NUCLEAR INTRINSIC QUADRUPOLE MOMENTS AND DEFORMATION PARAMETERS

NUCLEAR INTRINSIC QUADRUPOLE MOMENTS AND DEFORMATION PARAMETERS

NUCLEAR DATA TABLES A7, 495-564 (1970) NUCLEAR INTRINSIC QUADRUPOLE MOMENTS AND DEFORMATION PARAMETERS K. E. G. LOBNER· Department of Physics, Univ...

3MB Sizes 0 Downloads 55 Views

NUCLEAR DATA

TABLES

A7, 495-564 (1970)

NUCLEAR INTRINSIC QUADRUPOLE MOMENTS AND DEFORMATION PARAMETERS K. E. G. LOBNER· Department of Physics, University Freiburg i.Br., Germany, and Department of Physics, Technische Hochschule, Munich, Germany and M. VETTER and V. HONIGt Department of Physics, University Freiburg LBr., Germany Presented here are averaged values for the intrinsic quadrupole moment, Qo' and different deformation parameters, Pq , P, E, 8, "1K, and 8', of deformed nuclei in the rare-earth region, 150 <::::: A <::::: 190, and in the actinide region, A>::::: 220. The arrangement is by Z and A. These values are calculated from: Electric quadrupole hyperfine interaction of nuclei in atoms and molecules, Mu-mesonic x-ray measurements, Electric giant-dipole resonance measurements, Experimental B(E2)-values between rotational states and the ground state of nuclei (obtained from Coulomb excitation and half-life measurements), and Reorientation effect in Coulomb excitation. The literature has been covered to September 1969. Exact definitions for the different deformation parameters are given and relations between them are displayed.

• Present address: Department of Physics, Technische Hochschule, Munich, Germany t Present address: Brown Boveri Krupp (BBK), Mannheim, Germany 495

LOBNER. VElTER. AND HONIG

CONTENTS . 496

SCOPE AND DEFINITIONS Intrinsic and Spectroscopic Quadrupole Moment, Qo and Q Shape of Deformed Nuclei .. . Deformation Parameters, Definition and Relation to Qo Constant-Volume Condition of Nuclei TYPES OF EXPERIMENTAL DATA Electric-Quadrupole Hyperfine Interaction Data (Spectroscopic Quadrupole Moment) Mu-Mesonic X-Ray Spectra Data Electric Giant-Dipole Resonance Data E2 Gamma-Ray Transition Probabilities between Rotational States Reorientation-Effect Data in Coulomb Excitation

500

REFERENCES FOR INTRODUCTORY MATERIAL

503

TABLE TABLE TABLE TABLE TABLE

I. II. III. IV. V.

Relation of Deformation Parameters to Qo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Relation between Different Deformation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . Averaged Values of Intrinsic Quadrupole Moments Qo and of Deformation Parameters . Experimental Data of Intrinsic Quadrupole Moments Qo' Adopted Values of Half Lives T 1/ 2 , Transition Energies E y , Mixing Ratios 82 , Branching Ratios cross/casc., and Theoretical Total Conversion Coefficients a

REFERENCES FOR TABLES

505 506 508 522 546

' . . . . . . . . . . . . . . . . . . .. 553

SCOPE AND DEFINITIONS

Intrinsic and Spectroscopic Quadrupole Moment, Qo and Q

All available experimental data, from which deformation parameters can be deduced, have been collected for nuclei of the deformation region of the rare earths and of the actinides. From these values the weighted means for the intrinsic electric quadrupole moment, Qo' and for different deformation parameters, Pq , P, E, 8, 11K, and 8', are given. Because different deformation parameters are used in the literature and since sometimes different quantities are represented by the same symbol and vice versa, the definitions and exact relations between the most frequently used deformation parameters are given.

In the following sections it will always be assumed that deformed nuclei have: Axial symmetry around the z'-axis (the prime denotes the coordinate system of the intrinsic-body fixed system), Reflection symmetry around xy plane (plane perpendicular to the z'-axis through the center of the nucleus), A nuclear wavefunction that can be separated into a rotational part Ditx<0) and an intrinsic part Classically the electric quadrupole moment is defined by

xx'

The authors are indebted to Prof. Dr. Th. Schmidt, Freiburg, and Prof. Dr. A. Faessler, MOnster, for valuable discussions. We would like to thank Dr. K. Way for valuable suggestions regarding the arrangement of this manuscript. We wish to thank Dr. W. B. Ewbank for generating the complete list of references from the key numbers of the Nuclear Data Project. We are grateful to Miss Freiberg for typing the manuscript. We would like to thank the Rechenzentrum of the University of Freiburg for computer time. The work was supported by the German Bundesministerium filr wissenschaftliche Forschung.

QCI =

~jl~'IT

f

r2Y20({})p(r)dV.

(1)

Quantum mechanically we have to distinguish between the intrinsic and the spectroscopic quadrupole moment. The intrinsic quadrupole moment Qo of a nuclear state described by the wavefunction l/IJJlK is given by the expectation value of the quadrupole moment operator Q2(r') defined relative to the intrinsic coordinate system: 496

NUCLEAR INTRINSIC QUADRUPOLE MOMENTS AND DEFORMATION PARAMETERS

Shape of Deformed Nuclei and

If constant-charge distribution within the nucleus is assumed, then the intrinsic quadrupole moment determines the general form of the nucleus:

The Qo is the quadrupole moment that would be measured in the intrinsic coordinate system if such a measurement were possible. The intrinsic quadrupole moment of deformed nuclei is related to the reduced E2 gamma-ray transition probability B(E2) for rotational transitions by the following model-dependent expression:

=
-

<~JMKI Q2(r)! ~JMK>M=l"

(5)

=

M 1 indicates that the integral is carried out for the nuclear state whose magnetic quantum number M = I. This corresponds to the maximum observable spectroscopic quadrupole moment. The spectroscopic quadrupole moment is the quantity which is determined by hyperfinestructure and reorientation-effect measurements. The relation between the intrinsic and the spectroscopic quadrupole moment is obtained by transforming the quadrupole moment operator Q2(r) relative to the laboratory system into the quadrupole moment operator relative to the intrinsic coordinate system of the nucleus

=
1»)1[(1

+ 1)(21 + 3)].

<

+ P2Y20({})'

would have only a quadrupole moment and no higher electric moments. However, if a constantcharge distribution exists there is no simple shape which has a quadrupole but no higher moments. Two different shapes of prolate deformed nuclei with constant-charge distributions are treated in the literature: the rotational ellipsoid and the quadrupoloid (defined as having only quadrupole deformation, which is not identical with having only a quadrupole moment). A rotational ellipsoid is specified by the length of the semiaxis c parallel to the z'-axis- (intrinsic coordinate system) and semiaxis a perpendicular to the z'-direction. From these two quantities deformation parameters can be defined, for example, (c2 _ a 2)/(c2 + a2). The intrinsic quadrupole moment Qo of a rotational ellipsoid is given by (528Ia):

(6)

For the usual ground state" of nuclei with 1 = K the formula simplifies to

Q

Qo

spherical nuclei; nuclei with prolate form like a rugby football (cigar shaped); 0 nuclei with oblate form like a disk.

p(r, {}, 'P) = po(r)

(See Ref. 5281a, 57Mos, and 60Mot.) Q

=0 >0

It should be emphasized that it is not true generally that the shape of the nucleus (prolate or oblate) is determined from the sign of the spectroscopic quadrupole moment. For rotational states with total angular momentum 1 high in comparison with K (the projection of 1 upon the symmetry axis of the nucleus) the spectroscopic quadrupole moment is negative for a nucleus with prolate deformation (positive intrinsic quadrupole moment). This can be seen from Formula (6). Examples are provided by the Mossbauer results for 169Tm: 1 = 3/2, K = 1/2 or 166Er: 1 = 2, K = 0, or Ref. 61Ma42. The exact shape of deformed nuclei is not uniquely determined. As long as no exact information about higher-order electric moments of nuclei is available, it would be most reasonable to assume that the shape is such that the nucleus has only a quadrupole moment. A nucleus with charge distribution,

where the quantity in large parentheses is a 3-j symbol. The spectroscopic quadrupole moment Q is given by the expectation value of the quadrupole moment operator Q2(r) in the laboratory system: Q

Qo Qo

-The only known exceptions, for which the ground state of the nucleus does not correspond to I = K in deformed nuclei, exist in the protactinium isotopes where the ground states are described by I = 3/2, K = 1/2.

(7)

497

LaDNER, VElTER, AND HONIG

Qo =

~Z(e2

- a 2),

R

(8)

= Ro(1 + 0'00 Y00 + pY20),

(9)

where Z is the proton number of the nucleus. A quadntpoloid is defined by R = Ro(1 + O'ooYoo + 0'20Y20)' The term 0'00 Y00 is needed for the constant-volume condition. (See section "Constant-Volume Condition of Nuclei.") Usually denoted by p, 0'20 is often used as a deformation parameter in the literature. The difference between the rotational ellipsoid and the quadrupoloid is seen by expanding the shape of a prolate rotational ellipsoid in spherical harmonics: R({}) = a(l cos2 {})-1/2 = a(O'oo Yoo + 0'20 Y20 + 0'40 Y40 + ... ) where a is the small semiaxis of the rotational ellipsoid and f is the excentricity.] The coefficients, 0'00' 0'20' 0'40' and 0'60' are all unequal from zero. For a realistic prolate deformation f = 2/3, which corresponds to p:::::; 0.3, the coefficients have the following values: R({}) = a(3.88021 Y00 + 0.33323 Y20 + 0.03701 Y40 + 0.0046 Y60 + ".). Indications for Y40 deformations of deformed nuclei are suggested by Coulomb excitation data (66EI07)(68Tj02) and by experimentally measured alpha-decay branches to rotational states of nuclei in the actinide region (57Fro)(59001)(64Hu06). The most reliable data on Y40 and even Y60 deformations have been obtained by (a, a') scattering analysis of Hendrie et al. (68Hen). These experimental data are in reasonable agreement with theoretical calculations of equilibrium deformation (68Mol)(69Nil).

The term 0'00 Y00 is needed for the constant-volume condition. (See section "Constant-Volume Condition of Nuclei.") Without this condition we obtain the deformation parameter p'.

Deformation Parameters, Definition and Relation to Qo Symbols without any super- or subscript, p, l), E, and 11K, denote deformation parameters with constant-volume condition for the rotational ellipsoid. The subscript q refers to the constantvolume condition for the quadrupoloid. Symbols with primes, p', B', and R denote deformation and radius parameters defined without constantvolume condition. Parameters with asterisks, p;, p*, l)*, E*, 1IK*, indicate that in the relation to Qo, the approximation to second order in the deformation parameter is used. (See TABLE I.) Deformation Parameters B', p, p , P*, and P;. The deformation parameters p ar~ defined assuming the boundary of the nucleus is described by a quadrupoloid

The deformation parameter p is defined by Equation (9), the constant-volume condition is required for a rotational ellipsoid (640al), which corresponds to replacing Roin Equation (10) by

tThis quantity is usually denoted by e, but to avoid confusion with the deformation parameter e, it is called f here

where the constant-volume condition is required for the quadrupoloid which corresponds to

The deformation parameter

P' is defined by

= Ro(l + p'Y20).

R

(10)

Assuming, in spite of the inequality of a rotational ellipsoid and a quadrupoloid, that the above equation describes the surface of a rotational ellipsoid (only approximately correct for small deformations), then one can derive the semiaxes e and a from Equation (10),

r

e

and

= Ro(I +1.2 yIIp') -;;;'

a = Ro(1 -

(II)

~Ap'),

From Equations (II) follows:

P'

=~

liAR' 3 Y 5 R o'

= 106 AR'

Ro' '

.

(12)

where AR' = e - a. Equation (12) is sometimes used as a definition of a deformation parameter by Alder et al. (56A54) and by Elbek (63EI06). Rois set equal to roA1/3. However, it must be emphasized that R o does not correspond to a radius of a sphere with the same volume as that of the deformed nucleus. Introducing (11) into (8), we obtain the relation between Qo and p' presented in TABLE I.

R (I - ~P2 o 16'IT

o'

Ii 3)- 1/3 32'ITy'IT'P

+ 2..

then Q

o

= _3_ +! IIp V5TrZ R2P(1 0 8y 7i + ~P2 8'IT

__I_.l IIp3 192 'IT Y 7('

The deformation parameter

498

+ ... ).

(13)

Pq is defined by

NUCLEAR INTRINSIC QUADRUPOLE MOMENTS AND DEFORMATION PARAMETERS

With (15) it follows that w2 w , = (I _ ~1>2



Z

.L'

_

.!§.1>3)1/2w3

27°

0

= WO 3



The relation between the deformation parameter and the intrinsic quadrupole moment is obtained through the quadrupole moment of a rotational ellipsoid [Eq. (8)] given in TABLE I. Instead of the exact value the approximation to second order in I) namely 1)* is used in the literature (55Nil).

I)

where R Oq corresponds to the radius of a sphere with the same volume as the quadrupoloid. The intrinsic quadrupole moment as a function of Pq is given in TABLE I. For the same intrinsic quadrupole moment of a nucleus one can calculate deformation parameters P and Pq with constant-volume condition for the rotational ellipsoid and quadrupoloid, respectively, and these two values will differ by up to 4%. This difference is of the same order as the errors in Qo' but the comparison of experimental data from different types of experiments where different p-deformation parameters are used might give rise to wrong systematic differences. Therefore, it is necessary to demonstrate these differences here.

Deformation Parameters e and £*. The deformation parameter £, introduced by Nilsson

(55Nil), is quite similar to the deformation parameter I):

2 wz ' = wo(l - 3£)'

From the constant-volume condition follows: w o(£)

f3*2

_~

4'17

R = Rtii l + p;Y20

-

P*2

I)

11

where

and 1)*. In the

"

Nilsson model (55Nil) the deformation parameter is introduced by the following relations: w;,

= w~, = w~, = w~(I + 21)/3)

w;, = w~(I -

-

2;£3)-113.

Deformation Parameter 11K. In the Nilsson model (55Nil) for the diagonalization of the Hamiltonian the deformation parameter 11 was introduced

4~ ).

This approximation is quite satisfactory in practice. For realistic deformations the approximate value fJ; and the exact value Pq are equal within better than 0.5% when calculated for the same quadrupole moment. Deformation Parameters

= ~o(l - ~£2

In the literature (55Nil)(59M114)(6INil) (62Pre) instead of the exact relation between the intrinsic quadrupole moment and the deformation parameter e (TABLE I) the approximation to second order in e is used. We denote this by £*. The deformation parameter e is the relevant quantity for the use of the Nilsson wavefunctions (55Nil)(59M114), but this quantity e was denoted I) in Ref. (59M114). [See footnote to Ref. (65Nat) p. 652.]

The deformation parameters P* and P; are obtained by using in the relation to Qo the approximation to second order in the deformation parameter (see TABLE I). P* is often used in the literature (64Fa09)(65AcOl)(66Sta)(67Ar22): (looYoo =

(16)

= !.... w~(£) = !""(I K

Wo

= _ --.£ o -2fJ.w o

"

_

~£2 3

_ 2£3)-1/3,

27

(17)

_~A1/3. 82

In the literature different parameters K are used (55Nil) (59M114)(65BjOI) therefore in TABLE III 11K-values instead of 1I-values are given. [See Formula (17).] In this way it is easy to obtain the relevant quantity 11 for different x-values.

(15)

41)/3).

The "constant-volume condition" implies

Deformation Parameter I)'. In recent publications (65Nat)(65Rog) a new deformation parameter was defined

499

LODNER, VEITER, AND HONIG

3. Hertz (59Her) used the deformation parameter

(18)

where < R~> denotes the mean square distance of the protons from the center (of mass) of the nucleus. This is a simple relation concerning the deformation parameter, but is not uniquely defined for deformed nuclei. Usually the following convention is employed (56H20)(65Rog):

= ~R2,

e(He)

It is suggested by electron scattering experiments (56H20)(57H 102)(59M124)(61Cra)(6IElt) (63Her)(65Cro) and by mu-mesonic x-ray spectra of spherical nuclei (66Ac02) that for nuclei with mass number A 16 the surface thickness and the central nucleon density are constant, corresponding to ro = RA-1/3 = constant, where R is the nuclear radius averaged over all angles. This means that the nuclear volume per nucleon is constant. This "constant-volume condition" often is claimed also for deformed nuclei by defining deformation parameters. However, according to analysis of isotopeshift measurements (62Fra)(66Sta) either the volume of deformed nuclei is smaller than that of "equivalent" spherical nuclei meaning that nuclei are compressed under deformation, assuming constant-charge distribution within the nucleus, or there is no constant-charge distribution within nuclei. In both cases the relations between the intrinsic quadrupole moment and the deformation parameter should be changed. Empirically, Fradkin (62Fra) found from isotope-shift data that the radius of deformed nuclei in comparison to spherical nuclei is given by

>

Different Symbols for Deformation Parameters in Literature. The deformation parameters defined p~eviously in this paper are so~etimes denoted by different symbols. Those used 10 several articles are presented in the following table. Reference Where Used (Symbol)



fJq •

6· E·

6'

64Hec (fJ);

64Gal (fJ);

6SAcOl ({3);

66Sta ({3);

6SDav (6) S9MII4 (6);

62Pre (6);

6SRog (6)

r oderAl/ 3 = roAl/ 3 (l -

Other Deformation Parameters. Besides the

parameters defined in this paper, in the hterature many other deformation parameters are used. Some of them are given here: defo~mation

I. Blatt and Weisskopf (52Bla) introduced the parameter 1'/(BI) = (c2 - a 2)/ (c2 + a2). Together with Formula (8) this results in 4

Qo = SR m Z'2tJ(BI ), R~ = (a2

iw fJ~),

(20)

assuming constant-charge distribution. (For fJq = 0.3 this corresponds to a decrease of the nuclear radius by ::::: 1.8%.) See the recent review article by D. N. Stacey (66Sta) and the literature cited there. In contrast to the isotope-shift data recent muonic x-ray measurements of deformed nuclei seem to indicate a slightly larger nuclear volume for deformed nuclei than for "equivalent" spherical nuclei (67De21).

deformatio~

where

c)/2.

Constant- Volume Condition of Nuclei

In TABLE II the relations between the different deformation parameters are presented. These relations are obtained by setting the different radius parameters equal: Ro = ROq = R~.

S6AS4 6SDav (fJ) 64Fa09 (fJ); 61Ar22 (fJ) SSNil (6); SSNil (E); 6SNat (E) 6SNat (6);

= (a +

(19)

Qo = ~ZR'2'" 5 0 u.

fJ· = fJ'

a)/R n where Rn

The same deformation parameter is called 1'/ by Smith (65Smi). 4. Raboy et aI. (65Ra07) used the deformation parameter

where R is the nuclear radius averaged over all angles and is put equal to roAl/ 3 • Relation (19) is exactly correct only for spherical nuclei; therefore, we write for deformed nuclei R~ instead of R:

Deformation Parameter

= (c -

+ c2)/2.

2. Kopfermann (56Kop) introduced £(Ko) =

TYPES OF EXPERIMENTAL DATA

(c. - a)/ Ro where Ro is the radius of the sphere WIth the same volume as the deformed nucleus

In deformed nuclei, in which rotational states are observed, there exist five different types of

(rotational ellipsoid).

500

NUCLEAR INTRINSIC QUADRUPOLE MOMENTS AND DEFORMATION PARAMETERS

experimental information, from which intrinsic quadrupole moments (and deformation parameters) can be deduced:

other shielding corrections may give rise to errors up to 50%. These shielding corrections arise from the influence of the nuclear quadrupole moment on the electron configuration; net shielding, which corresponds to a reduction of the measured quad-. rupole moment, and antishielding, which corresponds to an enlargement of the measured quadrupole moment, are possible. For details see Ref. (51Ste)(54Ste)(56Ste)(66Ste)(67St29)(62Fae) (66Wol) and the literature cited there.

Electric quadrupole hyperfine interaction data (spectroscopic quadrupole moment), Mu-mesonic x-ray spectra data, Electric giant-dipole resonance data, E2 gamma-ray transition prohabilities between rotational states, and Reorientation-effect data in Coulomb excitation (spectroscopic quadrupole moment).

Mu-Mesonic X-Ray Spectra Data

Electric Quadrupole Hyperfine Interaction Data (Spectroscopic Quadrupole Moment)

If a meson is captured in the outer Bohr orbit of an atom, it will cascade inward toward the nucleus, transforming energy by Auger and radiative (= mu-mesonic x-ray) transitions. In low quantum states, atomic electrons do not affect the meson and the system may be treated as a hydrogen-like atom. With mu-mesonic x-ray spectra the hyperfine interaction of the nucleus with the muon is measured. But, because the Bohr orbits of the muon are ::::::206 times closer to the nucleus than the equivalent electron orbits, the hyperfine interaction is much larger than in electron atomic hyperfine interactions. In muonatoms the magnetic dipole interaction is much smaller than the electric quadrupole interaction because the magnetic moment of the muon is 206 times smaller than that of the electron. Because of the high energy of the mu-mesonic x-rays of several MeV, the interaction of the nuclear electric quadrupole moment with the meson causes mixing of mu-mesonic states with nuclear states (the sum of the total angular momenta of the meson and the nucleus is a good quantum number, not the individual values). This mixing is the reason that in even-even nuclei with ground-state spin zero, quadrupole fine structure is produced (54Jac) (54Wil). In even-even nuclei the quadrupole moment of the excited rotational states or, as is shown in Ref. (67De21), the expectation value of the quadrupole-transition operator for the E2-transitions within the nuclear rotational ground-state band, is determined. For verJ recent calculations see Ref. (67De21)(67Pi07)(68Pi06).

Atomic and Molecular Spectroscopy. The hyperfine interaction of the electric quadrupole moment of the nucleus with the internal electricfield gradient of the electrons and other nuclei m the molecule, of which the nucleus forms a part, causes energy splittings of the atomic and molecular levels, giving rise to the hyperfine structure of spectral lines emitted by the atom or molecule. This hyperfine interaction can be measured by different experimental techniques: for example, atomic and molecular beam resonance, electronspin resonance, ultraviolet spectroscopy, microwave absorption spectroscopy, optical spectroscopy, paramagnetic resonance, and quadrupole resonance. For details the reader is referred to the recent compilation of nuclear moments by Fuller and Cohen (69FuCo) and the literature cited there. Mossbauer Effect. In the same way as the atomic or molecular levels split up by the quadrupole hyperfine interaction, the degenerate sublevels of the nucleus split up. The splitting of the nuclear sublevels can only be measured by the Mossbauer effect. For details see Ref. (63Fra) (64MOs). Spectroscopic Quadrupole Moment. The quadrupole hyperfine structure separations of the atomic, molecular, or nuclear levels yield values of the spectroscopic quadrupole moment Q, which is only unequal zero for nuclear states with angular momentum I ~ 1. [See Formula (7).) The intrinsic quadrupole moments Qo are calculated from the measured spectroscopic quadrupole moments Q with the assumption of adiabatic coupling for the nuclear wavefunctions. The values of Q, obtained from hyperfine interaction depend heavily upon the relatively uncertain assumptions made concerning the electronic configurations of the atom or molecule. The Sternheimer (51Ste)(54Ste)(56Ste)(66Ste)(67St29) or

Electric Giant-Dipole Resonance Data

The giant resonance is characterized by a broad peak with a width of about 5 MeV in the cross section for photon absorption by nuclei, (P, y) reactions, elastic gamma-ray scattering, and inelastic electron scattering. These processes are closely related to each other and, for the heavy nuclei, have been successfully described in earlier 501

LODNER, VETIER , AND HONIG

papers [Ref. (50Ste)] in terms of the semiclassical hydrodynamical model and in recent papers [Ref. (65Dan) and the literature cited there] in terms of the shell model and the collective model. According to recent experimental and theoretical results the resonance energy Eo is approximately inversely proportional to the nuclear radius. For axially deformed instead of spherical nuclei there are two different semiaxes. Therefore, the giant resonance should be a superposition of two resonances with an intensity ratio 2: I for the high-energy to the low-energy resonance peak for prolate deformed nuclei. This was suggested first by Danos (56Dan) and Okamoto (560ka ) and has been observed experimentally in the last years by several authors. (See the references for TABLE IV.) From the splitting of the dipole vibration the deformation can be calculated. In practice it is more difficult because the giant resonances have "fine structure." For a recent analysis of electric giant-dipole resonance spectra for heavy deformed nuclei, see the paper by Arenhovel, Danos, and Greine r (67Ar22).

excited states are detected (e.g., with a magnetic spectrometer). Half-Life Measurements of Rotational States. Measured half-lives of rotational states, experimental or theoretical values of the total-conversion coefficients, and experimentally determined mixing ratios and branching ratios can be used to determine the partial E2 gamma-ray half-life T 1I2 y(£1). T 1/ 2y (£1 ) = T 1/ 2(level )kNj N y (E 2),

where kN is the sum of all depopulating radiations (gamma-rays and internal-conversion electrons) in the same relative units as the intensi tyN (E2) for y which the partial half-life is to be calculated. The partial gamma-ray £1 half-life T / y(£1 ) 1 2 is related to the reduced gamma-ray £1 transition probability B(£1) by (57Mos)(65Mos) B(£1)! = 56.56[Ey 5T1/2 y(£1)]-1

where B( £1)! is given in e2 10-48 ern", T 1/2 y(£1) in seconds, and the transition energy E; in keV. Formu la (4) is correct for B(£1)f and B( £1)1, if (2I + l) is correctly assigned. For f B( E2)j, If is the total angula r momen tum of the excited state, and for B( £1)1, If corresponds to the angular momentum of the ground state.

E2 Gamma-Ray Transition Probabilities between Rotational States The absolute reduced-transition probabilities of £1 transitions B( £1) between rotational states yield the square of the intrinsic quadrupole moment Qo in terms of the collective theory [Formula (4)]. B( £1)-values can be obtained from Coulomb excitation data and from half-life measurements of rotational levels.

Reorientation-Effect Data in Coulomb Excitation The reorientation effect is a second-order effect in Coulomb excitation. It results from the interaction of the projectile and the static quadrupole moment of the Coulomb-excited nuclear state. The static quadrupole moment Q of the excited level can be determined from the angular distribution of the deexciting gamma rays or by measuring the Coulomb excitation cross section for different projectile masses. Until now the obtained errors were rather high due to the smallness of the reorientation effect. In addition, systematic errors may arise from the semiclassical approach used for the evaluation of the data and deorientation effects caused by magnetic hyperfine interaction between the unpaired electrons of the recoiling atom and the magnetic moment of the nucleus. For details see the paper by de Boer (68De24) and the references cited there.

Coulomb Excitation Data of Rotational States. The cross-section for Coulomb excitation is directly proportional to the upward reduced £1 gamma-ray transition probability B( £1)f. Three different experimental methods for measuring this cross-section are used:

I. Inelastically and elastically scattered particles are detected in a magnetic spectrometer. 2. Gamm a radiation from the Coulombexcited states is detected [e.g., with a NaI(TI) crystal, a Ge(Li)-detector, or a proportional counter]. 3. Internal-conversion electrons from the

502

NUCLEAR INTRINSIC QUADRUPOLE MOMENTS AND DEFORMATION PARAMETERS

REFERENCES FOR INTRODUCTORY MATERIAL (50Ste) (5ISte) (52Bla) (54Jac) (54Ste) (54Wil) (55Nil) (56A54) (56 Dan) (56H20) (56Kop) (560ka) (56Ste) (57Fr~)

(57HI02) (57Mos) (59Gol) (59Her) (59MI14) (59MI24) (60Mot) (6ICra) (6 I Elt) (6 I Ma42) (6INil) (62Fae) (62Fra) (62Pre) (63EI06) (63 Fra) (63Her) (64Fa09) (64Gal) (64Hec) (64Hu06) (64M~s)

(65AcOl) (65BjOI)

H. Steinwedel, J. H. D. Jensen, and P. Jensen, Phys. Rev. 79, 1019 (1950) R. M. Sternheimer, Phys. Rev. 84, 244 (1951) J. M. Blatt and V. F. Weisskopf, "Theoretical Nuclear Physics," John Wiley and Sons, Inc., New York, 1952 B. A. Jacobsohn, Phys. Rev. 96, 1637 (1954) R. M. Sternheimer, Phys. Rev. 95, 736 (1954) L. Wilets, Mat. Fys. Medd. 29, No.3 (1954) S. G. Nilsson, Mat. Fys. Medd. 29, No. 16 (1955) A. Alder, A. Bohr, T. Huus, B. Mottelson, and A. Winter, Rev. Mod. Phys. 28, 432 (1956) M. Danos, Bull. Am. Phys. Soc. 1, 135 (1956) B. Hahn, D. G. Ravenhall and R. Hofstadter, Phys. Rev. 101, 1131 (1956) H. Kopfermann, "Kernmomente," Akademische Verlagsgesellschaft, Frankfurt, 1956 K. Okamoto, Progr. Theoret. Phys. Japan IS, 75 (1956) R. M. Sternheimer, Phys. Rev. 105, 158 (1956) P. O. Froman, Dan. Vid. Selsk. Skrift 1, No.3 (1957) R. Hofstadter, Ann. Rev. Nucl. Science 7, 231 (1957) S. A. Moszkowski, in "Handbuch der Physik" (S. Flugge, ed.), Vol. 39, Springer Verlag, Berlin, 1957 L. L. Gol'din, G. I. Nikova, and K. A. Ter-Martirosyan, Zh. Eksper. Teor. Fiz. 36, 512 (1959); (English transl. Sov. Phys. JETP 9, 356 (1959) G. Hertz, "Lehrbuch der Kernphysik II," Verlag Werner Dausien, Hanau/Main, 1959 B. Mottelson and S. G. Nilsson, Mat. Fys. Medd. 1, No.8 (1959) U. Meyer-Berkhout, K. W. Ford, and A. E. S. Green, Ann. Phys. (N.Y.) 8, 119 (1959) B. Mottelson, in "Nuclear Spectroscopy, Proceedings of the International School of Physics 'Enrico Fermi,' Course XV," (G. Racah, ed.) Academic Press, New York, 1962 H. Crannell, R. Helm, H. Kendall, J. Oeser, and M. Yearian, Phys. Rev. 121, 283 (1961) L. R. B. Elton, "Nuclear Size," Oxford University Press, London 1961 R. Marrus, W. A. Nierenberg, and J. Winocur, Nuclear Phys. 23,90 (1961) S. G. Nilsson and O. Prior, Mat. Fys. Medd. 32, No. 16 (1961) A. Faessler, Z. Physik 167,229 (1962) E. E. Fradkin, Zh. Eksper. Teor. Fiz. 42, 787 (1962); (English transl.) Sov. Phys. JETP IS, 550 (1962) M. A. Preston, "Physics of the Nucleus," Addison-Wesley Publ. Co., Inc., Reading, Mass., 1962 B. Elbek, Thesis, Copenhagen (1963) H. Frauenfelder, "The Mossbauer Effect," Benjamin, Inc., New York, 1963 R. Hermann, B. C. Clark, and D. G. Ravenhall, Phys. Rev. 132,414 (1963) A. Faessler, Nucl. Phys. 59, 177 (1964) C. J. Gallagher, in "Selected Topics in Nuclear Spectroscopy" (B. J. Verhaar, ed.), North-Holland Publ. Co., Amsterdam, 1964 K. T. Hecht, in "Selected Topics in Nuclear Spectroscopy," (B. J. Verhaar, ed.), North-Holland Publ. Co., Amsterdam (1964) M. G. Huber, Phys. Lett. 13,242 (1964) R. L. Mossbauer, Rev. Mod. Phys. 36, 362 (1964) H. L. Acker, H. Marschall, G. Backenstoss, and D. Quitmann, Nucl. Phys. 62, 477 (1965) S. Bjornholm, J. Borggreen, H. J. Frahm, and N. J. Sigurd Hansen, Nucl. Phys. 73, 593 (1965) 503

L()BNER. VETIER. AND H()NIG

(65Cro) (65Dan) (65Dav) (65Mos) (65Nat) (65Ra07) (65Rog) (65Smi) (66Ac02) (66EI07) (66Sta) (66Ste) (66Wol) (67Ar22) (67De21) (67Pi07) (67St29) (68De24) (68Hen)

(68M~I)

(68Pi06) (68Tj02) (69FuCo) (69Nil)

M. Croissiaux, R. Hofstadter, A. E. Walker, M. R. Yearian, D. G. Ravenhall, B. C. Clark, and R. Hermann, Phys. Rev. 137, B 865 (1965) M. Danos and E. G. Fuller, Ann. Rev. Nucl. Sci. 15,29 (1965) J. P. Davidson, Rev. Mod. Phys. 37, 105 (1965) S. A. Moszkowski, in "Alpha-, Beta-, and Gamma-Ray Spectroscopy" (K. Siegbahn, ed.) North-Holland Publ. Co., Amsterdam, 1965 O. Nathan and S. G. Nilsson, in "Alpha-, Beta-, and Gamma-Ray Spectroscopy" (K. Siegbahn, ed.) North-Holland Publ. Co., Amsterdam (1965) S. Raboy, C. C. Trail, J. A. Bjorkland, R. D. Ehrlich, R. J. Powers, and V. L. Telegdi, Nucl. Phys. 73, 353 (1965) J. D. Rogers, Ann. Rev. Nucl. Sci. 15,241 (1965) C. M. H. Smith, "A Textbook of Nuclear Physics," Pergamon Press, 1965 H. L. Acker, G. Backenstoss, C. Daum, J. C. Sens, and S. A. de Wit, Nucl. Phys. 87, I (1966) B. Elbek, M. Kregar, and P. Vedelsby, Nucl. Phys. 86, 385 (1966) D. N. Stacey, in "Reports on Progress in Physics XXIX: Part 1," 1966 R. M. Sternheimer, Phys. Rev. 146, 140 (1966) H. Wolter, Diplomarbeit, Technische Hochschule Hannover, 1966 H. Arenhovel, M. Danos, and W. Greiner, Phys. Rev. 157, 1109 (1967) S. A. de Wit, G. Backenstoss, C. Daum, J. C. Sens, and H. L. Acker, Nucl. Phys. 87, 657 (1967) W. Pieper and W. Greiner, Phys. Letters 24B, 377 (1967) R. M. Stern heimer, Phys. Rev. 164, 10 (1967) J. de Boer, Proc. Intern. Conf. Nucl. Struct., Tokyo (1967); (J. Sanada, ed.), Suppl. J. Phys. Soc. Japan 24, 199 (1968) D. L. Hendrie, N. K. Glendenning, B. G. Harvey, O. N. Jarvis, H. H. Duhm, J. Saudinos, and J. Mahoney, Phys. Lett. 268, 127 (1968); see also N. K. Glendenning, "Proceedings of the International School of Physics, 'Enrico Fermi,' Course XL," (M. Jean, ed.), Academic Press, New York (1968) P. Moller, B. Nilsson, S. G. Nilsson, A. Sobiczewski, Z. Szymanski, and S. Wycech, Phys. Letters 268, 418 (1968) W. Pieper and W. Greiner, Nucl. Phys. AI09, 539 (1968) P. O. Tjou and B. Elbek, Nucl. Phys. AI07, 385 (1968) G. H. F.uller and V. V. Cohen, Nuclear Data A5, 433 (1969) S. G. NIlsson, C. F. Tsang, A. Sobiczewski, Z. Szymanski, S. Wycech, C. Gustafson, I.-L. Lamm, P. M~ller, and B. Nilsson, Nucl. Phys. Al31, I (1969)

504

NUCLEAR INTRINSIC QUADRUPOLE MOMENTS AND DEFORMATION PARAMETERS

TABLE I. Relation of Deformation Parameters to Qo

Def.

Definition (Constant Volume Param. Condition)

B

Relation to Qo

2.rr 8q + T4i1 8 2q _

)

R=R oq{1 + aOOYOO+8qY20)

+

(for quadrupoloid)

+ 0.360 8q + 0.0227 8~ - ••• )

R=R o(1 + aOOYOO + 8 Y20) (for rotElional ellipsoid)

Q =

o

o

2

w;

= Wo2 = W~

W~

= wo ( 1

.l-.~ 0 Vi"

8 +

.l- .2.n 0

82

- ... ,,

=V51t' ....i ZR'0 2

8' (1 +

.l0

If 13' )

~i

=0.757 ZR,2 o 8'(1 + 0.158 13')

(no) ~~

+

•••

=0.757 ZR~8(1 + 0.158 13 + 0.199 13 2 - ••• ) Q

B'

....i ZR 02 8(1 $it

~ri

(1 + 2&/3)

(1 - 4&/3)

(for rotational ellipsoid)

2 Wz

+ e/3)

= Wo ( 1 - 2e/3) (tor rotational

4 1 42 --.!.9. 3 Qo=; ZRo2 e ( 1 + ~£ + ~e - ~ e + ••• )

ellipsoid) 1})(. =

d 1_£2/3_2£3/27)-1/3

(for rotational ellipsoid)

6'

! ZR~tt1)(')(1

Qo=

.. O. 8

Qo •

1 1 TJ"K) 2 + ••• ) + ~('YJx) + ;(

ZR~ (llK)( 1 + 0.5 tr!x) + 0.333(llX) Z+••• )

~ ZR~2 6'

= 0.8

ZR,2 6' o

See section "Deformation Parameter, Definition and Relation to Qo"for denotation.

505

LOBNER, VEITER, AND HONIG

TABLE II. Relations Between Different Deformation Parameters

=a

Sq

-

.. V1f (!

_ ,R (4; u~

a

fi

~

+

E

+ 2

- V'S'

=

'2T

(!(l1X)+

./~ (4 = V;;

0'

= aq

~

+

+

~

S3

-

1~~1~tn

lif

&2+

g~f~

£3

+

iJ~r~§5

£4

~2+ ~ ~3 b6T5' u

+

{f a 2

~

-

u

-

1105408 6,4 + ) 4584195 ....

0,2

+ 2336 6,3

-m;

- ffinn S3q +n2

;

+

.. i If Sq - ~ S~ .. i~ S _ ~ a 2



ft) x)

.

6'

1

t

1

-~

)

n32

vf S~

+

+ ••••

~~~lf§5(l1X)4+

.If (! 0'- ~ 0,2 -

6

2~~4688 ~4 4195 u

4

+

Ii (4 4 2 =; =Ii' (! 0 + ~ 0 2 =v""i (!(11 X) "1(11 X) 2

.

+ •••• )

~(l1X)2 + ~(l1X) 3

;£+~£

£

S4 + ....

6

2

2

167561 - 827904n +

m-

4

£4

+ •••• )

03

+

llr

11

04

+ •••• )

-

~ (1))(,)4

+ •••• )

~

6,4

+ •••• )

890405 1103872n 2

a 4q

+ ••••

S4

+ ••••

64

+ ••••

-~

Ifn S3q

+~

(f S3 -

81

03

+

~

-

i('ljX) 3

0,2 +

-hr

{fn S4q + ....

£3

0,3 +

~

.... )

0,3

506

+

+

75 256n 2 2ft 2 81

+

11~ 64

_*

(llK) 4 + h(l))(,) 5 + •••• 0,4

6,5

+ ••••

NUCLEAR INTRINSIC QUADRUPOLE MOMENTS AND DEFORMATION PARAMETERS

TABLE II (Continued)

_ .4.L a2 ;bit

.11' 3 V i aq

57

-;bi

q

- 3~7t a2 1

=&

2

2

3

••••

675 512n 2

+

1

a4

+

.,.4

+

+

~

= ("]'t)

+

~ (1])(.)4

= &'

+

trr

-b

e

-~

---.1L 2 - m'i Sq

- -4h a a

6'

43115

+ 17248n 2

=&

+

i

= &'

-

~

=

&2

*

~

+

40

+ ~ &3

+

if

+ ~ &3

+

1:§

1

~

1:.,4

o

....

+

~ (~X)5 + ••••

-

112 m

759505 1103872n 2 125 128n 2

+

_5J~

2

&

...

••••

115

. a4 q

- 30W

q

+ ••••

•••• ••••

••••

+~

t [f a + th a~

1:.,5

o

••••

_

43389 fI' 85 + •••• 448448n 2 ~ il q

rr a5 +

· t (f a

+

=e

+

i-

&2

+

~

£3 + ~

&4

+

~

f.5

+ ••••

• 6

+

~

&2

+

~

&3

&4

+

~ &5

+ ••••

+

i

('t)1<)2 +

~

(l')x)4

+

h

~ a2

+ 15

m

_~s4

+

('rJ>f)3 +

507

*i

+

325

1024n2 Vi

('t)1f) 5+ ••••

••••

LOBNER, VETIER, AND HONIG

EXPLANATION OF TABLE III For definitions and display of relations between symbols see TABLES I and II. The values of Qo. the intrinsic quadrupole moment. given here in units of barns (10- 24 cm-) have been obtained by taking a weighted average of the data given in TABLE IV for each nucleus. Qo

= ~gIQO/~gl with gl = QO/~Qol'

The percentage errors given in parentheses are obtained from the errors of the individual values: ~Qo

=

[~(2QOI -

QO)2]1I2/~gl'

For the errors of the individual values see "EXPLANATION OF TABLE IV." The deformation parameters are obtained by setting the radius parameters Ro• ROq' Rij, R6• or R~ equal to roA 1I 3 = 1.2 X 1O-13A1I3 em. (See TABLE I.)

508

NUCLEAR INTRINSIC QUADRUPOLE MOMENTS AND DEFORMATION PARAMETERS

TABLE III. Averaged Values of Intrinsic Quadrupole Moments Qo and Deformation Parameters

Nucleus

Qo

(error) in ~

NO 150

p~

151

SM 150

SM 152

SM 153

SM 154

SM 155

EU 151

EU 152

S

£

6

S*". St

£~

6~

Sq S~ q

'°1

Xll~

5.15

0.255

0.264

0.231

0.219

0.232

( 1.21

0.255

0.268

0.236

0.229

0.238

5.30

0.251

0.266

0.232

0.221

0.234

( 25.11

0.251

0.210

0.238

0.231

0.239

3.61

0.181

0.186

0.166

0.160

0.166

( 1.9)

0.181

0.181

0.168

0.164

0.168

5.93

0.280

0.290

0.251

0.238

0.253

(0.51

0.280

0.294

0.258

0.250

0.260

5.24

0.249

0.251

0.225

0.214

0.226

li8.51

0.249

0.260

0.230

0.223

0.231

6.65

0.308

0.320

0.215

0.258

0.271

(l.1I

0.308

0.326

0.284

0.274

0.287

4.50

0.214

0.221

0.195

0.181

0.196

(25.11

0.214

0.223

0.199

0.193

0.200

3.20

0.156

0.160

0.144

0.140

0.144

(11.21

0.156

0.160

0.145

0.142

0.145

6.50

0.300

0.311

0.268

0.252

0.270

(18.21

0.300

0.317

0.276

0.267

0.279

509

6'

0.264

0.266

0.182

0.292

0.256

0.324

0.218

0.155

0.314

LOBNER, VETTER, AND HONIG

TABLE III (Continued)

lIucleu8

QO

(error) in " EU 153

EU 154

GO 152

GO 154

GO 155

GO 156

GO 157

GO 158

GO 160

TB 156

Sq S ~ q

S

e

()

S~. S'

e*"

6""

Xli*"

Xl)

~.69

0.306

0.318

0.274

0.257

0.276

11.6)

0.307

0.324

0.282

0.273

0.285

7.90

0.355

0.369

0.313

0.290

0.316

125.1)

0.355

0.378

0.326

0.313

0.330

3.77

0.178

0.183

0.164

0.158

0.164

18.0)

0.178

0.184

0.166

0.162

0.166

6.15

0.279

0.289

0.251

0.237

0.252

Cl.O)

0.279

0.293

0.257

0.249

0.259

6.67

0.299

0.310

0.267

0.251

0.270

(3.7)

0.299

0.316

0.276

0.266

0.278

6.91

0.307

0.319

0.274

0.258

0.277

10.7)

0.308

0.325

0.283

0.274

0.286

6.87

0.305

0.316

0.272

0.256

0.275

13.6)

0.305

0.322

0.281

0.211

0.283

7.20

0.317

0.329

0.282

0.264

0.285

(l.0)

0.311

0.335

0.292

0.281

0.295

7.43

0.323

0.336

0.287

0.269

0.290

(1.1)

0.324

0.343

0.298

0.287

0.301

3.40

0.157

0.16-1

0.145

0.141

0.145

132.4)

0.157

0.161

0.146

0.143

0.146

SIO

6'

0.322

0.379

0.180

0.290

0.314

0.323

. 0.320

0.334

0.:342

0.157

NUCLEAR INTRINSIC QUADRUPOLE MOMENTS AND DEFORMATION PARAMETERS

TABLE III (Continued)

Nuoleus

Qo

T8 159

18 160

OY 156

OY 158

OY 160

DY 161

CY 162

DV 163

tV 16"

S

e

6

S"Jt. S·

e*

6~

Xl1

(error)

S~ q

5.75

0.254

0.263

0.230

0.219

0.231

118.3)

0.254

0.266

0.235

0.228

0.237

7.07

0.306

0.318

0.273

0.257

0.276

(1.4)

0.306

0.324

0.282

0.272

0.285

5.57

0.245

0.253

0.222

0.211

0.223

11 7.4 )

0.245

0.256

0.227

0.220

0.228

6.13

0.268

0.278

0.242

0.229

0.243

(2.4)

0.268

0.282

0.248

0.240

0.249

6.77

0.291

0.302

0.261

0.246

0.263

(1.5)

0.291

0.307

0.269

0.260

0.271

7.13

0.303

0.314

0.271

0.254

0.273

(C.6)

0.303

0.320

0.279

0.270

0.282

6.91

0.296

0.307

0.265

0.249

0.267

(2.9)

0.296

0.312

0.213

0.263

0.275

7.18

0.303

0.314

0.270

0.254

0.273

(0.8)

0.303

0.320

0.279

0.269

0.281

6.67

0.282

0.292

0.253

0.239

0.255

( 2.5)

0.282

0.297

0.260

0.252

0.262

1.37

0.308

0.319

0.275

0.258

0.271

(1.1)

0.308

0.325

0.283

0.274

0.286

in ~

T8 158

Sq

511

6'

Xl}*" 0.263

0.322

0.252

0.278

0.305

0.318

0.310

0.318

0.29"

0.32"

LODNER, VETIER, AND HONIG

TABLE III (Continued)

Nuoleus

Qo

(error) in ~

DY 165

HO 165

HO 166

ER 158

ER 160

ER 162

ER 163

ER 164

ER 165

ER 166

8q S1(-

q

S

e:

~

S'

EX'

6

1<.Y}

6*

1<.1J~

6.30

0.266

0.275

0.239

0.227

0.241

(14.6 )

0.266

0.279

0.245

0.238

0.241

7.48

0.306

0.318

0.274

0.257

0.276

( 1.9)

0.301

0.324

0.282

0.273

0.285

7.30

0.299

0.310

0.267

0.251

0.269

(2.))

0.299

0.315

0.275

0.266

0.218

5.26

0.224

0.232

0.204

0.196

0.205

( 2.7)

0.225

0.234

0.208

0.202

0.209

6.52

0.212

0.282

0.245

0.232

0.246

(2.8)

0.212

0.286

0.251

0.243

0.253

7.01

0.288

0.299

0.258

0.244

0.260

(2.6)

0.288

0.304

0.266

0.251

0.268

11.20

0.396

0.455

0.376

C.342

0.383

(25.0)

0.431

0.471

0.399

0.382

0.407

7.42

0.301

0.313

0.269

0.253

0.212

( 1.2)

0.301

0.318

0.278

0.268

0.280

6.20

0.255

0.263

0.230

0.219

0.232

(25.0)

0.255

0.267

0.235

0.228

0.237

7.58

0.305

0.316

0.272

0.256

0.275

(C.7)

0.305

0.322

0.281

0.271

0.284

512

6t

u.275

0.322

0.313

0.230

0.282

0.301

0.479

0.316

0.263

0.320

NUCLEAR INTRINSIC QUADRUPOLE MOMENTS AND DEFORMATION PARAMETERS

TABLE III (Continued)

:Nuoleus

Qo

(error) in ~

ER 167

ER 168

ER 110

ER 111

TM 166

TM 169

TM 110

TM 171

VB 168

VB 110

Sq S ;\'" q

S

S*. 8'

e

6

£~

6~

){.1l~

rtll

7.68

0.301

0.319

0.214

0.251

0.211

(2.3)

0.308

0.325

0.283

0.273

0.286

1.60

0.303

0.315

0.211

0.255

0.213

(0.8)

0.304

0.321

0.280

0.210

0.282

1.51

0.300

0.311

0.268

0.252

0.211

(0.8 )

0.300

0.311

0.211

0.261

0.279

6.15

0.269

0.219

0.243

0.230

0.244

(11.8)

0.269

0.283

0.249

0.241

0.251

15,65

0.396

0.591

0.471

0.414

0.485

(17.1)

0.571

0.621

0.518

0.491

0.536

7.62

0.299

0.310

0.261

0.252

0.270

( 1.4)

0.299

0.316

0.276

0.266

0.278

7.61

0.298

0.309

0.266

0.250

0.269

(2.2)

0.298

0.314

0.214

0.265

0.211

8.73

0.336

0.349

0.298

0.211

0.301

(7.0 )

0.336

0.351

0.309

0.291

0.312

7.39

0.288

0.299

0.258

0.244

0.260

(2.))

0.288

0.304

0.266

0.257

0.268

7.51

0.292

0.303

0.262

0.241

0.264

(0.7)

0.292

0.308

0.210

0.261

0.212

513

6'

0.323

0.319

0.315

0.280

0.652

0.314

0.312

0.356

0.301

0.306

LOBNER, VETIER, AND HONIG

TABLE III (Continued)

Nucleus

Qo (error) in ~

VB 171

VB 172

VB 173

VB 174

VB 176

LU 170

LU 175

LU 176

LU 177

HF 172

Iq

aq *"

I I*". II

E: E:*

6 6*

)(.1J )(.1J ~

8.19

0.313

0.325

0.279

0.261

0.281

( 2.1)

0.313

0.331

0.288

0.278

0.291

7.81

0.299

0.310

0.267

0.251

0.269

(0.9)

0.299

0.315

0.275

0.266

0.278

7.94

0.302

0.314

0.270

0.254

0.272

[3.8 )

0.302

0.319

0.278

0.269

0.281

7.60

0.289

0.300

0.259

0.244

0.261

( 1.1)

0.289

0.305

0.267

0.258

0.269

7.32

0.278

0.288

0.250

0.236

0.251

( 1.2)

0.278

0.292

0.256

0.248

0.258

6.76

0.260

0.269

0.235

0.223

0.236

(1.9)

0.260

0.273

0.240

0.233

0.242

8.03

0.299

0.310

0.268

0.252

0.270

(3.7)

0.299

0.316

0.276

0.266

0.278

8.32

0.308

0.320

0.275

0.258

0.277

(4.2)

0.308

0.326

0.284

0.274

0.286

7.13

0.266

0.276

0.240

0.228

0.242

ll[:.3)

0.267

0.280

0.246

0.239

0.248

6.65

0.251

0.260

0.227

0.216

0.229

(3.6)

0.251

0.263

0.232

0.225

0.234

514

6'

::>.BO

0.313

0.317

0.302

0.289

0.269

0.314

0.324

0.217

0.259

NUCLEAR INTRINSIC QUADRUPOLE MOMENTS AND DEFORMATION PARAMETERS

TABLE III (Continued)

Nuoleus

.*.

Qo (error)

S

in ~

HF 114

HF 116

HF 117

HF 178

HF 119

HF 180

fA 181

W 180

W 182

W 183

0' S'

6.en

0.260

0.270

0.235

0.223

0.231

(2.3)

0.260

0.213

0.241

0.233

0.242

7.31

0.212

0.282

0.245

0.232

0.241

(2.3)

0.212

0.286

0.251

0.243

0.253

7.60

0.219

0.289

0.251

0.237

0.253

(3.4)

0.279

0.294

0.258

0.249

0.260

6.81

0.251

0.260

0.221

0.216

0.229

(0.9)

0.251

0.263

0.232

0.226

0.234

1.01

0.251

0.266

0.232

0.221

0.234

(3.3 )

0.257

0.270

0.238

0.231

0.239

6.83

0.250

0.259

0.221

0.216

0.228

(1.0)

0.250

0.262

0.232

0.225

0.233

6.75

0.244

0.252

0.221

0.210

0.222

( 1.9)

0.244

0.255

0.225

0.219

0.227

6.49

0.233

0.241

0.212

0.202

0.213

(1.4)

0.233

0.243

0.216

0.210

0.211

6.40

0.228

0.236

0.208

0.199

0.209

(e.5)

0.228

0.238

0.211

0.206

0.213

6.25

0.222

0.230

0.203

0.194

0.204

(1.4 )

0.223

0.232

0.206

0.201

0.207

515

0.270

0.283

0.291

0.259

0.266

0.258

0.251

0.239

0.234

0.227

LODNER, VETIER, AND HONIG

TABLE III (Continued)

Nucleus

Qo (error)

W 186

RE 185

RE 186

RE 181

RE 188

OS 186

OS 181

OS 188

OS 189

S

e

6

£'It

6~

Xl1 'X.11 ?f-

s* q

S"l(-a

6.09

0.216

0.223

0.191

0.189

0.198

(0.5)

0.216

0.225

0.2e1

0.195

0.202

5.90

0.209

0.215

0.191

0.183

0.191

( 1.0)

0.209

0.211

0.194

0.189

0.195

5.99

0.210

0.216

0.192

0.184

0.192

(3.0)

0.210

0.218

0.195

0.190

0.195

4.00

0.143

0.146

0.132

0.129

0.132

(25.0)

0.143

0.141

0.133

0.131

0.133

5.15

0.201

0.201

0.184

0.111

0.184

(2.8)

0.201

0.208

0.186

0.182

0.181

4.98

0.115

0.119

0.161

0.155

0.161

(8.4)

0.115

0.180

0.162

0.159

0.163

5.55

0.192

0.198

0.116

0.110

0.117

(1.3)

0.192

0.199

0.179

0.114

0.119

4.12

0.164

0.169

0.152

0.141

0.152

( 9.11

0.164

0.110

0.153

0.150

0.154

5.20

0.180

0.185

0.165

0.160

0.166

(1.0)

0.180

0.186

0.161

0.163

0.168

4.08

0.142

0.146

0.132

0.128

0.132

(3.9)

0.142

0.146

0.133

0.130

0.133

in ~

W 184

8q

S'

516

6'

0.221

0.212

0.214

0.142

0.204

0.116

0.195

0.165

0.181

0.141

NUCLEAR INTRINSIC QUADRUPOLE MOMENTS AND DEFORMATION PARAMETERS

TABLE III (Continued)

BucleuB

Q

w-.

in '1>

OS 190

OS 192

IR 191

IR 193

PT 190

PT 192

PT 194

RN 220

RN 222

RA 222

0'

.B

o (error)

s'

4.96

0.171

0.175

0.157

0.152

0.158

( 1.8)

0.171

0.176

0.159

0.155

0.159

4.73

0.162

0.166

0.149

0.145

0.150

( 2.5)

0.162

0.167

0.151

0.148

0.151

4.37

0.149

0.153

0.138

0.134

0.138

(5.5)

0.149

0.153

0.139

0.136

0.139

4.02

0.136

0.140

0.127

0.124

0.127

(3.7)

0.137

0.140

0.128

0.125

0.128

4.54

0.153

0.157

0.1"1

0.138

0.1"2

(6.2)

0.153

0.158

0.143

O.lItO

0.143

".93

0.16"

0.169

0.152

0.147

0.152

(2.0)

0.164

0.170

0.153

0.150

0.154

4.42

0.147

0.151

0.136

0.133

0.137

(3.6 )

0.147

0.152

0.137

0.135

0.138

4.30

0.120

0.123

0.112

0.110

0.112

(2.6)

0.121

0.123

0.113

0.111

0.113

4.78

0.133

0.136

0.123

0.120

0.123

( 3.1)

0.133

0.136

0.124

0.122

0.124

6.63

0.177

0.182

0.163

0.158

0.163

(3.9)

0.117

0.183

0.165

0.161

0.165

517

0.111

0.162

0.149

0.136

0.153

0.165

0.147

0.119

0.132

0.178

LOBNER, VETTER, AND HONIG

TABLE III (Continued)

Nucleus

Qo

RA 228

AC 221

TH 226

TH 228

TH 229

TH 230

TH 232

TH 234

8

e

0

£~

o~

Xl)

8'C"= 8'

6.25

0.161

0.111

0.154

0.149

0.154

(3.5)

0.161

0.112

0.155

0.152

0.156

1.21

0.190

0.195

0.114

0.168

0.115

(5.0)

0.190

0.197

0.176

0.112

0.111

1.79

0.203

0.209

0.185

0.118

0.186

( 6.2 )

0.203

0.211

0.188

0.183

0.189

8.50

0.218

0.225

0.199

0.191

0.200

(25.1)

0.218

0.221

0.202

0.191

0.203

8.25

0.211

0.211

0.1 C;Z

0.185

0.193

(5.6)

0.211

0.219

0.195

0.190

0.196

8.46

0.214

0.221

0.196

0.188

0.191

(5.3)

0.214

0.223

0.199

0.194

0.200

12.90

0.315

0.321

0.281

0.263

0.283

(25.0)

0.315

0.334

0.290

0.280

0.293

8.91

0.224

0.231

0.204

0.195

0.205

( 5.1)

0.224

0.233

0.201

0.202

0.208

9.66

0.240

0.248

0.218

0.208

0.219

( C.9)

0.240

0.251

0.222

0.216

0.223

8.91

0.223

0.230

0.203

0.194

0.204

(6.2)

0.223

0.232

0.201

0.201

0.208

in ~

RA 226

q

8 ". q

(error)

RA 224

8

518

0'

'l{1J~

0.161

0.192

0.206

0.223

0.214

0.219

0.332

0.229

0.241

0.228

NUCLEAR INTRINSIC QUADRUPOLE MOMENTS AND DEFORMATION PARAMETERS

TABLE III (Continued)

Nuoleus

Q(Il

(error) in " PA 231

PA 233

U 230

U 232

U233

U 234

U 235

U 236

U 238

NP 237

Sq S~

q

S S'Jf= S'

e

6

£~

6*

X1]'t"

)(.''(1

13.50

0.324

0.336

0.288

0.269

0.290

(25.0)

0.324

0.343

0.298

0.287

0.301

17.00

0.396

0.412

0.345

0.317

0.350

(18.2)

0.396

0.424

0.363

0.348

0.368

9.46

0.232

0.240

0.211

0.201

0.212

(7.3)

0.232

0.242

0.215

0.209

0.216

9.98

0.242

0.251

0.220

0.209

0.221

(6.1)

0.242

0.253

0.224

0.218

0.226

11.55

0.276

0.287

0.249

0.235

0.250

(2.9)

0.277

0.291

0.255

0.247

0.251

10.03

0.242

0.250

0.220

0.209

0.221

(4.0)

0.242

0.253

0.224

C.218

0.225

11.12

0.266

0.215

0.240

0.221

0.241

(2.2)

0.266

0.279

0.245

0.238

0.247

10.15

0.251

0.266

0.232

0.220

0.234

(6.1)

0.257

0.269

0.237

0.230

0.239

11.30

0.267

0.271

0.241

0.228

0.243

(0.7)

0.268

0.281

0.247

0.239

0.249

lC.90

0.257

0.266

0.232

0.220

0.234

(6.6)

0.257

0.269

0.237

0.230

0.239

519

6'

0.342

0.428

0.238

0.249

0.288

0.249

0.276

0.266

0.278

0.266

LODNER, VEITER, AND HONIG

TABLE III (Continued)

Qo

Nucleus

(error) in ~

PU 238

PU 239

PU 240

PU 241

PU 242

AM 241

AM 242

AM 243

eM 244

BK 249

Sq

8

q

)f-

8

a*"=

8'

e

6

e:*'"

6*

Xl) Xll*"

10.94

0.254

0.2b3

0.230

0.219

0.232

(b.3)

0.255

0.2b7

0.235

0.228

0.237

11.02

0.256

0.265

0.231

0.220

0.232

(2.7J

0.256

0.2b8

0.236

0.229

0.238

11.30

0.2b1

0.270

0.236

0.224

0.231

(1.b)

0.261

0.274

0.241

0.234

0.243

15.10

0.351

0.3b5

0.310

0.288

0.313

(25.0)

0.351

0.314

0.322

0.310

0.32b

11.82

0.270

0.280

0.244

0.231

0.245

(4.3)

0.211

0.284

0.250

0.242

0.252

13.70

0.301

0.319

0.214

0.251

0.271

(25.0)

0.308

0.325

0.283

0.273

0.286

13.80

0.309

0.320

0.215

0.258

0.218

(25.0)

0.309

0.326

0.284

0.214

0.287

13.10

0.306

0.317

0.213

0.256

0.275

(25.0)

0.306

0.323

0.282

0.272

0.284

13.49

0.298

0.309

0.2b1

0.251

0.269

( 5.6)

0.298

0.315

0.215

0.265

0.271

15.10

0.335

0.348

0.296

0.276

0.300

(7.2)

0.335

0.355

0.308

0.296

0.311

520

6"

0.263

0.264

0.210

0.314

0.281

0.323

0.325

0.321

0.312

0.355

LOBNER, VETTER, AND HONIG

EXPLANATION OF TABLE IV

Nuclear intrinsic quadrupole moments with errors obtained from measured quantity reported by the experimenters. If errors in the original work are given these are quoted If no errors are quoted in the original work adopted errors are presented in TABLE IV; these errors are marked by a superscript" If the quoted errors for hyperfine structure measurements are smaller than 25%, these errors are given in parentheses. For the averaging procedure an error of 25% has been used, since the very uncertain polarization or antishielding corrections may cause these large errors Qo values in brackets have not been used for the averaging procedure If experimental data have been analyzed by the authors in different ways or if recalculations have been performed, the different values are quoted and the related values (deduced from the same experimental data) are marked by the same number of crosses +, ++, +++, or ++++

(I)

+.++

Method

Hyperfine structure Atomic or molecular beam methods Optical spectroscopy Messbauer effect Nuclear orientation Paramagnetic resonance Mu-mesonic x-ray spectra Mu Ge(Li) detector (Ge) NaI(Tl) crystal (NaI) Electric giant-dipole resonance data GR (ph. abs.-br. st.) Photon absorption with bremsstrahlung (ph. abs.-mo. en.) Photon absorption with monoenergetic gamma rays Coulomb excitation C.E. (0_ I), (0_ 2) To first, second rotational state Inelastic scattering inel y-yield detected by NaI(TI) y(NaI) y-yield detected by Ge(Li) y(Ge) eInternal-conversion electron yield Coincidence measurement performed coi Partial E2 half-life of first rotational state to ground state T1 / 2(1 _0), (2 -0), second rotational state to ground state (2_1) second rotational state to first rotational state B(E2) (n) B(E2)-values from Coulomb excitation and half-life measurements of even-even nuclei from Ref. 65StGr. The number n in parentheses behind the B(E2)-value corresponds to the number of individual measurements from which the average value had been obtained by Stelson and Grodzins (65StGr) C.E.(R.E., I = 2) Reorientation effect in Coulomb excitation measured for the rotational level with I = 2 References Usually one reference is quoted for each experimentally determined value from which the intrinsic quadrupole moment was deduced If the same quantity was measured by the same authors with the same experimental technique, both references are quoted and the last (revised) value is presented, e.g., 63Su04, 64Su02 If two references with a colon in between are given, then the first reference corresponds to a recalculation of the experimental data given in the second reference (e.g., 68Pi06:67De21) 522 Hfs

(beam) (opt) (Moss) (NO) (par. res.)

NUCLEAR INTRINSIC QUADRUPOLE MOMENTS AND DEFORMATION PARAMETERS

TABLE IV. Experimental Data of Intrinsic Quadrupole Moments Qo

Nucleus (angular momentum) 150Nd90 60 (1=0)

151p~

61 0 '(1=5/2) 1505m88 62 (1=0)

1525m90 62 (1=0)

15~m 6 91 (1=3/2)

Method

Qo

Reference

5.14 ± 0.20 a) 5.16 + 0.10 5.12 -:; O.l1 k) 5. 19 O.13k)

MU(Ge) B (E2) Tl/2 Tl/2

5.3 (± 0.8)

Hfs (beam)

63Bu14

C.E. 1nel (0 • 1) C.E. Y (Na1) + e-(O ~ 1) C.E. Y (Na1) c01 (0 • 1) C.E. Y (Na1) c01 (0 - 1) C.E. 1nel (0 ~ 1) C.E. (R.E., 1=2) C.E. (R.E., 1=2)

60E11 66Se06 615103 68Ke04 68VeOl 615103 68De24

(Ge) (Ge) Mu (Ge) B (E2) (11 ) (1 .0) Tl/2 C.E. Y (Na1) (1 .0) Tl/2 (l .. 0) T1/2 Tl/2 (1 - 0) (1 .0) Tl/2 (1 + 0) Tl/2 Tl/2 (1 - 0) C.E. 1nel (0 - 1) <,1 .. 0) Tl/2 C.E. (R.E., 1=2)

67De21 68p106 69Ch16 655tGr 63Ab05 64Ho25 65Hu02 66As03 66Mc01 67Wo06 68Ku03 68R109 68VeOl 69D106 68De24

Hfs (beam) Hfs (beam)

6}Su04, 645u02 68Wa10

±

3.64 ± 0.08 3.54 ± 0.30 3.80±0.19 3.50 ± 0.12 3.60 ± 0.10 +4.48 ± 0.10 +4.21 ± 0.11 1.0 6.89 5.16 5.85 1.02 5.85 5.84 5.89 5.99 5. 16 5.89 5.82 5.58 5.82 6.3

± 1.0 + + 0.14+ 0.20 a) + 0.10 0.881) + 0.11 -:; 0.09 1) 0.131) + 0.14 1) -:; O. 111 ) -:; 0.15 1) 0.081) ± 0.45 ± 0.08 ± 2.1

± ±

±

±

+5·5 ± 1.5 +5.0 (± 0.6)

(2) (l + 0) (l .0)

Mu Mu

69Ch16 655tGr 67Ku01 68R109

67De21

a) Adopted error k) Calculated w1th Ey=131 ± 1 keV (55H64, 55512, 56H49, 63Bj04 )and aT = 0.85 1) Calculated w1th Ey=121.82 ± 0.03 keV(58c36, 59H01) and aT = 1.11 523

LOSNER, VETIER, AND HONIG

TABLE IV (Continued)

Method

Mu (Ge) B (E2) (9) C.E. Y (NaI) Tl/2 T 1/2

C.E.

lnel(O _ 1)

61De21 65StGr 64Ho25 67Wo06 68Ri09 68Ve01

Hfs (beam)

68wa10

Hfs (opt)

35C03: 35S01, 35S07 60Kr8,65Wi09 65Mu07 68Gu02 67De21 68Ca07

Hfs Hfs Hfs Mu Mu

a) Adopted error m) Calculated with Ey=81.99 y) Not used for averaging

(l .. 0) (l _0)

Reference

(opt) (opt) (opt) (Ge) (Ge)

Hfs (opt) Hfs (beam)

62Ga20,64Ga12 69FuCo: 63A106

Hfs (opt) Hfs (beam) Hfs (opt) Hfs (opt) Hfs (opt) Mu (Ge) Mu (Ge) C.E. Y ( NaI) (0 + 1) C.E. e- (0 - 1) C.E. Y (NaI) (0 -1) C.E. Y ( NaI) (0 .. 2) C.E. e-(O .. 2)

350>;c 35S01, 35S07 69FuCo:60Sa23 65Mu07 60Kr8,65Wi09 68Gu02 61De21 68Ca07 55M77 56H49 56H78 56H78 57C44

± 0.02

keV (58C36) and aT = 4.96

524

NUCLEAR INTRINSIC QUADRUPOLE MOMENTS AND DEFORMATION PARAMETERS

TABLE IV (Continued)

Nucleus (angular momentum) 15~

63 u90

(Contin.)

Method

Qo

6.7 7.3 6.56 6.64 7.00 6.55 5.86 6.50 5.20

+ 0.8 ± 0.9 ± 0.66 ± 0.60 ± 0.16 ± 0.20 ± 0.35 ± 0.32 ± 0.40

Reference

C. E. Y ( NaI) (0 .. 1) C.E, Y (NaI) (0 ... 2) C.E. e (0 • 1) C.E. e (0 ~ 2) C.E. inel (0 • 1) C.E. inel (0 .. 2) (1 - 0) Tl/2 T 1/2

(2 .. 0)

T 1/2

(2 - 1)

58M36, 59D29 58M36, 59D29 57B56, 60Be16 57B56, 60Be16 60012, 63E106 60012, 63E106 Table V Table V Table V

154EU91 63 (1=3)

7.9 (± 0.9)

Hfs (NO)

152Gd88 64 (1=0)

3.28 + 0.28 4.49 ~ 0.56 n)

(E2) Tl/2

(1)

(1 .. 0)

65StGr 63Ab05, 67Ab06

154Gd90 64 (1=0)

6.08 + 0.17 6.15 ~ 0.11°)

(E2) Tl/2

(10) (1 .. 0)

65StGr 68Ku03

155Gd 64 91 (1=3/2)

156Gd92 64 (1=0)

a) n) 0) p)

+5.50 +8.0 7.6 6.8 6.7 9.2. 6.53 6.33 5.73 6.86 6.89 6.81 6.72 6.83

B

B

62Ju6

+ 1.5 : 2.0 a) : 1.9 a) 1. 7 a) ± 2.4 ± 1.8 ± 0.15 ± 0.41 ± 0.77

Hfs (opt) Hfs (opt) C.E. e- (0 .. C•E. Y (NaI) C. E. Y ( NaI) C. E. Y (NaI) C.E. inel C.E. inel T 1/2 (1 ..

+ -:; -:; -:;

B

±

0.15 O.l1 P) 0.15 P) 0.11 p) 0.12P)

±

(E2) Tl/2 T 1/2

Tl/2 Tl/2

(11) (1 .. (1 ~ (1 (1 -

1) (0 .. 2)

(0 (0 (0 (0 0)

0) 0)

0) 0)

.. 1) _ 2) ... 1) .. 2)

56S21 59K10 56B41 56H78 59D29 59D29 58R12,63E106 58R12,63E106 Table V 65StGr 65Me08 66Mc07 67W006 68Ku03

Adopted error Calculated with Ey=344.24 ± 0.05 keV (63Ma08) and aT = 0.040 Calculated with Ey=123.11 ± 0.04 keV (58R53,59H07,68A10l) and ~ = 1.20 Calculated with Ey=88.9 67 ± 0.002 keV (59K54, 60Kn1, 60Wa9, 61Sc19) and aT = 3.95 525

LOSNER, VElTER, AND HONIG

TABLE IV (Continued)

Method

Nucleus (angular momentum) 151 64 Gd 93 (1=3/2)

+ 5.0

.± 1.5 +10.0 + 2.5 a) 8.1 : 2.0 a) 6.2 ± 1.6 a) 8.8 .± 1.8 6.62 .± 0.15 6.58.± 0.26 1.30 + 1. 06 ~ 1.10 : 1.00: 1.00 ±

160Gd96 64 (1=0)

1.55 + 0.11 1. 15 : o. 12r ) 1.20 : 0.12 r) 1.18±0.12r)

9§Tb94

(1-3/2)

Hfs (opt) Hfs (opt) C.E. e- (0 ... C•E• Y ( Na1) C•E• Y ( Na1) C.E. inel C.E. inel B (E2)

(1)

T 1/2

(1 (1 (1 (1

T 1/2

T 1/2 Tl/2 B

(E2)

T 1/2 Tl/2 T 1/2

1)

(0 (0 (0 (0

• • .. ..

2) 2) 1) 2)

56821 59K10 56B41 56H18 59D29 58R12.63E106 58R12.63E106

~ 0) .. 0) .. 0) .. 0)

658tGr 61Wo06 68Ku03 685004 69Av01

(1 .. 0) (1 .0) (l ~ 0)

658tGr 61Wo06 68Ri09 69Av01

(5)

Hfs (NO)

64B122:62Lo1

5.0 (.± 0.1) +6.5 (.± 1.2)

Hfs (NO + par. res.) Hfs (NO + par. res.)

61Ba61 68Ea04

+6.6 +6.3 +6.6 1.6 +5.6 +1.0 +8.0 +6.6 +1.0 +1.1

Hfs (par. res.) Hfs (opt) Hfs (opt) Mu (Ge) GR (ph.abs. - br. GR (ph.abs. - br. OR (ph.abs. - br. GR (ph.abs. - br. GR (ph.abs. - mo. GR (ph.abs. - br.

64B122:65A r05 65Ar05 66Ar18

+3.4

1

0.11 O. 12q ) 0.15 q ) 0.16Q ) 0.19 Q )

Reference

+ 1.1

(.± (.± (.± + + + + + +

0.5) 0.6) 0.1) 0.4 0.6 + 0.1 ++ ++ 0.8 +++ 0.6 ++++ 1.1 0.1 a)+

±

61De21

st.) st.) st.) st.) en.) st.)

58F11 60Th1 60Th1 62Bo26 64Br03 64Br03: 58F71

a) Adopted error r) Calculated with Ey=15.26 .± 0.01 keV (58C36) and aT = 1.48 Q) Calculated with Ey=19.5104.± 0.0018 keV (618c19) and aT = 6.05 526

NUCLEAR INTRINSIC QUADRUPOLE MOMENTS AND DEFORMATION PARAMETERS

TABLE IV

Method

Nucleus (angular momentum) 159Tb94 65 (1= 3/2) (Contin.)

-

6(PY92

(I = O)

GR (ph. abs. - br. st.) GR (ph. abs. - br. st.) GR (ph. abs. - br. st.) GR (ph. abs. - br. st.) Gr (ph. abs. - mo. en.) GR (ph. abs. - mo. en.) C.E. e- (0 .1) C•E• Y ( Na1) (0 .. 2) C.E. Y (Na1) (0 - 2) inel (0 - 1) C.E. inel (0 .. 2) C.E. C.E. inel (0 - 1) inel (0 .. 2) C.E. Tl/2 (1 .. O)

64Br03:60Th7 64Br03:62B026 67Ar22:58F71 67Ar22:62B026 67Ar22:64Br03 67Be55 56H49 56H78 58M36 58801 58801 600l2,63El06 600l2,63El06 Table V

+4.6 ± 1.2 +4.5 ± 1.7 +7.2 (+1.2)

Hfs (NO) Hfs (NO) Hfs (NO + par. res.)

60Jo12 64Bl22:62Lo1 68Ea04

B (E2)

(1)

T 1/2

(1 ... 0)

6SStGr 66A b02, 67A b06

±

6.85 ± 0.30 6.75 + 0.21 t) 6.63 0.20 t)

(2)

±

6.91 7.32 7.71 7.13 7.11 7.09 a) s} t} u)

Reference

+7.3 + 0.7 a)++ +7.8 0.7 a)+++ + +5.9 ± 0.3 +++ +5.9 ± 0.3 ++++ +5.4 ± 0.3 8.0 + 0.6 8.3 :; 2.0 a) 8.7 :; 2.2 a) 8.1 :; 2.0 a) 8.34 ± 0.38 6.68 ± 0.37 7.46 ± 0.11 7.19±0.15 4.75 ± 0.74

6.17 ± 0.25 6.10 ± 0.19 s )

15R-

(Continued)

+ -: :; + :;

0.22 0.13u) o. 46u) u} 0.11 O.l1 u} 0.12u}

±

(1

-a)

(1 -0)

B (E2)

(8)

T 1/2

(1 - O)

Tl/2 Tl/2 Tl/2 Tl/2

(1 - O) (1 _a)

(1 -O) (1 - O)

6SStGr 66Ab02,67Ab06 688c04 6SStGr 640006 645003 65Gu02 65Me08 68Ku03

Adopted error Calculated with Ey=138.1 ± 0.1 keY (57 M67,58D59,60Gr24) and aT = 0.855 Calculated with Ey=99. 0 ± 0.1 keY (61Ab4,655t08) and aT = 2.86 Calculated with Ey=86.78 ± 0.01 keY (61Gr 45,62Do5,63Bo04) and aT = 4.71

527

LODNER, VETIER, AND HONIG

TABLE IV (Continued)

Method

Nucleus (angular momentum) 3.08 ± 3.8 (+ (I = 5/2) 5.6 +6.6 (+ 8.0 : 4.9 : 5.04 ~ 7.06 ± 5.97 ± 7.38 ± 8.50 ± 7.61 ±

161DY95 66

162DY96 66 (I

= 0)

16~

=

±

7.34 ± 0.25 a) 7.13+0.11 v) 7.55 + 0.40 7. 24 o. 11 v )

±

3.6 ± +4.5 ± 5/2) +6.9 (+ 8.22 : 6.94 6.1 ±

6fPY97

(I

1.12 + 0 .. 8) + 1.4 a) 1.1) 2.0 a) 1.3 a) 1.3 a) 0.88 0.72 0.22 0.46 0.66

1.1 + 1.1 + 1.1) 2.0 a) 1. 8 a) 1.2 7.7 ± 0.9 6.50 ± 0.65 6.02 ± 0.60 7.35 ± 0.22 6.40 ± 0.48 6.47 ± 0.19

±

a) Adopted error v) Calculated with Ey = 80.660

Hfs (par. res.) Hfs (par. res.) Hfs (Moss) Hfs (beam) C.E. Y (Na1) (0 C.E. Y (Na1) (0 C.E. Y (Na1) (0 C.E. e (0 .. 1) C.E. e- (0 + 2) C.E. inel (0 C.E. inel (0

Reference

_ 1) .. 2)

.. 2)

.1) .. 2)

(l - 0)

Tl/2

Mu (Ge) (6 ) B(E2) (l .0)

T1/2

(l - 0)

T 1/2

Hfs Hfs Hfs C•E. C.E. C.E. C. E• C.E. C.E. C.E. C.E.

Y Y Y Y

(par. res.) (par. res.) (beam) ( Na1) (0 - 1) ( Na1) (0 .. 2) (Na1) (0 -1) (Na1) (0 .. 2)

e- (0 - 1)

e

(0 .. 2) inel (0 .. 1) inel (0 .. 2)

58Pll 64B122:58Pll 61Ba49 67Eb01 57H26 57H26 59D29 60Be16 60Be16 57E10,63El06 57E10,63El06 Table V 69Ch16 65StGr 67As03 67Ku07 58P11 64B122:58P11 67Eb01 57H26 57H26 59D29 59D29 60Be16 60Be16 57E10,63El06 57E10,63El06 Table V

T 1/2

(1 .. 0)

± 0.002

keV (67Ba34) and aT = 6.26

528

NUCLEAR INTRINSIC QUADRUPOLE MOMENTS AND DEFORMATION PARAMETERS

TABLE IV (Continued)

Nucleus (angular momentum) 164DY98 66 (I = 0)

Method

Qo +5.6 (+ 7.44 7.49 + 7.44 + 7.24

0.6) 0.25 a) 0.17 k) 0.12 0.14k)

±

±

165DY99 66 (I = 7/2)

6.0 +(0.7) 6.0 : 1.5 a )» 6.9 : 1.7 a )«

+1.5 ± 1.5 + +6.2 (± 0.2) + (I = 7/2) 6.0 (+ 0.1) 1.3 a)+ +5.1 7.9 ± 0.5 +8.5 + 1.0 ++ +7.6 ± 1.1 +++ +7.4 ± 0.9 +7.4 + 0.4 +7.0 : 0.7 a)++ +5.9 : 0.6 a)+++ 7.5 : 1.0 x ) 7.7 :; 1.9 a) 8.4 :; 2.1 a) 7.6 :; 1.9 a) 6.9 :; 1. 7 a} 8.0 :; 2.0 a} 8.0 :; 2.0 a} 8.15 ± 0.57 7.11 ± 0.71 7.62 ± 0.12 7.86 ± 0.25

165H098 67

±

(Moss.1 Hfs Mu (Oe) B (E2) (2) (l -0) T1/2 (1 _ 0) Tl/2

Reference 2)

64Co09 69Ch16 65StOr 67Ku07 69Av01

( beam) (beam) ( beam)

67St27 68Ra03 69FuCo:68Ra03

(par.res.) Hfs ( beam) Hfs (beam) Hfs (beam) Hfs Mu (Oe) OR (ph. abs. - bra st.) OR (ph. abs. - bra st.) OR (ph. abs. - mo. en.) OR (ph. abs. - mo. en.) OR (ph. abs. - bra st.) OR (ph. abs. - mo. en. ) OR (ph. abs. - mo. en.) C.E. e (0 _ 1) C.E. e- (0 • 2) C.E. y (NaI) (0 .. 1) C.E. y (Na1) (0 • 2) C.E. y (Na1) (0 +1) C.E. y (Na1) (0 • 2) C.E. e (0 - 1) C.E. e- (0 ... 2) C.E. inel (0 .. 1) C.E. inel (0 .. 2)

58B35 62Wy4:620020 64B122:620020 620020,640009 67De21 6OTh7 62Fu8 63Br09 66Ax01 67Ar22:62Fu8 67Ar22:63Br09 67Be55 56H49 56H49 56H78 56H78 58M36 58M36 57B56,60Be16 57B56,60Be16 600l2,63El06 600l2,63El06

Hfs Hfs Hfs

-

-

7.30±0.17 Table V (1 - 0) Tl/2 166H099 67 (I = O) -a),Adopted error k} Calculated with Ey=73.39 2 ± 0.005 keV (58C36, 64Sc25) and ~ = 9.10 x} Different ro-values of 1.2 and 1.25 f are used, yielding Qo-values within given error 529

LOBNER. VETIER, AND HONIG

TABLE IV (Continued)

Reference--'-

Method

Nucleus (angular momentum)

69D102 162Er 6lJ 92

(I

=

=

16~r

6lJ 96

=

(1 .. 0)

69D102

7.01 ± 0.18

B (E2)

(l)

65StOr

0)

11. 2 (± 1. 4)

-

7.23 + 0.25 n) 7,49 ± 0.17

6lJ 97 (I = 5/2)

16§F.r 6lJ 98

+5.60(+ 0.56) +4. 55(: 1. 05) +

(I = 0)

+6.65(: 1.40t+

1671:'r 68'" 99

+7.6 +7.2 7.62 7.29 7.51 7.59

: 1.1

x)++

±0.7 x)a)++ + + : ± -

-

0.13 0) 0.21 0.11°) 0 ) 0.14

0.09) 0.86) 2.1 1.8 0.12 0.25

(E2) Tl/ 2

65StOr 68se02

(4) (1 .. 0)

Rfs (beam)

65AllO

Rfs (Moss) (I = 2) Rfs (Moss) (1 = 2) Rfs (Moss) (I = 2) OR (ph. abs. - br. st.) OR (ph. abs. - br. st.) B (E2) (9)

64Co09 64K103,65RuOl 64K103,65RuOl 62Fu8 67Ar22:62Fu8 65StOr 67As03 67Ku07 68Ku03

Tl/ 2 Tl/2

jfOo

+6.04(± +6.45(± 8.3 ± 8.9 ± 7.86 ± 7.50 ±

67St27

T 1/2

[20 + ~ a) y) 8. 6 : 2. 1 a)

= 7/2) 6.039,t 0.077)

Rfs (beam) B

16~Er

(I

-_._.-

0)

163t:. 68"'r95 (I = 5/2) (I

T 1/2

0)

16gEr 6lJ 94 (I

6 .52 ± 0.1 8m)

(l .. 0)

(1 .. 0) (l .. 0)

Rfs (par. res.) Hfs (par. res.) Hi's (beam) Rfs (beam) Rfs (par.res.) C.E. Y ( Na1) (0 C.E. Y (Na1) (0 C.E. 1nel (0 C.E. 1nel (0

Footnote see next page 530

55B151 58MI08 62Th14 65Sm04,64Bl22: 66Be25 63Sm02 _ .. ..

1) 2) 1) 2)

59D29 59D29 600l2,63El06 600l2,63El06

NUCLEAR INTRINSIC QUADRUPOLE MOMENTS AND DEFORMATION PARAMETERS

TABLE IV (Continued)

Nucleus (angular momentum) 168".

6~r100

(I

=

0)

1~~r102 (I

=

0)

171 6§Er 103

(I

= 5/2)

166Tm,.. 69 ':J7

(I

= 2)

Method

Qo

7.75 7.64 7.47 7.62 7.55 7.71 7.46 7.60 7.63 7.48

Reference

± + : :

0.25 a) 0.13 O.13 P) 0.12 P) 0.14 P)

Mu (Ge) B (E2)(4) (1 - 0) Tl/ 2 (1 .. 0) Tl/ 2 (1 .. 0) Tl/ 2

69Ch16 65StGr 62Bo18 67Ku07 68Ku03

± + :. :

0.25a ) 0.10 o. 12q ) 0.14 q ) 0.17Q )

Mu (Ge) B (E2) Tl/ 2 Tl/ 2 Tl/ 2

69Ch16 65StGr 67Ku07 68Ri09 69AvOl

± ±

Hfs (beam) Hfs (beam) Hfs (beam)

63MaOl 64B122:63MaOl 64Bu09

+ +

Hfs (beam) Hfs (beam)

62Wa27 64B122:62Wa27

+

Hfs (Moss) (I = 3/2)

0.7)*+ 1.5 a) ..... 2.0 a) 2.0 a) 0.73 0.08 0.26 0.26 0.26

Hfs (Moss) (I = 3/2)

63Hu08,64Hu07, 64Ki03 63Hu08,64Hu07, 64Ki03 64Co08 56H49 58M}6 60Be16 60012, 63E106 Table V Table V Table V

6.8 (± 1.5) y) [7.9 (± 3. 1] 6.7 (± 0.6) 16.1 (± 2.5) 15.2 (± 0.6) +5·5 (± 0.5) +7.5 (± +6.5 + 7.9 : 8.0 8.08 ± 7.58 ± 7.87 ± 7.51 ± 7.82 ±

(2) (1 .0) (l • 0) (1 .. 0)

±

Hfs (Moss) (I = 3/2) C.E. e (0 ... 2) C.E. y (0 - 2) (0 _ 2) C.E. e inel (0 .. 2) C.E. (1 _ 0) T1/2 (2 - 0) T1/2 (2 -1) Tl/ 2

a) 1) m) n)

Adopted error Calculated with Ey=192.7 ± 0.4 keV (67Wa18) and a T=0.289 Calculated with Ey=126.2 ± 0.3 keV (67Wa18) and a T=I.27 Calculated with Ey= 91.5 ± 0.1 keV (57M67,60Ab4 ) ana a T=4.20 0) Calculated with Ey= 80.57± O.OlkeV (62Ha46,63Ma08,64Sc08) and aT=6.94 p) Calculated with Ey= 79.80+ 0.02keV (58C}6,6OJa8) and a T=7. 20 Q) Calculated with Ey= 78.59+ 0.02keV (58C}6) and aT=7.66 x)Natural Erbium was used,16OEr is the most abundent isotope. y) Not used for averaging ~ Includes polarization correction 531

LaDNER, VElTER, AND HONIG

TABLE IV (Continued)

Nucleus (angular momentum)

ll09Tm101 (I

= 1)

171Tm102 69 (I

= 1/2)

16~

70 b98 (I = 0) 17~

70 b100

(I

= 0)

171Yb101 70 (I

= 1/2)

17~

70 b102

(I

=

0)

Reference

Method

Qo

6.1 (.± 0.5) + 5.74(.± 0.09) + 8.01 .± 0.40 7.73 .± 0.16

Hfs (beam) Hfs (beam) C.E. inel (0 ... 1) C.E. inel (0 .. 2)

8.90 .± 1. 04 8.57 .± 1.03 8.71 .± 1.08

T1/2 T1/2 Tl/2

(1 ,. 0) (2 - 0) (2 - 1)

Table V Table V Table V

7.39.±0.17

B (E2)

( 1)

65StGr

7.56 7.41 7.60 7.55 7.50

B (E2) Tl/2 T1/2 Tl/2 Tl/2

(4)

(l - 0)

65StGr 65Me08 65Ro17 65Ti02 66Ra04

inel inel (1 (2 _

57E10,63E106 57E10,63E106 Table V Table V

+ 0.17 r) + 0.15 r) + 0.16

-

-

: 0.15 r) 0.15 r)

±

T1/2· T1/2

0.13 0.15 t) 0.99 t) 0.15 t) 0.12 t) 0.18t)

±

r) Calculated with Ey t) Calculated with Ey

= =

(1 - 0) (l -0)

C.E. C.E.

7.97.± 0.24 7.93.±0.16 7.56 .± 0.47 10.77.± 0.91 7.77 + 7.96 : 7.88 : 7.63: 7.71 : 7.93

(l - 0)

(0 -1) (0 • 2) 0) 0)

B (E2)

(3)

T1/2 T1/2 T1/2 Tl/2 T1/2

(l .... 0) (l -0)

(1 .. 0) (l - 0) (l -0)

60Ca15 64B122:60Ca15 68FrOl 68FrOl

65StGr 64GuOl 64Ka07 66TiOl 68Ma49 69B!38

84.262 .± 0.04 keV (59H07,63Ma08) and aT = 6.43 78.71 .± 0.01 keV (58c36,60101,68Ka01) and aT = 8.47

532

NUCLEAR INTRINSIC QUADRUPOLE MOMENTS AND DEFORMATION PARAMETERS

TABLE IV (Continued)

Nucleus (angular momentum) 17'7,.·Yb103 70 (I

= 5/2)

17lLYb104 -

70

(I = 0)

+10.9 (t 1.1)

+ 6.7 ± 1.7 a) 7.4 (± 0.8) + 8.68(± 0.56) + 7. 84(± 0.56)*" 8.2 ± 1.5 8.8 ± 1.7 7.82 ± 0.21 7.37 ± 0.41 8.17.±1.12 7.57 + 0.13 7.59 0.15u)

±

17h-7QYb 106

7.40 + 0.24 7.29 0.14v )

170 L u.... 71 ~9

6.76 ± 0.13

(I

= 0)

Reference

Method

±

(l • 0)

38810 56K42 62Lo8 64Ro11,62Ro26 69FuCo:62Ro26 59D29 59D29 57E10,63E106 57E10,63E106 Table V

(4) (l --0)

65StGr 66Ti01

(4) (1 -0)

65StGr 66Ti01

(l _0)

Table V

Hfs (opt) Hfs (opt) Hfs (par. res.) Hfs (opt) Hfs (opt) C.E. y (NaI) (0 C.E. y ( NaI) (0 inel (0 C.E. inel (0 B (E2) T 1/2

B (E2) T 1/2

.. l) - 2) - 1) - 2)

(I = 0)

1trLu104 (I

= 7/2)

+12.8 ± 3.2 a) + +12.2 (+ 0.6)"It'- + +10.93(± 0.64) ++ + 7.71(± 0.43)1l"++ +12.0 (± 1.3) 8.57(+ 1.07) +12.17(+ 0.13) +10.7 : 2.7 a) + 6.5 : 1.7 a) 8.8 : 2.2 a) 7.6 : 1.9 a) 8.5 : 2.1 a) 7.5 : 1.9 a) 6.4 + 1.6 a)

Hfs (opt) Hfs (opt) Hfs (opt) Hfs (opt) Hfs (opt) Hfs (opt) Hfs (beam) Hfs (opt) C.E. y (NaI) (0 C.E. e-(O .. 1) C•E. Y ( NaI) (0 C.E. Y (NaI) (0 C.E. Y (NaI) (0 C.E. Y (NaI) (0

-1) - 1) .. 2) ~ l)

- 2)

a) Adopted error Includes polarization correction u) Calculated with Ey= 76.46 ± 0.01 keY (58C)6) and aT = 9.52 v) Calculated with Ey = 82.13 ± 0.02 keY (58C)6) and aT = 7.12

*

533

36G03 55K23:)6G03 57M96 57M96 58813 4 61B17 62Ri4 62Ko22:36G03 55M44 56H49 56H78 56H78 58M)6 58M)6

LODNER, VEITER, AND HONIG

TABLE IV

176Lu105 71 (I

= 7)

7.54 .± 0.79 7.18.±0.63 7.52.± 0.16 7.31 .± 0.54 6.29 .± 0.35 +10.5 (.± +12.0 (.± + 8.4 (.± 12.0 (+ 13.2 7.43.± 7.68 .±

1.5) 1. 5 ) 1. 1 ) 1.0) 3.3 a) 0.23 0.17

±

177Lu 7l 106 (I = 7/2)

Reference

Method

Nucleus (angular momentum) 175Lu104 71 (Contin.) (I = 7/2)

(Continued)

+11.8 (.± 0.1) 5.34 .± 0.51

C.E. e C.E. eC.E. C.E.

inel (0 ..... 1) inel (0 _ 2)

Tl/2

(1 .. 0)

57B56.60Be16 57B56.60Be16 59E42.63El06 59E42.63El06 Table V

Hfs Hfs Hfs Hfs C.E. C.E. C.E.

(opt) (opt) (opt) (beam) y (Na1) (0 _1) inel (0 -1) inel (0 - 2)

39S14 583134 61B113 62Sp3 55M44 59E42.63El06 59E42.63El06

(0 .. 1) (0 ~ 2)

-----_._------

Hfs (beam) Tl/2

62Pe7 Table V

(1 .. 0)

6.65 .± 0.24k ) 174Hf102 72 (I

=

0)

176Hf104 72

7.27 + 0.24 6.68 0.221) 7.?J7 ± 0.17

±

64Ab08.67Ab06 B (E2) T 1/2

(1) (1 ~ 0)

65StGr 65Ab02.67Ab06

B (E2)

(2)

65StGr

(I = 0)

1t~Hf105 (I

= 7/2)

+ 6.4

+ 2.1 8.0 :;: 1.0 a) 10.5 :;: 2.6 a) 6.0 :;: 1.5 a) 8.9 -:; 2.2 a) 7.2 1.8 a) 9.0 ± 1.8 9.1 ± 1.8 6.74±0.18

±

a) Adopted error k) Calculated with Ey 1) Calculated with Ey

= =

Hfs (opt) Mu (Ge) C.E. y (Na1) (0 C.E. e-(o -1) C•E. Y (Na1) (0 C.E. Y (Na1) (0 C.E. Y (Na1) (0 C.E. Y (Na1) (0 C.E. inel (0

.. 1) .. 1) _ 2) .. 1) - 2) - 1)

94.5 ± 0.3 keY (65St03) and aT = 4.51 90.87 .± 0.03 keY (60Ha18.64Ab07) and aT

534

56s53 67De21 55M44 56H49 56H78 56H78 59D29 59D29 61Ha21.63E106

=

5.27

NUCLEAR INTRINSIC QUADRUPOLE MOMENTS AND DEFORMATION PARAMETERS

TABLE IV

Nucleus (angular momentum)

Qo

177Hf 72 105 (I = 7/2) (Contin.)

6.79.± 0.34 7.43 .± 0.34 9.99 .± 1. 57 9.89 .± 1.60

178Hf106 72 (I = 0)

8.0 6.78 6.86 6.84 + 5.5 8.2 6.3 8.0 8.3 5.5 7.9 6.5 6.85 7.32 6.25

179Hf 72 107 (I = 9/2)

180Hf108 72 (I = 0)

(Continued)

Reference

Method C.E. Tl/2 Tl/2 Tl/2

+ 1.0 a)

inel (0 .. 2) (1 -0) (2 .. 0) (2 -1)

61Ha21,63El06 Table V Table V Table V

+ 0.15 -: 0.14 m) -: 0.24 m)

Mu (Ge) B (E2) (6) (1 -0) Tl/2 (1 - 0) Tl/2

67De21 65StGr 62Bo13 65Ab02,67Ab06

+ 1.8 + 1.0 -: 1.6 a) -: 2.0 a) -: 2.1 a) -: 1.4 a) + 1.0 + 2.0 .± 0.20 .± 0.44 .± 0.46

Hfs (opt) Mu (Ge) C.E. y (NaI) C.E. e C.E. y (NaI) C.E. y (NaI) C.E. Y (NaI) C.E. Y (NaI) C.E. inel C.E. inel (1 Tl/2

56s53 67De21 55M44 56H49 56H78 56H78 59D29 59D29 61Ha21,63El06 61Ha21,63El06 Table V

-

8.0 + 1.0 a) 6.73.± 0.15

+12.9 + 3.2 a) 181Ta108 73 G25.3 ; 6.~~ (I = 7/2) + 8.36 .± 0.86 + 9.21(.± 0.86)*' + 8.4 (± 0.9) + 5.8 (+ 0.6) * + 8.4 -: 2.1 a) 8.4 ± 1.5 7.5 + 0.4

y)

+ + ++ ++ +

(0 (0 (0 (0 (0 (0 (0 (0 0)

-1) -1) -1)

- 2) -1)

.. 2) - 1) -2)

Mu (Ge) B (E2) (7)

67De21 65StGr

Hfs (opt) Hfs (opt) Hfs (opt) Hfs (opt) Hfs (opt) Hfs (opt) Hfs (opt) Mu (NaI) Mu (Ge)

43515 52B71 55K23 55K23 57M108 57MI08 62Ko22:55K23 65Ra06 67De21

a) Adopted error m)Ce1culale d with Ey=93. 176 .± 0.003 keY (635m02,64Ma27) and cxT = 4.77 y) Not used for averaging ~) Includes polarization correction 535

LOBNER, VETIER, AND HONIG

TABLE IV

Reference

Method

Nucleus (angular momentum) 181Ta108 73 (T = 7/2) (Cantin.)

(Continued)

+ + +

+ + + +

+++

± 0.3

GR (ph. abs. GR (ph. abs. 6.1 + 0.6 GR (ph. abs. 5.7 ± 1.3 ++++ GR (ph. abs. 8 7.1 + o. 6.71 + 0.74 +++++ GR (ph. abs. 5.7 ~ 0.5 a)+++ GR (ph. abs. 5.2 ~ 0.5 a)++++ GR (ph. abs. 5.2 0.5 a)+++++ GR (ph. abs. GR (ph. abs. 6.75 + 0.60 6.7 ~ 1.7 a) C.E. y (NaT) 5.8 ~ 1.5 a) C.E. y (NaT) 7.3 : 1.8 a) C.E. e C.E. e7.6 : 1.9 a) 6.6 : 1.7 a) C.E. y (NaT) 6.6 : 1.7 a) C.E. y (NaT) 7.1 : 1.8 a) C.E. y (NaT) C.E. y (NaT) 5.9 1.5 a) C.E. y (NaT) 6.40 ± 0.64 C.E. y (NaT) 6.60 + 0.66 6.2 : 1.6 a) C.E. y (NaI) 5.6 : 1.4 a) C.E. y (NaT) C.E. y (NaT) 6.95 ± 0.27

+ 5.7

±

±

- br. st.) - br , st.) - br. st.) - br , st.) - mo. en.) - br , st.) - br , st.) - mo. en , ) - mo. en , ) (0 .. 1)

(0 (0 (0 (0

- 2) - 1) .. 2) .. 1)

(0 .. 2)

(0 - 1) (0 - 2) (0 .. 1)

(0 - 2) (0 -1) (0 - 2) (0 -1)

7.09 ± 0.29

C•E. Y ( NaT) (0 • 2)

6.71 ± 0.54 6.65 ± 0.56 7.08 ± 0.25 6.79 ± 0.34 6.16 ± 0.46

C.E. e C.E. e C.E. C.E. T 1/2

6.64 + 0.25 6.24 0.11 n)

±

a) Adopted error n) Calculated with Ey

=

inel inel

103.7

B

(0 (0 (0 (0 (1

57B56,60Be16 57B56,60Be16 63El06 63El06 Table V

- 1) -2) -1) .. 2) .. 0)

(E2)

65StGr 65Hu02

(l -0)

T 1/2

± 0.3

58F71 585119 59p04 62Bo26 63Br09 67Ar22:58F71 67Ar22:62Bo26 67Ar22:63Br09 67Be55 55M44 55M44 56H49 56H49 56D40 56D40 56H78 56H78 57W32 57W32 58M36 58M36 55S57,58M02, 62Ri4,62Ri9 55S57,58M02,

keV (67Go22, 67Ho12) and

536

aT

= 3.45

NUCLEAR INTRINSIC QUADRUPOLE MOMENTS AND DEFORMATION PARAMETERS

TABLE IV

Nucleus (angular momentum) 182W108 74 (I = 0)

18(w 74 109 (I

= 1/2)

184W110 74 (I ... 0)

Method

Qo 6.3 6.76 6.56 6.46 6.35 6.38 6.22 6.44 6.26 6.31 6.57 6.3 2.7 8.4 6.66 6.18 5.85 6.67 6.14 6.22 7.43 6.23 6.07 6.3 6.52 6.27 6.07 6.69 6.00 6. 15 6.21

± 0.8 a)+ + 0.17 0.20 a) + 0.16 -: 0.16°) : 0.24°) : 0.20°) -: 0.10°) -: 0.11°) 0.13°) ± 0.06 + 0.8 a) -: 1.3 a) 2.1 a) ± 0.38 ± 0.15 ± 0.12 ± 0.45 ± 0.29 ± 0.15 ± 0.66 ± 0.23 ± 0.43

±

+

±

±

+ 0.8 a)+ + 0.17 +

±0.20a) ± 0.13

-++ 0.34 ) O.OaP

±o. 24 p) ± 0.06

(Continued)

Mu (Ge) Mu (Ge) Mu (Ge) B (E2) Tl/2 Tl/2 T1/2 Tl/2 Tl/2 Tl/2 C.E.

Reference

(11 ) (1 -0) (l -0) (1 - 0) (l -0) (l -0) (l .... 0) inel (0 - 1)

Mu (Ge) C.E. y (Na1) C.E. e C.E. Y (Na1) C.E. inel C.E. inel C.E. Y (Na1) C.E. inel C.E. inel Tl/2 T1/2 Tl/2

-

Mu (Ge) Mu (Ge) Mu (Ge) B (E2) (7) C.E. y (Na1) T1/2 Tl/2 C.E. inel

61De21 68Pi06:61De21 69Ch16 65StGr 6,3Ko02 64Be36 64Ro19 65Me08 66Bl08 66Ra04 68st13

- 2) - 0) -0) -1)

61De21 55M44 56H49 55S57,58M02 61Ha21,63El06 61Ha21,63El06 66Th07 68st13 68st13 Table V Table V Table V

(0 -1) (l - 0) (1 -0) (0 - 1)

61De21 68Pi06,61De21 69Ch16 65StGr 61Mc1 65Sc05 67As03 68st13

(0 (0 (0 (0 (0 (0 (0 (0 (1 (2 (2

~

2)

-1)

-2) -1)

- 2) -1) -1)

a) Adopted error 0) Calculated with Ey=100.107 ± 0.001 keV (55M19, 58B73, 62Se10) and p) Calculated with Ey=111.17 ± 0.04 keV (57C39, 58G17) and ~ = 2.63

537

aT =

3.97

LOBNER. VETTER. AND HONIG

TABLE IV (Continued)

1~1l2 (1

= 0)

185Re 75 ll O (1 = 5/2)

5.7 6.25 5.88 5.97 5.98 5.32 5.74 5.98

+ 0.8 a)+ + 0.17 + 0.20 a) ± 0.17 + 0.31 : 0.43Q ) 0.08Q ) ± 0.31

±

±

Mu (Ge) Mu (Ge) Mu (Ge) B (E2) (4) C.E. Y (Nal) (0 -1) T 1/2

67De21 68Pi06:67De21 69Ch16 658tGr 61Mc1 67As03 67Ku07 68st13

(1 ... 0)

(l - 0) ne 1 (0 - 1 )

T 1/2 C•E.

i

4.7 : 1.2 a) 7.6 : 1.9 a) 4.2 : 1.1 a) 4.2 : 1.1 a) 5.0 1.3 a) 6.0 ± 1.5 5.5 + 0.6 5.8 . ± 0.6 6.28 ± 0.30 6.34 ± 0.32 7.1 ±0.9 6.8 ± 1.1 5.38 ± 0.27 5.58 ± 0.28

Hfs Hfs Hfs C.E. C.E. C.E. C.E. C.E. C.E. C.E. C.E. C.E. C.E. C.E. C.E. C.E. C.E.

4.0 ± 1.0 a)

Hfs (beam)

66Ku07

Hfs (opt) Hfs (opt) Hfs (opt) C.E. y (Nal) (0 -1) C.E. e (0 -1) C•E. Y (Nal) (0 - 1)

37812 65Ho06 66Ku07 55M44 56H49 56D40

+7.8 + 2.0 a) +8.1 : 2.0 a) 6.4 + 2.6

±

+ 1.8 2.0 6.2 + 2.6 4.3 : 1.1 5.8 : 1.5 1.3 5.1 a) Adopted error Q) Calculated with Ey =

187Re1l2 75 (1 = 5/2)

Reference

Method

Nucleus (angular momentum)

+7·3 +8.1

±

±

a) a)

a) a) a) 122.48

± 0.08

(opt) (opt) (opt) y (Nal) (0 .. 1) e

e

(0 -1) (0 -2)

Y y

(Nal) (0 - 1) (Nal) (0 - 2)

e y y y

y y

y

(Nal) (Nal) (Nal) (Nal) (Nal) (Nal) Inel Inel

(0 (0 (0 (0 (0 (0 (0

-1) -1) -2) -1) -2) -1) -2)

(0 - 1) (0 -2)

keY (57C39) and 538

37812 65Ho06 66Ku07 55M44 56H49 56H49 56D40 56D40 57B56 57W32 57W32 58M02 58M02 59D29 59D29 67Bl10 67B110

aT

= 1.81

NUCLEAR INTRINSIC QUADRUPOLE MOMENTS AND DEFORMATION PARAMETERS

TABLE IV (Continued)

Nucleus (angular momentum) 187ReU2 75 (I = 5/2) (Contin. )

18SL 7?e l 13 (I

=

1)

Method

Qo

5.5 5·2 5.2 5.7 5.59 6.24 6.0 6.1 5.58 5.63 5.46

+ 1.4 a) 1: 1.3 1: 0.5 + 0.6 1: 0.29 1: 0.32 1: 0.7 + 1.0 1: 0.28 1: 0.28 1: 0.47

4.0 + 1.0 a) 5.33 1: 0.47 +6.30(1: 5.591: 5.45 + 5.61

0.77) 0• 14 0.38 O.U r )

±

4.31 1: 0.52 5.32 1: 0.67 188 760s112 (I

=

0)

0.84) ±0.8 a)+ +

+6.34(+ 5.5 5.211: 5.26 + 4.96 -: 5.06

0• 18 0.14 0.13s) 0.12 s)

±

+4.0

+ 1.0

+4.0 + 4.6 (+ 5.0 4.84 1:

~

+

1.0 a)+

±

0.5) 0.8 a) 0.41

C.E. C.E. C.E. C.E. C.E. C.E. C.E. C.E. C.E. C.E.

Reference

r (NaI) (0 -2) e

r r r r r r

(NaI) (NaI) (NaI) (NaI) (NaI) (NaI) inel inel

T1/2

(0 (0 (0 (0 (0 (0 (0 (0 (0 (1

-l)

... l) -2) -l)

-2) -l)

- 2) -l)

- 2) ~O)

56D40 57B56 57W32 57W32 58M02 58M02 59D29 59D29 67B1l0 67B1l0 Ti;ible V

Hfs (beam) Tl/2 (i - 0)

66Ku07 Table V

Hfs (Moss) (I = 2) B (E2) (8) C.E. r (NaI) (0 - l ) Tl/2 (l - 0)

69Wa13 65StGr 67Gi02 68Ma14

C.E. r (NaI) (0 - l ) C.E. r (NaI) (0 - 2)

63Mc18 63Mc18

Hfs (Moss) (I = 2) Mu (Ge) Mu (Ge) B (E2) (9 ) (l -0) Tl/2 (l -0) Tl/2

69Wa13 67De21 68Pi06:67De21 6SStGr 66As03 68Ma14

Hfs (opt)

52M40.57M96 62Mu4 62Ko22.57M96 68Hi04 67De21 61Re2

Hfs (opt) Hfs (opt) Mu (Ge) C.E. e- (0 .... 1)

a) Adopted error r) Calculated with E = 137.154 1: 0.008 keV (63Em02.63Ma08) and ~T r s) Calculated with E = 155.032 1: 0.012 keV (63Ma08) and ~T = 0.83 r ~) Includes polarization correction 539

= 1.30

LOBNER, VETIER, AND HONIG

TABLE IV (Continued)

189 76°5 113 (I = 3/2) (Cantin, ) 190 76°5 114 (I

= 0)

1911r 77 11 4 (I = 3/2)

3,51 .:!: 0,44 3,93.:!: 0,30 3,73.:!:0,13

C,E, Y (Na1) (0 - 1) C,E, y (ne ) (0 - 2) (1 --0) Tl/2

63Mc18 67Hr01 Table V

5.0 4.78 6,06 4.32

Mu (Ge) Mu (Ge) B (E2) (7)

67De21 68Pi06:67De21 65StGr 67As03

+ 0.8 a)+ + .:!: 0,18 + 0.25 0,10 t) 4.5 .:!: 0,8a) 4.65 .:!: 0,22 4.39 .:!: 0,29 -

±

+6.0 .:!: +7.5 (+ 4.0 :; 3·1 :; 5.3 3.30 .:!: 4.0 .:!: 4.71 .:!:

3.0 0.5) 0.5 a) 0.8 a) 1.3 a) 0.83 1.0 1,04

±

1931r 77 11 6 (I .. 3/2)

Reference

Method

Nucleus (angular momentum)

+5.0 .:!: 2.5 +7.5 (+ 0.5) 3.75 :; 0.50a) 3.2 :; 0.8 a) 3.4 :; 0.8 a) 2.8 0.7 a) 3.81.:!:0.17 4.63 .:!: 0.26 4.19.:!:0.78

±

4.54 + 0.28

a) Adopted error t) Calculated with Ey

= 186.7

(l -0) T1/2 Mu (Ge) B (E2) (5) C.E, y (Na1) (0 -1)

67De21 65StGr 67Gl02

Hfs (opt) Hfs (opt) Mu (Ge) C•E, Y ( Na1) (0 - 1) C.E. Y( Na1) (0 - 2) C.E. e-(O -1) C.E. e- (0 -1) (l -0) T1/2

52M40 53561 67De21 56040 56040 56H49 57B56 Table V

Hfs (opt) Hfs (opt) Mu (Ge) C.E. y (Na1) C.E. Y (Na1) C,E, e C.E, y (Na1) C,E, Y (Na1)

52M40 53561 67De21 56040 56040 56H49 58M02 58M02 Table V

-

T1/2

(0 (0 (0 (0 (0 (1

-1)

- 2) -1) -1)

- 2) -0)

C.E. Y (Ge) (0 -1)

66Gr20

.:!: 0.1 keV (58D44,60Ka14,61Re2) and aT .. 0.426

540

NUCLEAR INTRINSIC QUADRUPOLE MOMENTS AND DEFORMATION PARAMETERS

TABLE IV (Continued)

Nucleus (angular momentum)

Qo

Method

Reference

± 0.18

B (E2) (2) C.E. Y (Ge) (0 -1) (1 -0) Tl/2 (1 - 0) Tl/2

65StGr 66Gr20 66sc06 69Be34

194Pt1l6 78 (1 = 0)

4.42 ± 0.23 4.42 ± 0.23

B (E2) (1) C.E. Y (Ge) (0 -1)

65StGr 66Gr20

220Rn134 86 (1 = 0)

4.30 ± 0.11

B (E2)

(2)

65StGr

222Rn 86 136 (1 .. 0)

4.78±0.15

B (E2)

(1)

65StGr

22~

6.63 ± 0.26

B (E2)

(1)

65StGr

22~a 8 136 (1 .. 0)

6.25 ± 0.22

B (E2)

(2)

65StGr

226 8BRa 138 (1 .. 0)

7.21 ± 0.36

B (E2)

(1)

6SStGr

22~ 8 a 140 (1 - 0)

7.79 ± 0.48

B (E2)

(1)

65StGr

192Pt1l4 78 (1 .. 0)

8 134 (1 .. 0)

5.05 4.79 4.83 4.88

± 0.25 + 0.28 ~ 0.19 u )

227Ac138 89 (1 • 3/2)

+8.5 (± 1.0)

226Thl36 90 (1 .. 0) 22~

90 h 138 (1 - 0)

229Thl39 90 (1 .. 5/2)

Hfs (opt)

55F26

8.25 ± 0.46

B (E2)

(1)

6SStGr

8.46 ± 0.45

B (E2)

(2)

65StGr

12.9 ± 3.2 a)

Hfs (opt)

64Eg01

a) Adopted error u) Calculated with Ey=316.486 ± 0.010 keV (58R53,60Be11,61Mu5,65Mu03) and a T=0.085

541

L08NER, VETIER, AND HONIG

TABLE IV (Continued)

Nucleus (angular momentum) 230Th140 90 (I = 0) 232Th142 90 (I

= 0)

234Th144 90 (I ... 0)

Qo

8.91 ± 0.45 9.25 9.8 9.69 9.83 9.70 9.87

a) 2.3 + 0.3 + 0.25 0.16 0.13 + 0.26

± ± ± ± ±

8.97 ± 0.56

231pa 13.5 + 3.4 a) 91 140 (I = 3/2. K = 1/2) +15.0 + 3.8 a) 233 Pa142 91 19.0 :;: 4.8 a) (1=3/2. K=1/2)

Method B (E2)

(2)

Mu (Ge) Mu (Ge) Mu (Ge) Mu (Ge) Mu (Ge) B (E2) (4) B (E2)

(1 )

Reference 65StGr 65AcOI 67De21 68Pi06:67De21 69Mc09 69Co09 65StGr 65StGr

Hfs (par. res.)

65L1l3

Hfs (beam) Hfs (par. res.)

61Ma42 65Li13

230 U138 92 (I = 0)

9.46 + 0.69

B (E2)

(1)

65StGr

232 U140 92 (I ... 0)

9.98 ± 0.61

B (E2)

(1)

65StGr

y) +1~ 2.4 a) 9·5 10.3 ± 0.3 15·7 ± 1.6 11.9 ± 0.4

Hfs (opt) Hfs (par. res. ) Mu (Ge) C.E. Y (Na1) (0 -1) C.E. Y (Na1) (0 -2)

56z05 57D40 67De21 58N03 58N03

234 U142 92 (I = 0)

10.03 ± 0.40

B (E2)

65StGr

235 U143 92

8.1 (+ 1.7) 2.2 a) 8.6 +11.4 ± 0.9 10.6 + 0.2

233 U141 92

(I ... 5/2)

(I ... 7/2)

[!36

±

±

(3)

Hfs (par.res.) Hfs (par.res.) Mu (Na1) Mu (Ge)

a) Adopted error y) Not used for averaging 542

56B129 57D40 65Ra06 67De21

NUCLEAR INTRINSIC QUADRUPOLE MOMENTS AND DEFORMATION PARAMETERS

TABLE IV (Continued)

Nucleus (angular momentum) 235U143 92 (I = 7/2) (Contin. )

Qo

+12.8 .:!:. 1.3 13.2 .:!:. 0.7 10.5 .:!:. 0.7

Method GR (ph. abs. - mo. en.) C.E. Y (NaI) (0 -1) C.E. Y (NaI) (0 -2)

0)

Reference 64Bo39 57N07 57N07

236U144 92 (I = 0)

10.75.:!:. 0.66

B (E2)

238U146 92 (I = 0)

11. 25 .:!:. 0.15

Mu (Ge)

11.32 .:!:. 0.26

Mu (Ge)

11.47.:!:. 0.13 11.3O.:!:. 0.11 11.25 .:!:. 0.27

Mu (Ge) Mu (Ge) B (E2) (3)

65Ac01,65Ac02, 67De21 67PI07:67De21, 68pI06:67De21 69Mc09 69Co09 65StGr

237NP144 93 (I = 5/2)

9.80 .:!:. 0.90 12.0 .:!:. 1.1

C.E. Y (NaI) (0 -1) C.E. Y (NaI) (0 -2)

58N03 58N03

238Pu144 94 (I = 0)

10.94 .:!:. 0.69

B (E2)

(1)

65StGr

239Pu145 94 (I = 1/2)

+14.0 .:!:. 3.5 a) 12.0 .:!:. 0.3 9.4 + 0.3

Mu (NaI) Mu (Ge) C.E. Y (NaI) (0 -2)

65Ra06 67De21 57N07

240Pu146 94 (I - 0) 241Pu147 94 (I - 5/2) 242Pu148 94 (I = 0) 241Am146 95 (I - 5/2) 242Am147 95 (I .. 1) K= 0

11.3O.±0.18

0)

65StGr

+15.7 (.± 0.6) 11.82.± 0.51

B (E2)

65StGr

Hfs (opt)

64Ch10

B (E2)

65StGr

(1)

+13·7 .± 3.4 a)

Hfs (opt)

56M31

13.8 .:!:. 3.5 a)

Hfs (beam)

61Ma27

a) Adopted error

543

LaDNER, VETIER, AND HONIG

TABLE IV (Continued)

Nucleus (angular momentum)

Qo

243Am148 95 (1 = 5/2)

+13.1 1: 3.4 a)

244Cm148 96 (1 = 0) 249 97Bk152 (1 = 1/2)

Method

Reference

Hfs (opt)

56M31

13.49 1: 0.15

B (E2)

65StGr

13.13 ± 1.64 16.93 1: 2.35 16.95 1: 1. 82

T1/2 (l -0) Tl/2 (2 -0) T1/2 (2 -1)

(1)

a) Adopted error

544

Table V Table V Table V

LOBNER, VETIER, AND HONIG

EXPLANATION OF TABLE V

For odd-mass and odd-odd nuclei the half-life measurements of rotational states are not given separately. Even if several half-life measurements exist, only one value with error is given for each transition (up to three in odd-mass and odd-odd nuclei) in TABLE IV. This is done because the error of the Qo-values is not determined by the errors of the measured half-lives. The errors in the E2-MI mixing ratio ~2, in the branching ratio (from the second rotational state), and in the total-conversion coefficients dominate the uncertainty in the resulting B(E2)values. The experimental data T1/ 2 , ~2, branching ratios (cross-over cascade ratio), and total conversion coefficients needed to determine the B(E2)-values are presented in TABLE V. The total-conversion coefficients are obtained from the tables of Hager and Seltzer (68HaSe) by using aT = ax + a L + 1.33aJ(. The errors of the total-conversion coefficients are assumed to be ± 3% for the transitions in the rare-earth nuclei and -+- 5% in the actinide nuclei. Sometimes the mixing ratio ~2 for the transition from the first rotational state to the ground state is determined from the measured half-life and the B(E2)-values from Coulomb excitation measurements. These data are not used in TABLE V, because these ~2 values are correlated to the Coulomb excitation data. In other publications ~2 for the transitions from the second rotational state to the first rotational level is determined from the cross-over to cascade ratio assuming the same deformation for the rotational states. This is no independently measured quantity then, and these values are also not used in TABLE V.

546

NUCLEAR INTRINSIC QUADRUPOLE MOMENTS AND DEFORMATION PARAMETERS

TABLE V. Adopted Values of Half-Lives T1 / 2 , Transition Energies E y , Mixing Ratios Branching Ratios cross/casc., and Theoretical Total Conversion Coefficients a

Nucleus

Level in keY

T1/2 in ns

Trans. energy in keY

][i

If

153 Eu 63

83.37 .±0.02

0.90 .±0.09

83.37 ±O.02

7/2

5/2

192.6 .±0.2

9/2

5/2

109.4 .±O.2

9/2

7/2 .±O.2

0.22 .±0.02

192.6 .±0.2

EyO°

60.01 .±0.01

0.24 .±0.06

60.01 .±0.01

&2

a(M1)

a(E2)

0.60 ,±O.07

3.17

4.84

5.86 .±0.35

0.247

6.50 .±0.3 2

1.7l!l

5.20 ,±O.40

00

2.4

0.38 .±0.06

1.46

Qo

&2:57B56,57C4~,58M36,60Be16,61M07,

62Su1,64A~09,64Ew04,

66Bo16,67Se09

61Ru1., 62:3u1 ,63Cr06,63Gr09,65As03

cro8s/casc.:56G47,56H78,57C44,59D 29, 62Go23,64Bo39,66Bo16,67Se09

T1/2:61B~11,66A803

155 Gd 64

cross casc.

/)2,

5/2

3/2

0.040 .±0.004

9.03

18.4

5.73 .±0.77

&2:61SU13,62Ha24,66A802,67F011, 67Ko12

Ey :57B115,59H07 T1/2:66Kr01 159 Tb 65

58.00 .±0.01

0.13 .±0.04

58.00 .±0.01

5/2

3/2

0.0142 10.9 .±0.0003

22.5

4.75 .±0.74

&2:59K28,60Gr20,63Ry02,64Ab03, 64No08, 66A802, 66No01

E :58C36,66Bo16,67Se09, y 68Hi03 T1/2:61Be30,66At05 161 Dy 66

43.81 .±0.01

0.78 43.81 .±0.06 .±0.01

7/2

5/2

0.04 .±0.01 &2:61Gr1,65Ab04

E :58C36,61Gr9,65Br16,66Bo16 t

T1/2:67As03

547

4.36

83.3

7.61 .±0.66

LODNER, VETTER, AND HONIG

TABLE V (Continued)

Nucleus

Level in keY

163Dy 66

73.440 1.51 ±.0.001 ±0.05

T1/2 in nl!J

Trans. Ii energy in keY 73.440 7(2 ±0.001

&2

crOSl!J cal!Jc.

If

5/2

4.0 ±1.2

a(M1 )

a(E2)

Qo

5.98

9.06

6.47 +0.19

&2:60Be16

E.,:58C36,66B016,67Sc05 T1/2:66Al!J03 166Ho 67

54.239 3.44 ±0.001 ±0.12

54.239 ±0.001

2

0

32.0

00

7.30 ±0.17

E.,:64Br10 T1/2:61Ge14 167 Er 68

79.322 0.705 79.322 9/2 ±0.001 ±0.208 :to.00 1

7/2

0.039 +0.14

5.69

7.38

2.05 ±0.46

9.:{2 x10

7.87 ±0.26

1.67

7.51 +0.26 -7.82 ±0.26

o2:62Ha24,66As02

E.,: 58C36, 65Ko13 T1/2:67AS03 169 Tm 69

8.40 ±.0.04 118.15 ±0.04

4.1 ±0.2

8.40 :to.04

3/2

1/2

(1.08 +0.05) ;10- 3

0.062 118.16 ±0.003 +0.04 1n'9.77 ±0.03

5/2

1/2

00

5/2

0.105 3/2 ±0.005

E.,:58C36,62Gr16,63Va32

0.023 ±0.001

183

2.43

2.20

o2:56C13,56H49,56H68,56M105,58G105, 58M36,58S01,58S64,59K25,60Be16, 62Gr16,65Ae03,65Du02,68Ca06, T /2 (1):58B79,58B91,61B113, 68Ka14,69Gu01 1 61B114,61Ha44,61Sc21,63B114, 63Mc13,63Su06,64Mc05,66Mc08 crol!J1!J/cal!Jc.:56H68,57E02,58G105, 62Gr16,63A112,65De05,66Bo16, 67Se09 T1/2(2):59B215,60B110,66MC08

548

NUCLEAR INTRINSIC QUADRUPOLE MOMENTS AND DEFORMATION PARAMETERS

TABLE V (Continued)

Nucleus

Level in keY

T1/2 in ns

Trans. energy in keY

Ii

If

171 T 69 m

5.035 3.76 ±0.007 ±0.14

5.035 ;to.007

3/2

1/2

116.656 0.055 116.656 ±0.006 ±0.013 +0.006 1T1.621 ±0.004

5/2

1/2

5/2

3/2

171Yb 70

173Yb 70

cross case.

&2

a(M1 )

(5 ± 2) x1Q-4 0.111 ±0.005

844

Qo

a(E2)

1.26 8.90 x10 6 ±1.04 8.57 +1.03 2.07 -8.71 ±1.08 1.76

CD

2.32

0.027 ±0.002

Ey:57H1 9,68P. a09

6 2:58C84,61Ar15,65Bo34,66EI01, 68Ge07,68Ka14

T1/2:61BI13,64Su05,66Be51, 68Tu01

cross/casc.:57H19,58C84,61Ar15, 68Ge07,68Ka14,68Ra09

66.720 0.86 ±0.007 ±0.10

66.720 ;to.007

3/2

1/2

75.876 0.90 ±0.008 ±0.15

75.876 ±0.008

5/2

1/2

11.22

0.47 ±0.03 00

16.8

7.56 ±0.47

9.83 10.77 ±0.9 1

Q)

E :58C36,58K88,60Io1,64Ka21, y 66Ka11

62:59H07,60I01,60Io2,60PI3,64Ha5 2 66Di02,66Gu07.66He09,66Ka11

T1/2:64Ka07,66He09,66Ka12, 67As03 f)

cross/case.:

78.70 ±0.01

0.038 ±0.005

78.70 ±0.01

7/2

5/2

0.04 ±0.01

00

(assumed)g)

6.93

8.48

8.17 ±1.12

&2:57B161,59B111,59H09,60Ro14, 60Wi6,65Ho05,66As02

E.,:57B61,5 8C36 T1/2:61Be30

f) The half-life of 1.7 ± 0.3 ns measured by Kaye (64Ka07) probably corresponds to the 78.5 keV level in 172yb• g) Weak NI and NIl internal conversion electron lines of the cascade transition have been observed by Kaye (66Ka11) on large background of L-Auger lines.

549

LODNER. VETIER. AND HONIG

TABLE V (Continued)

Nucleus

Level in keY

T1/2 in ne

Trans. energy in keY

Ii

If

170 Lu 71

44.5 ±,0.1

3.00 ±0.06

44.5 +0.1

2

°

113.81 ±,0.02

9/2

crose caec.

62

a(M1)

a(E2)

Qo

118

6.76 ±..0.13

2.09

6.29 ±,0.35

E y:64Tr03,66Ha23 T1/2:68Ab08 175 Lu 71

113.81 ±,0.02

0.10 ±,0.01

7/2

0.19 ±<>.01

2.62

6 2:55M90,56C13.56H68,58K49,58M36, 60Be16,60B110,62Th3,64No08, 66As02,66Ha23,66No01,69Ni01

E y:56H68,58C36 T1/2:60~110,62Be46,63Li05,

65Ro17,68Ma49

177 Lu 71

121.620 ±,0.003

0.12 ±0.01

121.620 ±,0.003

9/2

0.20 ±,0.04

7/2 02:

E y:64Al04,64Ma27,65Ma18

2.16

1.63

5.34 +0.51

2.25

7.43 ±,0.34

,63Li05,65Kr01

T1/2:63Li05,65Li06,65SC01 177Ht 72

112.955 ±,0.003

0.47 ±,0.04

249.69 ±,0.02

0.048 249.69 ±<>.015 +0.02 1;6.73 ±,0.01

112.955 ±,0.003

9/2

7/2

15 ± 5

11/2

7/2

en

11/2

4.0 9/2 ±,0.4

10 ±, 5

2.91

0.141 1.68

9.99 +1.57 1.102 -9.89 ±,1.60

Ey:55M12,55R53,58C36,61We11,

02:54F42,55M12,56W39,57S107,60Ha18, 61We11,62Ma53,64No08,65Kr01, 65Sy01,66No01,68To07

T1/2:56B 154,61Ha24,61Ha38, 61We11,62Be46,62Bi5, 62Su1,63Li05,63W107,65Ro17

croee/oaec.:56G47,56H78,59D29, 61We11,62Go23,62Ma53,64AI04

62Ma53,6~AI04,64Ma27

550

NUCLEAR INTRINSIC QUADRUPOLE MOMENTS AND DEFORMATION PARAMETERS

TABLE V (Continued)

Nucleue

179H! 72

Level in keV 122.66 .:to. 05

T1/2 in ne

Trans. energy in keV

Ii

0.037 .:to• 00 3

122.66 .:to• 0 5

11/2

If

croes caec.

9/2

62

0.078 .:to .010

Qo

o:(M1) o:(E2)

2.30

6.25 .:to. 46

1.65

62:52M06,58K49,60B110,66Ae02

Ey : 58C36 T1/2:60B110 181 Ta 73

136.23 ±0.03

136.23 ±0.03

0.039 ±0.002

9/2

7/2

Ey:56B67,58C36,62He7

0.13 ±0.02 6

T1/2:60B110,69St04 183W 74

187R• 75

46.48 ±0.01

0.17 ±0.02

46.48 ±0.01

3/2

1/2

99.07 ±0.02

0.706 ±0.035

99.07 +0 02 '5'2:598 ±0.001

5/2

1/2

5/2

3/2

6.16 ±0.46

1.165

2:55B119,56B67,56D43,56H49, 56M58,57M34,57S81,58B9 1, 60Be10,61Gr9,64Ho18,66Ae02, 66Al01,66Al05 0.007 ±0.001

1.29 ±0.13

7.91

00

0.015 ±0.002

122

7.43 ±0.66

4.14

6.23 +0.2' -6.07 ±0.43

5.50 66.5

2:55M19,56T22,62Ha24,65Al08

Ey:55M1 9,57C39,62Se10

6

T1/2:62SU14,66Sh07,67Ag02, 67Ae03, 67Dr07, 68Ha29

croee/caec.:55M19,64Da15,65Ed01

134.242 .:to. 007

0.0102 ±0.0010

134.242 ±0.007

7/2

5/2

Ey:52M45,58C36,60Ga11,63Ha26 63Ma08,64Se11,66Re01

0.028 ±0.004 6

T1/2:60M08,63B112 188Re 75

1.86

63.581 ±O.OO.,

0.056 ±0.007

63.581 ±0.003

2

1

Ey:63S'C05

6

T1/2:64BU10,64Ta07,68M a 14

551

2.30

1.34

5.46 ±0.47

2:57M34,59K90,60Ga11,62B18, 62St21,63Ha26,64No08, 64S.11,66As02,66No01 0.0040 ±0.0005 2:68Su01

3.47 28.9

5.33 ±0.47

LOBNER, VETTER, AND HONIG

TABLE V (Continued)

Nucleus

Level in keY

1890e 76

69.62 ±0.03

T1/2 in ne 2.35 ±0.06

Trane. energy in keY 69.62 ±0.03

Ii

If

5/2

3/2

T1/2:69Gr10

129.42 ±0.05

0.090 ±0.002

129.42 ±0.05

5/2

3/2

E y:62Ha24,62Ma18

139.2 ±.0.3

0.080 ±0.002

0.5 ±0.1

a(E2)

Qo

2.92

20.2

3.73 ±0.13

139.2 ±0.3

1)

0.2 ±0.1

3.03

1.69

4.71 ±1.04

branching:negligible,60Fe3 5/2

3/2

E y:53C13.5 8N15

0.17 ±0.07

2.46

1.28

4.19 ±O.78

02:54D04,57M34,58M02,58N15, 68Av01

T1/2:60Pe3,68Av02,69St04 249Bk 97

ching

a(M1)

02:52S57,53S40,54C29,54M10, 57B56,58C42,58D76,58H89, 58J22,58N15,60Fo3,62Ha24, 64Ca11,64De06,65La05,66Sc04

T1/2:59C81,59L36,59M103, 62Be46,62Li12,66Ra01, 69St04

193 I r 77

bran~

02

02:59K09,61Re2,62Ha24,63Cr06, 68Ku17, 68Pe09, 69Gr10 branching: 62Ha24

Ey:59K09,63Cr06

19 1I r 77

croes caec.

41.79 0.009 ±0.05 a) ±0.002

41.79 ±0.05 a)

9/2

7/2

93.75 0.005 ±0.05 a) ±0.001

11/2 93.75 ±0.05 a)

7/2

51.96.) 11/2 ±0.05

9/2

E y: 65Ho13

0.015 ±0.002 a)106 0.091 ±0.018

00

1325 13.1 ±1.6 28.0 16.9 ±2.4

55.8 462.0 17.0 0.023 ±0.002a) ±1.8 02:64H008,65N013,66No01

T1/2:65H015 a) Adopted error k) Branching Ny (69.62 keV)/N y (33.35 keY)

1) Branching negligible according to 60Pe'.

552

=

(1.1 ± 0.2) x 10 3 and a(E2, 33.35keV) = 735.

QUADRUPOLE MOMENTS AND DEFORMATION PARAMETERS

REFERENCES FOR TABLES 35C03 35501 ~E-504

35507 36G03 36510 :?-7512 38510 39S14 43S15 52B71 52J1106

52114 0

52M45 52S57 53871 53C13 53L22 53540 53561 54B21 54D04 54F42

541'110 55BI04 55BI08 55B119 55B151 55F26 55H64 55K23 551'112 551'119 551'144 551'177 551'190 55R53 55S12 55S57 51;B41 56B67 56B129 56B154 56C13 56D40 56D43 5€G47 56H49

56H68 56H78 56K42 56M31 561'158 561'1105 56S21 56553 56T22 56W39

H.Caslmlr - Ph~slce 2, 715 (1535) Uber die Hyperfelnstruktur aes Europlums H.Schuler, 1.Schmldt - Z.Physlk 94, 457 (1935) H.Schuler, T.Schmidt - Z.Physlk 98, 410 (193?); See Also 3BSI0 (BI209) T.Schmidt - Quo~ed by 36S10 H.Gollncw - Z.Phllslk 103, 443 (1936) H.Schuler, •• Korschlng - Z.Physik 103, 434 (1936) H.Schuler, ~.Kcrschlng - Z.PhIlSlk 105, 158 (1937) H.Schuler, J.Rolg, H.Korschlng - Z.PhIlSlk Ill, 165 (1938) H.Schuler, h.Gollnow - Z.Physlk 11~, 1 (1939) T.Schmidt - Z.f~ysik 121, 63 (1943) B.M.Brcwn, D.H.1cmbcullan - Phlls.Rev. 88, 115B (195?): Erratum Phys.Rev. 91, 1580 (195~ ) F.K.McGcwan, E.D.Klema, P.R.Bell - Phlls.Rev. 85, 152 (1952) K.Murakawe, ~.Suwa - Fhys.Rev. 87, 1048 (1952) D.E.Muller, h.C.Hoyt, D.J.Klein, J.W.M.DuMond - Phys.Rev. 88, 775 (1952) J.B.Swan, R.D.hl 11 - Phys.Rev. 88, 631 (1952) F.Brown, G.e.hanna, L.Yeffe - Proc.~oy.Soc.(London) 220A, 203(1953) J.M.Cork, J.~.LeBlanc, W.H.Nester, D.W.Martln, M.K.Brlce - Phys.Rev. 90, 444 (1953) H.Lew - Phys.Rev. 91, 619 (1953) J.B.Swan, R.v.hlll - Phys.Rev. 91, 424 (1953) W.Von Siemens - Ann.Physlk 13, 136 (1953) B.Bleaney, H.l.D.Scovll, R.S.Trenam - Proc.Roll.Soc.(London) 223A, 15 (1954) H.deWaard - P~yslca 20, 41 (1954) H.F.frissel, E.~.Jensen - ISC-555 (1954) Assignment of Transition Multipole Orders from L Subshell Internal Conversion Coefficient Ratios F.K.McGcwan - Phys.Rev. 93, 163 (1954) J.M.Baker, B.bleaney - Proc.PhIlS.Soc.(London) €6A, 1090 (1955) J.M.Baker, B.~leanell - Proc.Phys.Soc.(London) 68A, 936 (1955) E.M.Bernsteln, H.W.Lewis - Phys.Rev. 100, 1345 (1955) B.Bleane~ - Proc.PhIlS.Soc.(London) 68A, 937 (1955); See Also 54B21 (Nd), 50B86 (Nd) M.Fred, F.S.To.kins, W.r.Meggers - Phys.Rev. 98, 1514 (1955): Erratum phys.Rev. Ill, 1747 (195e) N.P.Heydenbur" G.M.Temmer - Phlls.Rev. 100, 150 (1955); Erratum Prlv.Comm. (~ay 1956) T.Kamel - Phys.Rev. 99, 789 (1955) P.Marmler, F.Boehm - Phys.Rev. 97, 103 (1955) J.J.Murray, f.Boehm, P.Marmler, J.W.M.DuMond - Phys.Rev. 97, 1007 (1955) C.McClelland, H.Mark, C.Goodman - Phys.Rev. 97, 1191 (1955) H.Mark, G.T.Paullssen - Phys.Rev. 100, 813 (1955) J.P.Mlze, M.E.Bunker, J.W.Starner - Phys.Rev. 100, 1390 (1955) N.Ryde, E.Ancersson - Proc.Phys.Soc.(London) 68B, 1117 (1955) B.E.Slmmons, D.M.Van Patter, K.r.Famularo, R.V.Stuart - Phys.Rev. 97, 89 (1955) P.H.Stelson, F.K.McGowan - Phys.Rev. 99, 112 (1955) J.H.BJerregaard, U.Meyer-Berkhout - Z.Naturforsch. lla, 273 (1956) F.Boehm, P.Marmler - Phys.Rev. 103, 342 (1956) B.Bleane~, C.A ••lutchlson,Jr., P.M.Llewellyn, D.F.D.Pope - Proc.Phys.Soc.(London) 69B, 1167 (1956) E.E.Berlovlch - Izvest.Akad.Nauk SSSR, Ser.Fiz. 20, 143 (1956); Columbia Tech.Transl. 20, 1315 (1957) J.M.Cork, M.K.Brlce, D.W.Martln, L.C.Schmld, R.G.Helmer - Phys.Rev. 101, 1042 (1956) R.H.Davls, A.S.Dlvatla, D.A.Llnd, R.D.Moffat - Phys.Rev. 103, 1801 (1956) P.Debrunner, E.heer, W.Kundlg, k.Ruetschl - Helv.Phys.Acta 29, 463 (1956) G.Goldrlng, G.T.Paullssen - Phys.Pev. 103, 1314 (1956) T.Huus, J.H.Bjerregaard, B.Elbek - KgI.Danske Vldenskab.Selskab, Mat.-fys.Medd. 30, No.1? (195€) Measurement of Conversion Electrons from Coulomb Excitation of the Elements In the Rare Earth Region E.N.Hatch, F.Boeh_, P.Marmler, J.W.M.DuMond - Phys.Rev. 104, 745 (1956) N.P.Heydenburg, G.M.Temmer - Phys.Rev. 104, 981 (1956) K.Krebs, N.Nelkowskl - Z.Physlk 145, 543 (1956) T.E.Mannlng, M.Fred, F.S.Tomklns - Phys.Rev. 102, 1108 (1956) F.K.McGowan, P.H.S'elson - Phys.Rev. 103, 1133(1956) J.W.Mlhellch, T.J.Ward, K.P.Jacob - Phys.Rev. 103, 1285 (1956) D.R.Speck - Phys.Rev. 101, 1725 (1956) D.R.Speck - Bull.A•• Phys.Soc. 1, No.6, 282, C3 (1956) S.Thulln, J.G.Rasmussen, C.J.Gallagher,Jr., W.G.Smlth, J.M.Hollender - Phys.Rev. 104, 471 (1956) T.Wledllng - Thesis, Unlv.S'ockholm (1956) Correlation Measurements and Some Other Related Investigations of Excited Nuclei

553

LODNER, VETIER, AND HONIG

56Z05 57B56 57B115 57[\161 57C39 57C44 57D40 57E02 57E10 57H19 57H26 57M34 57M67 57M96 57N07 57581 575107 57W32 58B35 58B73 58B79 58B91 58C36 58C42 58C84 58D44 58D59 58D76 58F71

5bG17

58G56

58G105 58H89 58J22 58K49 58M02 58M36 58M108 58N03 58N15 58P11 58R12 58R53 58501 58S64 58S119 58S134 59B111 59B215 59C81 59D29 59E42 59H07 59H09 55K09 59K10 59K25

A.G.ZiR>in, t-.:.Molashin - Dokllldy Akad.Nauk SSSR 109, 283 (1~56); Soviet Phys.Dokllldy I, 419 (1!:-56) E.M.Bernstein, h.W.Lewis - Phys.Rev. 105, 1524 (1957) F.Boeh~. E.~.Hatch - Bull.Am.Phys.Soc. 2, No.4, 231, W3 (1957) V.G.Eobrcv, K.Y.Grcw.ov, E.S.Dzhelepov, B.K.Preobrazhenskii _ Izvest.Akad.Nauk SSSR, Ser.Fiz. 21, ~40 (1957); Columola Tech.Transl. 21, 942 (1958) E.L.Chupp, P.• f-Clark, J.W.M.DuMond, F.J.Gordon, H.Mark - Phys.Rev. 107, 745 (1957) C.M.Cless, u.reyer-Berkhcut - Nuclear Phys. 3, 656 (1957) P.B.DoTaln, C.A.Hutchlson,Jr., E.wong - Phys.Rev. 105, 1307 (1957) G.W.Eakins, l.N.Jensen - ISC-1007 (1957) The Nucl~ar Energy Levels and v,etastable States in the Decay of Vb1 6 9 B.Eibek, K.C.Nielsen, M.C.Olesen - Phys.Rev. 108. 406 (1957) E.N.Hatch, F.Eoehm - Phys.Rev. 108. 113 (1957) N.P.Heyoenburg, G.F.Pleper - Phys.Rev. 107, 1297 (1957) F.K.McGcwan, P.h.Stelson - Phys.Rev. 107, 1674 (1957) J.W.Mlhellch, B.Harmatz, T.H.Handley - Phys.Rev. 108, 989 (1957) J<.Murakatoa, T.l\llmei - Phys.Rev. 105,671 (1957) J.C.Ne~tcn - ~ucIear Phys. 3, 345 (1957) E.S.Snyder, ~.Frankel - Fhys.Rev. 106, 755 (1957) J<.G.Stef1en - Z.Physik 147, 1~2 (1957) E.A.Wolicki, L.~.Fagg, E.H.Geer - Phys~Rev. 105,238 (1957) J.M.Baker, b.Bleaney - Proc.Roy.Soc.(London) 254A, 156 (1958); See Also 55BI04 (Ho), 55B108 (Pr) O.Beckman - ~uclear Instr.Methods 3, 27 (1958) H.Beekhuis, h.de Waard - Physica 24. 767 (1958) E.M.Bernstein - Phys.Rev. 112,2026 (1958) E.L.Chupp, J.W.M.DuMond, F.J.Gordon, R.C.Jopson, H.Mark - Phys.Rev. 112, 518 (1958) J.A.R.Cloutier, A.Henrikson - Can.J.Phys. 36, 1253 (1958) F.P.Cranston,Jr., ~.E.Bunker, J.W.Starner - Phys.Rev. 110, 1427 (1958) R.M.Dia~ond, J.M.Hollander - Nuclear Phys. 7, 143 (1958) I.S.Dneprovskii, G.M.Kolesov - Izvest.Akad.Nauk SSSR, Ser.Fiz. 22, 935 (1958); Colu~bia Tech.Transl. 22, 927 (1959) V.S.Dubey, S.S.Malik, C.E.Mandeville, A.MukerJi - Phys.Rev. Ill, 920 (1958) E.G.Fuller, M.S.Weiss - Phys.Rev. 112, 560 (1958) C.J.Gallagher,Jr., D.Strcminger, J.P.Unlk - Phys.Rev. 110,725 (1958) M.P.Glazunov, B.F.Fulev - Izvest.Akad.Nauk SSSR, Ser.Fiz. 22, 941 (1958); ColumbIa Tech.Transi. 22, 932 (1959) K.V.Grcmov, B.S.Dzhelepov, B.K.Preobrazhenskii - Izvest.Akad.Nauk SSSR, Ser.Fiz. 22, 775 (1958); Columbia Tech.Trans. 22, 770 (1959) D.J.Horen, D.C.Wells - Bull.Am.Phys.Soc. 3, No.5, 315, B2 (1958) M.C.Joshi, b.N.Subba Rao, B.V.Thosar - Nuovo cimento 9, 600 (1958) E.D.Klema - Phys.Rev. 109, 1652 (1958) F.K.McGowan, P.H.Stelson - Phys.Rev. 109, 901 (1958) M.Martin, P.Harmier, J.de Boer - Helv.Phys.Acta 31, 435 (1958) K.Murakawa - Phys.Rev. 110, 393 (1958) J.O.Ne~ton - Nuclear Phys. 5, 218 (1958) S.V.Nablo, H.W.Johns, A.Artna, R.H.Goodman - Can.J.Phys. 36, 1409 (1958) J.G.Park - Proc.Roy.Soc.(London) 245A, 118 (1958) V.Ramsak, H.C.Olesen, B.Elbek - Nuclear Phys. 6, 451 (1958) V.A.Romanov - Izvest.Akad.Nauk SSSR. Ser.Fiz. 22, 191 (1958); Columbia Tech.Transl. 22, 188 (1959) R.D.Sharp, W.w.Buechner - Phys.Rev. 109, 1698 (1958) K.N.Shliagin, P.S.Samoilcv - Zhur.Eksptl.i Teoret.Ftz. 34, 29 (1958); SovIet Phys.JETP 7, 20 (1958) B.M.Spicer, H.H.Thels, J.E.~aglan, f.R.Allum - AustralIan J.Phys. 11, 298 (1958) A.Steudel - Z.Physik 152, 599 (1958) J.W.Bichard,J.W.Mihellch, B.Harmatz - Phys.Rev. 116, 720 (1959) A.E.Blaugrund - Phys.Rev.Letters 3, 226 (1959) p.P.Craig, J.G.Dash, A.D.McGuire, D.Nagle, R.P.Reiswig - Phys.Rev.Letters 3, 221 (1959) J.de Beer, M.r.artin, P.Marmier - Helv.phys.Acta 32,377 (1959); Erratum Helv.Phys.Acta 32, 658 (1959) B.Elbek, M.C.Olesen, O.Skllbreid - Nuclear Phys. 10, 294 (1959) E.N.Hatch, F.Boehm - Z.Physik 155, 609 (1959) B.Harmatz, T.k.Handley, J.W.Mlhelich - Phys.Rev. 114, 1082 (1959) W.R.Kane - Thesis, Harvard University (1959); AECU-4170 (1959) Photoelectric and Internal Conversion Spectra of Neutron Deficient Iridium Isotopes N.I.Kaliteevskil, M.P.Chaika, I.Kh.Pacheva, E.E.Fradkin - Zhur.Eksptl. 1 Teoret.Flz. 37, 882 (1~59); Soviet Phys.JETP 10, 625 (1960) V.M.Kelman, R.V.Metskhvarishvilll, B.K.Preobrazhenskil, V.A.Romanov, V.V.Tuchkevich 2hur.Eksptl.i Teoret.fiz. 37, 639 (1959); Soviet Phys.JETP 10, 456 (1960)

554

NUCLEAR INTRINSIC QUADRUPOLE MOMENTS AND DEFORMATION PARAMETERS

59K28 59K54 oSK90 59L~6

59M103 59P04 60Ab4 60Be11 F,OBe16 ,oOBI10 60Ca15 60El7 EOFe~

60Ga11 ~OGr20

60Gr?4 60Ha18 60101 60102

60Ja8 60Jo12 60Ka14 60Kn1 60Kr8 GOM08 60012 60PI3 60Ro14 60Sa23 60Th7 60Wa9 60Wl6 61Ab4 61Ar15 61Ba49 61Be30 61Bl11

61BI7 61BI13 61BI14 61Bu 17 61Ge14 61Grl 61Gr8 61Gr9 61Gr45 61Ha21 61Ha24 61Ha38

E.H.Ketelle, A.F.Brcsl - ?hl/s.Rev. 116, 9c (Bb!:i) J.W.Kno_les, G.A.Bartholomew, P.J.Camplon - Bull.Am.Phl/s.Soc. 4, No.8, 476 06 (1~59) !".V.Kllmentovskaia, P.I.Shavrln·· Zn u r s Ek s p t l v I Teoret.Fiz. 3~, 136U (19~9); Soviet Phl/s.JETP ~, ~fi7 (19n9) L.L.Lee,Jr., L.Me~er-Schutzmelster, J.P.Schlffer, D.Vlncent - Fhys.Rev.Letters 3, 223 (195~)

R.L.Mossbauer - 2.Naturforsch. 14a, 211 (1959) R.W.Parsons, L.Katz - Can.J.Phl/s. 37, 809 (lCl59) A.Abdura7akcv, K.Gromov, B.Dalkhsuren, B.Dzhelepov, I.Levenberg, A.Murln, Yu.Norsel/ev, V.Pokrovskl/, v.Chumln, I.Yutlandov - Nuclea~ Phl/s. 21, 164 (1960) P.Ber~v,,11 - Arklv fl/slK. 17, 125 (1960) E.M.Bernste In, Fi .Graetzer - Phys.Rev. 119, 1321 (1960) A.E.Blaugrunc, Y.Dar, G.Goldring - Phl/s.Rev. 120, 1328 (1960) A.Y.C"be2.as, I.Llndgren - Phl/s.Rev. 120, 920 (1960) E.Elbek, f..C.Glesen, O.Skllbreld - Nuclear Phl/s. 19, 023 (1960) L. Feuvui s - Ann.phl/s. 5, 181 (1!:i60) Les Noy"ux de Nombre de Masse A et de Nombre de Charge Z Impairs de la Region Qu A Est Voisin de 190 C.J.Gallagher,Jr., W.F.Edwards, G.~annlng - Nuclear Phl/s. 19, 18 (19tiO) R.C.Greenwocd, [.Brannen - Phl/s.Rev. 120, 1411 (1960) E.P.Grlgorev, E.S.Dzhelepov - Dokladl/ Akad.Nauk SSSR 135, 5~4 (1960): Soviet Phl/s • Dokladll s 1243 ( 1961) B.Harmatz, T.H.Handlel/' J.W.Mlhellch - Phl/s.Rev. 119, 1345 (1960) ~.G.Iodko, V.V.Tuchkevich, V.A.Romanov, O.M.Kresin - Zhur.EksDtl.1 Teoret.Fiz. 38, 1027 (1560); Phl/s.JETP 11, 735 (1960) M.G.lodko, V.A.Rcmanov, V.V.Tuchkevlch - Izvest.Akad.Nauk SSSR, Ser.Fiz. 24, 1465 (1960); Columbia Tech.Transl. 24, 1458 (1961) Relative Intensities of LU1 6 9 and LU1 7 1 Conversion Electrons K.P.Jacob, J.w.Mlhelich, B.Harmatz, T.H.Handlel/ - Phl/s.Rev. 117, 1102 (1560) C.E.Johnson, J.F.Schooley, D.A.Shirlel/ - Phl/s.Rev. 120, 2108 (1960) W.R.Kane, G.T.Emerl/, G.ScharfC-Goldhaber, M.HcKeown - Phl/s.Rev. 119, 1953 (1960) J.W.Knowles, G.Manning, G.A.Bartholomew, P.J.Camplon - Proc.Intern.ConC.Nucl.Struct., Kingston, Canada, D.A.Bromlel/' E.W.Vogt, Ed., Univ.Toronto Press p.576 (1960) K.Krebs, R•• inkler - Naturvissenschaften 47, 490 (19~0) R.L.Mossbauer, W.H.Wiedemann - Z.Phl/sik 159, 33 (1960) M.C.Olesen, B.Elbek - Nuclear Phl/s. 15, 134 (1960) Z.Plajner, L.Mall/' ~.Vobecky - Czechoslov.J.Phl/s. lOB, 544 (1~60) V.A.Romanov, M.G.Iodko, V.V.Tuchkevich - Zhur.Eksptl.1 Teoret.Fiz. 38, 1019 (1960); Soviet PhyS.JLTP 11, 7~3 (1960) P.G.H.Sandars, G.K.Woodgate - Proc.Rol/.Soc.(London) 257A, 269 (1960) H.H.Thies, E.H.Spicer - Australian J.Phl/s. 13, 505 (1960) The Phctooisintegratlon of Rare Earth Elements J.T.Wasson - Z.Naturforsch. lea, 276 (1960) R.G.Wilson, M.L.Pool - Phl/s.Rev. 117, 807 (1960) A.A.Abdurazakov, K.Y.Gromov, B.S.Dzhelepov, V.A.Khalkln - Izvest.Akad.Nauk SSSR, Ser.fiz. 25, 1096 (1961); Columbia Tech.Transl. 25, 1103 (1962) A.Artna, M.W.Johns - Can.J.Phl/s. 39, 1817 (1961) R.Bauminger, S.G.Cohen, A.Marlnov, S.OCer - Phl/s.Rev.Letters 6, 467 (1~61) E.E.Berlovich, M.P.Eonitz, M.K.Nlkltin - Zhur.Eksptl.i Teoret.Fiz. 40, 749 (1961); Soviet Phys.J[TP 13, 525 (19~1) M.Birk, A.E.Blaugrund, G.Goldring, E.Z.Skurnik, J.S.Sokolowski Proc.Conf.Electromagnetlc Lifetimes and Properties Nuclear States, Gatlinourg. Tennessee «(ctober 1961); NAS-NRC Pub. 974, p.70 (1962) The Lifetimes of the Rotational Levels In EU1 5 3 J.Blaise, J.Bauche, S.Gerstenkorn, F.S.Tomklns - J.phl/s.radium 22, 417 (1961) H.Blechschmidt, J.Christiansen, H.P.Hermsen - Phl/sik.Verhandl. 12, 185 (1961) H.Blechschmidt - Thesis, Univ.Hamburg (1961); Quoted by 64Su07 J.Burde, M.l
555

LOBNER, VElTER, AND HONIG

61Ha44

61Ma27 61Ma42 61Mc1 61M07 61Mu5 61Re2 61Ru1 61Sc 18 61Sc19 61Sc21 61Su13 61We 11 62Be46 62Bi5 62Bi8 62Bo13 62Bo18 62B026 62D05 ~2fu8

62Ga20 62Go20 62G023 62Gr16 62Ha24 €2Ha46 62He7 62Ju6 62K022 62Li 12 62Lo1 62L08 62Ma18 62Ma53 62Mu4 62Pe7 E2Ri4 62Ri9 62Ro26 62Se10 62Sp3 62St21 62Su1 62Su14

U.Hauser, E.~.Hatch, K.Runge, G.Knissel, W.Schneider - Proc.Conf.Electromagnetic Lifetimes a~d Properties ~uclear States, Gatlinburg, Tennessee (October 1951); NAS-NRC Publ. 974, p.230 (1962) Measurements of E1 Transition Probabilities In Several Deformed Odd-A NucleI as e Stud~ of 6 Single Particle ~otion R.!'1arrus, J.ldnocur - Phl/s.Rev. 124, 1904 (1961) R.Marrus, W.A.Nierenberg, J.Winocur - Nuclear Phl/s. 23, 90 (1961) f.K.McGc~an, P.h.Stelson - Phl/s.Rev. 122, 1274 (1961) E.Monnand, A.Moussa - Nuclear Phl/s. 25, 2~2 (1961) G.Murral/, R.L.Graham, J.S.Geiger, G.T.Ewan - AECL-1337, p.27 (1961) Precision 7-Energl/ Measurements Using External Conversion D.H.Rester, M.S.Moore, f.E.Durham, C."I.Class - Nuclear Phl/s. 22, 104 (1~61) L.I.Rusinov, R.L.Aptekar, V.S.Gvozdev, S.L.Sakharov, Yu.L.Khazov - Zhur.Eksptl.1 Teoret.fiz.. 40, 79 (1961); Soviet Phl/s.JETP 13, 55 (1961) A.Sehwarzschild - Proe.Conf.Electromagnetle Lifetimes and Properties Nuclear States, Gatlinburg, Tennessee (October 19(1); NAS-NHC Publ. 974, p.30 (1962) Review of Latest Developments in Delal/ed Coincidence Measurements O.W.B.Schult - 2.Naturforsch. 16a, 927(1961) U.Schnelder, K.Runge, E.N.Hatch, w.Kerler - Phl/slk.Verhandl. 12, 184 (19tH) Messung der Lebensdauer des 8,42 keV Niveaus im 169Tm B.N.Sutta Rao - Nuclear Phl/s. 28, 503 (1961) H.I.West, Jr., L.G.Mann, R.J.Nagie - Phl/s.Rev. 124,527 (1961) E.E.Berlcvich, Y.K.Gusev, V.V.Ilin, M.K.Nikitin - Zhur.Eksptl.i Teoret.fiz. 43, 1625 (1962); Soviet Phl/s.JETP 16, 1144 (1963) Lifetimes of the Excited States of Deformed DI/-160, Lu-175, Hf-177, and Ir-191 Nuclei M.Eirk, A.E.Blaugrund, G.Goldring, E.Z.Skurnlk, J.S.Sokolowski - Phl/s.Rev. 126, 726 ( 1962) K.M.Bisgard, K.Olesen, P.Ostergard - Nuclear Phl/s. 33, 126 (1962) E.Bodenstedt, H.J.Korner, E.Gerdau, J.Radeloff, K.Auerbach, L.Mal/er, A.Roygenbuck _ Z.Phl/sik 168, 103 (1962) E.Bodenstedt, H.J.Korner, E.Gerdau, J.Radeloff, L.Mal/er, K.Auerbach, J.Braunsfurth, G.Mielken - Z.Phl/sik 170, 355 (1962) Der g(R)-faktor des 2+-Rotatlonsniveaus von Er&611 O.V.Bogdankevich, B.I.Goryachev, V.A.Zapevalov - Zhur.Eksptl.i Teoret.fiz. 42, 1502 (1962), Soviet Phl/s.JETP 15, 1044 (1962) D.G.Douglas - Nuclear Phl/s. 33, 485 (1962) E.G.fuller, l.Hal/ward - Nuclear Phl/s. 30, 613 (1962) L.Gabla - Acta Phys.Polon. 21, 305 (1962); Phys.Abstr. 65, 1186, Abstr.12290 ( 1962) L.S.Goodman, H.Kopfermann, K.Schlupmann - Naturwissenschaften 49, 101 (1962) G.Goldring, h.M.Loebenstein, R.Barloutaud - Phys.Rev. 127, 2151 (1962) Z.Grabcwskl, J.E.Thun, B.Llndstrom - Z.Physlk 169,303 (1962) B.Harmatz, T.H.Handley, J.W.Mlhellch - Phys.Rev. 128, 1186 (1962) Properties of Nuclear Levels in a Number of Odd-A Nuclei (151
556

NUCLEAR INTRINSIC QUADRUPOLE MOMENTS AND DEFORMATION PARAMETERS

62Th3 ~2Th14

62101a27 62Wy4

6:'1Ab05 6:."AI06 ~3A112

63Bl12 63Bl14 63B124 63Bo04 6::1Br09 63Bu14 63Cr06 63EI06 63Em02 63Gr09 63Ha26 63Hu08 63Ko02 63L105 63MaOl 63Ma08 63~c13

63Mc18 63Ry02 63Sc05 63Sm02 63Su04 63Su06 63Va32 63101107 64Ab03

J.E.Thun, 2.Grabowskl, M.S.EI-Nesr, G.Bruce - Nuclear Phys. 29,1 (1962) F.Thomsen, f.Unsworth, K.Smlth - Priv.Comm. (November 1962) J.C.walkl'r - Phys.Rev. 127, 1735 (1962) P'.G.loIytourne - J.Chem.Phys. 37,1807 (1962); Recalculation of Data of 53L22(Pr l otl ) and €2G020( H0165) H.Abou-LE:lle, R.Foucher, N.Perrin - J.Phys. 24, 859 (1963) Mesure de la VIE: Moyenne du Premier Nlveau Excite du 152Gd S.S.Alpert - '-hys.Rev. 129, 1344 (19€3) Nuclear Moments and Hyperflne Structure of 13-Year Eu152 P.Alexander, f.Boehm - Nucl.Phys. 46, 108 (1963) Properties of Nuclear Energy Levels in Tm 1 6 9 J.Ejerregard, B.Elbek. O.Hansen, P.Salllng - Nucl.Phys. 44, 280 (1963) Inelastic Scattering from Some Rare-Earth Isotopes of Low Abundance A.E.Blaugrund, Y.Dar, G.Goldring, E.Z.Skurnik - Nucl.Phys. 45, 54 (1963) The Lifetimes ef the First Excited States of Re 18S and Re 1 87 D.Bloess, F.Munnlch - Z.Naturforsch. 18a, 1028 (1963) Messung del' lebensdauer des 8,4 Kev-Nlveaus von Tm 1 69 B.Bleaney - J.Appl.Phys. 34, 1024 (1963) Hyperfine Interectlcns in Rare-Earth Metals F.Boehm, J.Roeers - Nucl.Phys. 41, 553 (lS63) Properties of Some States in Dy160 R.L.Bramblett, J.T.Caldwell, G.F.Auchampaugh, S.C.Fultz Phys.Rev. 129, 2723 (1963) Photoneutron Cross Secticns of Ta 18 1 and H016S B.Bualck, R.~arrus - Phys.Rev. 132, 723 (1963) Hyperflne Structure and Nuclear Moments of Promethlum-147 and Promethium-151 B.Crase~ann, G.T.Emery, _.R.Kane, M.L.Perlman - Phys.Rev.1~2, 1681 (1963) Properties of Radioactive Re 1 89 B.Elbek - Thesis, University of Copenhagen (1963) Determination of Nuclear Transition Probabilities by Coulomb Excitation G.T.Emery, •• R.Kane, M.McKeown, M.L.Perlman, G.Scharff-Goldhaber - Phys.Rev. 129, 2597 ( 1963) Studies of Decay Schemes in the Osmium-Iridium Region. III. Decay of 15.&-Hour 11'-186 R.L.Grahem, G.T.Ewan, J.S.Geiger - Prlv.Comm. (June 1963) Levels in Eu-153 fed by Electron Capture in Gd-153 K.S.Han, S.C.Pancholi, Y.Grunditz - Arkiv Fysik 23, 505 (1963) On the Transitions from the Excited Levels of Re 18 7 S.Hufner, M.Kalvius, P.Kienle, W.WIedemann, H.Elcher - Z.Physik 175, 416 (1963) Das Quadrupol~oment des 8,42 keV Niveaus von Tm 16 9 H.J.Korner, J.Radelofr, E.Bodenstedt - Z.Physik 172, 279 (1963) Bestimmung des gR-faktors des 2+-Rotatlonsniveaus von 101 1 8 2 durch differentielle rr-Wlnkelkorrelationsmessungen In elnem ausseren Magnetfeld J.Llndskog, T.Sundstrom, p.Sparr.an - Arkiv fysik 23, 341 (1963) Experimental Studies of the Electromagnetic Transitions from the first Excited States in Hf-177, Lu-175, and Lu-177 I.Maleh - Bull.Am.Phys.Soc. 8, No.1, 9, B5 (1963); Oral Report; Prlv.Comm. (~ay 1953) Hyperflne Structure of Er 17 1 I.P'arklund, B.Lindstrom - Nucl.Phys. 40, 329 (1963) Precision Determination of GaMma Energies of Nuclei with A = 152-197 R.E.McAdams, G.W.Eakins, E.N.Hatch - Phys.Letters 6, 219 (1963) The Half-Life on the 8.4 keV Level In Tm 1 6 9 F.K.McGowan, P.H.Stelson, R.L.Robinson, J.L.C.ford - ORNL-3425, p.26 (1963) Cculomb Excitation of Nuclear States in the Isotopes of Osmium H.Ryde, L.Persson, K.Oelsner-Ryde - Arkiv Fyslk 23, 195 (1963) Levels in Tb 1 S9 Populated in the Decay of Dyl59 O.W.B.Schult, B.Weckermann, T.v.Egldy, E.Bleber - Z.Naturforsch. 18a, 61 (1963) Messung Niederenergetlscher Neutronenelnfang-Strahlung Vom Re 1 86 und Re 1 88 R.K.Smlther - Phys.Rev. 129, 1691 (1963) Ga.ma-~ay Spectrum from Thermal-Neutron Capture In Hf 1 7 7 and Associated Energy Levels in Hf 1 7 8 R.G.Summers-Gill, H.K.Eastwood - Bull.Am.Phys.Soc. 8, No.6, 463, C2 (1963) Hyperline Structure of Sm15 3 T.Sundstrom, p.Sparrman, J.O.Lindstrom, J.Llndskog - Phys.Letters 6, 56 (1963) A Measurement of the Lifetime of the 8.4 keV Level In Tm 1 6 9 P.Van Assche, M.Neve de Mevergnles, J.Vervier - J.Phys. 24, 850 (1963) Mesure Precise de I"Energle de Niveaux Excites dans 169T~ W.Wledemann, P.Klenle, f.Stanek - Z.Angew.Phys. 15, 7 (1963) Kernrescnanzfluoreszenz des 113 keV Niveaus von Hf 177 A.A.Abdumalikov, A.A.Abdurazakov, K.Y.Gromov, F.N.Mukhtaslmov, G.Y.Uaerov - Izv. Akad. Nauk lz. SSR, Sere flz.-Mat. Nauk 8, No.2, 42 (1964);Chem. Abstr. 61, 7885B (1964) Investigation of Ccnversion Electron Spectra of Er and Ho Isotopes with T1/ 2 < 18000 sec

557

LOBNER, VElTER, AND HONIG

F4Ab07 64Ab08 64AI04 1=;4AI09 64Be36 64Bl22 648039 ~4Br03

64Br10 54Bu09 54Bu10 64Ca11 64Ch10 64Co08 64Co09 64Da15 64De06 64Do06 64EgOl 64Ew04 64Ga12 64Go09 64Gu01 64Ha52 64Ho18 64Ho25 64Hu07 64Ka02 64Ka07 64KI03

H.Abou-leile, A.Santonl, J.Valen~in - Phys.Nucl.Ann. 1962-1963, Faculte des Sciences de l'Universite de Paris Institut du Radium p.45 (January 1964) Premiers Niveaux de 17-Hf et 17ZHf H.Abou-Leila - Compt. Rend. 2E9, 3003 (1964) Periode du Premier Etat Excite du Noyau de Hafnium 172 P.Alexanaer, F.Boehu, E.Kankelelt - Phys. Rev. 133, B284 (1954) Spin 2~/~- Isomer of LU 1 77 P.Alexander - Phys. Rev. 134, B499 (1964) Properties of Gamma Transitions in the Decays of Sm 1 5 3 and Gd 15 3 into EU153 E.E.Berlcvich, Y.K.Gusev, D.M.Khal, I.Shenalkh - Izv. Akad. Nauk SSSR, Ser. fiz. 28, BO (19t4); lull. Acad. Sci. USSR, Phys. Ser. 28, 77 (1965) Lifetimes of lxcited States of w18 Z , Pr l-- and EU1 5 1 B.Bleane~ - rroc.Intern.Congr.Quantum Electronics, 3rd, Paris (1963), P.Grlvet, N.Blceffibergen. Eds., Columbia Univ.Press, New York, p.595 (1954) Nuclear ~oments of the Lanthanons C.D.Bowmen, G.F.Auchampaugh, S.C.Fultz - Phys.Pev. 133, B576 (1964) Photodlslntegration of U235 R.L.Bramblett, J.T.Caldwell, R.R.Harve», S.C.Fultz - Phys. Rev. 133, B8ES (1964) Phctoneutron ~rcss Secticns of Tb 1 59 and 0 1 6 V.Brabec, O.Bergman, Y.Grunditz, E.~asa, S.-E.Karlsson - Arkiv Fysik 26, 511 (1964) Transltlcns Following the Decay of Dy166 B.Budick, I.r.aleh, R.Marrus - Phys. Rev. 135, B1281 (1954) Atcmic-Eeam Etudies of Nuclear Properties of Some Rare-Earth Isotopes S.B.Burson, [.B.Shera, T.Gedayloo, R.G.Helmer, D.Zei - Phys. Rev. 136, Bl (1964) Levels in Re 1 8 8 from Studies of the Decay of W1 8 8 (69.4 d), Re 1 8 8(18 h), and Re 1 8 8 1J'( 18.5 m) J.A.Carreron, I.A.Campbell, J.P.Compton, R.A.G.Lines - Phys. Letters 10, 24 (1964); Erratum Phys.Letters 10, 291(1964) Nuclear Orientation of Ir 1 9 1m In Iron R.-J.Champeau - J. Phys. (Paris) 25, 825 (1964) Determination Spectroscoplque du ~oment Quadrupolalre du Noyau de Z-lPu R.L.Cohen - Phys. Rev. 134, A94 (1964) Mossbauer Effect Studies of Nuclear Hyperflne Structure In Tm1 6 9 In fezTm R.L.Cohen, J.H.Wernlck - Phys. Rev. 134, B503 (1964) Nuclear Hyperflne Structure In Er 166 H.Danlel, J.heufner, T.Lorenz, a.W.B.Schult, U.Gruber Nucl.Phys. 56, 147(1964) Der Zerfall Ta 18 2 • WI82 B.I.DEUtch, P.HornshoJ - Nucl.Phys. 53, 497(1964) The Measure~ent of the L Shell Particle Parameters In the 42 keV E3 Transitions of Ir l 9 1 M.Dorlkens, L.Dorikens-Vanpraet, J.Demuynck, a.Segaert - Proc.Phys.Soc.(London) 83, 461( 1564) Lifetime of the First Excited State in 160Dy V.N.Egorov - Opt.1 Spektroskopiya 16, 549(1964); apt.Spectry.(USSR) 16, 301(1964) Hyperfine Structure of the Atomic Spectrum and Nuclear Moments of the Thorium Isotope 2Z9Th G.T.Ewan, A.J.Tavendale - Can.J.Phys. 42, 2286(1964) Hlgh-kesolution Studies of Gamma-Ray 5pectra Using Lithium-Drift Germanium Gamma-Ray Spectrometers L.Gabla - Acta Phys.Polon. 25, 617(1~64); Nucl.Scl.Abstr. 18,4126, Abstr. 30743(1964) Nuclear Llectric Quadrupole Moment of Radioactive Nuclide 152Eu Obtained by the Isotope Shift Effect In the Atomic Spectrum L.S.Goodman, K.Schlup~ann - Z.Physlk 178, 235(1954) Bestl~mung der Kernnomente des H0165 Aus der Hyperfelnstruktur des Grundzustandes 1m Ho I-Spektrum C.Gunther, w.Engels, E.Bodenstedt - Phys.Letters 10, 77(1964) The g(R)-factor of the 2. Rotational State of ytterbium 172 P.G.Hansen - Thesis, Unlv.Copenhagen(1964); Riso Rept.No.92(1964) Experimental Investigations of Decay Schemes of Deformed Nuclei B. W.Hooton - Nuc I.Phys. E9, 341( 1964) K Shell Conversion Coefficients In H0165, Tm169, TalSI and Yb170 B.W.Hooton - Nucl.Phys. 59, 332(1964) Coulomb Excitation in Na 2 3, ~n55, Sm1 5 Z, Ho165, and Tml69 S.Hufner, H.Kalvlus, P.Klenle, W.Wledemann, H.Elcher - Rev.Hod.Phys. 36, 393(1964) Mossbauer Lffect In Tm1 6 9 E.Kankelelt, f.Boehm, R.Hager - Phys.Rev. 134, B747(1964) Mossbauer Effect In Tm l 6 9 and Total Internal Conversion of the 8.42-keV Transition G.Kaye, k.L.Graham - Bull.Am.Phys.Soc. 9, No.4, 498, KAI2(1964) Decay of 171Lu and 172Lu P.Klenle - Rev.Hod.Phys. 3E, ~72(1964) Recent revelopments In Rare-Earth Mossbauer Studies. I

558

NUCLEAR INTRINSIC QUADRUPOLE MOMENTS AND DEFORMATION PARAMETERS

64Ma27 64Mo05 64No08 64Roll '34Ro19 645c 08 64Sell '345003 o45u02 64Su05 64Su07 64Ta07 '54Tr03 65Ab02 65AoOl 65Ao02 65AI08 G5Al10 65Ar05 65As03 '55B034 65Br16 65De05 65Du02 ,::5EdOl 65Gu02

65Ho05 65Ho06 65Ho13 65Ho15 65HuO 1 65Hu02

B.P.Maier - lhesis, Technische HochschuIe Munchen (1964) Niederenergetische GammaIinien yom Neutroneneinfang in U 2~8, Lu 175, and Lu 176 R.E.McAoams, G.W.Eakins, E.N.Hatch - BuII.Am.Phys.Soc. 9, No.4, 49~, K~11(1964) Half-Life of the 8.4-keV Level in 169Tm T.Novakcv, J.M.Hollander - Nucl.Phys. 60, 5S3( 1964) Ancmalous L Subshell Ratios In Mixed MI-E2 Transitions J.S.Ross, K.~urakawa - J.Phys.Soc.Ja~an 19. 249(1964) Nuclear Moments of Yb l 7 3 R.Rougry, J.~.SaMueii. A.Sarazln - J.Phys.(Paris) 25, 9d~(19F4) Mesur~ des Vies Moyennes de Niveaux Excites de l'Osmium le6, du Thallium 203, du Tungstene Ib2 du Plomb 207 O.Schult - ~riv.Comm.(May 1~€4) C.5ebille, f.~idemann - Compt.Rend. 259, 2207( 1964) Le Spectre d'Electrons de Basse Enerqle Emis au Cours de Ia Transmutation du Tungstene 187 en Rhenium 1e7 A.A.Sorokln - Zh.Eksperim.1 Teor.Fiz. 47, 1232( 1964); Soviet Phys.JETP 20, 833( 1965) Llfeti~e of tne 114-keV Level in the Pr l J 9 Nucleus R.G.Summers-Gill - Priv.Comm.(July 1964) T.Sundstro~, J.(,.Lindstrom, p.Sparrman, J.Lindskog ~ Arkiv Fysik 26, 3~7(1964) Two LifetimES in the Ground State Rotational Band of Tm 171 T.Sundstrom, J.LIndskog, J.O.Llndstrom, p.Sparrman - Arklv Fyslk 26, 361 (1~64) The Electroma~n~tic PropertIes of Levels and TransitIons In the Ground State Rotaticnal Band of Tml 6 9 K.Takahashl, ~.McKeown, G.Scharff-Goldhaber - Phys.Rev. 13f., 918(1964) Isomer nel.em J.Treherne, J.Valentln, J.-M.Van Horenbeeck - Compt.Rend. 258, 5203(1964) Band de Fotation K=c dans la Desintegratlon du Hafnium 170 H.Abou-Leila, ~.N.Perrin, J.Valentln - Arkiv Fyslk 29, 53 (1965) Half-Lives of the First Excited States In Hf 1 7• and Hf 17H.L.Acker, H.Marschall, G.Backenstoss, D.Qultmann - Nucl.Phys. 62,477 (1965) Die Quadrupolaufspaltung des 2p-Dubletts In Myonenatomen mit stark deformierten ~ernen H.L.Acker, G.Backenstcss, C.Daum, J.e.sens, S.A.De Wit - Phys.Letters 14, 317 (1965) Measurements and Analysis of Muonlc X-Ray Spectra In the Spherical NucleI Au, Pb and BI and the Deformed Nuclei Wand U P.Alexander, R.S.Hager - phys.Rev. 139, B28e (1965) High-Resolution Measurements of Internal Conversion Lines in WI8J D.Alt, I.Malen, R.Marrus - phys.Rev. 138, B1356 (1965) Hyperfine Structure and Nuclear Moments of Promethlum-148 and Erblum-165 C.Arnould, S.Gerstenkorn - Compt.Rend. 261, 1488 (1965) Structures hyperflnes des Niveaux Fondamentaux du TerbIum. Signe et Moment Quadrupolaire Nuclealre du Terbium 159 D.Ashery, A.l.Elaugrund, R.Kallsh, J.S.Sokolowskl, Z.Vager - Nucl.Phys. 67, 385 (1965) E2/Ml Mixln, RatIos and K Conversion Coefficients of Some notational Transitions J.P.Bocquet - J.Phys.(Paris) 26, 795 (1965) La Banae de Rotatlcn Fondamentale du Noyau 171Tm R.T.BrockmeIer, J.D.Rogers - Nucl.Phys. 67, 428 (1965) Properties cf Low-Energy Transitions In Dyl61 J.De Boer - Nucl.Phys. 61, 675 (1965) COUlomb Excitation of Tml 6 9 J.-C.Duperrln, A.Glzon-Juillard - Compt.Rend. 261, 98 (1965) La Desintegration de l'Erblum 169 W.F.Edwards, F.foehm, J.Rogers, E.J.Seppi - Nucl.Phys. 63, 97 (1~65) Relative Intensities of Gamma Rays Following the Decay of Ta l 8 2 and Ta l 8 3 C.Gunther, G.Strube, U.Wehmann, W.Engels, H.Blumberg, H.Lulg, ~.M.Lieder, E.Bodenstedt, H.J.Kcrner - Z.Physlk 183, 472 (1965) Messung des e(R)-Faktors des 2+-Rotationsniveaus von Dyl60 nach der Spinrotatlonsmethode und Eestlmmung der Multipoimischungen mehrerer y-Ubergange 1m Zerfall des Tb l 6 0 P.Hornshoj, b.I.Deutch - NucJ.Phys. 67, 342 (1965) The Measurement of the K Shell Particle Parameter In the 272 keV El Transition of Ybl 7 3 G.Hohberg, ~.Krebs, B.Schuiz, R.winkler - Z.Physik 186, 380 (1965) Hyperfeinstruktur-Untersuchungen im RhenIum-I-Spektrum M.D.Holtz, J.M.Hollander, R.L.Graham, T.NovaKov - Quoted by 67LeHo, p.444 M.D.Holtz, J.~.Hollander, T.Nov8kov, R.L.Graham - UCPL-11828, p.38 (1965) Energy Levels of Bk 2- 9 S.Hufner, p.~i~nle, W.Wledemann, H.Elcher - Z.Physlk 182, 499 (1965) Hyperfine fields In ErbIum Metal A.Hubner - 2.Physik 183. 25 (1965) Lebensdauermessungen von Angeregten Kernnlveaus mit der Methode der Verzogerten Ko l nz idenz.en

559

LOBNER, VETTER, AND HONIG

65Ko13 65KrOl 55La05 60Lf 06 65Li13 65Ma18 65Me08 65Mu03 65Mu07 65Ra06

65Ro17 65ScOl 65Sc 05

65S",04 155StGr 65St03 65St08 ~5SyOI

65Ti02 65Wi09 66Ab02 6eAI05 66Ar18 66As02 66As03 66At05 66AxOI 66Be25 66Be51

H.R.Koch - £.Physik 187, 450(1965) Neutroneneinfanps-Gammaspektrum und Niveauschema vcn Erbium 167 L.Kristensen - P'!'iv.Comm. (February 19'55) D.Lan~e - Z.fhysik 183, 90(1965) Untersuchung des Iridium-191m-Zerfalls J.Lindskcg, 1.Sundstrom - Quoted by 65ScOI I.LindGren - plpha-, Beta- and Gamma-Ray Spectroscopy, Vol.II, K.Siegbahn, Ed., North-helland Publishing Co., Amsterdam, p.1621 (1965) Table cf Nuclear S~ins and Moments B.P.~.~aier - Z.Physik IS4, lE3(1~65) Niederenergetische Ga~malinlen vom Neutronenelnfang in Lu 176 and Lu 176 W.Meil ing, F.Stery - Nucl.Phys. 74, 113( 1965) Messung von ~anosekunden-Lebensdauern an Niveaus deformierter Kerne G.Murray, M.L.Graharr, J.S.Geiger - Nucl.Phys. 63, 35~1965) The Precision Determination of Some y-Ray Energies Using a a-Spectrometer W.Muller, A.Steudel, H.Walther - Z.Physik 183, 303(1965) Die Hyperfei~struktur in den 4f 7 6s 6p-Termen des Eu I und die Elektrlschen Kernquadrupolmomente von Eu l s l und EU15 3 S.Rabcy, e.C.Trall, J.A.Ejorkland, R.~.Ehrlich, R.J.Powers, V.L.Telegdi - Nucl.Phys. 73, ::E3(lH'S) Experimental ubservatlons of Electric Quadrupole Effects in the Muonlc Spectra of 235U, 181Ta and 239pU R.Rougny, J.J.Samuell, A.Sarazin - J.Phys.(Parls) 26, '53(1965) Mesure des ~ies Moyennes de Niveaux Excites de I'Ytterbium 170, du HafniUin 177 et du Lutecium 175 A.Schwarzschlld, L.Grodzins - Nucl.Phys. 67, 337(1965) Lifetime of 120 keV Level of LUl77 R.P.Scharenberg, J.D.Kurfess, G.Schllllng, J.W.Tippie, P.J.Wolfe - Phys.Rev. 137, E26( IS65) Pulsed-beam Measurements of the Gyromagnetic Ratio of the 111-keV 2+ State in Tungsten-184 K.F.Smith, P.J.Unsworth - Proc.Phys.Soc.(London) 86, 1249(1965) The HyperCine Structure cf 167Er and Magnetic Moments of 1_3,1_sNd and 167Er by Atomic Eeam Triple Magnetic Resonance P.H.Stelson, L.Grodzlns - Nucl.Data AI, 21 (1955) Nuclear Transition Probability, B(£2), for 0+(g.s.)+2+(first) Transitions and Deformation Parameter, a2 F.S.Stephens, N.L.Lark, R.M.Diamond - Nucl.Phys. 63, 82(1965) Rotational States Produced in Heavy-Ion Nuclear Reactions T.Stenstrom, B.Jung - Nucl.Phys. 64, 209(1965) The Decay of Neutrcn-Deficient Er and Ho ~ucleides G.I.S~chikov, O.D.Kovrigln, G.D.Latyshev, G.A.Londarenko, A.F.NovgorocJv _ Izv.Akad.Nauk SSSR, Ser.Flz. 29, 159(1965); Bull.Acad.Sci.USSR, Phys.Ser. 29, 157( i ses j New Data on the Conversion Electrons from the Long-Lived Isotopes In the Lutetium Fraction fron Prctcn Bcmbarded Tantalum J.W.Tipple, F.p.Scharenberg - Phys.Letters 16, 154(1965) Measurement cf the Gyromagnetic Ratio of the 84 keV 2+ State in Ytterbium 170 R.Wlnkler - Fhys.Letters 16, 156(1965) Hyperfelnstruktur-Anomal ie und Quadrupolmomente von 151,lS3Eu H.Abou-Leila, J.Treherne - J.Phys.(Paris) 27, 5(1966) Perlodes aes Premiers Etats Excites de 156Dy et 158Dy P.Alexander, ~.Ryde, E.Seltzer - Nucl.Phys. 76, 167(1966) Electromagnetic Transltlcns in IB1Ta C.Arnoult, S.~erstenkorn - J.Gpt.Soc.Am. 56, 177(1966) Experiffiental and Theoretical Hyperflne Structure of Low-Lying Levels of Terbium 4f 85d€S2 Configuration; Quadrupole Moment of 159Tb D.Ashery, A.~.Blaugrun, R.Kalish - Nucl.Phys. 76, 336(1966) E2/M1 mixing Patios and K Conversion Coefficients in Odd-Mass Rotational Nuclei D.Asher~, ~.Assaf, G.Goldring, A.Sprlnzak, Y.Wolfson - Nucl.Phys. 77, 650(1966) Lifetime Measurements of Some Rotational Levels by a New Recoil Method U.Atzmony, l.R.Bauminger, S.Ofer - Nucl.Phys. 89, 433(1966) Mossbauer Effect Studies of the 58 keV Level of 159Tb P.Axel, J.Miller, C.Schuhl, G.Tamas, C.Tzara - J.Phys.(Paris) 27, 262(1966) Etude de 115 Deformation du Noyau d'Holmlum E.Eelorizky, Y.Ayant, D.Descamps, Y.M.D'Aublgne - J.Phys.(Paris) 27, 313(lg65) Ftude de 115 Structure Hyperflne de l'Ion Er3+ dans un Monocrlstal de MgO R.B.Begzhanov, K.M.Sadykcv - 2hETF Pisma v Redaktsiyu 4, 436 (1966); JETP Letters 4, 294 (1966) Lifetime of the 5-keV (~/2+) Level of TU171

560

NUCLEAR INTRINSIC QUADRUPOLE MOMENTS AND DEFORMATION PARAMETERS

65Bl08 ;:;6Bo16 65Di02 6fEIOl 66Gr20 6f.iGu07 6t'Ha23 6€He09

66Ka12 66KrOl 66Ku07

D.Elo~ss, A.Krusche, f.Munnlch - Z.Pnyslk 192, 358(1~66) Messung aer L~bensGauer angeregter ~ernniveaus von AI28, CS133, Pr 1_ 1, W182 und Pt 1 95 f.Eoehm, G.(oldrlng. G.B.Hagemann, G.D.Symons, A.Tveter - Phys.Letters 22, 627( 19~6) A Determination of the Gyromagnetic Ratios of Some Odd-A Deformed ~uclei fro~ Eranc~lng ratio M.easurements R.S.Dingus, k.L.Talbert, Jr., ~.G.Stewart - Nucl.Phys. 83, 545(1~6o) Measurement~ ~f Converslcn Coefficients for Transitions In 15-Gd, 160Dy, 170Yb, 171Y~ and l .. lPr M.S.LI-Nesr, ~.R.EI-Aassar - Z.Physlk 18~. 138(1966) Study cf Er 1 7 1 Decay by ~eans of an Electron-Gamma Cclncldenc~ Technique L.Groazlps. h.P.Borchers, G.B.Hagemann - Nucl.Phys. 88, 474(1966) Coulomt Excitation In the Platinum Isotopes C.Gunther. K.Kankelelt - Phys.Letters 22, 443(1966) Magnetic Mone~~ of the first Excited State in 171Yb B.Harmatz, T.H.handley - Nucl.Phys. 81, 481(1966) Nuclear Spectrcscopy of Neutron-Deficient Hafnium and Rare Earth Activities W.Henning, F.~lenle. E.Steichele, f.Wagner - Phys.Letters 22, 446(1966) Magnetic Properties of the ~ = 1/2 Rotational Band of 171Yb G.Kaye - Nucl.Phys. 86, ?41(196~) Excited States of 171Yb fed in the Electron Capture Decay of 171Lu G.M.Kalvius. J.K.TIson - Phys.Pev. 152, 829(1966) Mossbauer Effect in Two Excited States of a Rotational Band In Yb171 A.Krusche, t.Bloess, f.Munnlch - Z.Physlk 192, 490(1966) Messung aer L~bensdauer angeregter Kernniveaus von Gd155 J.Kuhl. A.Steudel, H.Walther - Z.PhysIk 196, 365(1966) Hyperfeinstrukturuntersuchungen im Re I-Spektrum mit digital registrlerendem Doppel-fabry-Perot-Spektrometer. Die Quadrupolmomente von Re185. Re 1 a 7• Re 1 86 und R~188

66Mc07 66Mc08 66NoOl 66RaOl 66Ra04 66Rp-Ol 6fSc04 66Sc06 66Se06 66Sh07 66Th07 66T! 01 67Ab06 €7Ag02 67Ar22 b7As03 '57Ba34 F7Ba67

R.E.McAdams, E.N.Hatch - Nucl.Phys. 82. 372(1966) Measured Lifetl~es of the 87 and 105 keV Nuclear Levels in 155Gd R.E.McAaams. G.W.Eakins, E.N.Hatch - Nucl.Phys. 82, 449(.1966) Measured Lifetimes of the 8.4, 118 and 139 keV Nuclear Levels in 169Tm and of the 396 keV Level in 175Lu T.Novakov - Proc.lntern.Conf.Internal Conversion Process, NashvIlle, Tenn. (1965), J.H.Hamilton. Ed., AcademIc Press, Inc •• New York. p.497(1966) MI-E2 Mixing from L Subshell Conversion Ratios B.V.N.Pao, S.Jnanananda - Proc.Phys.Soc.(London) 87,455(1965) Lifetimes of Excited States In 155Gd and 191 1 1' a.V.N.Fac, S.Jnanananda - Nucl.Phys. 75, 109( 1966) Half-Lives of the first Excited States In 182W and 170Yb J.J.Reidy. M.L.Wiedenbeck - Nucl.Phys. 79,193(1966) A Study of the Decay of 187W Using a 2m curved-Crystal Spectrometer M.Schumacher. R.Schoneberg, A.flammersfeld - Z.Physik 191, 343( 1966) Der Zerfall des Pt 1 91 A.Schwarzsct-lld - Phys.Rev. 141,1206(1966) Lifetimes of first 2+ and 4+ States of 192pt and Some Systematics of E2 Transitions in Even-Even Nuclei G.G.Seaman. J.S.Greenberg, D.A.Bromley, f.K.McGowan - Phys.Rev. 149, 925(1966) Collective Nuclear Structure in the Even-Even Samarium Isotopes N.Shikazcno, H.Takekoshi. T.ShoJI - J.Phys.Soc.Japan 21, 829(1966) Mossbauer Effect Studies of the 46.48-keV Level of W183 M.f.Thomas, M.A.Grace - Nucl.Phys. 88, 56( 1966) Coulomt Excitation of Lo~-Energy States In 127 1 . 121Sb and 183W J.~.Tippie, ~.p.Scharenberg - Phys.Rev. 141. 1062(1966) Pulsed-Eeam Measurement of the Gyromegnetic Ratio of the first Excited Rotational States in ytterbium 172, 174, and 176 H.Abou-Leila - Ann.Phys.(Paris) 2, 181(1967) Determination des Moments d'Inertie et des Deformations a Partir aes Mesures des Periodes Courtes dans les No~aux Pair-Pair Deformes D.Agresti, E.Kankeleit, Bv Pe r s s on - Phys.Rev. 155, 1342(1967) Hyperfine Int~racticns and Lifetimes of Low-Energy States in w1 8 2 and W183 H.Aren~ovel, M.Danos, W.Grelner - Phys.Rev. 157, 1109 (19€7) Photonuclear Effect In Heavy Deformed Nuclei D.Asher~. N.Bahcall, G.Gcldring, A.Sprlnzak, Y.Wolfson - Nucl.Phys. A101, 51(1967) Lifetime Measurements of Some Rotational Levels by a New Recoil Method (II) A.Eacklin, A.Suarez, O.W.B.Schult, B.P.K.Maier, U.Gruber. E.B.Shere, D.W.Hafemeister, W.N.Sheltcn, R.K.Sheline - Phys.Rev. 160, 1011(1967) Nuclear Levels of Dy162 J.A.Barclay, ~.C.Easley, D.A.Shirley - UCRL-17299, p.215 (19~7) An Investi,ation of the Hyperfine Structure of Trivalent 158Tb by Nuclear Alignment and Paramagnetic Resonance: Determination of the Spin, Dipole Moment, and Quadrupole Moment of 15 8T b

561

LOBNER, VETIER, AND HONIG

67Ee55 57BI10 67De21 67Dr07 ~7EbOI

67Foll 57Gi02 67Go22 67Ho12 ~7HrOI

67Ko12 67Ku03 67Ku07 67MoOS

67Pi07 67ScOS

67Se09 67Si03 67St27 67Wa18 67Wo06 68Ab08 68AI01 58AvOl 68Av02 68Be41 68Ca06 68Ca07 68De24

E.E.Berlcvich, Y.N.Novikov - Izv.Akad.Nauk SSSR, Ser.Fiz. 31, 2~7(1~67); Eull.Acad.Sci.USSR, Phys.Ser. 31, 271(1968) Quadrupole ~cments of Deformed Nuclei K.M.Blsgard, L.Veje - Nucl.Phys. A103, 545(1967) Inelastic Scattering of Alpha Particles and Deuterons on 185Re and 187Re S.A.De ~it, G.Backenstoss, C.Daum, J.e.Sens, H.L.Acker - Nucl.Phys. 87, 657 (19~7) Measurement ana Analysis of Muonic X-Ray Spectra in Deformed Nuclei M.Drosg, E.Ujleki - Acta Phys.Austrlaca 25, 334(1967) Mossbauer Eflect and Lifetime of ~he 46.5 keV Level of 183W W.Ebenhoh, V.J.Ehlers. J.Ferch - Z.Physik 200, 84(1967) Hyperfine-Structure Measurements on Dy161 and Dy163 C.Foin, J.Oms, J.-L.Barat - J.Phys.(Paris) 28, 861(1967) Etude oes ~iveaux Excites de lS5Gd Obtenus a Partir de 155Eu P.Gilac, G.Goloring, R.Herber, R.Kalish - Nucl.Phys. A91, 85(1967) Precession ~easurements Following Coulomb Excitation with Oxygen Ions (II). Gyromagnetic Ratios of the 2+ States In Hf, Wand Os Isotopes P.f.A.Goudsmit, J.Konijn, F.W.N.De Boer - Nucl.Phys. A104, 497(1967) A Stud~ of the Decay of 2.5 min 180Re K.J.Hofstetter, P.J.Daly - Fhys.Rev. 159, 1000(1967) Decay Properties of Neutron-Deficient Osmium and Rhenium Isotopes. II. The A = 180 Decay Chain A.Z.Hrynkie~icz, B.Sawicka, J.Styczen, S.Szymczyk, M.Szawlowski - Acta Phys.Polon. 31, 437(1567) Coulomb Excitation of 1890S Nucleus J.Kormicki, r.Niewodniczanski, Z.Stachura, K.Zuber, A.Budziak - Nucl.PhNS. A102, 2S3( 1567) Excited States of the tssGd Nucleus R.A.Kuebbing, K.J.Casper - Nucl.Phys. A98, 75(1967) Angular Correlation of Cascade Gamma Rays in 9-Nb J.D.Kurfess, R.P.Scharenberg - Phys.Rev. 161, 1I8S( 1967) Pulsed-Beam ~easurements of the Nuclear g Factors of the 2+ Rotational States in Neodymium-ISO, Dysprosium-162 and -164, Erbium-166, -168, and -170, and Tungsten-186 H.T.Motz, E.T.Jurney, O.W.B.Schult, H.R.Koch, U.Gruber, B.P.Maier, H.Baacer, G.L.Struble, J.Kern, R.K.Sheline, T.Von Egidy, T.Elze, E.Bieber, A.Backlin Phys.Rev. 155, 1265(1967) Energy Levels of H0166 W.Pieper, W.Grelner - Phys.Letters 24B, 377 (1967) The Influence of Nuclear Dynamics on the X-Ray Spectrum of Muonic Atoms O.W.B.Schult, M.E.Bunker, D.W.~afemeister, E.B.Shera, E.T.Jurney, J.W.Starner, A.backlin, B.Fogelberg, U.Gruber, B.P.K.Maier, H.R.Koch, W.N.Shelton, M.Minor, R.K.Sheline - Phys.Rev. 154, 1146(1967) Nuclear Levels in Dy163 G.G.Seaman, E.M.Bernstein, J.M.Palms - Phys.Rev. 161, 1223(1967) HI transition Probabilities in add-~ass Deformed Nuclei J.J.Sim~son, D.Eccleshall, M.J.L.Yates, N.J.Freeman - Nucl.Phys. A94, 177(1967) A Determination of Quadrupole Moments in 11_Cd, 130Ba. l'8Sm and lSOSm S.Stein - Thesis, Univ.California (1967); UCRL-17969 (1967) Hyperfine Structure of Dy165 and Spin of Er163 D.Ward, f.S.Stephens, J.e.Newton - Phys.Rev.Letters 19, 1247(1967) Gamma ~ays Following 'OAr-Induced Reactions P.J.Wolfe, k.P.Scharenberg - Phys.Rev. 160, 866(1967) Nuclear g Factors of the First Excited 2+ States in Samarium-1S2 and -lS4 and Gadolinium-IS6, -ISf, and -160 H.M.H.Abou-Leil~, R.Ceuleneer, J.Vanhorenbeeck - Nucl.Phys. Al15, 63S(1968) Transitions Electro~agnetiques E1 dans les Noyaux Impairs 170Lu, 172Lu et 176Ta P.Alexander - Nucl.Phys. A108, 145(1968) Low-Energy Gamma-Ray Intensities in the Decay of lS2,IS',155,lS6Eu R.Avida, J.Purde, A.Molchadzki, Z.Berant - Nucl.Phys. Al14, 36S(1968) The Excited ftates cf 193Ir Populated by the Beta Decay of 1930s R.Avida, J.lurde, A.Molchadzki - Nucl.Phys. AIlS, 40S(1968) Absolute Transition Probabilities In 193Ir R.Bergere, H.beil, A.Veysslere - Nucl.Phys. A121, 463 (1968) Photoneutron Cross Secticns of La, Tb, Ho and 1a T.A.Carlson, P.Erman, K.Fransson - Nucl.Phys. AlII, 371(1968) Dependence of Internal Ccnversion in 169Tm on the Chemical Environment And its Appl ication to the Mossbauer Isomer Shift R.A.Carrigan, Jr., F.D.Gupta, R.B.Sutton, M.N.Suzuki, A.C.Thompson, R.E.Cote, ~.V.Frest~ich, A.K.Gaigalas, S.Raboy - Phys.Rev.Letters 20, 874(1968) Muonic X Rays from Separated Isotopes of Europium J.de Boer - PrGc.Intern.Conf.Nucl.Struct., Tokyo (1967), J.Sanada, Ed., Suppl.J.Ph~s.Soc.Japan 24, 199 (1968) Determination of Quadru~ole Mcments of Excited 2+ States

562

NUCLEAR INTRINSIC QUADRUPOLE MOMENTS AND DEFORMATION PARAMETERS

1':8Ea04 68FrOl 68Ge07 "tlGu02 68HaSe 68Ha29 ~8Hi03

6RHi 04 68KaO 1 68Ka14 68Ke04 1':8Ku03 68Ku17 68Ma14 68Ma49

68Pe09 'i8Pi 06 68Ra03 68Ra09 68Ri09 68Sc04 68Se 02 I;8St 13

sasuo i 6t1To07 68TuOl 68VeOl 68Wa05 68Wa10 69AvOl 69Av03 69Be34

W.e.Easley, J.A.Barclay. D.A.Shirley - Phys.Rev. 170, 108~(196b) Nuclear ~cments of Tb 15 7, Tb 15 8, and Tb 16 0 by Electron Param~gnetic Resonance and Nuclear Alignwent K.Franssen, ~.hyde, B.Herskind, G.D.Symons, A.Tveter - Nucl.Phys. A106, 365 (1968) Collective Etates in the Odd Nucleus 170Tm from Inelastic Deuteron Scattering J.S.Geiger, ~.L.Graham, M.W.Johns - Bull.Am.Phys.Soc. 13, No.4, 6 72, HE12 (1?68); Priv.C~mm. To 6~Ka14 Decay of l71Er G.Guthohrlein - Z.Physik 214, 332(1968) Bestimmung der Kernquadrupolmomente der beiden stabilen Europiumisotope aus dem Eu II-Sj::ektrum R.S.Hager, L.e.Seltzer - NucI.Data A4, 1 (1968) Internal Corversion Tables. Part 1: K-, L-, M-Shell Conversion Coefficients for Z 30 to Z = 10:; K.A.Hardy, D.C.~ussell, R.M.Wiienzick - Phys.Letters 27A, 422( 1968) Mossbauer E1fect Following Couiomb Excitation of 183W J.e.Hill, M.L.~iedenbeck - Nucl.Phys. AlII, 457(1968) The Uecay of 159Gd G.Himmel - 2.Physik 211, E8(1568) Das Kernqua~rupolelement des OS189 G.Kaye - Nucl.Phys. A108, 625(1968) The Decay of the K = 3 Rctational Band of 17ZYb Based on the 1172.3 keV state E.N.Kaufmann, J.D.Bowman, S.K.Bhattacherjee - Nucl.Phys. A119, 417 (1968) Properties cf the K = 1/2 Ground State Potational Bands in 169Tm and 171Tm R.J.Keddy, V.Yoshizawa, B.Elbek, B.Herskind, M.C.Olesen - Nucl.Phys. A113, 676( 195d) Coulomb Excitation of Even Sm Isotopes H.W.Kugel, E.G.Funk, J.W.Mihelich - Phys.Rev. 165, 1352(19E8) Half-Lives of 4+ and 2+ Rotational States In Several Rare-Earth Nuclei D.Kucheioa, F.~agner, G.Kaindl, P.Kienle - Z.Physlk 216. 346(1968) Mossbauer Study of the Electromagnetic Properties of the 69.6-keV Level in Os 189 S.G.MalmskoG, ~.Hojeberg - Arklv Fysik 35,229(1968) On the Ma9netic Properties of the K 1 Rotational Band in 188Re A.Marelius, r.Sparrman, T.Sundstrom - Proc.Intern.Conf.Hyperfine Interactions Detected by Nu c Ls Re d La t ion, Asilomar, Pacific Grove, Calif. (1967), E.Matthias, D.A.Shirley, Eds., North-Helland Publishing Co., p.1043 (1968) Table cf Nuclear Lifetimes B.Persson, h.Blumberg, H.Bent - Phys.Rev. 174, 1509 (1968) Nuclear j::roFerties and Magnetic Hyperfine Interaction of OS189 W.Pieper, W.Greiner - Nucl.Phys. A109, 539 (1968) Nuclear Dyn~mics and the X-Ray Spectrum of Muonic Atoms A.T.Ramsey, S.Stein - Phys.Rev. 165, 1360( 1568) Ground-State Hyperfine Structure of 165Dy D.E.Raeside, J.J.Reidy, ~.L.Wiedenbeck - Nucl.Phys. Al14, 529(1968) The Level Scheme of 171Trr F.W.Richter, J.Schutt, D.Wiegandt - Z.Physik 213, 202(1968) Messung von Lebensdauern Coulombangeregter Kernzustande mit einem gepulsten Protcnenstrahl D.Schroeer, E-.S.Jastram - Phys.Rev. 166, 1212( 1968) DecaM Schem~ of 158Tb B.Sethi, S.K.Mukherjee - Phys.Rev. 166, 1227(1968) Half-Lives cf the Excited States of -6Ti, 8-Rt, 99Tc, 162Dy, 16-Er, and 196Au R.G.Stckstad, B.Persson - Phys.Rev. 170, 1072(196d) Coulomb lxcitation of the Lowest St~tes in Tungsten Nuclei A.A.Suarez, T.v.Egidy, W.Kaiser, H.r.Mahlein, A.Jones - Nucl.Phys. AI07, 417 (1958) Conversion llectrons of 188Re Followin~ Neutron Capture S.Tornkvist, S.Strom, J.E.Thun, V.Schmidt, N.Baade - Nucl.Phys. All?, 336(1968) Internal Conversion Studies of the 113 keV Transition in 177Hf C.E.Turner, ~r., G.W.Eakins, E.N.Hatch - Bull.Am.Phys.Soc. 13, ~o.4, 672, HEll (196d) Half-Life of the 5.06-keV First Excited State in Tm171 E.Veje, f.Elbek, B.Herskind, M.C.Olesen - Nucl.Phys. A109, 489(196d) Inelastic Deuteron Scattering from 1_8Sm, 150S m, 15ZSm and 15-Sm F.E.Wagner - Z.Physik 210, 361(1568) Totalreflexion aer ruckstossfreien ~,4 keV r-Strahlung des Tm169 J.C.Waddington - Priv.Comm. (1968) R.Avida, Y.Dar, P.Gilad, M.B.Goldberg, K.H.Speldel, V.Wolfson - Nucl.Phys. A127, 412 (1965 ) Lifetime Measurements Following Coulomb Excitation R.Avida, M.B.Goldberg, G.Goldring, A.Sprlnzak - Nucl.Phys. A135, 678 (1969) . Electromagnetic Moments of Transitions in 191Ir, 1931r Following Coulomb Excitation R.A.Belt, H.~.Kugel, J.M.Jaklevich, E.G.Funk - Nucl.Phys. A134, 225(1969) Half-Life Measurements and Transition Probabilities in 172Yb

=

=

563

LOBNER, VEITER, AND HONIG

":i::It:le38 6~Ch16

59Co09 f:9Di02 69Di06 69FuCo €9Gr10 69GuOl 69Mc09 69NiOl 6&5t04 69Wa13

R.Eeraud. 1.be1"kes. R.Chery. R.Haroutunian. M.Levl/' G.Marguier, G.Marest. R.Rougny _ Priv.Comm. (1~6~); L~CEN-~~3a (1969) Lifetimes and Nuclear ~om~ts in OS192 and Pt192 M.Chen - Contrib.lntern.Conr.Properties Nucl.States. Montreal. Canada. p.72 (19~9) The Anailisis of Mucnic X-Ral/ Spectra of Deformed Nuclei R.E.Cote, ~.V.Prest~ich, A.K.Gaigalas. S.Raboy, C.C.Trail. R.A.Carrigan. Jr •• P.D.Gu~ta, F.b.Sutton, M.N.Suzuki. A.C.Thompson - Phl/s.Rev. 179. 11~4 (IS6~) Distribution of Charge in Th 2 32 and U238 Determined by Measurement on Muonic X Rays R.M.DiamCJnd. f'.~.Stephens. Ioi.H.Kelly, D.Ward - Phys.~ev.Letters 22. 546( 1969) Lifetimes of F.otaticnal States from Heavy-Ion Reactions R.M.Diafficnd. f.E.Stephens. R.Nordhagen, K.Nakai - Contrib.lntern.Conf.Properties ~ucl.States. hcntreal. Canada, p.7(1969) Half-Lives of P.c~ational Levels in 152Sm G.H.Fuller. V.~.Cohen - Nucl.Data Tables A5. 433(1969) Nuclear Spins and Mcments M.C.Grelo0ry, Ii.I.Robinson, S.Jha - Phys.Rev. 180, 1158 (196S) Studies of [5 1 8 9 : Gamma Rays. Lifetimes, and Mossbauer Effect C.Gunther. h.Hubel. A.Kluge. K.Krien. H.Toschinski - Nucl.Phys. A12J, 38€(1969) Electrca.agnetic Properties of the K 1/2 Rotational Band in 169Tm R.J.McKee - ~hys.Rev. 180. 1139 (1969) p-Atomic hYyerfine Structure in the K. L, and M Lines of U238 and Th 232 Q.Nilsscn. S.Tornkvist. G.Malmsten. J.E.Thun. S.Hogberg, N.Baade _ Z.Physik 221, lOG( 1~69) Internal Conversion Studies of the 114 keV Transition in 175Lu p.5teiner. ~.Gerdau. W.Hautsch, D.5teenken - Z.Physik 221. 281 (196~) Determination of the Mean Life of Some Excited Nuclear States by Mossbauer Experiments F.loiagner. D.Kucheida. G.Kaindl. P.Kienle - Z.Physik to Be PUblished (196£)

=

564