Chapter 2 Topological Vector Spaces

Chapter 2 Topological Vector Spaces

CHAPTER 2 TOPOLOGICAL VECTOR SPACES DEFINITION 2 . 1 : ( F , T ~ b) e a t o p o l o g i c a l d i v i s i o n r i n g . By a Let f o p o t u g i c...

2MB Sizes 0 Downloads 133 Views

CHAPTER 2 TOPOLOGICAL VECTOR SPACES

DEFINITION 2 . 1 :

( F , T ~ b) e a t o p o l o g i c a l d i v i s i o n r i n g . By a

Let

f o p o t u g i c a l ? u e c f o h hpUCe ( T V where on

E

S)

i s a vector s p a c e o v e r

o u e h ( F , f F ) w e mean a p a i r ( E , T ) , F, and T i s a T V S Zopok?ogy

t h a t is

E;

(a)

t h e mapping ( x , y ) + x + y

from ( E J )

( E , T ) to (E,T)

x

i s continuous ;

t h e mapping (X,x) +Ax

(b)

from ( F , T ~ ) ( E , T ) t o ( E , T ) i s

continuous. If

is a

i s d e f i n e d by a n a b s o l u t e v a l u e

T~

1).

(F,1 .

X

IA 1 ,

+

(F,-cF), w e s h a l l say t h a t ( E J )

TVS over

is a

and ( E l T) TVS ~ U W L

C l e a r l y , any t o p o l o g i c a l d i v i s i o n r i n g i s a TVS o v e r

it-

self. If

( E , T ) i s a T V S o v e r (F,rF) a n d

T

# {@,E), w e say t h a t

(E,T) i s a phvpeh T VS o v e r ( F , T ~ ) i; f T = {@,E}, the TVS (EJ) i s c a l l e d i m p h o p e h . Notice t h a t (E,T) i s a n i m p r o p e r T V S i f , and o n l y i f ,

0

C l e a r l y , any non-zero Hausdorff T V S

= E.

(E,T) is a proper TVS.

L e t ( E , T ) b e a T V S o u c h ( F , T ~ )Foh . each xoE E F*, ,the m a p p i n g 3 x x + x and x A0x ate 0

PROPOSITION 2.2: and e a c h

ho

E

homeomvhphihmn a 4

-+

( E , T ) o n X o i.tnek?d.

x

PROOF: The mapping If

ho # 0 , t h e n

too, again

+

x

+

+

Aox

hilx

by D e f i n i t i o n

i s c o n t i n u o u s from is

2.1.

Definition2.1.

i t s i n v e r s e , which i s c o n t i n u o u s In particular,

x

-+

- x

is a

PROLLA

32

homeomorphism. x x + x0 The c o n t i n u i t y of Its i n v e r s e i s t h e mapping x -+ x

follows f r o m D e f i n i t i o n 2 . 1 . = x + (- xo).

-+

- x0

L e t (E,T) b e a T V S o v c 4 (F,rF) and a E E. T h e n 0 i d , and onLy i d , a + V i b u n e i g h b a ~ h o u d ad a. Any b u b b e t V C E i n a n e i g h b o h h o o d 0 6 0 id, and o n L g id, - V i n a neighbntrhood ad 0. Mohe genetraLLy,id X t F*, V C E i b a neighbohhood a d 0 , id und o n L y id, AV i n a ncighbohhaod a6 0 . COROLLARY 2.3:

v c E i n a neighboahood o h

DEFINITION 2.4: A s u b s e t c a l l e d nymme,thic i f

S =

of a vector s p a c e E o v e r

S C E

-

F is

S.

T h e hymmekhic n e i g h b u h h u o d n (E,r) dohm a b a b i b 04 neighbahhuodn a i 0 .

i n a

a6 0

PROPOSITION 2.5:

PROOF: L e t V b e a n e i g h b o r h o o d of 0 i n (E,T). 2 . 3 , - V i s a n e i g h b o r h o o d o f 0 . Hence V n r i c n e i g h b o r h o o d of 0 , w h i c h i s c o n t a i n e d i n

(-

By

T VS

Corollary

V) i s a symmetV.

DEFINITION 2.6: L e t (F,I*I)b e a v a l u e d d i v i s i o n r i n g . A s u b s e t of a v e c t o r s p a c e

S C E

each

x

6 > 0

E l there is a

E

implies

x

E

E over

F is called

a b b o h b i n g i f , for

s u c h t h a t f o r any

h

E

F, ( X ( z 6

AS.

C l e a r l y , i f S i s a b s o r b i n g , and

T 3 S,

then T i s absorbing

too.

PROPOSITION 2.7:

ncighbotrhuod u d

Let ( E , T ) b e a T V S o v e ~(F, 1 0 i n (E,r) i n abborrbing.

V C E

PROOF: L e t

b e a n e i g h b o r h o o d of

b e g i v e n . The mapping

X

t h e r e is

E

6

0 , Then ( A / > 6

= E - ~>

> 0

+

such t h a t

DEFINITION 2.8: L e t ( F ,

1- 1)

Ax Ihl

0

- 1).

Then

evetry

.

i n (E,r) L e t x 6 E

i s c o n t i n u o u s a t t h e o r i g i n . Hence 5 E implies Ax E V. Let

implies

X-lx

E V,

i.e.

x

E

XV.

be a v a l u e d d i v i s i o n r i n g . A s u b s e t

33

TOPOLOGICAL VECTOR SPACES

S

of

E

C

a vector space E over

1x1

for e v e r y Clearly,

S i s b a l a n c e d a n d non-empty,

if

Let

(F, / *

1).

{xu} i n

-

S

S.

then

The cLvnuke o d a bulanced A E X

x

s,

E

and

Axc,

Now

a balanced s u b s e t of a

be

S C E

Let

baLanced i f

AS C

S

< I.

PROPOSITION 2 . 9 : PROOF:

F is called

S

E

1x1

<

and

i h

0 E S.

balanced.

T VS

(EJ)

over

1. Then x i s t h e l i m i t o f a n e t Axc, Ax. T h e r e f o r e Ax E 5, a n d +

i s balanced.

If

{Ax; j h l 5 1, x

then

S C El

balanced set containing

E S }

is t h e

smallest

S. I t i s c a l l e d t h e baLanced h u l l o d S .

C l e a r l y , t h e u n i o n of a n y f a m i l y of b a l a n c e d s e t s a n c e d . Hence, t h e r e e x i s t s for a n y s e t

if

bal-

S C E l a b i g g e s t balanced

s e t K c o n t a i n e d i n S. K i s c a l l e d t h e b a l a n c e d hekneR i t i s non-empty i f , a n d o n l y i f , 0 E S.

06

S,

L e t ( F , I 1 ) b~ a non-ttiviaLLy vaBued d c v h L o n king, and l e t ( E , T ) be a T V S owe& (F,1 . 1 ) . T h e baLanced hefine& 06 aviy tieighbokhood o h 0 i n a n e i g h b o t h o v d 0 6 0.

PROPOSITION 2 . 1 0 :

PROOF: L e t V b e a n e i g h b o r h o o d of 0 i n ( E , T ) . S i n c e ( A , x )

i s c o n t i n u o u s a t (0,O) of

0

(EJ)

Choose of

0,

in

V.

AU =

and

0 < and

such t h a t

1 Xo 1 5

XoW

C

,

there exist

1x1 5

6

+

6 > 0 and neighborhood

x

and

E W

Ax

imply

Xx W

E V.

i s a neighborhood V . Now t h e b a l a n c e d h u l l of AoW i s c o n t a i n e d

Indeed, i f

6 . By C o r o l l a r y 2 . 3 ,

u E AoW, t h e n

u

=

AoW

X 0w ,

with

w

E W.

Hence

hhow E V f o r a n y l h l 5 1, b e c a u s e lhhol = 1x1 * /Xol 5 6 w E W. T h i s shows t h a t A 0 W C K C V , w h e r e K i s t h e b a l -

a n c e d k e r n e l of

V.

COROLLARY 2.11: L e t ( E , r ) b e a T V S awe4 a n u n - , t h i v i a & ? y v a l u e d

d i v i n i v n hing (F, 1 . I ) . T h e balanced neighbohhaadh b a n i d 0 6 neighbohhoodn a t 0.

PROPOSITION 2 . 1 2 :

L e t ( E , T ) be a T V S O v e h

UQ

0 dotm a

( F , T ~ ) T. h e

cloned

34

PROLLA

neighbuhkoodn 0 4

a b a n i o oA ne.i.ghba,thoodn a t

0

L e t V be a n e i g h b o r h o o d of 0 i n ( E l T )

PROOF:

is continuous a t ( O , O ) ,

such t h a t hood of

x

0,

v

Choose v = x

+

W

- W)

(x

E

- w

f o r some

W e h a v e shown t h a t

w

neighborhood

x

k.

E

Since

is a n e i g h b o r h o o d of

W

w E W.

of

W

C

v

Then

n W.

w

.

S i n c e (x,y)

+

t W;

W C V.

Hence

=

v

v

+

0

Hence (x - W) n W # @.

and

x

x+y

is a neighbor-

-W

x.

Hence

+

W of

t h e r e is another neighborhood

L e t now

W C V.

-

0.

do~111

E

x - W implies t h a t

w, t h a t i s

V

x E W + W.

contains the closed

0.

l e t ( E , ? ) b c a T V S t ~ ~ ea hn v n - t h i v i a ! - L y v a e u e d I ) . T h e h e e x i n d n a b u n i n a d neighboahaad6 ad 0 c o n n i a t i n g 06 c l o n e d and b a l a n c e d n e t n , namely x h e s e t 0 4 a U cloned and balanced ncighbothoudn 0 6 0 .

COROLLARY 2 . 1 3 : d i v i n i u n Ring

PROOF: L e t

(F, 1 .

0 i n (E,r). By

V b e a n e i g h b o r h o o d of

t h e r e e x i s t s a closed neighborhood

2.12, V.

By C o r o l l a r y 2 . 1 1 ,

0

contained i n

W.

contained

0

in

t h e r e e x i s t s a balanced neighborhood U of

Hence

0 By P r o p o s i t i o n 2 . 9 ,

W of

Proposition

U

E U C T S C

wc

v.

is balanced; i.e.

b a l a n c e d n e i g h b o r h o o d of

0 contained i n

U

is

a

closed

and

V.

L e t S C E b e a b a l a n c e d o u b s e t 06 a vccxUh n p a c e E a v e h a n a n - t h i u i a l l y valued d i v i n i o n h i n g (F,1 . 1 ) . Then S i n ubnvn.Ling i . 4 , and o n l y id, g i v e n x E E thetie exist5 E F* auch t h a t x E )1S.

PROPOSITION 2 . 1 4 :

PROOF:

Let

S b e a n a b s o r b i n g subset o f

6 > 0 such t h a t 1x1 2 6 valued, choose

is

implies

non-trivially n

E

IN s u f f i c i e n t l y b i g

x

E

us. Conversely, l e t

E

1-1 = A n

S C E be

0

is

F

E.

x

E

with

x

Given

E l there AS. S i n c e ( F , I - I ) i s

lAol

such t h a t

E

> 1. T h e n , f o r 11.1

I 2

6 . Hence

a balanced s u b s e t such t h a t given

35

TOPOLOGICAL VECTOR SPACES

x E E

there exists

and / A I z 6 = llij

6 > 0

x = ps, w i t h S

p E F*

s E S.

implies

Hence

x

such t h a t

A

2

1

-1

x = A

-1

E US.

L e t 6 = 1111. Then

IA-'pl.

On t h e o t h e r hand,

11s E S ,

i.e.

x E AS. T h u s

is absorbing. Notice t h a t i n t h e f i r s t p a r t o f t h e proof

(F,1

b a l a n c e d , and i n t h e s e c o n d p a r t ,

*

1)

S

need n o t

be

need n o t b e non-trivi-

a l l y valued.

L e t E be a vecRoh bpaCe V u Q h u non-tkivialLy v a l u e d d i v i b i o n k i n g (F,1 . I ) , and l e t B b e u h u n d a m e n t a l b y h t e m neighbotrhaodn u 6 0 i n E doh borne T V S t t o p o l o g y T. Then

THEOREM 2 . 1 5 :

(i)

doh e a c h

thetre

V E R,

U E R

Qxibtb

huch

that

u + u c v ; (ii) 6otr each

thut

A E F*

wc

and

V E B

Rhetre

exibtb

W E B buCh

AV.

B i b a d u n d a m e n t a l byb.tem 0 6 n e i g h b a h h o o d b a h 0 dvh a T V S t o p o l o g y -i o n E , and b y ( i i ) a b a w e , ( b ) thug doh any A E F*. Then

PROOF:

S t a t e m e n t s ( i )and

operations (x,y)

-+

Conversely, l e t

ties

(a) through

and s o

+

y

and

x

X -1x

-+

a t the origin.

8 be a f i l t e r basis i n

( c ) . Hence e a c h

V



E

s a t i s f y i n g proper-

B i s non-empty and balanced,

0 E V.

For each

of

x

( i i ) f o l l o w f r o m t h e c o n t i n u i t y of the

x E El let

F ( x ) be t h e c o l l e c t i o n o f a l l s u b s e t s

E w h i c h c o n t a i n some s e t of t h e form

x +V, with V

E

8. Then

36

PROLLA

8.

F ( 0 ) i s t h e f i l t e r g e n e r a t e d by t h e f i l t e r b a s i s

The

fol-

F ( x ) are t r u e .

lowing p r o p e r t i e s o f t h e f a m i l i e s

Clear.

PROOF:

k

PROOF: T h i s follows from t h e f a c t t h a t

x

E N.

Clear.

PROOF :

PROOF:

N t F(x) ,

aLl

( i i i ) Fak

is a f i l t e r basis.

8

Let

such t h a t

V W

8 be s u c h t h a t

E

+ W

o t h e r hand, i f

C

Let

M

M =

then

y

x

-

+

W.

x

E W.

By ( a ) I c h o o s e

W E €3

C l e a r l y , M E F ( x ) . On t h e Hence

.

N t F(y)

and so

V.

y

x + V C N.

From ( i ) t h r o u g h ( i v ) , i t f o l l o w s t h a t t h e r e e x i s t s a unique topology

T

on E f o r w h i c h , f o r a l l

a l l n e i g h b o r h o o d s of

x E El

From o u r d e f i n i t i o n i t f o l l o w s t h a t borhoods a t (F,

1. 1 ) . (v) Let

exists

U

E 8

0.

(x,y) (xo

+

E

x + y

such t h a t

such t h a t

over

i~ c o n , t i n u u u h .

E x E

U +U

5 1).

8 i s a b a s i s of n e i g h -

I t remains t o prove t h a t ( E , T ) i s a T V S

, yo)

V 6 8

F(x) i s t h e f a m i l y o f

x i n T. ( S e e B o u r b a k i [ 1 2 1 , Chap. I ,

C

be given. L e t

xo + yo V.

Let

x

+ E

N t

V C N.

x + 0

F(xo + y o ) .

There

By ( a ) , t h e r e e x i s t s

U and

y

E

yo + U .

Then

37

TOPOLOGICAL VECTOR SPACES

x - x U

+

and

0

U

YO + U

x

and so

V,

C

- yo

y

belong t o

U. Hence

+

V C N.

xo +

y E

x + y - (xo + yo)

Since x

0

+

E

U E F(xo) and

F (yo), t h e c o n t i n u i t y h a s b e e n p r o v e d .

E

(vi)

(A,x)

Ax

-+

i n co&, tinuou b .

Since Ax

- A 0x0

-

= (A

+ Ao(x - xo) + ( A

AJXo

-

Ao) ( x

-

i t f o l l o w s f r o m ( v ) t h a t t o p r o v e ( v i ) i t i s enough ( v i i ) through

xo E E ,

A

(viii) Foa each

.A

x

(A, x )

PROOF:

(vii) L e t

6 > 0

such t h a t

+

( v i i i ) : If

# 0.

lAoAnl

Ax

/ A />

1. By ( b ) , W

V

I* I).

prove

0 .

x

in c v n t i n u v u b a t

0.

(0,o).

i s absorbing,

Axo

C

AnV

IXI

/ A /< 6-l.

L e t then 0 <

AV.

E

0

exists

there

E V.

< 1,

f o r some

choose

n

Assume

that

IN

that

E

SO

W E 8 . Hence

n

AoA v c v,

is balanced.

DEFINITION 2 . 1 6 : (F,

0

V

i.e.

0 <

AoW C

because

to

cvntinuoub a t

i h

t h e r e i s nothing to prove.

= 0,

X,

Axo

-+

6 implies x

E A-lV,

xo

.+

cvntinuuuo a t

i b

V E 8. S i n c e

Let

5

E F,

V E % .Since

I t follows t h a t

.A

,

( i x ) below:

( v i i ) Fok e a c h

(ix)

xo)

L e t (E,T ) b e a T VS o v e r a v a l u e d d i v i s i o n r i n g

A subset

neighborhood

V

B

C E

is said t o

be

of t h e o r i g i n i n ( E , T )

,

bounded

if,

there is a

f o r every

6 > 0 such

38

PROLLA

1x1 2

that

in

6

implies

F

B C AV.

I t f o l l o w s from P r o p o s i t i o n 2 . 7

t h a t any

is

set

finite

b o u n d e d . C l e a r l y , a n y s u b s e t of a b o u n d e d s e t i s b o u n d e d .

Let

b e a T V S D U C A a v a l u e d d i u h i o n hing (F, / - I ) . I d A and B a f i e b o u n d e d b U b d e t h , n o a h e A + B , A U B, t h e c L o n u h e 0 6 A, and AA d o h each X E F .

PROPOSITION 2 . 1 7 :

PROOF: L e t

b e a n e i g h b o r h o o d of

V

one W such t h a t

and

1x1

NOW

B c AW.

u B

A

implies

6A

and

XW,

6 ) B

implies A

> 6 = max(6

A'

-

AA i s b o u n d e d i f

X

= 0.

xu

for all

1x1

A C XU.

Hence

> 6 , where

PROOF:

I).

6 > 0

0 in

n e i g h b o r h o o d of

in

E

x

0

t K,

K C

n

U

i =I

AV

AW

C

U s u c h t h a t U C V.

XV,

Then

XV

= A U C

is s u c h t h a t

{xi

+

AUbAeRb

2

lh]

6

implies

&Lng

ahe b o u n d e d .

t h e mapping (A,x)

1x1 5

such t h a t

By c o m p a c t n e s s o f K , that

+

and l e t

V be a n o p e n

E.

( 0 , ~ ~ Hence, ) . there e x i s t

0

B C XW

X # 0 , t h e boundedness

If

a compact s u b s e t ,

be

K C E

For each

implies

L e t ( E , T ) be a T VS oueh a u d u e d diuhinion

T h e n a L L compacz

Let

6,

> 0

i s bounded.

PROPOSITION 2 . 1 8 :

(F,1 .

c

dg

2

Ihl

+

and

2.3.

Choose now a c l o s e d 0 - n e i g h b o r h o o d A C

gA > 0

A C

follows f r o m C o r o l l a r y

XA

i n ( E , T ) . Choose a n o t h e r

0

There e x i s t s

W C V.

C XW C AV.

Clearly, of

+

W

1x1 2

such t h a t

(E,T)

6(xo) > 0 6 ( x o ) and

Ax

-+

and

t

-

Vx

x t V

t h e r e are f i n i t e l y many Vx, 1

1.

Let

6 = inf { 6(xl),

is continuous a t 0

neighborhood of

xO

imply

A t t V.

x l r . . - , x n t K such

. . . ,6 ( x n ) 1 .

Let

39

TOPOLOGICAL VECTOR SPACES

and

IA-'l

c

AV.

K

5

6 < 6 ( x i ) . Hence

A

-1

x

(F,1 .

dame waLued d i w i n i a n k i n g

E

Therefore

AV.

( E 2 , ~ 2 ) be t w o T V S

LeZ ( E l , ~ l ) a n d

PROPOSITION 2 . 1 9 :

i.e. x

E V,

I),

and Let ConXinuoud R i n e a k map. T h e n T mapn b o u n d e d

T : El bQ,tb

+

E

oweh t h e be. a bvunded

into

seto. PROOF:

Let

i n (El,-rl) implies

b e a bounded s u b s e t , and l e t

B C El

such t h a t

Then a h u b h e 2

Let F

It1 5 M

duck t h a t PROOF: L e t

(F,I

in

I

S C F

It1 5 1

F

0 < 11-1,

- 1)

S C

T(B)

C

6 > 0

Let

T ( W ) C V.

Then

B C AW.

PROPOSITION 2.20:

then

AT(W)

Hence a n y

s

Therefore

E

(F,

1.

t E F, i n p a r t i c u l a r f o r a l l

f o r all

.A -n

.

c a n b e w r i t t e n i n t h e form

5

IV,~,

and

V = { A E F,

A

M = lpol

be such t h a t

S C F

Let

Hence

DEFINITION 2 . 2 1 :

0 < /A:[

-1

S C V,

1x1 5

i.e.

If

t

Hence

< 6-'.

S i s contained i n

Now

t E S.

6 > 0 s u c h t h a t I A I 6' with Take Xo E F

S

M > 0.

E S.

It/ 5 1).

-

s E S.

s

F,

E

1-1,

Conversely, l e t f o r some

6

i s t r i v i a l l y valued,

)

n sufficiently big

= ll-lovl

Is1

> -

condidek (F,Ibounded,id and doh. aLP t E S.

S C A { t

for

IAI

0

XV.

C

i s n o t t r i v i a l l y valued, choose

> 6,

be such t h a t

of

UA

be bounded. I f

I A o / < 1. F o r

W

id

for a l l

implies

for a l l

V be a neigh-

0 i n ( E 2 , ~ 2 ) . There e x i s t s a neighborhood

b o r h o o d of

1-10 { t

pov

E

F;

with

satisfies

E S

E)

S C AV,

implies be g i v e n .

for all

1x1

> 6.

L e t (E,T) b e a T V S o v e r a t o p o l o g i c a l d i v i s i o n

r i n g ( F , . r F ) . A subset B C E i s Z v t a E R y bounded i f , f o r e a c h n e i g h b o r h o o d V o f 0 i n ( E , T ) t h e r e e x i s t s a f i n i t e s e t Bo C B such t h a t

B

C

Bo + V .

C l e a r l y , a n y compact s e t i s t o t a l l y b o u n d e d , and a n y s u b s e t

PROLLA

40

of a t o t a l l y bounded s e t i s t o t a l l y bounded. A l s o ,

are t w o t o t a l l y bounded s u b s e t s , t h e n

A

u B

and

if A

A and

+

B

are

B

t o t a l l y bounded. PROPOSITION 2 . 2 2 :

The

06

CLUbiLhe

a t o t a & L y bounded hubnek

i h

to-

taQP.y b o u n d e d . B be a t o t a l l y b o u n d e d s u b s e t of a

PROOF: L e t

such t h a t

B

0

b e a n e i g h b o r h o o d of

V

B0

C

+

+

W

W C V.

Let

W.

t h e r e i s some b = b

so

b E

a b

follows t h a t

E

B.

+

Since

+

W

b

W

+

W

a

f

-W Bo

C

PROPOSITION 2 . 2 3 : 1 e Z (El,~l)a n d

+ +

i s a neighborhood b

Bo

+ +

W.

Hence

a -b

W.

Since

-W

B b e a t o t a l l y b o u n d e d s u b s e t of

such t h a t

B C B

0

E

+

T(W)

C V.

Then

W.

b,

W , and

it

-+

o w t h Ahc E2

beth

Let

be

iniu

( E 1 , ~ l )a n d l e t

0 i n ( E 2 , ~ 2 ) . Choose a n e i g h b o r h o o d

0 i n ( E l , ~ l )s u c h t h a t B

of = W,

( E 2 , ~ 2 ) b e Rwa T V S

topoLogicaL d i w i n i o n k i n g ( F , r F ) , and 1 e A T : E l a c o n t i n u u u b L i n e a h map. T h W T mapn ta.taL.Oy b o u n d e d t o t a e e y bounded b e t n .

PROOF: L e t

W

V.

battie

b e a n e i g h b o r h o o d of

. Let

be a f i n i t e s u b s e t such t h a t

C B

belongs to

Bo

(E,r)

i n ( € 3 , ~ ) . Choose a s y m m e t r i c o n e

Bo

such t h a t

B

f

- a + a

Let

T VS

V

W of

Bo b e a f i n i t e s u b s e t of

T(B) C T ( B o )

+

V.

A s a p a r t i c u l a r case, w e h a v e t h e f o l l o w i n g :

COROLLARY 2 . 2 4 :

let

a T V S awck a kupulogical d i w i n i u n R o t a Q L y b o u n d e d , t h e n XB i b R o t a L L y

( E , T ) be

n i n g ( F , T ~ ) .16 B C E i h buunded, do& each X E F.

E v e h y t a t a L L y b o u n d e d h u b n e t oQ a T V S ( E , T ) o v e k a nun-ZhiwiaLLy w a L u c d d i v . i h i o n h i n g (F,I*I) i h b o u n d e d .

PROPOSITION 2 . 2 5 :

PROOF:

Let

B

C

E

be a t o t a l l y bounded s u b s e t .

Let

be

V

a

n e i g h b o r h o o d of t h e o r i g i n . Choose a b a l a n c e d n e i g h b o r h o o d W of 0

such t h a t

that

B C Bo

W

+

+

W.

Bo b e a f i n i t e s u b s e t of

such

W C V.

Let

Since

Bo i s b o u n d e d , t h e r e e x i s t s 6 > 0, which

B

41

TOPOLOG I CAL VECTOR SPACES

w e may assume t o b e s u c h t h a t 6 Ihl 2 6 . Since W i s balanced, Hence

B C Bo

+

+

W C XW

1.

1, w i t h

1x1 2

XW + AW

W C

XW

whenever

implies

W C XW.

Bo 1

6

C

1x1 2

XV, f o r a l l

C

6.

DEFINITION 2 . 2 6 : L e t ( E , T ) b e a T V S o v e r a t o p o l o g i c a l d i v i s i o n

E' the v e c t o r s p a c e o v e r

( F , . r F ) . W e d e n o t e by

ring

F

of

all

c o n t i n u o u s l i n e a r maps f r o m ( E , T ) i n t o ( F , . r F ) . E ' i s c a l l e d t h e

topological d u a l o f (E,T). C l e a r l y , i n a T V S ( E , T ) a l i n e a r map

uous i f , and o n l y i f , PROPOSITION 2 . 2 7 :

f :E

is continuous a t

f

be a T V S

Let ( E J )

+

is contin-

F

0.

U W Q ~ La

nun- L&v~&y

valued

d i v i n i u n h i n g (F,1 . I ) . A l i n e a h map f : E F i n c o n t i n u u u n id, and unLy id, f i n bounded on borne n e i g h b u h h o u d u d 0 . -+

PROOF: I f

f E El,

neighborhood

then

V of

i s c o n t i n u o u s a t 0, a n d t h e r e

f

If ( x ) I 5 M

C o n v e r s e l y , assume t h a t V

/ f (x) 1 5 1

0 such t h a t

i s some n e i g h b o r h o o d o f

x

for a l l

for all

x

is E V.

where

V,

E

0 i n (E,T). By P r o p o s i t i o n 2.20 this

i s e q u i v a l e n t t o s a y t h a t f (V) i s bounded i n ( F , I 1 ) . L e t be g i v e n . L e t 6 > 0 be such t h a t X E F w i t h / A /2 6 plies

S i n c e (F,I 0 <

It( 5 E ) , i s n o n - t r i v i a l l y valued, choose

f i x ) E X W , where

IAI

f(x) E hood o f

w

1)

< 6-I. Then for all 0

E

for all

W = { t E F;

f (x) E X - l W

x

a

for

all

x

x

X E F E

XV. By C o r o l l a r y 2 . 3 , XV

V,

E

> 0 i m-

E V.

with

that

is

i s a neighbor-

in (E,T).

L e t ( E , T ) be a T V S awe& a nun-Rhiui&y valued d i w i n i a n hing ( F ,1 . I ) . A l i n e a h map f : E F i n c u n t i n u u u n id, -1 and u n l q id, i - t d h e h n e l f ( 0 ) in c l o n e d .

PROPOSITION 2 . 2 8 :

-+

PROOF: The c o n d i t i o n i s c l e a r l y n e c e s s a r y , i n (F,

1.1).

Conversely, l e t

i s closed. I f

f : E

f-'(O)=

ous. L e t u s suppose By C o r o l l a r y 2 . 1 1 ,

E,

f-'(O)

+

F

then

since

is closed

{O)

b e a l i n e a r map s u c h t h a t f = 0

and

# E . Choose

Fl(0)

f is c l e a r l y continua E E

with

t h e r e i s a balanced neighborhood

f ( a ) = 1. V

of 0 such

PROLLA

42

that (a

+

V) n f-'(O) / f ( x )I

Indeed, i f

€(a

and V,

+

@. L e t

=

2 1,

then

x

E

-

y =

V.

We c l a i m that

-1 f(x)l x

[

y ) = 0 , a c o n t r a d i c t i o n . Therefore

and by P r o p o s i t i o n 2 . 2 7 ,

DEFINITION 2 . 2 9 :

i t follows t h a t

f

I f ( x ) ( < 1.

belongs

V,

f

to i s bounded

on

i s continuous.

E b e a v e c t o r s p a c e o v e r a v a l u e d division

Let

r i n g (F,I * 1 ) . A s e q u e n c e U = (Un ) of non-empty s u b s e t s o f E i s called a n t h i n g i n E, i f (a)

every

i s b a l a n c e d and a b s o r b i n g :

Un

for a l l

(c)

f o r some

X E F*

X E F*), g i v e n that The s e t the set

Urn C XUn

.

nth

0

m

I I ~

5

3,

for a l l

By Theorem 2 . 1 5 , T~

over

such

E

If

COI,

=

i s m e t r i z a b l e ( B o u r b a k i 1121

A

E

V are strings i n

,

Topologie ggn.,

Chap.

then

E,

U

+

V, U n V

and X U ,

F*, a r e s t r i n g s t o o .

DEFINITION 2 . 3 0 :

( E , T ) be a T V S o v e r a v a l u e d d i v i s i o n ring

Let

(F,1 . 1 ) .

A string

knot

is a

Un

such

no 1, P r o p . 1 ) . U and

If

un

n

n=l

hence f o r a l l

m > n,

U i s t h e f u n d a m e n t a l system

1).

(F,1 .

N(U) =

Ix,

U.

f o r a unique topology

t h a t ( E , r ) i s a T V S over U

then

(and Um,

knot of

8 o f a l l k n o t s of a s t r i n g

of n e i g h b o r h o o d s o f

< 1

there exists

is called the

Un

1x1

with

Un

is called

U = (Un)

-r-neighborhood of

in

0

T-topoLogical,

EXAMPLE 2.31: L e t ( E , T ) b e a T V S o v e r a n o n - t r i v i a l l y

d i v i s i o n r i n g (F,I n e i g h b o r h o o d s of

*1).

0

( c ) of Theorem 2 . 1 5 . logical string

Let

if

each

E.

valued

8 be a fundamental system o f c l o s e d

(a) through w e can choose a T-topo-

in (E,r) satisfying properties For each

Uu = ( U n )

in

U El

E

B

with

U1

= U,

whose k n o t s

"n

43

T O P O L O G I C A L VECTOR SPACES

belong t o

F ( B ) b e t h e s e t o f all s t r i n g s so

Let

€3.

obtained.

F ( B ) has the following properties:

The s e t

F(B)

t h e knots of t h e s t r i n g s belonging t o

(i)

b a s i s of balanced neighborhoods a t (ii) I f

U and

that

W

V belong t o

F(R),

form

for (EJ)

0

there is

a

;

W E F ( B ) such

U n V;

C

DEFINITION 2 . 3 2 : A s e t

F of s t r i n g s i n

E with

property

(ii)

above i s c a l l e d ditecied.

l e t E be a v e c t o h . Apace aveh a d i v i c l i u n h i n g F, and L e i A +. 1x1 be a n o n - f h i v i a L a b a o L u t e v a l u e an F . 7 6 F i h a d i t e c t e d h e t o d h t ) L i M g h i n E , ,then t h e h e t 8 0 6 a L L k n o t h o d a L l h t h i n g n b e l o n g i n g .to F i h a badin 06 b a l a n c e d n e i g h b u k h o o d 4 at 0 doh a [ u n i q u e ) t u p o L o g y T o v e h E , h u c h t h a t ( E , T ) i h a T VS v v e h ( F , 1. 1 ) . The t o p o l o g y T i h h a i d t o be genehated PROPOSITION 2 . 3 3 :

by

F.

B b e t h e s e t of a l l k n o t s of t h e s t r i n g s b e l o n g i n g t o F. S i n c e F i s d i r e c t e d , g i v e n U and V i n F , there is W E F s u c h t h a t W C U n V , and from t h i s i t f o l l o w s t h a t 8 PROOF:

Let

is a f i l t e r basis. Let

string

B . Then

V E

V =

and

W E B

i.e. V

U

n ' belonging t o

U = (UnIn

Let

W

knot

= U

o f some Then

n+l

w + W C V . A

On t h e o t h e r hand, g i v e n with

i s t h e nth

F.

m > n,

such t h a t

W

C

AV.

there is

in

8,

F i n a l l y , e a c h e l e m e n t of

B

E F*,

W = Um

i s b a l a n c e d and a b s o r b i n g , from t h e d e f i n i t i o n o f a s t r i n g i n E. I t r e m a i n s t o a p p l y Theorem 2 . 1 5 .

DEFINITION 2 . 3 4 : L e t ( E J )

(F, 1 .

1).

each knot

A string

Un

u

=

b e a T VS Over a v a l u e d d i v i s i o n r i n g

(unln E m

in

E is called

.r-c&ohed

if

is a closed set i n ( E , T ) .

DEFINITION 2 . 3 5 : A T V S

(EJ)

o v e r a v a l u e d d i v i s i o n r i n g (F,l*l)

44

PROLLA

. r - c l o s e d s t r i n g i n ( E , - c ) i s -c-topo-

i s c a l l e d b a h h e l l e d i f any logical. EXAMPLE 2.36:

Let

E

b e a vector space over

valued d i v i s i o n r i n g ( F , l * 1 ) .

a

non-trivially

The s e t of a L l s t r i n g s

in

c l e a r l y d i r e c t e d , and g e n e r a t e s by P r o p o s i t i o n 2 . 3 3 a

I* I).

such t h a t ( E r r o o ) i s a T V S over ( F ,

-ca i s b a r re 1l e d .

is

topology

Obviously,

(E,T,)

i s t h e f i n e s t T V S topology

N o t i c e t h a t , by Example 2 . 3 1 , T,

on

E

E.

L e t ( E , T ) bc a T V S ouek a n o n - t h i u i a e C g valued d i v i h i o n k i n g (F, I 1 ) h u c h t h a t t h e t o p o L o g i c a C Apace ( E d ) i n a B a i h e h p a c e . Then ( E , T ) i h ba,+~h.eLCed. I n p a h t i c u L a k , a U cornp R e t e rnettrizabee T V S ahe 6ahheRLed.

THEOREM 2 . 3 7 :

-

PROOF: L e t

L/

= (U )

a sequence

Ak

in

'n+l

be a

n ntlN

F* w i t h

lAkl

T - c l o s e d s t r i n g i n ( E , T I . oloose +

as

a,

k

+

Since

00.

each

i s a b s o r b i n g , w e have m

E =

u

k =1

.

XkUn+l

Since ( E , T ) i s a Baire space, and each

is closed,

XkUn+l

at

least o n e of them h a s non-empty i n t e r i o r . By P r o p o s i t i o n 2.2, i f f o l l o w s t h a t Un+l h a s non-empty i n t e r i o r . C a l l i t A. Now

' 'n+l

implies t h a t

0

+

A C Un+l

+ Un

un+l c un

an i n t e r i o r p o i n t of

Un.

Therefore

and t h e s t r i n g

is

T-topological.

0,

U

I n Robertson [ 7 8 ]

,

r

a n d so

0 is

i s a 7-neighborhood

b a r r e l l e d s p a c e s were i n t r o d u c e d

a n o t h e r d e f i n i t i o n ( a n d , i n f a c t , were c a l l e d

of

using

ulthabahuLLed)

.

W e show t h a t t h e two d e f i n i t i o n s are e q u i v a l e n t .

PROPOSITION 2 . 3 8 : L e t ( E , T ) be a T V S ouek a n o n - t h i v i & y

divihion king (F, (a)

(E,T)

I 1).

valued

T h e iaLLowing c o n d i t t i o n n ahe e q u i v a l e n x .

io b a k k e l l e d .

45

TOPOLOGICAL VECTOR SPACES

16 T * in anattheti T V S t u p o L o g g i n E nuch t h a t t h e a t i i g i n hab a dundamentat b y b t e m a d r - c l a h e d n e i g h b a a hoadb, t h e n T* C T.

(b)

PROOF:

(a) * (b): L e t

V b e a -c*-neighborhood o f

a -r-closed T*-neighborhood

W1

of

0 in

such t h a t

E

W i t h o u t l o s s of g e n e r a l i t y w e may a s s u m e t h a t Choose and f i x

X

Suppose t h a t hoods o f

. ,Wn

W1,..

0 such t h a t

k =2,...,n.

hoods o f

1x1

F*, w i t h

E

Wk

By h y p o t h e s i s ,

+

C

V.

W1 i s b a l a n c e d .

a r e balanced T-closed and

Wk C Wk-l

Wk

C

neighborfor a l l

XWk-l

t h e ( b a l a n c e d ) T - c l o s e d -r*-neighbor-

-r*-neighborhood

so t h a t 'n+l

W1

< 1.

0 form a f u n d a m e n t a l s y s t e m f o r

so a b a l a n c e d r - c l o s e d

0 i n E . Choose

+

'n+l

(E,-r*)

of

'n+l

a t the origin, 0 can b e found

n'

and

By i n d u c t i o n , w e h a v e d e f i n e d a T-closed E.

i s b a r r e l l e d , U i s -c-topological.

Since (EJ)

implies t h a t (b)

+ -

string

V i s a T-neighborhood

(a): L e t

F

of

0.

C l e a r l y , F i s d i r e c t e d . By P r o p o s i t i o n 2 . 3 3 , k n o t s of a l l s t r i n g s belonging t o

F

borhoods a t

T*.

0

a r e 7-closed,

f o r a T V S topology

i t f o l l o w s from ( b ) t h a t

Now

Hence

be t h e s e t of a l l T-closed

U = (W ) i n

T*

W1

(F, 1 . 1 ) .

A string

i f every knot

Un

Let

C V

C T.

strings i n

the set

of

E.

all

B o f neighSince a l l elements i n B

form a b a s i s T*

C

T.

Hence t h e k n o t s

of 0 , i . e . o f a n y T-closed s t r i n g a r e T-neighborhoods -r-closed s t r i n g i s T - t o p o l o g i c a l , a n d ( E , T ) i s b a r r e l l e d . DEFINITION 2 . 3 9 :

n

any

( E l T) be a T V S over a valued d i v i s i o n ring

U = (U is E is c a l l e d T-bohnivohaun n n€IN a b s o r b s a l l bounded s e t s i n (E,T); t h a t i s ,

46

PROLLA

€or e a c h

n

such t h a t

IN, g i v e n a bounded s e t B whenever 1x1 6 n

E

.

B C AUn

C

E

there exists 6n>0

C l e a r l y , any r - t o p o l o g i c a l s t r i n g i n ( E l T ) is 7 - h r n i v o r o u s DEFINITION 2 . 4 0 :

(F,

I I) .

.

( E , T ) b e a T V S over a valued d i v i s i o n ring

Let

We s a y t h a t ( E l r) i s b o t n o l o g i c d i f e v e r y r - b o r n i v o r o u s

s t r i n g is r-topological. L e t ( E 1 , ~ l ) and

DEFINITION 2 . 4 1 :

( E 2 , r 2 ) b e two T V S

same v a l u e d d i v i s i o n r i n g ( F , \ - \ ) . A l i n e a r mapping is c a l l e d bounded i f

over the T:

El

+

E2

T maps bounded s e t s i n t o bounded s e t s .

By P r o p o s i t i o n 2 . 1 9 ,

every continuous

linear

mapping

is

bounded. THEOREM 2 . 4 2 :

1 e - t (E,T) be

1 1)

d i u i n i u n K i n g (F,

.

The

a T V S

ouex

a non-ZhiuLaLRq vaRued

dvlLawing ake e q u i v a l e n t :

(a)

(E,r)

(b)

e u e t y b o u n d e d L i n e a h m a p p i n g deljined u n ( E , r ) i n c a n -

i6

boxnvLogical;

tinuoun.

PROOF:

(a)

*

(b): Let

Choose a r * - t o p o l o g i c a l

Clearly, T

-1

(U)

=

because

l o g i c a l . Hence

T-’(W)

continuous a t

0,

string

(T-’(Un))

r-bornivorous,

*

T : (E,T)

+

( E * , T * ) b e a bounded

W be a b a l a n c e d r*-neighborhood o f

mapping. L e t

U = (Un)n E m i n

is a string i n

linear

0 i n (E*,T*). E * w i t h W1=W.

(E,T)

which

is

( a ), T - l ( U ) i s r - t o p o i s a T-neighborhood of 0, and T is T i s b o u n d e d . By

and b e i n g l i n e a r , T

i s continuous.

F be t h e set a l l r-bornivorous s t r i n g s in E . C l e a r l y , F i s d i r e c t e d . By P r o p o s i t i o n 2 . 3 3 , t h e s e t of all k n o t s of a l l s t r i n g s b e l o n g i n g t o F f o r m s a b a s i s 8 o f n e i g h b o r h o o d s a t 0 f o r a T V S t o p o l o g y T*. L e t B C E b e a r-bound& s e t . Then B i s a b s o r b e d by a l l e l e m e n t s i n 8 . Hence B is (b)

r*-bounded.

(a): Let

T h i s shows t h a t t h e i d e n t i t y map f r o m ( E , T )

into

(E,r*) i s bounded. By ( b ) , t h e i d e n t i t y map i s c o n t i n u o u s . T n e r e f o r e , e a c h e l e m e n t of

8 is a r-neighborhood of

0,

and soevery

47

TOPOLOGICAL VECTOR SPACES

F i s r-topological.

element i n

E v e h y m e t f i i z a b l e T V S o v e h a non-,t&ivLaePy d i V i h L o n k i n g (F,1 I ) in bo4noLvgicaL.

COROLLARY 2 . 4 3 :

PROOF:

Let

-

( E , ' I ) b e a m e t r i z a b l e T V S , and l e t

b e a bounded l i n e a r mapping. L e t t h e topology

0 in T

-1

-

= { t E E;

xn

B

=

n E IN

x E T-I(W) n

,

0 i n (E,r).

For each

n

AilUn

Hence

AnW.



IN,

0 and t h e r e f o r e c a n n o t b e c o n t a i n e d

and

Now t h e se-

xn $Z T - l ( W ) .

Hence

A-lT(X x) = n n

Tx

is

T(B) C

AW.

par-

and then

E W,

n

and

0

6 > 0 be such t h a t / A / 2 6 i m p l i e s T B) so t h a t / A n [ 2 6. Then T(B) C XnW. In

t i c u l a r , T(A x ) n n

Let

m.

0 i n (E*,T*) such t h a t

i s t o t a l l y bounded.

{Anxn ; n E IN

bounded. L e t Choose

+

i s bounded i n (El?). I n d e e d , hnxn

q u e n c e ( Anxn)

so

E

E defining

F* w i t h ] A , ]

W be a neighborhood of

Choose

(E*,T*)

i s a b a s i s of neighborhoods a t

i s n o t a neighborhood of

-1 ( W ) . T

E

+

d ( t , O ) < 2-"}

Then ( U n f n E T N

i s a neighborhood of

AnlUn

in

n E IN.

(E,T). L e t

(W)

An

T : (Err)

a m e t r i c on

d be

Choose a s e q u e n c e

T.

"n f o r each

vaLued

-1 a c o n t r a d i c t i o n . T h i s c o n t r a d i c t i o n shows that T (W)

must be a n e i g h b o r h o o d of

0

in

( E , T ) , and

T

i s continuous.

r b g e n e r a t e d by t h e s e t F of a l l T-closed s t r i n g s i n (E,'I) i s c a l l e d t h e hfttrong X a p o L o g y of The t o p o l o g y

REMARK 2 . 4 4 :

( E r r ) . Clearly, T T

a linear

b

T'l(V)

Let

and ( E , T ) i s b a r r e l l e d i f , a n d o n l y

C

-rb

if,

is the following: i f

mapping T : ( E J ) + (G,C) i s continuous, then b + ( G I < ) i s c o n t i n u o u s t o o . Indeed, l e t V be a ?-neigh-

b o r h o o d of

U1

,

A n o t h e r i m p o r t a n t p r o p e r t y of

= rb.

T : (E,'I )

at

b

C T

V.

0

in

Then

G.

T

Choose a < - c l o s e d s t r i n g

-1

(U)

i s a 7-closed s t r i n g i n

i s a Tb-neighborhood of B(T)

U in

G starting

E,

and

so

E

such

0 .

be t h e s e t of a l l

T V S topologies

r~ o n

48

PROLLA

that

c 11;

(1)

T

(2)

(E,q)

The s e t

F

is b a r r e l l e d .

F. Then

g e n e r a t e d by

PROOF:

l/ b e a

Let

q-closed

f o r each

T

L

-rL

-rt

Let

be t h e

for all

q

C

t

Since

E.

q t B(T)

.

Thus

is

q,

C

i

(E,q) is barrelled;

q E B ( T ) . Now

for

topology

T VS

6 B(T).

t- c l o s e d s t r i n g i n

is q - t o p o l o g i c a l f o r e a c h

U

E which are n - t o p o l o g i c a l

of a l l s t r i n g s i n

q E B ( T ), is directed.

every

therefore

F , and so

U E

U

is T t - t o p o l o g i c a l .

PROOF: L e t

V

€,-topological

6

b e any string

for all

C q

6-neighborhood o f U = (Un)

q E B(T:.

of

Tt-neighborhood DEFINITION 2 . 4 5 :

0

-

,

Hence

The t o p o l o g y

b a f i t e L L e d t o p o L v g y of

with

U1

C

and,

U1

in

0

a fortiori,

the

V

PROOF:

t

T : (E,T )

v +

be t h e f i n e s t T V S topology

(G,v)

T : ( E , T ~ )+ ( G , v b )

i s continuous.

T : (E,T

5

t

C

v

t

+

(GI()

and so

By ( a ) ,

on (T

t b

v = v

b

,

i.e.

is continuous, 5

T : (E,-rt)

+

(G,C

t

)

C

v

is

v, i . e .

=

)

vb

T

t

.

C v.

barrelled.

v

E

Lineafi

such t h a t

G

i s c o n t i n u o u s , and t h e r e f o r e

this i t f o l l o w s t h a t

a

T.

L e t T : ( E , T ) + ( G I < ) be. a c o n t i n u o u b T : ( E , Tt ) * ( G , E t ) i n c o n t i n u o u n .

Let

is

ac)i)OC,&Ltted

PROPOSITION 2 . 4 6 :

map. T h e n

a

Then U E F, b e c a u s e

V.

is called

T~

Choose

E.

B(C).

is continuous too.

Hence From

Since Hence

49

TOPOLOGICAL VECTOR SPACES DEFINITION 2 . 4 7 :

Clearly,

T'.

T C T'.

t h e same bounded s e t s . I n f a c t ,

Moreover

and

T

generates have

'T

(E,-ra) is a bornological space,

E with t h i s property.

-ra

i s t h e c o a r s e s t b o r n o l o g i c a l t o p o l o g y on

and

E which i s

finer

The s p a c e ( E r r R ) i s c a l l e d t h e a b d o c i a t e d b o f i n o L o g i c a L

T.

Apace o f ( E , T ) . A T VS ( E , T ) i s b o r n o l o g i c a l i f , R T = T .

If

t h e s e t of a l l

is t h e f i n e s t T V S topology

T'

on

than

*I),

i s d i r e c t e d . Hence i t

T-bornivorous s t r i n g s i n ( E J ) a T V S topology

(F,[

( E , T ) i s a TVS over

If

T : (E,T)

T : ( E , Ta )

+

(G,€,)i s

+

a

a continuous

and

only i f ,

l i n e a r mapping, t h e n

( G , < ) i s c o n t i n u o u s too.

PROOF: S i n c e ( C r u x ) i s b a r r e l l e d , i t s u f f i c e s t o show

that

has a fundamental system of p*-closed neighborhoods o f

i s t h e metric d e f i n i n g

p , choose

Un

p

0. I f d

so t h a t

i s a f u n d a m e n t a l s y s t e m of u - c l o s e d b a l a n c e d n e i g h b o r h o o d s of 0 i n (G,p),

s a t i s f y i n g (a) through

For each

n E IN,

p* is b a r r e l l e d ,

x1 E Un+l

with

j

Since ( E x i ) . 3 i =1 y E G.

is p-closed,

x

-

x

E

Tn+2

xj

E

Un+j

j i =1

y E Un

xi

belongs t o

.

x = y.

Indeed, s i n c e

of

Since

Un.

i s p*-topological.

.

+ Tn+,)

=

By i n d u c t i o n , j and x xi i=l

'

i s a p-Cauchy s e q u e n c e ,

Since

W e claim t h a t

~

Then, b y t h e a b o v e r e m a r k (x

d e f i n e a sequence ( x . ) w i t h 7

some

be t h e u*-closure

Tn

the s t r i n g (Tn)n

L e t x E Tn+l. Choose

Let

Ic) o f Theorem 2 . 1 5 .

j

2

i =1

it Un+i

p* C p r

w e can Tn+j+l.

converges C Un

j

( Z

$3.

and

to "n

x i ) converges

i =1

50

to

PROLLA

y i n (G,u*).

x - y

Hence

j EJN.

Now

j

-

x Tk

E

for a l l

x - y # 0. Since

Assume

belongs t o

xi i=l

2

Tn+j+l

for

all

k E IN.

i s a H a u s d o r f f t o p o l o g y , there

p*

i s some p * - n e i g h b o r h o o d V of 0 i n G s u c h t h a t ( x - y + V) n V = @. S i n c e p * C p , t h e r e i s some k t IN s u c h t h a t ( x - y + V ) n U = @. Therefore

x

-

y

9

,

Tk

k

a contradiction.

T h i s e n d s t h e p r o o f of Lemma 2 . 4 8 . L e t (F,1 . 1 )

b e a n o n - t r i v i a l l y v a l u e d d i v i s i o n r i n g . A con-

t i n u o u s l i n e a r mapping Hausdorff

set

TVS

(G,ii)

{(x,Tx); x E El

T from a T V S

over (F,1 . i s closed

p r o d u c t t o p o l o g y . The s o - c a l l e d conditions

1)

i n t h e space T: E

i s c o n t i n u o u s from ( E J )

on

11"

with

with closed

G

-+

the

states

are a s a b o v e ) . N o t i c e

d o r f f T V S ( G , u ) h a s c l o s e d graph i f , and o n l y i f

a Hausdorff T V S topology

i.e. the

from a T V S ( E , T ) i n t o a Haus-

G

-+

E x G

into a

.theotem

cLobed ghaph

u n d e r w h i c h a l i n e a r mapping T: E

1)

h a s a c f o h ~ dg t t a p h ,

g r a p h i s c o n t i n u o u s ( w h e r e (E,T) a n d ( G , p ) t h a t a l i n e a r mapping

o v e r (F,1 .

(EJ)

G such t h a t

,

there exists

p* C

and T

!J

i n t o (G,p*),

L e t u s now p r o v e a " c l o s e d g r a p h t h e o r e m " .

PROOF:

By t h e r e m a r k s p r e c e d i n g t h e s t a t e m e n t

t h e r e e x i s t s a Hausdorff T V S topology

p*

of

on

Theorem 2 . 4 9 , G

such

i ~ *C and T i s c o n t i n u o u s from ( E , T ) into (G,p*). c o n s i d e r t h e a s s o c i a t e d b a r r e l l e d t o p o l o g y ( p * I t = po

.

i s c o n t i n u o u s from ( E , T ) i n t o ( G r p o ) Now, w e have

because

po C

u,

with

is Hausdorff

DEFINITION 2 . 5 0 :

Let

(F,

.

1. I )

r i n g a n d l e t ( E , T ) and (G,v)

po

(Recall th at

T

that

Let us Then T

is barrelled).

b a r r e l l e d . By Lemma 2 . 4 8 ,

po=ii,

be a n o n - t r i v i a l l y valued d i v i s i o n be t w o

TVS

over

i t . Then L ( E ; G )

51

TOPOLOGICAL VECTOR SPACES

denotes into

t h e v e c t o r s p a c e of a l l c o n t i n u o u s l i n e a r

maps

of

G.

DEFINITION 2.51:

G-topologies) : L e t

(

b e a f a m i l y of bound-

ed s u b s e t s o f ( E , T ) c l o s e d u n d e r f i n i t e u n i o n s , a n d l e t a fundamental system of neighborhoods of

6

S E

and

i n (G,v).

0

B

be each

For

let

V E B

Clearly, the set

o f a l l such

8~

= C ( E ; G ) . L e t u s assume

2.15.

E

B

W(S,V) i s a f i l t e r b a s i s o n

s a t i s f i e s (a) t h r o u g h

(c) of

Theorem

Then

# 0,

when U + U C V. S i n c e W(S,AV) = AW(S,V) f o r a l l A s a t i s f i e s ( b ) , and e a c h W(S,hV) i s b a l a n c e d . Let and

W(S,V) b e g i v e n . By P r o p o s i t i o n 2 . 1 9

(G,v)

,

and s o t h e r e e x i s t s

f ( S ) C XV,

i.e.

6 > 0

f ( S ) i s bounded

1X1 2

such t h a t

f E W(S,XV) = A W ( S , V ) .

BG

f E C (E;G)

Hence

6

W(S,V)

in

implies

is

ab-

sorbing. W e h a v e shown t h a t t h e f i l t e r b a s i s

t i e s ( a ) t h r o u g h ( c ) of Theorem 2 . 1 5 , topology over

(F, I

over

TG

1)

L(E;G)

f o r which

86

such t h a t

BG

s a t i s f i e s proper-

and s o t h e r e i s a ( u n i q u e ) ( ~ : ( E ; G ) , T c)

is a

TVS

i s a fundamental system of

neigh-

borhoods. The m o s t i m p o r t a n t e x a m p l e s o f

G-topologies a r e the

fol-

lowing :

i s t h e s e t of a l l l j i n i t e s u b s e t s o f

(a) case (b)

G

TG

i s c a l l e d t h e ,ttopoLogy

E.

In this

0 6 hhnpLe convehgence.

i s t h e f a m i l y of a l l t o t a l l y bounded s u b s e t s

of

i s t h e f a m i l y of a l l compact s u b s e t s o f

In

E.

(c)

G

t h i s case

~6

CUnVehgenCe.

is c a l l e d t h e Ropoeogy

06

E.

compac-t

PROLLA

52

i s t h e f a m i l y of a l l b o u n d e d s e t s of E . I n t h i s case T G i s c a l l e d t h e k o p o e o g y 0 6 unidohm ~ o n v c 4 -

(d)

and w e

g e n c e on bounded b e t b o r t h e b t h O M g t o p o e o g y , w r i t e 1: b ( E ; G ) t o d e n o t e ( & ( E ; G ) , -iG 1 . DEFINITION 2.52: if

A subset

i s s a i d t o be

H C 6(E;G)

i s b o u n d e d i n t h e s p a c e (6( E ; G ) ,

H

In particular, i f

)

G-bounded

.

converH i s p o i n t w i n e bounded or h i m p L y bounded i f

gence, w e say t h a t

it is

T~

is t h e topology of simple

T~

-bounded.

P R O P O S I T I O N 2.53:

LeL

Then k h e doRRu#ing ahe equhm-

H C 6(E;G).

Len.t:

in

(a)

H

(b)

e a c h neighbo4hood V o d abnohbcr e v e h y S E 6 .

(c)

Foh each

6-bounded.

Fa4

,

S E

0 i n (G,v),n If-'(V),

{f(S); f E

U

HI

f

E

bounded

ib

HI i n

(G,v).

PROOF: ( a ) * ( b ) : S i n c e w e h a v e a s s u m e d t h a t is

6 > 0 such t h a t

hV.

Hence (b)

all

* (c):

If

Hence

f t H.

(c) * (a): L e t

1x1 1.

that

1x1

>

6

S C A n {f-'(V);

6

I*1)

implies

H C AW(S,V),

non-

f(S) C

i.e.

f



HI

f E C

HI,

then

f(S)

f ( S ) C AV

C

AV f o r

hV. 8 > 0

W(S,V) be given. There e x i s t s

implies

is

f E H}.

S C A n {f-'(V); U{f(S);

(F,

V i s b a l a n c e d . By (a) , t h e r e

t r i v i a l l y v a l u e d w e may a s s u m e t h a t

for all

f

E

H.

such

Hence

H C AW(S,V).

PROPOSITION 2.54:

Let

H C d: ( E ; G ) .

Then t h e doLeowing me eguiva-

RenL: (a)

H

(b)

Foh each neighbohhood

i b eyuicantinuoub.

v 06

0 i n (G,v), n

If-'

(V); f E

HI

53

TOPOLOGICAL VECTOR SPACES

06

in a neighbohhood

0 i n (E,T).

F o h e a c h neighboxhood V u d 0 i n ( G , v ) thehe exints a neighboxhood u 06 0 i n ( E , T ) n u c h t h a t

(c)

PROOF: C l e a r . COROLLARY 2 . 5 5 :

ed d o h e u e h y

An e q u i c a n t i n u o u n A u b h e t o d

d: ( E ; G )

i d

(%bound-

G-topology.

PROPOSITION 2 . 5 6 :

L e t H C E ( E ; G ) b e an e q u i c o n t i n u o u n n u b n e t . The h e n t h i c t i o n n t o H o d t h e doLLowing t o p o l v g i e n a t e Rhe name: (a)

t h e t o p o l o g y o d nimpLe COnUehgence;

(b)

t h e t o p o L o g y ad unidohm c o n u e h g e n c e on t o t u L R y bounded nubnetn.

PROOF:

Let

fo

t a l l y bounded, and to

and

E H,

W(S,V) b e g i v e n , w h e r e

V i s a n e i g h b o r h o o d of

R . Choose a n o t h e r o n e

to-

0 i n ( G , v ) , belonging

such t h a t

R

W E

is

S C E

W + W + W C V ,

a n d , by e q u i c o n t i n u i t y of i n (E,?) s u c h t h a t

f(U)

t a l l y bounded, t h e r e i s S C So

L e t now

with

+

U.

Hence

C

a symmetric neighborhood

U of

for a l l

is

f

a finite

S

E

H.

Since

S

such

subset

0 to-

that

f E W(So,W) i m p l i e s

g E H n [fo

U

W

C

So

+

W ( S o f W ) ] . Then

f E W(So,W). S i n c e

because

H,

i s Symmetric.

g E H and f o r w e see t h a t

f = g

-

Thus

f(S)

C

W

+ W +

W

C

g

V,

= f

0

+

f,

i. e .

54

PROLLA

f E W(S,V).

g belongs to

Therefore

fo

+

W ( S , V ) , and

i f o + w(So,w)l c f o + w ( s , v ) .

H n

L e t (F,1

- 1)

be a non-XhiuiaLlq v a l u e d d i v i s i o n k i n g be. LWu T V S o u e h i ; C u k t h ( G , v ) Haudolr6zj. €1 C X ( E ; G ) i n e q u i c o n t i n u o u b and H1 i 0 t h e c e o s u h e 06 H i n GE (.in t h e ptroduct t o p a ~ u g g ) ,t h e n HI C d:(E;G) and H1 i n eyuicontinuuuh.

LEMMA 2 . 5 7 :

a n d &ex ( E , r ) and

PROOF:

(G,v)

€ t H1, t h e r e e x i s t s a n e t

If

i n t h e product topology.

+

pfa(y)

+

i . l f ( y ) = f (Ax

Af (x)

+

+

n e i g h b o r h o o d of

+

pf (y)

I t follows t h a t

.

in

fa(Ax

is linear. L e t

f

+

liy) = A f a ( x ) +

V be a

+

Xf(x)

v-closed

H i s e q u i c o n t i n u o u s , there exists

Since

G.

H such t h a t fa + f

Since ( G , v ) i s Hausdorff,

py). Hence 0

fa i n

a r-neighborhood U of t h e o r i g i n i n E s u c h t h a t g ( U ) C V f o r a l l g E H . L e t now x E U and f E H1. T h e r e e x i s t s a n e t fa in +

H such t h a t

f ( x ) , and

Therefore tinuous; C

fa

f

+

fa(x) t V

f(U)

C V

i n t h e p r o d u c t t o p o l o g y . Hence f a (x)

f o r all

i n p a r t i c u l a r each

f E HI

f

HI

L(E;G).

L e t (F,1 .

THEOREM 2 . 5 8 :

1)

+

f ( x ) E V, because V i s closed.

implies

and s o

is e q u i c o n is continuous, i . e . H1

H1

be. a non-t&iviaLEy vaeued d i v h i o n 'ting

avid &eA ( E , r i ) and ( G , v ) be bwu T V S o v e & it. 7 6 ( E , q ) i s bakheLLed, t h e n e a c h p o i n X w i s e b o u n d e d s u b s e t H u 6 L(E;G) i s eyuicontinuuu4. PROOF:

V

Let

be a fundamental s y s t e m o f v-closed neighborhoods

of t h e o r i g i n i n For each through

V E V,

V, W

G s a t i s f y i n g ( a ) t h r o u g h (c) o f Theorem let

w

= n {f-'(V);

f E H}.

r u n s through a f i l t e r base

Then, a s

6 in

2.15. runs

V

E which can

be

taken a s a fundamental system of 0-neighborhoods f o r a T V S topology

5 o n E l t h e b o u n d e d n e s s of

H ensuring t h a t each

W

is

a b s o r b i n g . By t h e c o n t i n u i t y o f e a c h Since ( E , q )

f E H, W is Q-closed. i s b a r r e l l e d , by P r o p o s i t i o n 2 . 3 8 w e h a v e 5 C q.

Hence W i s a n e i g h b o r h o o d o f by P r o p o s i t i o n 2 . 5 4 .

0

i n ( E , q ) , and H i s equicontinuous,

55

TOPOLOGICAL VECTOR SPACES

PROOF:

Let

o u s . Now

H =

{fa;

c1

E A}.

f belongs t o t h e c l o s u r e of

t o p o l o g y ) . By Lemma 2 . 5 7 , fa

+

f

By Theorem 2 . 5 8 ,

f



d: ( E ; G )

H

in

H i s equicontinu-

GE

( i n the product

, and by P r o p o s i t i o n

u n i f o r m l y on e v e r y t o t a l l y bounded s u b s e t o f

I n I y a h e n [ 34 ]

,

2.56,

(E,rl).

u l t r a b o r n o l o g i c a l (and q u a s i - u l t r a b a r r e l l e d )

spaces w e r e introduced. Following [ l 1

w e dropped

the

prefix

u l t r a . I y a h e n ' s d e f i n i t i o n of an u l t r a b o r n o l o g i c a l space i s t h e

T V S (E,T) is called ultrabornological

following: a

bounded l i n e a r map f r o m ( E J ) [ 3 4 ], p.

D e f i n i t i o n 4.1,

if

every

(see

i n t o any T V S i s c o n t i n u o u s

2 9 8 ) . Our Theorem 2 . 4 2

shows t h a t E f i -

n i t i o n 2.40 a n d I y a h e n I s d e f i n i t i o n a r e e q u i v a l e n t . The o t h e r c l a s s o f T VS i n t r o d u c e d by I y a h e n

is

s p a c e s : t h o s e T V S i n which e v e r y

quasi-ultrabarrelled

that

of

borni-

i s a n e i g h b o r h o o d of t h e o r i g i n . This suggests

vorous u l t r a b a r r e l the following. DEFINITION 2 . 6 0 :

(F,1 .

I).

( E , T ) be a T V S o v e r a v a l u e d d i v i s i o n ring

Let

W e s a y t h a t ( E l ? ) i s quani-ba44eLRed i f e v e r y - r - c l o s e d

7-bornivorous s t r i n g i n

E

i s T-topological.

C l e a r l y , e v e r y b a r r e l l e d and e v e r y b o r n o l o q i c a l

space

is

quasi-barrelled. If

(F,1

(El?)

- 1) ,

i s a T V S o v e r a n o n - t r i v i a l l y valued d i v i s i o n ring

t h e s e t of a l l s t r i n g s w h i c h a r e

T

C . learly,

~

.ra c

Ta ;

Since

T C

-ra.

because

T'

same bounded s e t s a s and only i f ,

T

= T

a

both

-r-closed

Hence i t g e n e r a t e s a T VS

T-bornivorous i s d i r e c t e d . T

and

'T

and

topology

h a v e t h e same bounded sets,

i s t h e f i n e s t T V S t o p o l o g y on E w i t h t h e

.

T.

The s p a c e ( E , T ) i s q u a s i - b a r r e l l e d i f ,

A s i n t h e c a s e of b a r r e l l e d n e s s , o n e c a n d e f i n e a n u n u c i a t e d

56

PROLLA

qiinhi-batrtleLLct1 t a p a e a g q

-ryt

it is the

3 T:

c o a r s e s t quasi-

b a r r e l l e d topology which i s f i n e r t h a t T. To c o n s t r u c t proceeds a s f o l l o w s : gies

on

rl

one

topolo-

c n;

T

(2)

(E,n)

is a q u a s i - b a r r e l l e d .

F of a l l s t r i n g s i n

The s e t

E which a r e n - t o p o l o g i c a l f o r

i s d i r e c t e d . L e t -iYt F . ‘Then T~~ C n f o r a l l

be t h e

Q t QB(-r)

g e n e r a t e d by

PROOF:

.rqt

E such t h a t

(1)

every

Q B ( - r ) b e t h e s e t of a l l T V S

let

U be a s t r i n g i n

Let

Since

topology

T VS

Q E QB(-r).

E which i s c l o s e d and b o r n i v o r o u s

w i t h r e s p e c t to

7qt.

with respe ct to

17, f o r e v e r y

-tqt

C r(

b a r r e l l e d , U is q-topological.

n,

U i s c l o s e d and b o r n i v o r o u s

Since ( E , q ) is quasi-

E QB(T).

Hence

F,

and t h e r e f o r e

U is

t u p u l o g y withi E C 17 5 c T q t . I n p a h t i c u t a h , 7 c Tqt.

aft

U

E

Tqt-topological.

Let

be any <-neighborhood of

V

5-topological

5

cause

C

PROOF: L e t that

c

Tqt

c

n of

,

a

beU,

T’.

Um C V, f o r some

m

E Dl.

the s t r i n g

There i s

E.

II E F , and so T~

-rqt.

Since

T

C

and

17

U is n-topological,

T h i s proves t h a t

C

in

0

closed and 7 - b o r n i v o r o u s ,

r- t Q B ( T ) . Hence

is

(E,q)

for

( E , 7 P ) i s q u a s i - b a r r e l l e d and t h e r e f o r e

Hence

T~~

a

some

and such

Urn i s a rqt-neighborhood

Since ( E , 7 ’ )

space,

C

Choose

0.

U = (Un), which i s

quasi-barrelled,

E.

with

be a Ta-neighborhood of

V

in

0

U1 C V . Then U E F , t Q B ( 7 ) . Hence ’ and f o r t i o r i

11 = ( U n )

r), for a l l

Ta

( C )

string

string

neighborhood

is a

T VS

i-h any

E ~ ~ ( 7 tlzen 1 ,

r)

PROOF:

E

16

(b)

is every of 0 .

bornological T’

E

QB(T).

T’.

The analogue of Theorem 2 . 4 9 i s

true

for

quasi-barrelled

TOPOLOGICAL VECTOR SPACES

57

spaces :

L e t ( E , T ) b e a quani-bahhetted T VS oveh a n o n , t h i w i a e l y w a t u e d d . i v i 4 . i o n h i n g ( F , I I ) T h e n e v e h y bounded f i n e a h t n a p p i n g T 06 E i n t o a compteLe t n e t h i z a b & e T V S ( G , w ) oveh ( F , I I ) , W i t h d o b e d ghaph in c v n . t i n u o u b . THEOREM 2 . 6 1 :

.

-

Theorem 2 . 6 1 i s a c o n s e q u e n c e o f t h e f o l l o w i n g lemmas.

LEMMA 2.62: A b o u n d e d l i n e a h mapping derjined o n a q i i a n i - b m & e d npace. in Meahley con.tiiquouh. LEMMA 2 . 6 3 :

A L i n e a h mapping d e d i n e d o n any T V S

and ~ i L hv d u U

i n a campCete m e , t k i z a b l e T VS, w h i c h i n n e a h t y C o n t i n u o u c S

cloned ghaph,

hab

i 4

and

continuoun.

B e f o r e p r o v i n g t h e a b o v e lemmas l e t u s r e c a l l t h a t a l i n e a r mapping

T : (E,r)+ ( G I < ) i s

<-neighborhood in

E

V

nea4Ly con-tinuuub i f ,

of t h e o r i g i n i n

i s a T-neighborhood

PROOF O F LEMMA 2 . 6 2 :

Let

for

t h e r - c l o s u r e of

GI

c-neighborhood of 0 i n such t h a t

T : (E,7)

G.

+

( G I < ) b e a bounded

For each

T i s bounded, t h e s t r i n g

let

n E IN

Wn

linear V

Choose a 6 - c l o s e d s t r i n g

U1 C V . S i n c e

i s r-bornivorous.

(V)

0.

of

mapping d e f i n e d on a q u a s i - b a r r e l l e d s p a c e ( E , r ) . L e t G

T

every -1

be a

U = (U ) in n (T-l(Un))

b e t h e 7 - c l o s u r e of

-1 ( U n ) .

Then W = (W ) i s a r - c l o s e d 7 - b o r n i v o r o u s s t r i n g i n E. n S i n c e ( E J ) i s q u a s i - b a r r e l l e d , W i s 7 - t o p o l o g i c a l a n d W1 i s a T

T-neighborhood T

-1

of

0.

Since

( V ) i s a r - n e i g h b o r h o o d of

T

-1

(U,)

0 in

T-'(V)

,

E l and

T

C

t h e r - c l o s u r e of

is nearly

con-

tinuous. B e f o r e p r o v i n g Lemma 2 . 6 3 l e t

us introduce the

following

definition: DGFINITION 2 . 6 4 :

A TVS

(GI<)

i s c a l l e d Br-compLete

n e a r l y c o n t i n u o u s l i n e a r mapping

if

every

T I w i t h c l o s e d g r a p h , from a n

a r b i t r a r y T V S ( E , r ) i n t o (G,S;) i s c o n t i n u o u s .

58

PROLLA

Using t h e above d e f i n i t i o n ,

as f o l l o w s :

t h e s t a t e m e n t of Lemma 2.63 reads

cwek~yc o m p t e t c m e t h i z u b e e T V S

Since every complete metrizable

,

Theorem 2 . 3 7 )

,Lid

is

T VS

B

-cvmpLete. r (see

barrelled

Lemma 2 . 6 3 f o l l o w s f r o m Lcmmas2.65 and 2.66

below.

A H a u s d o r f f T V S ( G , E ) i s c a l l e d an indhu-sApace i f , f o r e v e r y coarser I I a u s d o r f f T VS t o p o l o g y 1-1 o n G w e t t have p 3 5 o r , e q u i v a l e n t l y , p t = F; DEFINITION 2.67:

.

PROOF O F LEMMA 2 . 6 5 : let

i~

L e t ( G , C ) be a c o m p l e t e m e t r i z a b l e T VSand

b e a H a u s d o r f f T V S t o p o l o g y on

t h e i d e n t i t y mapping I : ( G , p )

+

h a s a c l o s e d g r a p h a s a m a p p i n g from ( G , p t )

' 1-I.

i-lt

5

C

pt.

By Theorem 2 . 4 9 ,

t h e mapping

By D e f i n i t i o n 2 . 6 7 ,

PROOF OF LEMMA 2 . 6 6 :

infra-s-space. -T

such t h a t

T~

Let C

T.

Let T C

is

I

(7; d e n o t e s t h e

0

0.)

of

(G,C)

,

continuous,

a

be

Hausdorff

since i.e.,

barrelled

b e a H a u s d o r f f T VS t o p o l o g y T V S t o p o l o g y on

as fundamental system of 0-neighborhoods T -neighborhoods

onto

( G I < ) i s an infra-s-space.

(E,-ro)

-r0

It s t i l l

has c l o s e d graph.

(G,C)

5 . Then

coarser t h a n

GI

Since

T~

the

on

E

E w h i c h has

-r-closures of t h e

is barrelled,

-T

i s also

T~

b a r r e l l e d . IIence

( E , T ~ ) is an infra-s-space

On t h e o t h e r h a n d ,

Hence T

= -c0

-T t (T ) = 0

.

T'

0

= T

0

.

Now w e h a v e

-T

0

=

TT 0

--T

and

C T C T~

T

I

C

T

~

i.e.

I t remains t o prove t h e following.

LEMMA 2 . 6 8 :

Let (E,ro) b e a Haundohdd

TVS

duch t h u t , doh

unq

.

59

TOPOLOGICAL VECTOR SPACES

coakbeh Haubdohdd TVS Lopo&ogy have

= T

T

. 0

Then ( E , T ~ )

on

T

b u c h ,that

E

7;

C T,

we

Br-complete.

i d

PROOF: S u p p o s e ( E , - c o ) i s n o t B r - c o m p l e t e . c o n t i n u o u s l i n e a r mapping T : ( G , p )

-+

There e x i s t s a n e a r l y

( E , T ~ )w , ith closed graph,

which i s n o t c o n t i n u o u s . Hence t h e f i n e s t T V S t o p o l o g y T on E , such t h a t T : ( G , p ) gy and

$

T

T

( E r r ) i s c o n t i n u o u s , i s a Hausdorff topolo-

--f

y:

W . e claim t h a t

~

C T.

of 0 i n

E.

Since

i s nearly continuous, T

0.

T

Choose a -ro-neighborhood

BY c o n t i n u i t y o f Thus

mapping t i o n of

T

-1

T-~(u) c

T,

is a

(V)

-1

?J

L e t V b e a "s-neighborhood 0 U of

such t h a t

0

i s a v-neighborhood

(U)

T,

-T

T~

T.

C

i s B -complete,

p-neighborhood of

Thus

T

QED.

r

0

= 7 :

C

V.

of

T-'(V). t h e o r i g i n , and

i s c o n t i n u o u s f r o m ( G , ? J ) i n t o (E,?:).

T

zT

the

By t h e d e f i n i -

a c o n t r a d i c t i o n . Hence ( E , ' r 0 )

The r e s u l t s c o n t a i n e d i n Theorem 2 . 4 9 and 2 . 6 1 a r e known a s the

cLobed

theohem

gtaph

for barrelled

and q u a s i - b a r r e l l e d

e s p a c e s . L e t u s now s t u d y t h e s o - c a l l e d o p e n m a p p i n g t h e o k e m . W

s t a r t with the following d e f i n i t i o n . DEFINITION 2 . 6 9 :

L e t ( E , T ) and

( G , u ) b e two

T V S o v e r t h e same

G v a l u e d d i v i s i o n r i n g (F,I ] ) . A l i n e a r m p T : E i s s a i d t o b e n e a k l y ( o r u l m v b , t ) upen i f for e a c h T - n e i g h b o r h o o d

non-trivially

U

of

0 in

0 in

+

E , t h e u - c l o s u r e of

T(U) is a

1.I-neighborhood

of

G.

PROPOSITION 2 . 7 0 :

(a)

Any lineah m a p p i n g u n t u a bahacLLed Apace

i b neahly open. (b)

Lei

T :E

oh necond catcgohy i n PROOF:

(a)

Let

a T-topological G,

v

=

( T ( U n ) 1.I )

G.

T : (EJ)

b a r r e l l e d space. L e t

be a l i n e a h mapping buch t h a t

G

-+

Then

--f

T i n neatly open.

(G,p) be a

l i n e a r mapping o n t o

U b e a T-neighborhood of

string

U = (U,)

i s a u-closed

T(E) i n

with

U1 C U .

string in

G.

0 in Since

Since

E.

a

Choose

T is onto (G,~.I)

is

60

PROLLA

V

barrelled, (b)

> 1. S i n c e

T i s n e a r l y open.

Hence

U b e a T-neighborhood

Let

1x1

with

i s p-topological.

of

0 in

E.

X

Choose

E

F

i s absorbing, w e have

U

u xku .

E =

l)k Therefore

T ( E ) i s of s e c o n d c a t e g o r y i n

Since

b o r h o o d of

f o r some k .

0

p-neighborhood

of

0 in

By C o r o l l a r y

T(U,) =

n

y

E

T(Un)

for a l l

b a l a n c e d neighborhood o f for a l l

xn

n

0 , so

--t

Hence

L

1. Choose

T(xn)

0 in

xn E Un

0, b e c a u s e

- y E V, because

y E V. T h i s shows t h a t

Xk-T(U) 2.3,

is a

T(U)

p-neigh-

is

a

G.

n) 1

PROOF: L e t

GI

n

{OI.

1. I,

and l e t V b e a c l o s e d and

(G,p). Then so t h a t

( y + V) n T ( U n ) # @ T ( x n ) - y E V. Now

T i s continuous.

V i s closed.

Since

V

i s balanced,

y = 0 , a s ( G r p ) i s a Hausdorff

T VS.

W e a r e now r e a d y t o p r o v e t h e Open Mapping Theorem.

b e a R i n c a k , c o n t i n u o u s , and n e u h l g o p e n m a p p i n g Bkom a cumpCEte m e t h i z a b L e T V S (E,T) into a Huu~duh6d T V S ( G r u ) . T h e n T i b o p e n , i . e . , T maps open n e t b i n t o open THEOREM 2 . 7 2 :

bCk6.

1tL

T

61

TOPOLOG I CAL VECTOR SPACES

PROOF:

I t i s s u f f i c i e n t t o show t h a t f o r some f u n d a m e n t a l system

8 of ?-neighborhoods of

a neighborhood of

in

0

El U

0 i n (G,u). C h o o s e

d e c r e a s i n g sequence and e a c h o p e n , Wn

.

L e t then

.

Wk+2

Un

implies that

B

B so t h a t

R

i s closed. S i n c e

i s a n e i g h b o r h o o d of 0 i n ( G , u ) ,

= T(Un)

If w e show t h a t

complete

E

T(Un) 3 W n + l ,

for all

.

x1

y E Wk+l

Choose

1,

n

=

is

T(U)

is a

(U,)

T is nearly

for a l l n L 1 . is

t h e proof

s u c h t h a t y-T(xl) E

'k+l

By i n d u c t i o n , we c a n d e f i n e a s e q u e n c e (x. ) with x , E 3 J

s+j

and

m

W e c l a i m t h a t t h e p a r t i a l sums o f t h e s e r i e s

form a

Cauchy s e q u e n c e i n

of 0 i n

E.

There e x i s t s

Now,

for all

'=O

p

n

2

E. 0

IN s u c h t h a t f o r a l l

E

'=O

P Xn+i

i

'k+n+i

'k+n T h i s p r o v e s o u r claim. x E E

n > n 0'

0

P i

E xi i =1 I n d e e d , l e t V be a T - n e i g h b o r h o o d

+

'k+n

Since

'k+n

c

v.

'

P

+

'k+n-l (E,T)

'k+n-l

"k+n+i i=l

c v.

i s complete, t h e r e e x i s t s

such t h a t m

x = On t h e o t h e r h a n d ,

Since and

n

Uk

f o r each

2 xi. i=l p 2 0 , w e have seen t h a t

i s c l o s e d , t h i s shows t h a t

1,

x E Uk.

NOW,

for all p 2 0

62

PROLLA

n+w

Letting

p

+

m,

we get Y -

for a l l

n

2

for a l l

n

2

1. By Lemma 2 . 7 1 ,

C

T(Uk) f o r a l l

i.e.

,

Wk+l

THEOREM 2.73:

1. S i n c e

Lct

p e e t e . meLttrizable T Thevi

is continuous, t h i s implies t h a t

T

k

y = T ( x ) . But

1. 1,

T(x) E

T(Uk);

QED.

T be. a c a n . t i n u o u A L i n e a h m a p p i n g 6hom a cmmV S ( E , T ) o n t o ci 6 a t t e l L e d Haudohdd T V S ( G , p ) .

T Xd o p e n .

PROOF:

By p a r t ( a ) o f P r o p o s i t i o n 2 . 7 0 ,

COROLLARY 2.74: T VS.

PROOF:

Let ( E , T )

and

T

i s n e a r l y open.

(G,p) be. Lwu c o m p L e t e rnethizab&e E anto C open.

T h e n any continuous L i n e a t m a p p i n g gtlum

By Theorem 2 . 3 7 ,

(G,p)

is barrelled.

L e t T b e a c o n . t i n u o u d L i n e a h m a p p i n g 6tom a comp l e t e . mctfi-izabLe T V s ( E , T ) o n t o a B a i t e Haundofidd T V S ( G , p . ) . Then T i.) o p e n .

COROLLARY 2 . 7 5 :

PROOF:

By Theorem 2 . 3 7 ,

( G , L J ) i s b a r r e l l e d . O r e l s e , by P r o p o s i -

of s e c o n d c a t e g o r y i n i t s e l f , T i s n e a r l y o p e n and t h e n a p p l y Theorem 2.72. t i o n 2.70,

( b ) , and t h e f a c t t h a t

a Baire s p a c e

COROLLARY 2.76: p

is

L e t (E,T) be. a c o m p L e t e methizablc T V S and Let be any tiausdofi66 T V S Z o p o L o g y on E, w i L h 1-1 C T a n d b u c h

t h a t ( E , p ) i n 4a.kfitLEe.d.

Then

p = 7.

63

TOPOLOGICAL VECTOR SPACES C l e a r l y , t h e C o r o l l a r y a b o v e i s j u s t Lemma

REMARK 2 . 7 7 :

( t h e C l o s e d Graph Theorem)

T h i s shows t h a t Theorem 2 . 4 9

2.48.

a

is

C o r o l l a r y o f t h e Open Mapping Theorem.

L e t T and p be ti^ c o m p l e t e m e t f i i z a b L e T V S t o p v l o g i e n on a vec,toh n p a c e E. 7 A p C T , t h e n = T.

COROLLARY 2 . 7 8 :

L e t ( E , T ) b e a c o m p l e t e me.tkizabLc T VS and L e t b e a Haundok~A T V S . L e t T be a c o n t i n u o u n L i n e a h mapping E i n t o G n u c h t h a t T E ) i n 06 ~ e c o n dcattegohy hn G. T h e n i . n open and o n t o .

THEOREM 2 . 7 9 : (G,p)

06 T

PROOF: By P r o p o s i t i o n 2 . 7 0

i s o p e n by Theorem 2 . 7 2 .

( b ) , T i s almost o p e n .

Hence

Therefore

T

T ( E ) i s o p e n i n G, and t h e r e f o r e

a b s o r b i n g . I t nows f o l l o w s t h a t T i s o n t o , s i n c e T ( E ) i s i n v a r i a n t under scalar m u l t i p l i c a t i o n .

L e t ( E J ) be a c o m p l e t e m e t h h z a b L e T V S and P e t ( G , p ) bc a Haundokdlj T V S . F o k a n y T E L ( E , G ) , e i t h e t T(E) i d ul; Rhe A i h h t c a z e g o h y in G o h T ( E ) = G .

COROLLARY 2.80:

Theorem 2.58 i s t h e e s s e n t i a l i n g r e d i e n t i n t h e p r o o f of the Banach-Steinhaus

Theorem ( 2 . 5 9 ) .

For spaces o v e r

IR

or

c,

W a e l b r o e c k [ 9 5 ] t a k e s i t a s a d e f i n i t i o n o f b a r r e l l e d s p a c e s (of course he

c a l l s them u l t r a b a r r e l l e d s p a c e s ) . S e e D e f i n i t i o n 8 ,

[ 9 5 ] , p a g e 1 0 . H i s P r o p o s i t i o n 5 shows t h a t a n y s p a c e w i t h Banach-Steinhaus

p r o p e r t y i s u l t r a b a r r e l l e d i n t h e s e n s e of

R o b e r t s o n [ 7 8 ] . Hence, i t i s n a t u r a l t o a s k w h e t h e r

the W.

t h e Banach-

S t e i n h a u s p r o p e r t y i m p l i e s b a r r e l l e d n e s s i n t h e s e n s e o f Cefinit i o n 2.35 f o r s p a c e s o v e r v a l u e d d i v i s i o n r i n g s general.

(F,1 .

1)

in

The f o l l o w i n g r e s u l t shows t h a t t h i s i s indeed the case.

THEOREM 2.81:

Let ( E , T ) be a

diwihion hing (F,

I I).

TVS

owch a n o n - t h i w i a & ? y v a l u e d T h e BalLuwing ahe e y u i u a L e n t :

(a)

(E,T) i d bahkelled;

(b)

e a c h p o i n t w i n e bounded n e t H 0 6 c o n t i n u v u d Rincah mappingb 06 ( E , T ) i n t o a T V S ( G , v ) i i 6 equhconRinuoUn.

64

PROLLA

By Theorem 2 . 5 8 , (a) i m p l i e s ( b ) . C o n v e r s e l y , l e t ( E , r ) b e a T V S s a t i s f y i n g c o n d i t i o n (b) above. W e c l a i m t h a t (E,-r) PROOF:

i s b a r r e l l e d . The p r o o f of t h i s c l a i m i s due to Waelbroeck [ 9 5 ] . Let V = ( Vn ) be a -r-closed s t r i n g i n ( E , - r ) . The i d e a o f t h e p r o o f i s t o c o n s t r u c t a T V S (G,w) (W,)

w i t h some fundamental sequence

of v-neighborhoods of t h e o r i g i n , a n d a p o i n t w i s e

family

H of c o n t i n u o u s l i n e a r mappings

:E

+

G

bounded

i s s u c h a way

that

NOW, b y P r o p o s i t i o n 2 . 5 4 ,

c o n t a i n s a -r-neighborhood

Vk

s i n c e , by (b), H i s e q u i c o n t i n u o u s . Thus V

of

0

is a -r-topological

string. Choose and f i x m > n

there exists

fundamental system

ho E F*

I ho I

with

such t h a t

< 1

.

Vm C XoVn

s u c h t h a t g i v e n Vn Choose a n d

B of b a l a n c e d -r-neighborhoods of

a

fix

0 in

E.

R , c h o o s e a T - t o p o l o g i c a l s t r i n g u = (Un) such C IOUn. L e t I b e t h e s e t of a l l such t h a t U1 = U and 'n+l s t r i n g s . The s p a c e G i s t h e a l g e b r a i c d i r e c t sum of t h e f a m i l y { E i ; i E I ) where, f o r e a c h i E I , E . = E . For each k E IN, For each

U E

l e t us define

1

x = ( x1. 11. E I i n by d e f i n i t i o n i f , and o n l y i f Wk C G .

For

xi

G we say t h a t x

E

Wk

i Uk + Vk

E

if

.

i i = (UnInEm

CLAIM:

W

(a) PROOF: L e t if

(Wk) i n a n t t r i n g i n

=

Each

x

wk

E Wk

x = (xi)i t I

.

in and Now

G.

baLanccd and a b d o h b i n g ;

Ih(

Axi

5 1 b e g i v e n . Then 6

Uk

+ Vk

I

if

Xx = ( A x i l i E I

i = (Un)

,

because

65

TOPOLOGICAL VECTOR SPACES

are b a l a n c e d , and

both

Uk

and

that

Wk

is balanced.

L e t now

Vk

x = (xi)i EI

i s absorbing, {xi

1

, ... , x . 1

'k+l Let

PROOF:

i

x

x

Let

x = y

+

z

Uk+l

+

Vk+l

y and

with

z in

i = (U 1 .

if

Wk+l

Hence

n

there exists

Vn

if

E Wk

for

m

.

Then

yi

and

xi

E Uk

+ vk

and

?

for all

x. =O

{ i l ,..., i s } C I .

f o r a f i n i t e set

"k

k E IN.

6otr cc1P

b e g i v e n . Then

E Wm

X -1x

for

implies

+ vk ,

c U;

E Vk

0

=

i

1x1 1. 6

j T h i s shows t h a t

wk ,

c

.

XoVn

x

i s absorbing.

Wk

W e know t h a t g i v e n

PROOF:

vm c

< m.

X -1xi

.

Wk

E

i < j

'k+l

+

belong t o

so

Hence

and so

6

I t follows

c I. Since

{il,...,im1 such t h a t

6 > 0

.

AVk

for a l l

1x1 5

all

C

m

i. = (Ui),

I

there exists

.

Vk

G be g i v e n . W e h av e

i E I, except f o r a f i n i t e set

all

z

in

+

xi E Uk

For e a c h

such

n

i E I,

15 j

2s

that except

w e have

i

xi, E Umj 3 if

=

i i

i

j url+l

= ( C

i.

~~. 1

~

~

i. AoUn3.

we can w r i t e

N ) O W~

Hence

wm

x.

m > n E

This ends t h e proof t h a t Consider i n string

the

G

"m m

implies

i. XoUn3

2

+ XVn a n d 3 and ( c ) is t r u e w i t h

1.

C how,

+

W = (WkIk

T VS t o p o l o g y

v

~

n

+

1, so

Aolx E Wn

X = .A

.

Then

.

is a s t r i n g i n

g e n e r a t e d by t h e

G.

single

W.

For each

i

E

I, let

n1 . :E

+

G

be t h e c a n o n i c a l e m b e d d i n g

66

PROLLA

Notice t h a t f o r e a c h

E . +. G. 1

u; +

Vk

i i = (U )

n n E W ' Since

if that

E d:(E;G).

IT.

1

k

E

c

?Ti-1 (Wk)

i s a -r-neighborhood of

Uk

The f a m i l y

bounded, b e c a u s e e a c h

IN,

H =

-

IT.i I '

0,

w e see

is pointwise

t I}

i s a b s o r b i n g . I n d e e d , g i v e n x E E there

Vk

e x i s t s some 6 > 0 ( d e p e n d i n g on x ) s u c h t h a t I h / > 6 implies x t AV C o n s i d e r now t h e s e t B = { n i ( x ) : i E I } . L e t b B. k '

Then

b

( x ) f o r some

= TT.

i

0

0

if

j

if

io , i f

#

io = ( U n ) n

for each

~~. Thus

C

E G

Hence

XWk

.

bi

c

x t v = Vk

Ut

t AVk C

w + vk ,

.

ri(x)

Thus

because

(X

+

X(Uk

+ Vk),

I t remains to prove t h a t

be such t h a t

W. Then

C

and b . = 0 , 3

x

=

0

7ii(x)

W be a symmetric 7-neighborhood

i E I such t h a t

+ vk

x

B

bi 0

b = (bi)iEI.

k E IN. L e t

i E I. L e t

c u;

E I , and s o

Wk

E

of

E.

x E Uki

a n d so

W) n Vk # @,

Wk , f o r a l l

E

0 in

This

Choose

shows

+ VkC that

i s -r-closed.

Vk

T h i s e n d s t h e p r o o f of Theorem 2 . 8 1 . A similar n o t i o n t o t h a t of a b o r n o l o g i c a l space

(E,r)

over

a t o p o l o g i c a l f i e l d ( F , T ~ w) a s c o n s i d e r e d i n N a c h b i n [ 6 2 ] , 5 8 . To e x p l a i n h i s d e f i n i t i o n w e h a v e t o e x t e n d t h e d e f i n i t i o n o f a bounded s e t g i v e n i n D e f i n i t i o n 2 . 1 6 , f o r s u b s e t s of a T VS ( E , T ) o v e r a v a l u e d d i v i s i o n r i n g ( F , 1 1 ) t o t h e c a s e o f a to-

-

p o l o g i c a l f i e l d ( F , . r F ) , o r more g e n e r a l l y , a t o p o l o g i c a l d i v i s i o n r i n g (F,-rF). DEFINITION 2 . 8 2 :

L e t ( E , T ) b e a T V S o v e r a t o p o l o g i c a l division

ring ( F , T ~ )A . subset -r-neighborhood V

of

0 in

W of

B

C

0 in

F such t h a t

E E,

i s s a i d t o b e b0unde.d i f , g i v e n a

there exists

VB C W.

a

T

F

-neighborhood

Any f i n i t e s e t i s bounded a n d a s u b s e t of a b o u n d e d s e t

is

67

TOPOLOGICAL VECTOR SPACES

bounded. When t h e t o p o l o g y

a subset

is not the discrete

T~

topology,

then

i s b o u n d e d i n (E,T) i f , a n d o n l y i f , f o r e v e r y

B C E

X

of

0

in

When t h e t o p o l o g y

T

i s t h e metric t o p o l o g y d e f i n e d by

?-neighborhood

W

there exists

E,

E F*

such t h a t

XB C W .

A

absolute value coincide.

1x1

+

F

on

then Definition 2.16

F,

Indeed, suppose

B

W a 7-neighborhood

i s bounded i n t h e

E

C

sense

of

there i s sorre

Let

6 > 0

such t h a t Ihj > 6 i m p l i e s B C AW. L e t V = { u G F ; l l ~ l < 6 - l ) . E V, and # 0 , t h e n 1l-l -1 I > 6 , a n d s o B C u - ~ W , i . e .

If

Hence VB

t h e r e i s some

2.82,

Choose

Let

6

Hence

= E

A

-1

-1

.

E

Then

E V

T

> 0

Let

By 2 . 1 6 ,

E.

B C E is b o u n d e d

W be a 7-neighborhood

F- n e i g h b o r h o o d

of

V

of

in

0

0 in

E . By

such t h a t

F

such t h a t

6 > 0

and

0

Conversely, suppose t h a t

C W.

i n t h e s e n s e of 2.82. VB C W.

in

2.82

2.16.

pB C W.

of

and

an

X

1x1

and

-1

> 6 in

i.e.

B C W,

F implies

<

E.

B C XW.

P r o p o s i t i o n 2 . 1 7 and 2 . 1 8 r e m a i n t r u e i f

is a

(EJ)

T VS

over a t o p o l o g i c a l d i v i s i o n r i n g ( F , r F ) a n d " b o u n d e d " i s

meant

from a

T VS

i n t h e s e n s e of D e f i n i t i o n 2 . 8 2 . Also, (E, T

~

e v e r y c o n t i n u o u s l i n e a r map

i )n t o a n o t h e r T V S

(GI T

~

, ) over

T :E

G

--t

t h e same t o p o l o g i c a l divi-

s i o n r i n g (F,rF), maps b o u n d e d s e t s i n t o b o u n d e d s e t s .

For a n y T V S t o p o l o g y

T

on a v e c t o r s p a c e

L ( T ) t h e s e t o f a l l bounded s u b s e t s . C L(-rl).

q i e s on

If E,

{-ri ; i E I } and

T

a T V S t o p o l o g y on

L e t now

8

be

If

i s t h e supremum o f E

T~

i s a non-empty {

C

E,

w e d e n o t e by

r 2 , then

L(-r2)C

f a m i l y of T V S toploT ; ~

i E I ) , then

T

is

and

any

family

of

subsets

of

E,

and

let

68

PROLLA

be t h e f a m i l y of a l l T V S t o p o l o g i e s o n E s u c h that

{

T ; ~i E

B

C L ( T ~ ) S . ince

B C T

E

I}

{@,

E l

i s a T V S topology on

i s bounded, t h e f a m i l y

( R ) = sup

and t h e r e f o r e

i s non-empty.

i E I}

be any T V S t o p o l o g y on

I

Conversely, i f

L(T) 3 B,

then

only i f

T

E.

If

PROPOSITION 2.83:

belongs to

T

on

El

y.

d

r

The topoeogy

{ T ;~i t I]

i b .the d i n e b x

L ( T ) = L(.ri).

it contains

Let

L e t now

Hence

T

id,

topologies

T h i s f a m i l y i s non-empty,

to t h e family

p c

On E A U C ~ and onLg

T V S t t a p o e u g y o n E wkich

7 b e t h e supremum of

belongs

T

E.

{

If

{ T ;~i

T ; ~

L(T)

f

7, t h e n

because

i E I). Now

I}

I I C T V L J C S .

C o n v e r s e l y , if

and

T.

p be a n y T V S t o p o l o g y o n

v p

-

b e t h e f a m i l y of a l l T V S

on E such t h a t T.

i t I}

b e a T V S o v a a totapuLogicd d i u i b i o n

1eZ ( E , T )

hac, .the 4amc b o u n d e d b c . t b a6 PROOF: Let

{Ti;

~ ( 8 ) if,

T C

unique T V S t o p o t a g y R h a i , d o & a n y T V S X v p u k o g y 1-1 o n E , L ( T ) C L ( p ) C

T ( B ) , then

T C

L(T) 2 8.

h i n g (F,T~).T h e h e e x i b t b

id, u

Let

C ~ ( 6 ) Hence . t h e following is true:

T

For a n y T V S t o p o l o g y

(2)

T ; ~

I } . By t h e p r e c e d i n g r e m a r k , w e h a v e

{ T ~ ;i E

L e t now

{

such thatany

E

L(T) = L(r) C L(p).

c

L(V),

and

then

then

TOPOLOG I C A L VECTOR SPACES

69

( N a c h b i n [ 6 2 1 , 5 8 ) : A T VS t o p o l o g y -r o n E i s T = T, where T i s t h e f i n e s t T V S topolo-

DEFINITION 2 . 8 4 :

s a i d t o be b t h U M g i f gy o n

E which h a s t h e s a m e bounded s e t s a s

B of s u b s e t s of

For e v e r y f a m i l y

T.

r(B) is

t h e topology

E,

s t r o n g . I n d e e d , by (1) a b o v e ,

And t h e n b y ( 2 ) a b o v e ;

- c ( B ) i s t h e n c a l l e d t h e AtAong t o p o l o g y genQncLted

The t o p o l o g y

by

8.

THEOREM 2.85: L e t ( E , T ) b e u T V S o v e h u L o p a l a g i c a R d i w i n i o n hing (F,-rF). The I;o&&owing ahe e q u i v a l e n t :

(a)

T

(b)

e w ~ h ybounded L i n e a h m a p p i n g de6ine.d an (E,r) i n c o n t i n -

La a A L h U M g

UUUA

*

PROOF: ( a ) X

C

E

that

u

T : (E, T)

+

(E*,r*)

b e t h e T VS t o p o l o g y on

belongs t o -1

X = T

Lopo&ogy;

.

(b): L e t

mapping. L e t

TVS

p

be a bounded

i f , and o n l y i f t h e r e e x i s t s

(Y).

(which w i l l i m p l y t h a t

p C T

such

Y E T*

C l e a r l y , T i s c o n t i n u o u s from ( E , p ) i n t o ( E * , T * ) . that

linear

E d e f i n e d b y saying that

To p r o v e

i s c o n t i n u o u s from ( E , T )

T

i n t o ( E * , T * ) ) i t s u f f i c e s , by P r o p o s i t i o n 2 . 8 3 and ( a ) , t o show that

L(T)

C L(p).

A C E

L e t then

belong t o

( E , T ) i n t o ( E * , T * ), t h e n A C T-I(B)

T-l(B)

E

,

t o prove t h a t

L(p). Let

d e f i n i t i o n of

p,

(E*,T*) such t h a t

L ( T ) . Since

T(A) = B A E L(p)

T i s bounded

belongs t o

,

it suffices

V be a n open neighborhood of

t h e r e e x i s t s an open V = T-l(W).

Since

L(-r*).

Since

t o show

that

0 i n ( E , p ) . By

neighborhood T(A) = B

from

of

0

in

i s -c*-bounded,

70

PROLLA

t h e r e e x i s t s a TF-neighborhood Hence

UTdl(B)

(b)

=$

i

T-l(W)

(b), T

T

= T,

E* = E ,

REMARK:

0 in

T* =

= L(T), T

L (7

i s continuous, i e. and

of

,

F s u c h t h a t UB C W .

t L(u)

Tel(B)

and

= V,

(a): C o n s i d e r

i d e n t i t y map. S i n c e

U

-

T,

,

as c l a i m e d .

and l e t

T

be

the

i s a bounded l i n e a r map. By

since T c

T c T.

1

T i s always t r u e ,

is strong.

T

Theorem 2 . 8 5 a n d i t s p r o o f a r e d u e t o L .

N a c h b i n (see

8 4 ) . A s a consequence w e

Theorem 8 , Nachbin [ 6 2 1 , p g .

have t h e

following COROLLARY 2 . 8 6 :

divi.5iun king

(b)

Let

(F, I

in a

T

- I).

( E , T ) be

a

T V S

o v e h a n o n - , t h i v i a L L y valued

The dollowing axe cquivaj~en,t:

T VS

h.thong

topohgy.

L e t u s g i v e some e x a m p l e s of s t r o n g T VS t o p o l o g i e s . W e f i r s t

r e c a l l t h a t a T VS ( E , T ) i s c a l l e d locaLLy bounded i f every p o i n t h a s a bounded n e i g h b o r h o o d , o r e q u i v a l e n t l y , i f t h e o r i g i n

has

a bounded n e i g h b o r h o o d .

Id T~ i n n o t t h e d i n c h e t e t v y o e v g y afid ( E , T ) i h a R o c a e L y bounded T V S v v e k ( F , r F ) , t h e n T in a n t h u n g T V S

EXAMPLE 2 . 8 7 :

top0 eogy. PROOF: L e t W

of

T : (E,T)

+

(E*,T*)

b e a T*-neighborhood 0 i n (El

such t h a t

T)

.

Then

AT(V) C W

p o l o g y ) . Now

T(AV)

of

0.

b e a bounded l i n e a r mapping. Let V b e a bounded n e i g h b o r h o o d

Let

T ( V ) i s T*-bounded

toF is not the discrete AV i s a T-neighborhood o f 0 i n E .

(recall that C W,

and

a n d t h e r e e x i s t s h, E F *

T

(Nachbin [ 6 2 ] , p . 85 - 8 6 ) : L e R ( F , T ~ )b e a topeL o g i c a L d i v i b i o n k i n g d u c h t h a t -rF i n n o t $he d i h c k e t e t o p o e o g y and -rF has a c o u n t a b l e BundamentaL n y n t e m v d neighboahaodn at ,the o a i g i n . L e t ( E , T ) b e a T V S O U e h ( F , r F ) . 16 T h a a coun,tizbLe

EXAMPLE 2 . 8 8 :

71

TOPOLOGICAL VECTOR SPACES

at the Ohigin, then

T

i n a

r e s p e c t i v e l y {Un; n = 1 , 2 , 3 ,

...1,

d u n c i a m e n t a l ? n y n t e t n ad n e i g h b o h h o a d n

LopoLogy.

T VS

ntriong

PROOF: L e t

.. I ,

{Vn;n = 1 , 2 , 3 , .

b e a f u n d a m e n t a l s y s t e m o f n e i g h b o r h o o d s a t t h e o r i g i n of ( E J ) , respectively ‘n

’ ‘n+l

that

( F , - r F ) . W i t h o u t loss o f

for a l l

n.

.

L(p) = L (T)

E.

y

b e a n y T VS t o p o l o g y

W e claim t h a t

a s t r o n g topology. in

Let

Let

W

u

n’

v

C

T,

on

assume such

E

w h i c h shows t h a t

T

is

b e any u - n e i g h b o r h o o d of t h e o r i g i n

Suppose t h a t f o r e v e r y

there exists a pair

g e n e r a l i t y w e may

n, with

n’

UnVn

p

i.e.,

W,

un t Un

and

f o r every v

.

E Vn

n

n,

, such

u v 9 W . The s e t A = {v ; n = 1 , 2 , . . I i s -r-bounded. n n n I n d e e d , l e t V b e any ? - n e i g h b o r h o o d of t h e o r i g i n i n E . By con-

that

t i n u i t y a t t h e o r i g i n of t h e mapping ( A , x ) neighborhoods IVlIV2l”’

and

UN

‘VN-l

A

such t h a t

Ax

there

Uvn C V ,

i s -r-bounded,

we can f i n d i n t e g e r

for a l l

1< n 5 N

as c l a i m e d . Hence

k such t h a t

A

UkA C W .

exist

The f i n i t e s e t

UNVN C V.

i s bounded and a n e i g h b o r h o o d

}

be found such t h a t

and so

VN

+

U

of i n

- I.

is

F can

Then

y-bounded,

and

uk v k E W ’

Therefore

which c o n t r a d i c t s t h e a s s u m p t i o n t h a t u v 9 W , f o r a l l n . Hence n n UmVm C W f o r some m . S i n c e T is n o t t h e d i s c r e t e topology, there is

X # 0

a T-neighborhood

with

X E Urn

.

F

Hence

XV

m

C

W

and t h e n

o f t h e o r i g i n . T h i s shows t h a t

C

W

is

T.

NOTES AND REMARKS Most o f t h e c o n t e n t s o f C h a p t e r 2 up t o 2 . 2 8 c a n i n many books o n T V S ; see, f o r e x a m p l e , C h a p t e r I

[111 , o r s e c t i o n s 1 t o 6 o f C h a p t e r I o f S c h a e f e r

of

be

found

Bourbaki

[81]

P r o p o s i t i o n 2.28 r a i s e s t h e f o l l o w i n g q u e s t i o n : w h a t i s t h e w i d e s t c l a s s o f Hausdorff t o p o l o g i c a l d i v i s i o n r i n g s t h a t

can

b e u s e d a s s c a l a r s f o r T VS p r e s e r v i n g t h e p r o p e r t y t h a t l i n e a r f u n c t i o n a l s a r e c o n t i n u o u s i f , and o n l y i f , t h e i r

kernels

are

72

PROLLA

c l o s e d . T h i s w a s a n s w e r e d by N a c h b i n [611. DEFINITION 2.89:

L e t ( F , T ~ b) e a H a u s d o r f f t o p o l o g i c a l d i v i s i o n

r i n g . A Hausdorff topology

w i t h henpeck

06

on

T*

F is s a i d t o be

A Hausdorff t o p o l o g i c a l d i v i s i o n r i n g

d-tXiciiey minimal i f

admiabibLe

( F , T * ) i s a Hausdorff T V S o v e r ( F , T ~ ) .

if

T~

T~

(F,-rF) i s s a i d t o

i s t h e o n l y Hausdorff topology

which i s a d m i s s i b l e w i t h r e s p e c t t o

T

be

on

F

F'

From Theorem 2 o f N a c h b i n [ 6 1 ] and K a p l a n k y ' s c h a r a c t e r i z a -

i t f o l l o w s t h a t any n o n - t r i v i a l l y

t i o n of v a l u e d d i v i s i o n r i n g s

v a l u e d d i v i s i o n r i n g (F,I * I ) i s s t r i c t l y m i n i m a l .

(Nachbin [ 6 1 1 ) : L t . t ( F , T ~ )be. a Haudolrzjd i x p o l o g i c d d i v i n i o n k i n g , T h e dollowing a x t e q u i v a l e n t :

THEOREM 2 . 9 0 :

(a)

(F,-rF)

i n 4 Z h i c R L y mi.nimul;

PROOF: S u p p o s e t h a t ( F , . r F ) i s s t r i c t l y m i n i m a l , and l e t b e a H a u s d o r f f T VS o v e r ( F , T f

functional. If

~ ) .L

is continuous,

i s c l o s e d i n ( F , T ~ ) .I n d e e d , f-l(O)

then

= El

f

a e E

t i n u o u s . Suppose

given a r b i t r a r i l y , l e t saying t h a t

Y

C

belongs t o

T*

to

T

such t h a t

T VS over

f

i s onto

a

linear

{O]

in

(E,T).

# 0.

F t h e topology T*

F,

A

If

f(x)



A.

=

conF

defined

T*

is

Hence

i f , and o n l y i f ,

by

f - 1 (Y)

i t i s easy t o see t h a t Y

C

F

E

belonging

f ( X ) = Y . We claim t h a t ( F , T * ) i s a

Hausdorff

( F , . r F ) , i . e . T*

(Alp)

f (a)

= Af(a)-la. Then

i f , and o n l y i f , t h e r e e x i s t s

(see D e f i n i t i o n 2 . 8 2 ) (i)

be

f-l(O) i s closed

i s such t h a t

x

belongs t o

F

T, Since

F

i s i d e n t i c a l l y z e r o and o b v i o u s l y

f ( E ) = F. L e t u s c o n s i d e r o v e r

belongs t o

+

i s c l o s e d because

( F , - r F ) i s H a u s d o r f f by h y p o t h e s i s .

C o n v e r s e l y , assume t h a t t h e k e r n e l If

f : E

et

f-'(O)

(E,T)

+

h

+

.

X

C

i s admissible with r e s p e c t

i n continuoun,

to

TF

73

TOPOLOGICAL VECTOR SPACES

PROOF: L e t ( a , a ) E F x F , and l e t a

+

f3 i n

( F , T * ) . Since

such t h a t f ( a ) =

c1

f

there e x i s t (a,b)

F,

f ( b ) = 8. Now

and

i t follows t h a t

W E T*,

is onto

W be a n open neighborhood of

a

c a n f i n d T-open n e i g h b o r h o o d s A o f a and such t h a t

A

+

B C f-l(W). L e t

(resp. V) i s a

u+vcw.

open

B of b , r e s p e c t i v e l y ,

{O)

Since

the

division

i s r*-closed.

*

(a)

(b)

F.

E

f ( E \ N) = F \ (01,

Now

*

ring

is strictly

(F,-rF)

f

i s c o n t i n u o u s from ( E , T )

minimal,

onto

(E,r)

(F,rF).

( a ) : Suppose ( F , T ~ i) s n o t s t r i c t l y m i n i m a l . L e t

(X,u)

( F , - r F ) . Hence

(F,T*) i n t o ( F , T * ) . P u t t i n g

(F,.rF) x

i d e n t i t y mapping that is

T*

C

rF

.

A

-+

+

Xu

k e r n e l , namely

Hausfrom

see t h a t

we

( 0 3 , because

d e f i n e d by

the

X i s c o n t i n u o u s from ( F , T ~ )i n t o ( F , T * ) ; -r* # T~ , by h y p o t h e s i s , t h e n A X

Since

-+

T*

i s Hausdorff.

a closed

Hence

f a l s e f o r t h e H a u s d o r f f T V S ( F , - r * ) and t h e l i n e a r F

T*

i s continuous

= 1,

i s n o t c o n t i n u o u s from ( F , r * ) i n t o ( F , r F ) , b u t i t h a s

REMARK:

and

(b).

dorff TVS over

+

N =

i s T-open, and

N

be a n o t h e r Hausdorff topology on F s u c h t h a t ( F , T * ) i s a

f : F

that

Since

Now f i s c l e a r l y c o n t i n u o u s as a mapping f r o m .

~

o n t o ( F , T * ) , and s o Hence

6 ) such

U

i s -r*-closed.

{O}

T* = T

i s -r*-open i n

f(E\ N )

V = f ( B ) . Then

a (resp.

f - l ( O ) i f c l o s e d i n ( E , T ) , i t s complement

therefore

so

we

E. Therefore

(i).

PROOF: I f s u f f i c e s t o show t h a t =

x E

b E f - l ( W ) , and since

U = f ( A ) and

n e i g h b o r h o o d of

PROOF: S i m i l a r t o t h a t of

+

a s -r-open i n

f-'(W)

E E

(b)

is

functional

f f X ) = A.

If f o l l o w s f r o m t h e c h a r a c t e r i z a t i o n o f t h e t o p o l o g y

T*

74

PROLLA

g i v e n i n t h e proof of

(a) * ( b ) above, t h a t

only continuous b u t a l s o open, i . e . f (A) A

C

E

belonging t o

T.

f :E

+

is

F

for

all

Hence t h e f o l l o w i n g r e s u l t i s t r u e

(see

Nachbin [ 6 2 1 ,

p. 7 7 ) :

THEOREM 2 . 9 1 :

L e t ( F , T ~ )b e a b t h i c t e y

i s TF-open

not.

minOrid

diuh-

Haundohad

k i n g , and L e i ( E , T ) be a ffaubdohdd T V S v u e h ( F , T ~ ) T. h e n e v e k y n v n - z e k o c o n i i n u v u h L i n e a h duncZionaL f : E + F i b an vpen mapping dkom E o n t o F. biVn

L e t u s now see t h a t

for a strictly

minimal Hausdorff

p o l o g i c a l f i e l d , a " c l o s e d graph theorem" c a n

be

proved

tofor

linear functionals. ( P r o p o s i t i o n 1 9 , N a c h b i n 1 6 2 1 , p . 7 8 ) : LeL (F,TF)

THEOREM 2.92:

divinion king, LcZ ( E , T ) be a Haubdvtr6d T V S v u e k ( F , T ~ )and L e i f : E F b e a LLneatL Aunct i v n a L . T h e dullowing a t e e q u i v a l e n t : b e a b t k i c t l g minima[ Haubdvtdd

-+

(a

f

i b cvntinuvub;

(b

f

hub cLobed g h a p h .

PROOF : S i n c e ( F , T ~ i) s H a u s d o r f f , Conversely, suppose t h a t

(a)

f :E

w i t h c l o s e d graph. L e t us d e f i n e

+

F

E

vector space

E x F, and t h e k e r n e l o f

C o n s i d e r i n g on

E x F

is a +

linear functional by

F

g is a l i n e a r functional onthe g i s t h e graph

t h e product topology, E x F

Hausdorff T V S over (F,-rF). Since

(b) is clear.

g :E x F

for a l l (x,x)

E x F. Clearly,

*

f ( x ) = g(x,O), for a l l

By Theorem 2 . 9 0 ,

x

E

g

of

becomes

f. a

i s continuous. f i s con-

E , o n e sees t h a t

tinuous. S t r i c t l y minimal t o p o l o g i c a l d i v i s i o n r i n g s

are

important

f o r a f u r t h e r r e a s o n , namely t h a t e v e r y f i n i t e - d i m e n s i o n a l s u b -

space of a t o p o l o g i c a l v e c t o r space

over

a

strictly

minimal

75

T O P O L O G I C A L VECTOR SPACES

c o m p l e t e t o p o l o g i c a l d i v i s i o n r i n g i s c l o s e d . T h i s f o l l o w s from Theorem 7 o f Nachbin [61]: THEOREM 2.93:

a Haun-

Nachbin 1 6 1 1 ) : L e t ( F , T ~ b )e

(Theorem 7,

dohdd t o p o C v g i c a L d i v i o i o n k i n g . T h e d o L C o w i n g a h e e q u i u a l e n z : (a)

( F , r F ) i b n t h i c t l y minimae and CompLete.

(b)

Eve4y ~ i n i t e - d i m e n n i o n a B u e c t o h Apace E o u e h F has onCy o n e t o p o l o g y T nuch -that ( E J ) i n a Haundohdd T V S vwek ( F , T ~ ) .

L e t ( F , T ~ b) e a n t t r i c t l ? y m i n i m a L compCete R o p o BogicaC d i v i n i o n h i n g , and L e t ( E , T ) b e a Haubdohda T V S o w c ~ h ( F , - r F ) . T h e n ewehy dinite-dimenniunaC nubnpace 0 6 E i n c C o n e d . COROLLARY 2 . 9 4 :

Since every b a r r e l l e d T V S is quasi-barrelled, t o ask i f t h e c l a s s of b a r r e l l e d spaces i n t h e c l a s s of q u a s i - b a r r e l l e d a d a p t e d from T u r p i n

is

i t i s natural

properly contained

s p a c e s . The f o l l o w i n g

example,

[ 8 9 ] , shows t h a t t h e i n c l u s i o n i s i n d e e d a

proper one. EXAMPLE 2.95:

ring, let

E

Let

(F,

1 1)

vector. L e t

f i n e s t T V S t o p o l o g y on

PROOF: T.

Hence

(E,T)

T~ T

a n o n - t r i v i a l l y valued

division

be t h e s p a c e o f a l l f i n i t e s e q u e n c e s and l e t

be t h e nth-unit

CLAIM I :

be

E f o r which

B

Denote by

T

en the

i s bounded.

i n bofinoBogicaB, h e n c e quani-6ahheLBed.

is stronger than B = T

CLAIM 11: ( E , T )

B = { e n ; n E IN 1 .

.

T

a n d h a s t h e s a m e bounded setsas

in n o t b a 4 h e L l e d .

PROOF: D e f i n e c o n t i n u o u s l i n e a r f u n c t i o n a l s

k 9k(x) =

x

j =1

XjCj

pk : E

+

F

by

76

PROLLA

if

x

=

(6.) 1

where {X.) i s a s e q u e n c e i n

E E;

F with

IX.1

a.

+

3 c o n v e r g e s p o i n t w i s e t o a l i n e a r f u n c t i o n a l P. 7

The s e q u e n c e {P 1 k I f ( E , T ) w e r e b a r r e l l e d , by Theorem 2.59 cp would b e c o n t i n u o u s , and so

v(B) =

would b e bounded, a c o n t r a d i c t i o n .

{A.} 3

I n Definition 2.29, as n

+

a;

( c ) f o l l o w s from (a) and (b),when ln-ll + O

i n p a r t i c u l a r when ( F ,

1. 1 )

i s IR o r C w i t h t h e i r usual

a b s o l u t e v a l u e s . I n d e e d , g i v e n any ho E F*, choose k E IN so that Ik-1 I 5 lXol , a n d t h e n , g i v e n Un , c h o o s e by ( b ) m > n is so b i g t h a t t h e k-fold sum Um + + Um C Un . S i n c e m' -1 -1 -1 b a l a n c e d by ( a ) , x E Urn i m p l i e s k .A x E Urn, and so .A x E UnI

...

which p r o v e s ( c ) The n o t i o n

.

of s t r i n g appeared i n Iyahen

n i t i o n of oupkaDa44eLn and u L t k a b a k k e L ~ (1341 I y a h e n remarks ( [ 3 4 ] , p. 293) t h a t J . W.

[341 i n h i s d e f i -

,

Definition 3.1).

Baker a l s o

considered

t h e n o t i o n of a n u l t r a b a r r e l . According t o 1341

IR or

T V S (E,T) over

sequence ( U such t h a t

n

U1

D e f i n i t i o n 3.1,

exists

a E

t U1

C

B

C is a nup4aba44et i f t h e r e and

'n+l

+

'n+l

for a l l

n '

n

i s c a l l e d a dedining Aequence f o r

ultrabarrel). If

IN.

E

B is closed, it is c a l l e d an uLttaba4ket.

i s bornivorous, B

The

I f each

B.

Un

i s c a l l e d a bornivorous s u p r a b a r r e l

(resp.

B i s a b a l a n c e d convex a n d a b s o r b i n g

subset,

B is a suprabarrel with

then

a balanced s u b s e t B of a

o f b a l a n c e d and a b s o r b i n g non-empty s u b s e t s o f

I f i n addition sequence (Un)

,

2

-n

B = Un

,

n

E

IN,

as a defining

sequence. The n o t i o n o f a non-convex b a r r e l l e d T V S , when C , i s due t o W .

Robertson ( [ 7 8 ], p. 2 4 9 )

, who

F i s IR o r

c a l l e d them UU'UXo v e r IR

6akheLLed. They w e r e d e f i n e d a s f o l l o w s : a T V S ( E , q )

or E,

a:

i s c a l l e d uLtkabatkelLed i f t h e only T V S topologies

i n which t h e r e i s a b a s e o f q - c l o s e d n e i g h b o r h o o d s

o r i g i n , a r e those coarser than

or

q.

P r o p o s i t i o n 2.38,

on

of

the

w i t h F =IR

C , i s due t o I y a h e n ( [ 3 4 1 , Theorem 3 . 1 ) who showed

T V S i s u l t r a b a r r e l l e d i f and o n l y i f e v e r y u l t r a b a r r e l

that is

a a

neighborhood o f t h e o r i g i n .

or

Theorem 2.59 ( B a n a c h - S t e i n h a u s Theorem) , i n t h e case F i s due t o W. R o b e r t s o n ( [ 7 8 ] , Theorem 5 , p . 2 5 0 ) .

C,

=

IR

77

TOPOLOGICAL VECTOR SPACES

Theorem 2 . 4 9 C,

is

( c l o s e d graph Theorem)

When

F = IR o r

,

i n t h e case

Robertson ( [ 7 8 ] , P r o p o s i t i o n

a l s o due t o W. C

Mahowald [ S O ] had

F = IR o r

1 5 , p. 252).

proved t h e f o l l o w i n g

c h a r a c t e r i z a t i o n of b a r r e l l e d l o c a l l y convex spaces: THEOREM 2 . 9 6 :

IR on

C.

L e t ( E , T ) be a R o c a C l y convex Haundoh66 o p a c e o u e h

T h e 6oLLowing a h e e q u i v a l e n t :

(a)

(E,-r)

(b)

d o h e u e h y Banach o p a c e G , t h e 6aLLowing i n Z h u e : a n y L i n e a h m a p p i n g T htrom E i n t o G w h i c h han a c l o n e d g h a p h i n cOM.tiMUOUh.

in b a u e L R e d ;

For a proof see Mahowald [ 5 0 ] , Theorem 2 . 2 ,

p. 1 0 9 .

r e s u l t w a s e x t e n d e d t o non-convex s p a c e s by Iyahen

[34] ,

showed t h a t R o b e r t s o n ' s c l o s e d graph theorem c h a r a c t e r i z e s

This who ul-

t r a b a r r e l l e d spaces: THEOREM 2 . 9 7 :

L e t ( E , T ) be a T V S

UUeh

IR

04

C. T h e ~oUoLLting

atre e q u i u a L e n t : (a) (b)

(E,T) in u l t h a b a h h e L L e d ; h u h euehy c o m p l e t e rneZhic & i n e a h b p a c e G , A h e @?i?vwing t h u e : a n y l i n e a h mapping T 6hom E in-tv G which han a c&oned g h a p h i 0 c o n t i n u o u b .

i d

For a proof see Iyahen [ 3 4 ] , Theorem 3 . 2 , p . 2 9 7 . The n o t i o n of a non-convex

q u a s i - b a r r e l l e d T V S o v e r IR

or

is due t o Iyahen ( [ 3 4 ] , p. 300) , who c a l l e d them quuAi-uUkabahteLLed. Theorem 2 . 6 1 ( c l o s e d graph theorem f o r bounded mapp i n g s ) , i n t h e c a s e F = IR o r C, i s due t o Iyahen ([34] , Theorem 5.1,

p.

301).

I n f a c t , when

F = IR o r

C, more w a s proved. I n d e e d ,

l o c a l l y convex s p a c e s Mahowald ( [ 5 0 ] , Theorem 3 . 1 )

proved

for the

f o l l o w i n g r e l a t i o n between q u a s i - b a r r e l l e d s p a c e s and the c l o s e d graph theorem:

78

PROLLA

THEOREM 2 . 9 8 :

IR

L e t (E,T) be a l o c a l l y c o n v e x Hauddohdd

Apace uvQ.Z

c.. The d o l l a w i n g a t e eyuiwaLenb: quabi-bathellLed;

(a)

(EJ)

(b)

ewetry Banach Apace G , t h e GoLlowing i b t / r u e : a n y bounded l i n e a h mapping 6 t r o m E i n t o G w h i c h hub a c l o n e d gtraph i h c o n t i n u o u d .

ib

60%

For a p r o o f , see Mahowald

[50],

Theorem 3 . 1 , p .

a n a l o g u e f o r non-convex

s p a c e s w a s p r o v e d by I y a h e n :

Let ate. e q u i v a l e n t :

be a T V S

THEOREM 2 . 9 9 :

(E,r)

owP.h

IR

04

109.

Its

C . The d a U o w i n g

(a)

(E,T)

(b)

dux evetry c o m p l e t e m e t h i c l i n e a h Apace G , .the ZjukYowLng i n bhue: a n y bounded l i n e a h mapping d h a m E i n t o G

i b yuabi-u~.thabatrheL&ed;

u h i c h hah a c l o s e d ghaph i n c o n t i n u o u d . F o r a p r o o f see I y a h e n

[ 3 4 J , Theorem 5 . 1 ,

p . 301.

The n o t i o n o f a non-convex b o r n o l o q i c a l T V S , when F i s IR o r C, i s d u e t o I y a h e n ( [ 3 4 ] , D e f i n i t i o n 4 . 1 , p . 298) who called them uL-thabu/rnaLug.icaL. They were d e f i n e d a s f o l l o w s : a T V S ( E , n ) o v e r IR or C is c a l l e d ulthabohnoLogiCaL i f every bounded l i n e a r map from ( E , T ) i n t o a n y T V S o v e r JR o r C i s cont i n u o u s . Our Theorem 2 . 4 2 shows t h a t D e f i n i t i o n 2 . 4 0 and Iyahen's definition a r e equivalent.

The f o l l o w i n g r e s u l t was p r o v e d

by

I y a h e n , and should b e compared w i t h Theorem 2 . 9 9 . THEOREM 2 . 1 0 0 :

Let

(E,T)

b e a T V S oweh IR o h C..

The d u l l o d n g

atre e q u i v a l e n t : (a)

(EJ)

(b)

6 0 4 eve4.y cornpeebe m e t h i c l i n e a h cspace G , t h e do&LoWLng i s t t u e : a n y bounded L i n e a t mapping ( R a m E i n t o G i d cofitinuoun.

i A

ulLttabotrnuLogical;