5' (S - I%)IS+SG!';j 15 + 17.0 7 H S -H5.9 :t.lGS.45)

(1)

The plant can be desl'l'ib e d in terms of transfer Similarly, transfer fUllctions at O"C and GO"C are

funcLion as

follows. )"=1'"y. u+['",·" .

__ 1117 2.<;2 _ ,1% 1 X 10 3 " - 7 :J GGx IOs I'

(0)=

,n

5'12(i:'7 ..<;2; Z.9ZIXI0'S-t-JO(i2X l o 5

l'"y, (Si (2)

C~

(9)

l C' ·( sI -Ai -1.D -1- D*]

1\ly,(S;=lC(sI-J\) - I , lJ .

- 1.'l .:':l.';2_ 4 .:'!iZX 10:1.,';-1.'19 1 x IOs

I'

(8)

wh ere rL=ld;l' . cl/V, ,

(l0) (11)

(fiO)= - -- - - - - - - - - - - - - - -

",.

s:I''!!i .97S2 + 8.452X 103. 5

+ 1.4 48x IU 5

Let left fractoriznti on

(3)

( T~ gn wa

1991) of chnracLerisLic

transfer funcLion 1'"" ns follows:

Fig.l shows g;)in property of plants.

1'"),, =I'dy,·N I(

(12)

OUTLINE OF RMlVl

Pd y ' is the lefL element and

NI1 IS the right element.

Pdy' satisfies realizotion condition and has no zeros.

In RM1VI, disturbances are defined to represent the

I'd J ' is also give n by lllulLiplying Pdy' by real valued

influence of parameter var iations. Let x denote the

matrix

state, u the control variable, y the controlled variable,

n fr om right side. Jlenc e, (1 = n·el. Therefore, d

is defined as fund8l11enUll e'lu ivnlent disturbance.

s> the measuremen t variable of plant withou t y and y* all output (equals to [yT, yT]T) .

l~ ubust

Equivalent disturbance

compensator

StrucLure of RMM syslem for SISO plant is shown in Fig.2. CI", is lhe left element of left fractorization of

186

[C r ", CoY·,,] , It is th e input to C'IIl' In the case of S1S0

h as zeros of I'l;lnt as eigenvalues. Th er efore, a noth e r

system, C'IU is equal to 1 1 D r.;.

m eth od is used to make the gain of 11 Wciy sma ll.

Model

Hi'vI:V1 FOE i\ON-l\1IN IM UM PIlASE r

PL ANT

y

In thi s p:lper. wc use foll owing sy mbo ls . N ominal plant; I'" = N" " 1 /)" " . 1'l anLwi l h I'ar:lm e tcr varied; /'=iV,, / IJI' . IVr\"= L ,y / D.

Moclc lt ra ns f"rr fun dion;

l'vIl/d e l m:l k hing co ntroll er;

,l _____ __ ___ _ ___ _ __ ___ ____ ___ ___ l,,

[ 1' //" .1'.'",,1::=1 -NI'" , iJ" "I . Hubus tlilLc r ; F =jf {J,,"

llobust Compensator

11: = 1" ,; 1" -1-

Wh e re N I'" . {J/ ,,, . !.f r ". M y" . D c and DF a r e po lYll ulIlinl s .

d from u and y ' and is a polynomial

matrix. Eq .(8) leads to

d =Pci.l' - I -it -Pci.l' -1·p"y' U , Th e refore,

r =[-Pci y -

I

Puy, Pciy - /J.

-!- I", .!-I + 1"11.

whcl'(' r; I i = 0, I , '" . k ) :1re fr ee p[lrnmcters .

Fig.2 Th e s tructu r e of RMM syste m l' estimates

[C , ,, . C mJ =[Mr ".

A1.'" 11 I / lJ('

( 13)

III Fi g .2. tran s fcr functi un is wrillcn a s

( 14 ) (1 8)

The ou tp ut of R is used as the inp u t to C'lII n o t

l Lle;ld s Lo

throughout r obust fi lter P, then, the tra n sfer functi on /{ Wdy fr om fundam ental equ iva lent dist ur bance to

U

11-'-

r/y

~

-

J

-

/ ) . /) I-'

If)

C

/i

V

· /1l)

IN I'll

( 19)

controlled variable o f th e system with r o bu st compensator added is as follows:

In th e case o f n on -minimum phase plnnt, we deLermined fre e param e ters of robust co mp ensato r so

( 15)

where MWJ y is t h e t ra nsfer function from

as to r eal ize r o bust s Leady-state pro pe r ty, robust

d

tt'ansicnt pt'ope rty , and robu s Lslability.

to y before we add rob ust compensato r.

l~o bll s t

If R mak es 11 W,iy zero, the re i s no inn uence of

parameter variations . This R is g ive n by Eq.(lG).

s tead y pro perty

We let 1J '1I be t h e chnracteri s lic po lyn omial of o ute r mode l in put to the co ntrol sy s tem, a nd apply the

(lG)

folluwing the orem (T[lgaw[I 1991). In Fig.2, if C",,·]? T is proper, r obus t compe n sa tor can realize strictly zeroing. When C",,·]?T is not proper,

Theorem

us ing robus t filter, we nH1k e C,",. F ·R ·r proper.

For the pLlJ1t with pnramete r variat ions, t h e ncce ss ary :1I1cl s llfri cienlly condit ions fo r r o bu st

After]? is given as Eq.(1G), Eq. (l5) lefl ds to

steacly -s Ln Le properLy (17)

( 1)

:HP

Lhe numeraLo r o f transfe r function /lWril' from ft lll(l:llll ental di s turbnnces to controlled

Therefore , by choosing a low-p ass filter, with a

vnriab lcs ha s DH! [IS fador,

suitable relative orde r , s u ch that its frequency

(2) robust s Lability is' sa ti sfi ed in rflnge so f

property is close to " 1 "in t h e frequen cy range from 0

specifi ed parameter var i atio n s o f the

to Wc, the II Wdy can be m ade close to ze ro wi thi n such

controll ed objec t.

frequency range the num erator of /{Wd y is (DDF-I-N /',,· R ). lIen ce, the This method is not avai lable for non -minimum phase

free paramett'r of robu st compensntor (Ire ch ose n so as

plant, this is because the contro l system a fLer RMM

to lTI fl k e (D·J)F -/- N/,,,·]?)

h ave 0," as f"clor, thus

robust sten dy-staLe property is ac hi eved.

187

(22)

Robust transient property we regard the plant with parameter variations as To achieve the robusl transient properly, in stead of

PIl + 6. Closed-loo p ~ystelll is described in Fig.3.

zcroing, we make the gain of IiWdy small based on

In Fig.3, /lW U '1I is wrillen in terms of the transfer

some evaluation. In this paper, after robust steady-

functi on of numinal plnnt, m odellllalching plnnt and

s lale properly is rea lized, we minimize lhe H2 norm

r obust compensatur.

of 11 Wd y using lhe rcmainin g free pa rameter. I

(~ 211

i~

" I

I

"

i 11' - i<:'l'lrOJ)i .1O)

(J

/) /'"

,11' • = - - (,1/

It

U

rly

2

I'

IJ · /) F

11

(23)

.+ 11 , /1)

. f) .\11

/.

"1

(20)

.

APPLICATION OF rUvlM '1'0 FUEL

I NJECTION l'UivlP


lnthe next equation ''le decide sampling time as 3 Illsec based o n ca lculating time uf nllllpute r . The discrete tran sfe r

(2 1)

funcLion of the of 2!i"C plnnL is ns follows. minimizes lhe 112 n orm of /(Wd y . /'

(:u,)

".\

llobusl stabili ly

'1.1)1111 X 10 .. 1.;//_ 1 1) ,1.1.,< 11 1- 1·1,+!i(;G7X 1 0 -~ = - - - - - - -- -- - - - - - - I /'-:11;:'(;'/' ·1· :1 JRU·I,-7 .213x IU -

In some cases, th e sys tem with this robust

'1.1111'<10-'·(1,_1177) ' (/'+ 1.8'1)

compensator is llns tnble fo r a plant with parameter

(1.

-I-

(24)

II%UHI, -11.8;'3 1:.1(178)

va rin t io ns.ln the se cnse, bccn use the purpose of HMM is to mnke the gnin of /( \Vd y small, we decide some free

In the same way, the plnllL ;lL WC and GO"C are given

parnmelers so ns to achieve robll st stability and such

as follows.

t h at the frequ ency property of /lWd)' with 1I2 norm

_ 1 98" X 111 - ' . I,~ -I 7r, ,1Gx 10 - ~.I,

minimized doe s not chn n ge largely.

I'

(11)=

-I

I .9lH X I U - 2

.<;:1_Z ,!:I:1-i' ,I.. 1 8K:JI,-'i.50 GX 10 - 1

fly

(25) -:'.'181 /)

(GO)=

x IO - '·1.~+G:,
IO - 2 1. - I .
2

1:" - 2 G821,'+21:IG·I,-7498XJ()-1

Ily

(26)

We ch oose Illodel transfer function such that se llling tim e is within 0.1 second. :1.I;:,xln -· :I ·II, ·, 2 . 12)(1, IO.IG)(1 -077)(I, + ) 8'i)

IV ')'

(I, -117 ,) /(1, - a.7ol(1, - U.8'li

rOIllJ)(·" .o:;nlo r ~

- - - - - - --- - - - - -- - -- --- - - - - - - ------ - - - - - --- -

--

(27) The model I1HlLching controller is deLermined ns Eq.(28) and Eq.(2f)) . -9 . 12!i X I O-'·I,'-2081 x IO - ll,-l.onx IIl - '

c:, "

i:: 2 _

0.:, ,I I 4';: -

O. I 7 G2

(28) G;,r;GI,~ - I I :)2.1, , 4 fl88 1,2 _ fI .!i 4 I'll, - O.17GZ

(29)

RobusL compensaLor is gi ve n by, I'll'/=

-4.000XIO- 2·Z'+1.044X10 - I ·Z -5.GG7XIO - 2 ,

(30)

ryq = ZI- 2.G56·Z 2 + 2.380·Z + 7.213 X 10 - 1, (31) Fig.3 Closed loop system

R=r2Z2+r/ ·Z+ ro,

[) =

Parameter chnnges are equivalent to additional

F

variation 6,

188

J

(I,_OG8):l

.

(32) (33)

(2) minimi7.e o r make small the Il2 norm of Trans[er [unction /lIVely is s uch that robust steady-

uIVJy , (3) increa se the stability margin of HIV u '".

state property is ach ie ved [or s tep reference inpuL. '-0 is described as a funcLion of I"] and 1'2, '-0=-1'2-1'/+2.703.

J\CI{NOWLI~DGEMEN TS

(34)

f(II'Jy is Cri kui::Ited rlS fol lows.

'I'he a uth ors exp r ess grntitud e t o H.Kura okil and

11 IV cl\" = - G.G88r/ -21.90·'-/·'-2+ 144.1·,-/

-2U)()·'-/+327.3·'-2-2529

N.Ohba, and thilnk Il&D De pt., N ipjlo nclenso Co., (3G)

Ltd., for suppo r ting this experiment.

Next, '-2 which minimizes Eq.(3G), is calculated as llEFEI{ENCES

foll ows . '-2= - O.!)·r/ 1'/

(36)

+7 .'171.

E isaka,T. and others. (1989). Evaluation of rrubu s t Mode l-MaLching for the Control oC a DC Servo Motur.

which minimiz es Eq.(3G), is calculated·as follows.

Int ernatio/tal Jou/"Iwl o("Colllro/. GO,479-493.

,-/ = -86 .S3 .

Kuraoka,Il. "nd ot hers. (1989). J\pplica Lion of 1[ ' " J\t this time, ro=3iUiG , '-2=GO.H9 (C :1 se 1). In this case, in Fig.4 , Nyl{uist

opti mal design 1.0 ilutcJtllOtive fuclcont rol. Proc. ACe,

plot of -c.(Z)·IIIV,, "II(Z) is

1%7 -19G2.

s hvwn. IL s hows that Lllis system becomes unstable

'I'a gawa, rr. (198G).

whpn parrlm ete rs \'aried. Th eref"re, wc set 1'/ = 0 so

Control. Computer and J\pplicat i on's Mook.

il'lod el i\latching and Robus t

t h at the Illrlrg in of sta bility is increasing. Under this

COlI!jJl.Ltrol, 13, G3 -G8, Corona, (in .Jrlpanese).

conditiun, set r () = -4. 76:l to achieved robust steady-

'l':1gaw:1,lC ( 1991). Dual Model Matching. Tu nppenr

state property (lnd 1"2=7.471 so as to minimize

[J2

at I s l1fAC symposium on Design Methods ofCont rvl

norm o[ /! IV ,iy(C,lse 2) .

System.

III these two cases, Fig.G shows the frequency prope rty

Model Matching Desig-n lVlethod Which Ensures

of IIW,iy(Z), rind Yig.G shows luc us of vecto r. Fig.7

Stabi li ty. Elec/ronics und COII IIllI.Lf!ica/i olls ill

s hows Nyq uist plot of - c.(Z)·u IVU"II(!.:) in Case 2 .

.III.l'IIN, l'arl III Fl.Lnciwncll/al Electronic Science, 72,

Fig.7 shows that this system is robust stable for the

%-104, (SC [U P'l'J\

Zhong,Y.



plant which par,llllctcr vnr ied. Step re spo n ses nre

:1~

s hown in Fig.S. 1'~XPElniV1ENT I{I~SU LTS

4

2

'l'.I~ i saltil, 'l'.

'

=: t

("I)n tr o l of fuel in ject ion pump, simu lati on and

INC.).

. --.~- ----'-j

""'" \~' 1 \, i c'

,

\

/' \

./

:

11

1

""""'",------------------------///J'J

_'oL ____ ._,.______ ,_ __ ~ ___ _

ex periment t·e s ults s how that it is effedive whe n the

-10

-~

0

!!5

pbnt has pilnltn ete r \':1riations. Fig.4 Nyquist plot in case 1 (l)atO"C (2)ilt6()"C

Sti ll, it is not clea t· th;l t thc order and pole ass ignmen t of r obust compensator are m ost su itable. In this paper , to get r obust stilb ility, we set the free parameter dra wing the i\yquist pl ot of I! IV U"II a nd the frequency property of I! \\' d y . But, RMM is avo ilable for discreted-d:tta system and non-minimum phase plant, we ob tain r ob ust control ~yste m

j

///-----------------~---""""',

r /' r (

_4 ~ r{ubust Model i\]a tch in g is rlpplied to sp ill position

'['lII~C ll NICJ\,

-----.,------

J _] (2\

CONCLlJSlON

and Tagawa,lC (1989). llobu s t

by determining suitably the free parameters

of the robu st compe nsator so as to (1) satisfy the n ecessary and efficiently

condition for realizing robust steady -state property,

189

10

~~~C'

)

:~"~ 200

1 I

r----

I

o~

1-

200

~""'~:' )

:

t -· o~ ~

\

"

_o.L

'( 2 )

=::: ~r~_4-- '- ~ 10- 3

....... UH .. _ _

10-:11

~

_ . .

. ...... .

L.~'.

_---t- -" . . ........ t! • . _

10 -'



.

lOO

-,,_,-,-,-J

o

10'

,,. .. "' ..... "0>' (rod )

Fig.S frequency properly uf 11 Well' in Lh e (Gse 1 (2) ill Lhe ca se 2

1 I

lOO ..

I

Fig.G veclor locus of 11 W"',, in Lhe case 1 (2) in Lhe case 2

Fi g .7 Nyqu isL plot in cuse 2 (l)aLO"C

( • • 0)

Fig.S Step responses (1) al25"C (2) at onc (3) at 60 n C

---'-'

(1)

0. 4

t In"> .

(1) '20

._._ _ ~_____,.__ ~J

(2)at60"C

190

O .D