Fluoropolymer Properties

Fluoropolymer Properties

Appendix 1: Fluoropolymer Properties This Appendix contains a sampling of the mechanical, electrical, and thermal properties of neat fluoropolymer res...

14MB Sizes 468 Downloads 1193 Views

Appendix 1: Fluoropolymer Properties This Appendix contains a sampling of the mechanical, electrical, and thermal properties of neat fluoropolymer resins that may be used in fluorocoatings Table A1.1.

1.1 Mechanical Properties The mechanical properties versus temperature of some fluoropolymers used in coatings are shown in the following graphs and tables Tables A1.2 and A1.3.

Table A1.1 Melting Point Ranges of Various Fluoroplastics Fluoropolymers

Melting Point (8C)

Polytetrafluoroethylene (PTFE)

320e340

Polyethylene chlorotrifluoroethylene (ECTFE)

240

Polyethylene tetrafluoroethylene (ETFE)

255e280

Fluorinated Ethylene propylene (FEP)

260e270

Perfluoroalkoxy (PFA)

302e310

Perfluoro methoxy (MFA)

280e290

Polychlorotrifluoroethylene (PCTFE)

210e212

Polyvinylidene fluoride (PVDF)

155e170

Table A1.2 Mechanical Properties of Homofluoropolymers Used in Coatings Property

Test

PTFE

PVDF

PVF

CTFE

ASTM D792

2.14e2.22

1.78

1.37e1.39

2.1e2.18

Tensile strength (MPa)

ASTM D638

20e35

31e52

55e110

31e41

Break elongation (%)

ASTM D638

300e550

500e250

90e250

80e250

Tensile modulus (MPa)

ASTM D638

550

1040e2070

2100e2600

1300e1800

Flexural strength (MPa)

ASTM D790

No break

45e74

Flexural modulus (MPa at 23 C)

ASTM D790

340e620

1140e2240

1400

1600

Static coefficient of friction

ASTM D621

0.1

0.2e0.4

3

Specific gravity (g/cm )

343

344

A PPENDIX 1: F LUOROPOLYMER P ROPERTIES

Table A1.3 Mechanical Properties of Fluoro Copolymers Used in Coatings Property

Test

FEP

PFA

AF

ETFE

E-CTFE

THV

Specific gravity (g/cm3)

ASTM D792

2.15

2.15

1.71

1.68

1.95e1.98

Tensile strength (MPa)

ASTM D638

20e28

20e26

24.6e27

45

48

23e24

Break elongation (%)

ASTM D638

300

300

3e40

150e300

200

500e600

Tensile modulus (MPa)

ASTM D638

345

276

950e2150

827

1400e1600

Flexural strength (MPa)

ASTM D790

No break

Flexural modulus (MPa at 23 C)

ASTM D790

655

551

1034e1171

Static coefficient of friction

ASTM D621

0.2

0.2

0.4

38 2000

83e207 0.8

1.1.1 Mechanical Properties of Polytetrafluoroethylene (PTFE) Figures A1.1eA1.6

Figure A1.1 Stress versus Strain at high strain rate for Chemours Co. General Purpose TeflonÒ PTFE Resin.1

A PPENDIX 1: F LUOROPOLYMER P ROPERTIES

345

Figure A1.2 Stress versus Strain at low strain rate for Chemours Co. General Purpose TeflonÒ PTFE Resin.1

Figure A1.3 Young’s Modulus versus Temperature for 3M DyneonÔ PTFE Resins.2

346

A PPENDIX 1: F LUOROPOLYMER P ROPERTIES

Figure A1.4 Tensile Strength versus Temperature for Chemours Co. General Purpose TeflonÒ PTFE Resin.

Figure A1.5 Effect of temperature upon tensile stressestrain curves for Asahi Glass FluonÒ PTFE.3

A PPENDIX 1: F LUOROPOLYMER P ROPERTIES

347

Figure A1.6 Hardness versus Temperature for Chemours Co. General Purpose TeflonÒ PTFE Resin.

1.1.2 Mechanical Properties of Fluorinated Ethylene Propylene (FEP) Figures A1.7eA1.10

Figure A1.7 Tensile Stress versus Strain at various temperatures for Chemours General Purpose FEP Resin.4

348

A PPENDIX 1: F LUOROPOLYMER P ROPERTIES

Figure A1.8 Flexural Modulus versus Temperature for Chemours FEP Resins.4

Figure A1.9 Tensile Strength versus Temperature and various strain levels for Chemours General Purpose FEP Resin.

A PPENDIX 1: F LUOROPOLYMER P ROPERTIES

Figure A1.10 Elongation versus Temperature of Daikin NeoflonÔ FEP.5

1.1.3 Mechanical Properties of Perfluoroalkoxy (PFA) Figures A1.11eA1.15

Figure A1.11 Stress versus Strain at two temperatures for Solvay Solexis HyflonÒ PFA Resin.6

349

350

A PPENDIX 1: F LUOROPOLYMER P ROPERTIES

Figure A1.12 Flexural Modulus versus Temperature for Chemours TeflonÒ PFA 340 and 350 Grade Resins.

Figure A1.13 Tensile Strength versus Temperature for Chemours TeflonÒ PFA 340 and 350 Grade Resins.

A PPENDIX 1: F LUOROPOLYMER P ROPERTIES

351

Figure A1.14 Elongation versus Temperature of Daikin Industries Fluoroplastics NEOFLONÔ PFA.7

Figure A1.15 Shore D Hardness versus Temperature of Daikin Industries Fluoroplastics NEOFLONÔ PFA.7

352

A PPENDIX 1: F LUOROPOLYMER P ROPERTIES

1.1.4 Mechanical Properties of Polychlorotrifluoroethylene (PCTFE) Figures A1.16eA1.20

Figure A1.16 Stress versus Strain at various temperatures for Dyneon Crystalline and Amorphous PCTFE Resins.

Figure A1.17 Tensile Modulus versus Temperature for Daikin NeoflonÔ PCTFE Resin.8

A PPENDIX 1: F LUOROPOLYMER P ROPERTIES

353

Figure A1.18 Tensile Strength at Break versus Temperature for Daikin NeoflonÔ PCTFE Resin.8

Figure A1.19 Shore D Harness versus Temperature for Daikin NeoflonÔ M-300H e General Purpose and M-400H e Higher Molecular weight, Increased Toughness PCTFE Resins.8

354

A PPENDIX 1: F LUOROPOLYMER P ROPERTIES

Figure A1.20 Elongation versus Temperature for Daikin NeoflonÔ M-300H e General Purpose PCTFE Resin.8

1.1.5 Mechanical Properties of Polyvinylidene fluoride (PVDF) Figures A1.21eA1.23

Figure A1.21 Stress versus Strain at various temperatures for Arkema Kynar FlexÒ 710 e Homopolymer PVDF Resin.

A PPENDIX 1: F LUOROPOLYMER P ROPERTIES

Figure A1.22 Elongation at Break versus Temperature for Solvay Solexis SolefÒ PVDF Resins.9

Figure A1.23 Tensile Strength versus Temperature for Arkema Kynar FlexÒ e PVDF Resins.

355

356

1.1.6 Mechanical Properties of Ethylene Tetrafluoroethylene (ETFE) Figure A1.24

A PPENDIX 1: F LUOROPOLYMER P ROPERTIES

1.2 Thermal Properties This section shows some of the properties and the effects heat aging has on some of fluoropolymers used in coatings Figure A1.25 and Tables A1.4 and A1.5.

Figure A1.24 Elongation at Break versus Temperature Chemours General Purpose TefzelÒ 200 ETFE Resin.10

Figure A1.25 A general comparison of weight loss rates versus temperature for several fluoropolymers used in.

A PPENDIX 1: F LUOROPOLYMER P ROPERTIES

357

Table A1.4 Thermal Properties of Homofluoropolymers Used in Coatings Property

Test

PTFE

PVDF

PVF

CTFE

Heat distortion ( C at 0.45 MPa)

ASTM D648

122

140e174

120

126

Coefficient of thermal expansion (cm/cm/ C  105)

ASTM D696

12.6e18

7e15

5e10

7

Continuous use temperature ( C)

UL-Sub 94

260

120

120

120

190

210e215



Melting point ( C)

ASTM D4591

320e340 10

Melt viscosity (Pa s)

10 e10

12

155e192 0.2e17  10

3

1e10

Table A1.5 Thermal Properties of Fluoro Copolymers Used in Coatings Property

Test

FEP

PFA

Heat distortion ( C at 0.45 MPa)

ASTM D648

70

74

Coefficient of thermal expansion (cm/cm/ C  105)

ASTM D696

8.3e10.4

13.7e20.7

Continuous use temperature ( C)

UL-Sub 94

204

260

Melting point ( C)

ASTM D4591

4

Melt viscosity (Pa s) Melt flow rate (g/10 min)

260e282 10 e10

ASTM D1238

5

0.8e27

AF

ETFE

E-CTFE

81

115

8e10

13.1e25.7

8e14

290

150

302e310 3

10 e10

4

1e38

1.2.1 Thermal Properties of Polytetrafluoroethylene (PTFE) Figures A1.26eA1.30 and Table A1.6

Figure A1.26 Thermogravimetric Analysis (TGA) of Diakin PTFE.12

225e280

THV

240

115e180

1e50

10e20

0.7e3  10

3

2.3e45

Figure A1.27 Tensile Strength versus Aging Time at 250 C of PTFE Insulated Wire* made from Daikin PolyflonÔ PTFE fine Powder.13

Figure A1.28 Elongation versus Aging Time at 250 C of PTFE Insulated Wire* made from Daikin PolyflonÔ PTFE fine Powder.13

Figure A1.29 Elongation versus Aging Time at 380 C of Daikin PolyflonÔ PTFE fine Powder.13

A PPENDIX 1: F LUOROPOLYMER P ROPERTIES

359

Figure A1.30 Tensile Strength versus Aging Time at 380 C of Daikin PolyflonÔ PTFE fine Powder.

Table A1.6 Degradation (TGA) Rates of PTFE Fluoroplastics in Air as a Function of Time and Temperature11 % Weight Loss/h Temperature 8C

TE to 15 min

TE D 60 min

Fine powder 400

0.06

425

0.15

425

0.04a

525

255c

95.0

Granular 350

0.02

350

0.005b

400

0.03

400

0.006b

425

0.06

425

0.06a

TE ¼ Thermal Equilibrium. a Hourly rate from 8 to 11.8 h after beginning run. b Hourly rate from 3.3 to 6.6 h after beginning run. c Gross decomposition in 1 h. Initial rate 255% per hour.

360

A PPENDIX 1: F LUOROPOLYMER P ROPERTIES

1.2.2 Thermal Properties of Fluorinated Ethylene Propylene (FEP) Data for FEP plastics are found in Table 9.5 and Figures 9.14e9.16. Figures A1.31eA1.33 and Table A1.7.

Figure A1.31 Tensile Strength versus Aging Time at 200 C of Diakin Neoflon FEP NP-20.12

Figure A1.32 Elongation versus Aging Time at 200 C of Diakin Neoflon FEP NP-20.12

A PPENDIX 1: F LUOROPOLYMER P ROPERTIES

361

Figure A1.33 TGA of Diakin NeoflonÔ FEP.12 Table A1.7 Degradation (TGA) Rates of Fluoroplastics in Air as a Function of Time and Temperature11 % Weight Loss/h Temperature 8C

TE to 15 min

15e65 min

TE D 60 min <0.05

205 300 350

0.45

w0.03

<0.05

0.13

0.18

375

0.67

400

3.2

Note: TE ¼ Thermal Equilibrium.

1.2.3 Thermal Properties of Perfluoroalkoxy (PFA) Data for PFA plastics are found in Table A1.8 and Figures A1.34eA1.39. Table A1.8 Degradation (TGA) Rates of PFA Fluoroplastics in Air as a Function of Time and Temperature11 % Weight Loss/h Resins Temperature 8C PFA-1

PFA-2

300

TE to 15 min

15e65 min

TE D 60 min

0.18

0.05

0.07

350

0.22

400

0.58

300 350 400

0.12

<0.05

<0.05

w0.03

0.05 0.26

Figure A1.34 Thermogravimetric analysis of Daikin NeoflonÔ PFA.14

Figure A1.35 Change in tensile strength of PFA wire coating due to thermal exposure in air.15

Figure A1.36 Change in break elongation of PFA wire coating due to thermal exposure in air.15

Figure A1.37 Change in MFR of PFA wire coating due to thermal exposure in air.15

Figure A1.38 Strength at break retained of Solvay Solexis HyflonÒ MFA F1540 due to thermal aging in air at various temperatures.16

Figure A1.39 Elongation at break retained of Solvay Solexis HyflonÒ MFA F1450 due to thermal aging in air at various temperatures.16

364

A PPENDIX 1: F LUOROPOLYMER P ROPERTIES

1.2.4 Thermal Properties of Polyvinyl Fluoride (PVF) Data for PVF plastics are found in Figures 1.60 to 1.xx. Figures A1.40 and A1.41

Figure A1.40 Tensile Strength versus hours of aging at 149 C of Chemours TedlarÒ PVF Films.17

Figure A1.41 Elongation versus hours of aging at 149 C of Chemours TedlarÒ PVF Films.17

A PPENDIX 1: F LUOROPOLYMER P ROPERTIES

365

1.2.5 Thermal Properties of Polychlorotrifluoroethylene (PCTFE) Data for PCTFE plastics are found in Table A1.9 and Figures A1.42 and A1.62.

Table A1.9 Rates of Degradation of Polychlorotrifluoroethylene18 Temperature,8C

Test Duration, min

Total Volatilized, %

Initial Volatilization Rate, %/min

365

400

78.1

0.20

370

300

82.9

0.28

375

200

75.0

0.42

380

160

82.3

0.58

385

130

83.2

0.84

Figure A1.42 Thermal degradation of Polychlorotrifluoroethylene; Percentage of sample volatilized versus time.18

366

A PPENDIX 1: F LUOROPOLYMER P ROPERTIES

1.2.6 Thermal Properties of Polyvinylidene Fluoride (PVDF) Data for PVDF plastics are found in Tables A1.10 and A1.11 and Figures 1.63 to 1-xx. Figures A1.43eA1.44

Table A1.10 Thermal Aging Tests at Various Temperatures of Solvay Solexis SolefÒ PVDF 100819 Tensile Yield Strength (MPa) Aging Period Days

208C

1208C

Secant Modulus at 1% Deformation (MPa)

Elongation at Break (%)

1508C

208C

1208C

1508C

208C

1208C

1508C

1

50

53

51

1900

1700

1600

9.5

10.5

11.8

11

49

54

51

2000

1900

1800

8.5

10.0

13.0

160

53

54

51

2300

2100

1800

7.0

9.0

11.5

358

54

55

53

2300

2300

2200

7.0

10.0

>11.0

730

52

54

d

2300

1800

d

6.6

10.4

d

Note: RAPRA e Injection molded specimens.

Table A1.11 Thermal Aging Tests at 150 C of Solvay Solexis SolefÒ 11,010 PVDF19 Aging period (h)

0

8

100

1000

Yield stress, MPa

28

28

29

28

Strength at break, MPa

41

34

34

40

Elongation at break, %

>500

>480

>480

>500

Modulus, MPa

1020

1070

1020

870

113

122

132

149

Tensile properties

Thermal properties HDT under 0.46 MPa,  C

Note: Compression molded plates, thickness 2 mmeRate of pulling: 10 mm/min (modulus: 1 mm/min).

Figure A1.43 Mechanical properties of cables jacketed with Solvay Solexis SolefÒ 31,508/0003 copolymer, vs. aging at 158 C.19

Figure A1.44 Change in tensile strength and break elongation of PVDF due to thermal exposure in air at 165 C.20

Figure A1.45 Thermogravimetric analysis of Solvay Solexis SolefÒ PVDF.21

368

A PPENDIX 1: F LUOROPOLYMER P ROPERTIES

1.2.7 Thermal Properties of Ethylene Tetrafluoroethylene (ETFE) Data for ETFE plastics are found in Table A1.12eA1.17 and Figure A1.66 to 1-xx. Figures A1.46eA1.53.

Table A1.12 Estimated Upper Service Temperatures ( C), No Load Thermal Aging End-of-Life Criterion Based on Elongation for Chemours TefzelÒ ETFE22 End-of-Life Criterion Actual Elongation %

Exposure Time, h

Elongation Retained, %

1000

3000

10k

20ka

50ka

100ka

50

210

195

172

159

143

132

18

b

211

188

175

158

147

9

b

b

196

182

165

153

135 50 25 a

These estimates were extrapolated from 10,000 h aging results. Estimates are not available for these exposure regions.

b

Table A1.13 Estimated Upper Service Temperatures ( C), No Load Thermal Aging End-of-Life Criterion Based on Tensile Strength for Chemours TefzelÒ ETFE22 End-of-Life Criterion

Exposure Time, h

Tensile Strength Retained, %

10k

20ka

50ka

100ka

3750

50

190

176

159

147

2000

27

204

190

172

158

Actual Tensile Strength, psi

a

These estimates were extrapolated from 10,000 h aging results.

Table A1.14 Effect of Temperature Aging on Izod Impact Strength, ChemoursÔ TefzelÒ HT-200422 Temperature Izod

Izod Impact Strength

8C

8F

Aging

J/m

ft$lb/in

23

73

As molded

491

9.1

23

73

168 h at 150 C (302 F)

491

9.1

23

73

168 h at 180 C (356 F)

416

7.7

A PPENDIX 1: F LUOROPOLYMER P ROPERTIES

369

Table A1.15 Initial Weight Loss of ChemoursÔ TefzelÒ 200 Resin above 300 C (572 F)22 8C

8F

wt loss, %/h

300

572

0.05

330

626

0.26

350

662

0.86

370

698

1.60

Table A1.16 Degradation (TGA) Rates of ETFE in Air as a Function of Time and Temperature11 % Weight Loss/h Temperature 8C

TE to 15 min

15e65 min

TE D 60 min <0.05

150 260

0.31

0.06

0.11

300

0.42

0.09

0.14

325

0.67 w2

350

6.8

Note: TE ¼ Thermal Equilibrium.

Table A1.17 Grades of FluonÒ ETFE for Figure A1.45,24 Grade

Melt Flow Rate

Melt Index

C-55AP

3.9e6.5

C-88AP

Characteristic

Application

Molding Method

1e2

Standard

general

Extrusion molding

9.0e12.0

3e4

Standard

general

Extrusion molding, injection molding

C-55AP

3.9e6.5

1e2

Stress crack resistant

Wire cover

Extrusion molding

C-88AP

9.0e12.0

3e4

Stress crack resistant

Wire cover

Extrusion molding

Figure A1.46 Retention at various levels of room temperature tensile elongation after heat aging of ChemoursÔ TefzelÒ 200.22

Figure A1.47 Retention at various levels of room temperature tensile strength after heat aging of ChemoursÔ TefzelÒ 200.22

Figure A1.48 Effect of heat aging on the tensile strength at 23 C of ChemoursÔ TefzelÒ HT-2004.22 Note: All values of elongation between 5 and 10% regardless of test temperature; no load during aging.

Figure A1.49 Effect of heat aging on the tensile strength at 150 C of ChemoursÔ TefzelÒ HT-2004.22 Note: All values of elongation between 5 and 10% regardless of test temperature; no load during aging.

Figure A1.50 Tensile strength after exposure at 200 C of Diakin NeoflonÔ ETFE.23

Figure A1.51 Elongation after exposure at 200 C of Diakin NeoflonÔ ETFE.23

372

A PPENDIX 1: F LUOROPOLYMER P ROPERTIES

Figure A1.52 Half-life of elongation versus Temperature for various AGC Chemical FluonÒ ETFE resins.24

Figure A1.53 Thermogravimetric analysis (TGA) of ETFE resin.12

A PPENDIX 1: F LUOROPOLYMER P ROPERTIES

373

1.3 Electrical Properties

1.2.8 Thermal Properties of Ethylene-Chlorotrifluoroethylene Copolymer (ECTFE) Data for ECTFE Figure A1.54.

plastics

are

found

Tables A1.18 and A1.19 in

Figure A1.54 Effect of time on the yellowness index of Solvay Solexis HalarÒ ECTFE film upon thermo-oxidative aging at various temperatures.25

Table A1.18 Electrical Properties of Homofluoropolymers Used in Coatings Property

Test

PTFE

PVDF

Volume resistivity (ohm-cm)

ASTM D257

>1018

>10

Dielectric strength (kV/mm)

ASTM D149

19.7

14

PVF

CTFE

13

>1018

10

63e67

20

48

Table A1.19 Electrical Properties of Fluoro Copolymers Used in Coatings Property

Test

Volume resistivity (ohm-cm)

ASTM D257

Dielectric strength (kV/mm)

ASTM D149

FEP >10

18

19.7

PFA >10

18

19.7

AF

ETFE >10

17

14.6

E-CTFE

THV >1015

374

A PPENDIX 1: F LUOROPOLYMER P ROPERTIES

1.3.1 Electrical Properties of Polytetrafluoroethylene (PTFE) Figures A1.55 and A1.56

Figure A1.55 Dielectric Constant versus Temperature for Chemours Co. General Purpose TeflonÒ PTFE Resin.

Figure A1.56 Dissipation Factor versus Temperature for Chemours Co. General Purpose TeflonÒ PTFE Resin.

A PPENDIX 1: F LUOROPOLYMER P ROPERTIES

375

1.3.2 Electrical Properties of Fluorinated Ethylene Propylene (FEP) Figures A1.57 and A1.58

Figure A1.57 Dielectric ConstantdElevated Temperature, TeflonÒ FEP 100 Fluoropolymer Resin.4

Figure A1.58 Dissipation Factor versus Frequency at various temperatures for Chemours General Purpose TeflonÒ FEP 100 Resin.4

376

A PPENDIX 1: F LUOROPOLYMER P ROPERTIES

1.3.3 Electrical Properties of Perfluoroalkoxy (PFA) Figures A1.59 and A1.60

Figure A1.59 Dielectric Constant versus Frequency for Chemours TeflonÒ PFA 340 and 350 Grade Resins.

Figure A1.60 Dissipation Factor versus Frequency at various temperatures for Chemours TeflonÒ PFA 340 and 350 Grade Resins.

A PPENDIX 1: F LUOROPOLYMER P ROPERTIES

1.3.4 Electrical Properties of Polychlorotrifluoroethylene (PCTFE) Figures A1.61 and A1.62

Figure A1.61 Dielectric Constant versus Frequency and Temperature for Daikin NeoflonÔ PCTFE Resin.8

Figure A1.62 Dissipation Factor versus Temperature and Frequency for Daikin NeoflonÔ PCTFE Resin.8

377

378

A PPENDIX 1: F LUOROPOLYMER P ROPERTIES

1.4 Chemical Resistance Properties Table A1.20 and A1.21 Table A1.20 Chemical Properties of Homofluoropolymers Used in Coatings* Property

PTFE

PVDF

PVF

CTFE

Water absorption (24 h, weight change %)

0

0.04

0.05

0.01e0.10

Aromatic hydrocarbon resistance

Excellent

Excellent

Excellent

Aliphatic hydrocarbon resistance

Excellent

Excellent

Excellent

Chlorinated solvent resistance

Excellent

Excellent

Good

Ester & ketone resistance

Excellent

Good

Excellent

Refractive index

1.38

1.42

*Detailed

1.46

1.44

chemical resistance data are available in Appendix 3.

Table A1.21 Chemical Properties of Fluoro Copolymers Used in Coatings* Property

FEP

PFA

Water absorption (24 h, weight change %)

<0.01

<0.03

Aromatic hydrocarbon resistance

Excellent

Excellent

Excellent

Aliphatic hydrocarbon resistance

Excellent

Excellent

Excellent

Chlorinated solvent resistance

Excellent

Excellent

Excellent

Ester & Ketone resistance

Excellent

Excellent

Excellent

Refractive index

1.344

1.34

*Detailed

AF

ETFE

E-CTFE

0

<0.03

<0.02

1.29-1.31

1.403

chemical resistance data are available in Appendix 3.

References 1. TeflonÒ PTFE properties handbook. Chemours; 2007. 2. DyneonÔ TFMÔ PTFE improved performance and design flexibility. Dyneon; 2003. 3. Physical properties of FluonÒ unfilled and filled PTFE technical service note F12/13. Asahi Glass; 2007. 4. TeflonÒ product and properties handbook. Chemours; 2007. 5. Product information EG-61m NEOFLONÔ FEP pellets. Diakin Industries; 2013.

6. Design & processing guide HyflonÒ PFA. Solvay Specialty Polymers; 2012. 7. Product information daikin industries fluoroplastics NEOFLONÔ PFA. Daikin Industries LTD; 2007. 8. Product information NEOFLONÔ PCTFE molding powder. Daikin Industries; 2013. 9. SolefÒ & HylarÒ PVDF polyvinylidene fluoride design and processing guide. Solvay Solexis; 2012. 10. ChemoursÔ TefzelÒ properties handbook. Chemours; 2004.

A PPENDIX 1: F LUOROPOLYMER P ROPERTIES

11. Baker BB, Kasprzak DJ. Thermal degradation of commercial fluoropolymer in air. Polym Degrad Stab 1994;42:181e8. 12. Product information NeoflonÔ ETFE. Diakin Industries LTD; 2007. 13. PolyflonÔ PTFE fine powder, product information. Daikin Industries Ltd; 2001. 14. Product information, NeoflonÔ PFA. Daikin; 2002. 15. TeflonÒ PFA fluoropolymer resin, properties handbook. Chemours Co; May 1997. Publication No. E-96679-4. 16. HyflonÒ MFA design and processing guide. Solvay Solexis; 2008. 17. Technical information, TedlarÒpolyvinyl fluoride film. Chemours; 1995. 18. Madorsky SL, Straus S. Thermal degradation of polychlorotrifluoroethylene, poly-alpha, beta, beta-trifluorostyrene, and poly-p-xylylene in a vacuum. J Res Natl Bureau Stand October 1955;55:4.

379 19. Solef Ò & HylarÒ PVDF polyvinylidene fluoride e design and processing guide. Solvay Solexis; 2006. 20. Solef Ò PVDF engineering polymer, solvay polyvinylidene fluoride. Belgium: Solvay & Cie Corp.; Publication No. Br 1292c-B-5e0485. 21. Solef Ò PVDF design & processing guide, Solef Ò PVDF. Solvay; 2012. 22. ChemoursÔ TefzelÒ properties handbook. Chemours; 2003. 23. NeoflonÔ ETFE EP-521, EP-541. Daikin Industries; 2007. 24. Technical data ethylene-tetrafluoroethylene copolymer. AGC Chemicals; 2007. 25. Khanna Y, Turi E, Sibilia J. High temperature aging of halar film. I. Study of physicochemical changes. J Appl Polym Sci 1984;29:3607e20.