On Semi-Suslin Spaces and Dual Metric Spaces

On Semi-Suslin Spaces and Dual Metric Spaces

Functional Analysis, Holomorphy and Approximation Theoty, JA. Barroso led.) 0North-HollandF’ublishing Company, I982 ON SEMI-SUSLIN SPACES AND DUAL ME...

559KB Sizes 3 Downloads 115 Views

Functional Analysis, Holomorphy and Approximation Theoty, JA. Barroso led.) 0North-HollandF’ublishing Company, I982

ON SEMI-SUSLIN SPACES AND DUAL METRIC SPACES

Manuel V a l d i v i a

I n t h i s p a p e r we s t u d y some p r o p e r t i e s of a c l a s s of t o p o l o g i c a l s p a c e s i n c l u d i n g t h e K-Suslin

s p a c e s and h e n c e f o r t h we o b t a i n

some new r e s u l t s i n t h e t o p o l o g i c a l v e c t o r s p a c e s t h e o r y .

A i s a s t a r s h a p e d m e t r i z a b l e subse-t of a

l a r l y , we p r o v e t h a t i f Hausdorff

E,

topological v e c t o r space

E

bounded s u b s e t of

Particu-

intersects

A

s u c h t h a t e v e r y c l o s e d and

i n a compact s e t , t h e n

A

is

separable.

We u s e t h e r e H a u s d o r f f t o p o l o g i c a l s p a c e s . v e c t o r s p a c e s u s e d h e r e a r e d e f i n e d on t h e f i e l d complex numbers. B(E,F)

and

respectively

3

If

(E,F)

If

W(E,F)

K

of t h e r e a l or

i s a d u a l p a i r we d e n o t e by

t h e weak,

.

The t o p o l o g i c a l

u(E,F),

s t r o n g and Mackey t o p o l o g i e s on

i s t h e t o p o l o g y of a t o p o l o g i c a l s p a c e

ACT]

T

and

E,

a s u b s e t of

T,

we d e n o t e by

t o p o l o g y by

3.

The t o p o l o g i c a l d u a l of a l o c a l l y convex s p a c e

is

E‘

.

X(E’,E)

E”

the s e t

i s t h e t o p o l o g i c a l d u a l of

t h e t o p o l o g y on

compact s u b s e t s of

E.

E’ On

with the

A

E’[B (E‘ , E ) ]

E

induced E

We d e n o t e by

of t h e u n i f o r m c o n v e r g e n c e on t h e p r e -

E”

,

X(E” ,E’

)

i s t h e t o p o l o & T of t h e

u n i f o r m c o n v e r g e n c e on t h e p r e c o m p a c t s u b s e t s of u s u a l , we i d e n t i f y

.

is

A

w i t h a s u b s p a c e of

EN

E‘[B (E’ , E ) ]

.

As

by t h e c a n o n i c a l i n -

j e c t i on. By a “ w e a k l y u-compact

g e n e r a t e d l o c a l l y convex s p a c e ”

G

446

M.

VALDIVIA

we mean a l o c a l l y convex s p a c e

which h a s a s e q u e n c e of weakly

G

compact s u b s e t s whose u n i o n i s t o t a l i n of bounded

of

B

s o that i f

I.

H

z

H

E B,

i s contained i n

{txo

+

(1-t)z

: 0 i t

A t o p o l o g i c a l space

a P o l i s h space s e t s of

2.

E

space

{x,]

and a mapping

x

c

I.

in

B

l] C B .

P of

cp

and a mapping

u

{cp(x) : x

c

cp

from

P

there exists

i n t o t h e c l o s e d sub-

in

P

PROPOSITION 1.

so that

t h e r e i s a P o l i s h space E,

then

from

V

P

(zn)

h a s an adherent p o i n t

i f there is a Polish

i n t o t h e compact s u b s e t s of F ,

and g i v e n a n a r b i t r a r y p o i n t of

z

t h e r e i s a neighbourhood

cp(z),

[7].

cp(U) C V ,

P

converging towards an element

i s K-Suslin

F

A topological

compact s u b s e t s of

P

cp(x).

P] = F

and a n e i g h b o u r h o o d z

i s semi-Suslin i f

n = 1,2,...,

which i s c o n t a i n e d i n

P

[lo]:

E

i s a seqaence i n

zn E cp(xn),

such t h a t

U

i

such t h a t t h e f o l l o w i n g c o n d i t i o n s a r e s a t i s f i e d :

If

and E

P

A topological space

in

I]

SEMI-SUSLIN SPACES

DEFINITION.

in

2

c

is f u n d a m e n t a l

i s starshaped i f t h e r e i s a vector then

: i

{Ai

for some

A.

The f o l l o w i n g d e f i n i t i o n was g i v e n i n

x

H

s e t s i n t h e topological vector space

i f e a c h bounded s e t i n A subset

A family

G.

space

E

i s K-Suslin

and a mapping

cp

from

i f and o n l y i f P

into the

s u c h t h a t t h e two f o l l o w i n g c o n d i t i o n s a r e

satisfied:

2.

x

and

If zn

(x,)

i s a sequence i n

E cp(x,),

n = 1,2,...,

P

c o n v e r g i n g t o w a r d s an e l e m e n t

then

(zn)

h a s an a d h e r e n t p o i n t

447

ON SEMI-SUSLIN SPACES AND DUAL METRIC SPACES

in

which i s c o n t a i n e d i n

E

PROOF.

Let u s suppose t h a t E

p r o p o s i t i o n and x

E

P,

U

of

(Un)

L e t u s t a k e now a p o i n t

z n E cp(xn),

g

zn

t i o n says t h a t cp(x).

E

v e r i f i e s t h e two c o n d i t i o n s of t h e

i s n o t a K-Suslin

a neighbourhood

neighbourhoods

to

cp(x).

xn

in

E

(zn)

P

Un

n = 1,2,

U,

~ ( x ) and a f u n d a m e n t a l s y s t e m of

of x

Then t h e r e i s a p o i n t

space.

z

n=1,2,... and a

The c o n d i t i o n 2 of t h e p r o p o s i -

z

h a s an a d h e r e n t p o i n t

On t h e o t h e r h a n d ,

U,

cp(xn) q! U,

such t h a t

...

~ ( u , )$

such t h a t

6

in

~ ( x )because

E zn

which b e l o n g s

E

U,

n=1,2

,...

T h e r e f o r e we a r r i v e t o a c o n t r a d i c t i o n . E

C o n v e r s e l y , l e t us suppose t h a t a mapping from a P o l i s h s p a c e

u

that

and a n e i g h b o u r h o o d U

of

= E

(cp(x) : x f P]

z

in

P

of

V

such t h a t

i s K-Suslin.

i n t h e compact s u b s e t s o f

P

~ ( z )i n

E,

cp(U) c V .

x

and a s e q u e n c e

which h a s n o t a d h e r e n t p o i n t i n

compact, i f

M

in

cp(x).

,...,zn ,...3 ,

M

t e and t h e r e f o r e t h e r e e x i s t s a p o s i t i v e i n t e g e r

... ] n cp(x)

( ~ ~ ~ , z ~ ~ + ~ E, v.i d. e. n]t l.y , bourhood

X

of

x

positive integer znl

E

B fl cp(x

such t h a t n1

n

B

Let

~ ( x = ) $,

B

) c B fl q ( X ) = $ ,

in

Since

n

no

cp(x)

On t h e o t h e r h a n d ,

which a r e n o t K-Suslin

[lo].

P

cp(x) i s is fini-

such t h a t

hence t h e r e i s a neighWe c a n c h o o s e now a

so that

x

Therefore

P r o p o s i t i o n 1 allow u s t o o b t a i n t h a t e v e r y K-Suslin i s semi-Suslin.

does

zn 6 ~ ( x , ) ,

E,

E X. "1 hence a c o n t r a d i c t i o n .

n

P

b e t h e c l o s u r e of

cp(X) r7 B = $ .

l a r g e r than

"1

= Q.

(x,)

(zn)

n = 1,2,...

no+P'

in

cp

Let u s suppose t h a t

which converges towards

rzno,zno+l,...,z

such

t h e r e i s a neighbourhood

Then t h e r e i s a s e q u e n c e

{z1,z2

be

E

z

and g i v e n a n a r b i t r a r y p o i n t

n o t v e r i f y c o n d i t i o n 2.

i s the s e t

cp

Let

q.e.d. space

t h e r e a r e semi-Suslin spaces

448

M.

LEMMA 1.

Let

F

VALDIVIA

be a s e m i - S u s l i n t o p o l o g i c a l s p a c e .

F

m e t r i z a b l e c l o s e d s u b s p a c e of

then

E

If

is a

E

i s K-Suslin.

PROOF.

S i n c e e v e r y c l o s e d s u b s p a c e of a s e m i - S u s l i n s p a c e i s semi-

Suslin,

[lo],

w e t a k e a mapping

L e t us t a k e i n

compact.

n = 1,2,.

..

cp(x)

Let

(U,)

t h e sequence

P,

i n the

(zn)

~ ( x )i s

then

(xn)

xn = x ,

siich t h a t

i s a n a r b i t r a r y sequence i n

cp (x)

,

zn F cp(xn),

has an a d h e r e n t p o i n t i n

i s c o u n t a b l y compact.

results that

Let

P

and t h e r e f o r e

rp(x)

LEMMA 2 .

(zn)

If

n = 1,2,..., Hence

i s an a r b i t r a r y point i n

x

P

T a k i n g a c c o u n t of P r o p o s i t i o n 1, i t s u f f i c e s t o

tion are verified. show t h a t i f

from a P o l i s h space

s o t h a t t h e c o n d i t i o n s 1 and 2 of t h e d e f i n i -

E

c l o s e d s u b s e t s of

rp

Since

i s metrizable i t

E

i s compact.

q.e.d.

b e a s u b s e t of a t o p o l o g i c a l v e c t o r s p a c e

A

rp(x).

E

b e a s e q u e n c e o f c l o s e d c i r c l e d s u b s e t s of

E[Z].

which v e -

r i f i e s t h e following conditions:

1.

If

z

an a r b i t r a r y p o i n t

of

a r e given t h e r e i s a positive i n t e g e r 2.

If

(mp)

and a p o s i t i v e i n t e g e r

A

n

P

such t h a t

z

E

p

n U P P'

i s a n a r b i t r a r y s e q u e n c e of p o s i t i v e i n t e g e r s t h e

set

[n i s non-void

Then PROOF.

Let

Empup

= i,2, ...I]

n

A

and c o u n t a b l y compact. A[3] N

i s a semi-Suslin space.

b e t h e s e t of p o s i t i v e i n t e g e r numbers w i t h t h e

d i s c r e t e topology.

By

NN

of c o u n t a b l e many c o p i e s of

u s c o n s i d e r t h e mapping A[J]

: P

rp

we r e p r e s e n t t h e t o p o l o g i c a l p r o d u c t N.

Then

from

NN

NN

i s a P o l i s h space.

i n t o t h e c l o s e d s u b s e t s of

such t h a t i f

x = (x1,x2

Let

,...,xP' ...) E

NN

44 9

ON SEMI-SUSLIN S P A C E S AND DUAL METRIC SPACES

then

CP(~)rn Expup :

...I] n

P = i,2,

A.

Using condition 1 of this lemma it follows that A = [pp(x)

(x'"))

converges towards

If

cp(x(")). teger

n(p)

p

2

x

in

NN

NN.

such that the sequence zn

Let us take a point

such that

x(~) = x

P (x("))

for every P' towards x in

n 2 n(~),

NN.

because

Then, if

n(p), zn E cp(x ( n ) ) c xPuP

{.An)

...I

: n = 1,2,

then

zn

E

[n CYpup

: P = i,2,

and since this set is countably compact, point

in

zo

A[3]

by (1).

has an adherent

...!I

: P = i,2,

n

A = rp(x)

q.e.d.

THEOREM 1.

Let

be a starshaped metrizable subset of a topolo-

A

E[3].

gical vector space intersects

E

(zn)

A

Therefore conditions 1 and 2 of the definition are sa-

tisfied.

PROOF.

...11 n

which belongs to

3? Expup

E[3]

(1)

is the maximum of the finite set of natural numbers

If yp

of

in

is a positive integer there exists a positive in-

of the convergence of n

,...,xP( " ) ,...) E

= (xin),x$n)

x(")

Let

N

: x E N ).

A

If every closed and bounded subset of

in a compact set,

A[3]

is a K-Suslin space.

Obviously, it sufficos - t o prove the theorem when the origin belongs to

point of

A

A

and every segment which joints an arbitrary

with the origin lies in

there is a sequence

(U,)

A.

Since

A

is metrizable

of closed circled neighbourhoods of the

M. VALDIVIA

450

origin i n

such t h a t

E[3]

(un n is

R

f u n d a m e n t a l s y s t e m of

A : n=1,2,

...I

n e i g h b o u r h o o d s of t h e o r i g i n i n

O b v i o u s l y c o n d i t i o n 1 o f Lemma 2 i s v e r i f i e d on

(Un).

If

A[3]. (mp)

i s a n a r b i t r a r y s e q u e n c e of p o s i t i v e i n t e g e r s t h e s e t

i s non-void,

because t h e o r i g i n has i n i t .

To p r o v e t h i s l e t

t h i s s e t i s compact.

bourhood of t h e o r i g i n i n

q

Let u s s e e now t h a t

V

b e an a r b i t r a r y neigh-

Then t h e r e i s a p o s i t i v e i n t e g e r

E[3].

such t h a t

u 9 n ~ c v An. If

z

E

n

(mqUq)

A,

n

E Uq

then

A

and i t f o l l o w s t h a t



[n

Empup

: p=1,2,

and t h e r e f o r e ,

...I] n

A C

( m9 u9 ) n

A C m ( U nn) q 9

t h e s e t ( 2 ) i s bounded i n

E[3].

i t i s evident t h a t t h i s s e t i s closed i n i s compact. verified.

I t allows u s t o conclude t h a t

PROOF.

v

9

O n t h e o t h e r hand,

and, t h e r e f o r e ,

it

intersects

A[%]

i s a semi-Suslin

i s K-Suslin.

A[3]

b e a s t a r s h a p e d and m e t r i z a b l e s u b s e t o f a t o -

A

Let

pological vector space E[J]

9

We h a v e t h u s p r o v e d t h a t c o n d i t i o n 2 of Lemma 2 i s

s p a c e , and by Lemma 1, THEOREM 2 .

A[3]

c rn ( V n A ) c m

E[3].

If

e a c h bounded and c l o s e d s u b s e t of

i n a compact s e t ,

A

By Theorem 1,

A[3]

i s K-Suslin

A[3]

i s separabla.

and t h e r e f o r e L i n d e l 8 f , [ 7 ] .

Since every metrizable Lindelbf space i s separable, complet e , COROLLABY 1 . 2 .

t h e proof

is

q.e.d. Let

g i c a l v e c t o r space

A

E[3].

b e a m e t r i z a b l e convex s u b s e t o f a t o p o l o I f e v e r y bounded and c l o s e d s u b s e t of

451

ON SEMI-SUSLIN SPACES AND DUAL METRIb SPACES

E[3]

intersects

NOTE 1.

A

in a compact set,

A. Grothendieck asks in

A[s]

is separable.

[4] if every FrBchet-Monte1 space

J. Dieudonne gave an affirmative answer to this

is separable.

.

question in [3]

C. Bessaga and S. Rolewicz proved in [ 2 ]

that

every metrizable Monte1 topological vector space is separable. This result can be obtained from our Corollary 1.2 taking THEOREM

3

3.

Let

A = E.

be a metrizable topological vector space.

E

be a topological vector t o p o l o g on

E

Let

coarser than the ori-

ginal topology such that the following conditions are satisfied: 1.

There is a fundamental system of neighbourhoods of the E

origin of 2.

which are closed in

E[3].

Every bounded subset of E is relatively countably compact in

EC3l. E[3]

Then PROOF.

is a semi-Suslin topological space.

(Un) be a fundamental sequence of circled neighbour-

Let

hoods of the origin in A = E

E,

which are closed in

that lemma is satisfied.

On the other hand, let

quence of positive integer numbers.

n compact.

E[3]

(mp)

be a se-

The set

Empup : p=i,2, ...I

and closed in

E[3]

and, therefore, 3-countably

Consequently, condition 2 is satisfied.

It follows that

is a semi-Suslin space.

THEOREM 4. 3

E

Let us take

I t follows straightforward that condition 1 of

in Lemma 2 .

is bounded in

E[3].

Let

E

be a metrizable topological vector space.

be a topological vector topology on

E

Let

coarser than the original

topology such that the following conditions are satisfied:

1.

There exists a fundamental system of neighbourhoods of the

origin in

E

which are closed in

E[3].

452

M.

E v e r y bounded s e t i n

2.

Then

E[3]

i s a K-Suslin

i s r e l a t i v e l y compact i n

E[3].

topological space.

of Lemma 2 i s s u c h t h a t

b u i l t i n t h e proof

x E N

f o r every

x = (x1,x2,

E

EC31.

9.e.d.

THEOREM

5.

If

.

rp(x)

i s compact i n

It follows s t r a i g h t f o r w a r d , s i n c e i f

the s e t

and c l o s e d i n

E

and t h e r e f o r e compact i n

E[3]

i s a Fr6chet space,

E'[b(E'

i f and o n l y i f PROOF.

N

...,xn, ...)

i s bounded i n

A

E

By P r o p o s i t i o n 1, i t s u f f i c e s t o p r o v e t h a t t h e mapping

PROOF.

E[3]

VALDIVIA

,EN)]

E"[X(E",E')]

i s K-Suslin

i s barrelled.

L e t us s u p p o s e f i r s t t h a t

i s K-Suslin.

E"[X(E" , E ' ) ]

Let

b e a n a b s o l u t e l y corivex c l o s e d and bounded s u b s e t o f E " [ u ( E " , E ' ) ] .

G r o t h e n d i e c k proved t h a t e v e r y c o u n t a b l y s u b s e t of tinuous i n E"[u(E"

Since

,E')].

E"[a (E" ,E' )]

[4],

[ 71

E'[w (E' ,E"

hence

.

)]

and t h e r e f o r e Hence

E"[p(E" , E ' ) ] ,

S i n c e each sequence i n

i t follows t h a t

).(E",E')

A

i s a Lindel8f

i s u(E" ,E' )-compact and c o n s e -

A

E'[u(E'

,E")]

is barrelled.

A

and

u(E",E') A

If

E ' [ p (E' , E ) ]

E

is

[S]

,

c o i n c i d e s on t h i s sequence,

i s r e l a t i v e l y compact i n

By u s i n g Theorem 4 w e o b t a i n t h e c o n c l u s i o n . Let

A

i s r e l a t i v e l y u(EN, E ' ) - c o m p a c t .

i s equicontinuous i n

hence i t i s e a s y t o o b t a i n t h a t

COROLLARY 1.5.

A[a (E" , E ) ]

of t h e o r i g i n which a r e h ( E " , E ' ) - c l o s e d .

a bounded s e t i n

,E')].

it follows t h a t

i s a F r 6 c h e t s p a c e which h a s a f u n d a m e n t a l s y s t e m of

neighbourhoods

E"[X(E"

i s c o u n t a b l y compact i n

i s barrelled.

L e t u s s u p p o s e now t h a t

E"[p(E",E')]

A

i s K-Suslin

E"[h(E" , E ' ) ]

i s K-Suslin

t o p o l o g i c a l space quently

,

E'[@(E' ,E)]

i s equicon-

A

be a Fr6chet space.

If

E

q.e.d.

i s distinguished

453

ON SEMI-SUSLIN SPACES AND DUAL &QCTRICSPACES

then

I n [4]

NOTE 2.

G

(EN ,E' )]

E"[

i s K-Suslin. G r o t h e n d i e c k g i v e s a n e x a m p l e s of a F r 6 c h e t s p a c e

A.

G'[p (G' ,G" )]

such t h a t

i s n o t K-Suslin

i s not barrelled.

H

example o f a F r 6 c h e t s p a c e $(HI ,H)

and

f

,*). H

w(H'

g ' [ X ( ~, H ' ')]

THEOREM 6.

E

Let

PROOF. that

If

such t h a t

Komura g i v e s i n

E"[X(E",E')]

i s K-Suslin

i s Lindelbf. A

and t h e r e f o r e

E"[X(E"

Since

,E')]

is

E"[

i s an

A

(E" ,E' ) ]

(E" ,E' ) - c o u n t a b l y

,

compact

Hence E'[p (E' ,E" )]

q.e.d.

DUAL METRIC SPACES A l i n e a r topological

if

A

is

E"[X(E",E')]

i s L i n d e l b f and

i s X (EN ,E' ) - c o m p a c t .

is barrellled.

11.

5

i s b a r r e l l e d i t f o l l o w s f r o m Theorem

E'[p(E',E")]

[ 41 i t f o l l o w s t h a t

i s Lindelbf

is barrelled.

E'[p(E',E")]

Conversely, i f

)]

an

i s barrelled

H'[M(H',H")]

a b s o l u t e l y convex c l o s e d and boJnded s u b s e t o f

A[A (E" ,E'

[6]

i s K-Suslin.

be a Fr6chet space.

E"[X(E",E')]

Lindelbf.

Y.

i s a n example of a n o n - d i s t i n g u i s h e d

space such t h a t

i f and o n l y i f

5.

b e c a u s e o f Theorem

T h e r e f o r e G"[X (G" ,G')

l o c a l l y convex s p a c e

E

i s dual metric

i t h a s a c o u n t a b l e f u n d a m e n t a l s y s t e m of bounded s e t s and i n E'

each

3 (E' ,E)-bounded s e q u e n c e i s e q u i c o n t i n u o u s [ 91 , p . 11. A l i n e a r t o p o l o g i c a l l o c a l l y convex s p a c e

E

i s (DF)

h a s a c o u n t a b l e f u n d a m e n t a l s y s t e m of bounded s e t s a n d i n $(E',E)-bounded

E'

i f it each

s e t which i s c o u n t a b l e u n i o n of e q u i c o n t i n u o u s s e t s

i s i t s e l f equicontinuous [4]. Obviously,

e v e r y (DF)-space i s d u a l m e t r i c .

The f o l l o w i n g

two t h e o r e m s g i v e some c l a s s e s o f d u a l m e t r i c s p a c e s which a r e n o t (DF) *

454

M.

THEOREM

7.

pology

3

If

compatible with the dual p a i r

E',

(E,E')

such t h a t

i s a d u a l m e t r i c s p a c e which i s n o t (DF).

E'[3]

Let

PROOF.

Since

i c

I]

b e a maximal o r t h o n o r m a l s y s t e m i n

i s not separable t h e r e i s a p a r t i t i o n of

E

...,I n ,...

11,12,

n = 1,2,... : i

:

(xi

many s u b s e t s

(xi

i s a non-separable H i l b e r t space t h e r e i s a t o -

E

on

VALDIVIA

Let

6 In]

In

i n countable

i s not countable,

b e t h e c l o s e d a b s o l u t e l y convex h u l l of

An

in

such t h a t

I

E.

E.

We d e n o t e by

@

a l l t h e s u b s e t s of

E

of

t h e form m

with

a b s o l u t e l y convex bounded and s e p a r a b l e and

A

n i t e l y many n o n - z e r o p o l o g y on

E'[3]

3

If

3

i s t h e to-

i s compatible w i t h t h e d u a l p a i r

i s a dual metric space.

(DF)-space because

3

{A,

: n=1,2,

Moreover,

...I

i t i s not i t s e l f equicontinuous.

(E,E')

i s not a

E'[3]

E'[3]

7 a r e not

Theorem 8 g i v e s Mackey d u a l m e t r i c s p a c e s which a r e

(DF).

F o r t h e n e x t theorem l e t u s t a k e a Banach s p a c e t h e r e i s a n o n - s e p a r a b l e a b s o l u t e l y convex and we-kly set

and

q.e.d.

The d u a l m e t r i c s p a c e s o b t a i n e d u s i n g Theorem Mackey s p a c e s .

8,

i s a s t r o n g l y bounded s e t

w h i c h i s a c o u n t a b l e u n i o n of e q u i c o n t i n u o u s s e t s i n

not

a fi-

o f t h e u n i f o r m c o n v e r g e n c e on t h e e l e m e n t s of

E'

i t i s evident t h a t and

s e q u e n c e of r e a l numbers.

(X,)

X

in

F.

Let

E

t i n u o u s f u n c t i o n s from

b e t h e Banach s p a c e X[o(F,F')]

into

F

compact s u b -

C(X[O(F,F')])

K,

so that

of con-

w i t h t h e u n i f o r m con-

vergence topology. THEOREM 8. such t h a t

In

E"

t h e r e i s a v e c t o r subspace

E'[u(E',L)]

L

containing

i s a non-(DF) d u a l m e t r i c s p a c e .

E

455

ON SEMI-SUSLIN SPACES AND DUAL METRIC SPACES

PROOF.

Let

M

b e t h e l i n e a r h u l l of

is

M

t h a t t h e o r i g i n of

in

Gb

X

in

X[a(F,F')].

.

m

n

Let u s suppose Let

b e a se-

(Un)

of t h e o r i g i n i n

q u e n c e of a b s o l u t e l y convex n e i g h b o u r h o o d s X[u(F,F' )]

F.

Un = { O } For each p o s i t i v e i n t e g e r p n= 1 { p Un : n = 1 , 2 , ...I i n t h e f a m i l y of n e i g h b o u r h o o d s of t h e o r i g i n

such t h a t

( p X)[u(F,F')]

h a s t h e same p r o p e r t y .

Given t h e p a i r

positive integers there exists a f i n i t e set

A

in

P"

(p,n) F'

of

such t h a t

Ao n p X c p U n pn

being

t h e p o l a r s e t of

Ao P"

If

P

A

in

Pn

i s t h e l i n e a r h u l l of

(M,P)

i s a d u a l p a i r and

Since

P

u(M,P)

F.

: p , 1 , 2 ,...)

(Apn

coincides with

u(F',F)

h a s a c o u n t a h l e Hamel b a s i s i t f o l l o w s t h a t

i s m e t r i z a b l e and, t h e r e f o r e , s e p a r a b l e .

in

F', in

X.

X[u(F,F')]

But t h i s a c o n t r a d i c t i o n

w i t h the h y p o t h e s i s .

It permits t o a s s e r t t h a t t h e r e i s a point which i s n o t

X[u(F,F')]

s y s t e m of n e i g h b o u r h o o d s of f u n c t i o n from fi(xo) we t a k e

= 1,

X[o(F,F')]

= 0,

fi(x)

a bounded n e t i n

E.

x E X-

(g,ux)

= g(x),

(f,ux)

= 0, Let

H E 51,

let

51 H*

If

in

be a f u n d a m e n t a l fi

[O,l]

il,iz E I (fi

be a continuous such t h a t and vil : i E I, S

t h e r e i s a element

f

in

c v

iz is

)

E"

t o this net.

let

f o r every

I}

and l e t

X

vi.

Consequently,

x 6 X,

x E X-

in

E

i s a d i r e c t s e t and

w h i c h i s a(E" ,E' ) - a d h e r e n t For each

xo

: i

(Vi

i n t o the i n t e r v a l

(I, s)

iz i il.

Let

Gb.

x

ux

b e t h e e l e m e n t of

g E C(X[u(F,F')]).

such t h a t

E'

Obviously,

(f,uXO)=l,

(xo3.

b e the f a m i l y of a l l t h e c o u n t a b l e s e t s i n b e t h e c l o s u r e of

H

in

E"[u(E" ,E')]

.

E. Let

If

456

M. VALDIVIA

L

is a subspace of

E"

containing

Then there is a sequence

,E' ) ]

E"[u(E"

point in

wn The set r) {W,

(g,)

.

which has

E

f

as adherent

Let

x

= cx E

: n=1,2,.

..]

{x,]

is different from

and therefore

such that 1 n

<

Ign(xl)-gn(xo)

1 r ~ .

<

: ign(x)-gn(xo)i

x1 f xo

x1 E X,

there is a point

in

Let us suppose that f E L.

E.

11

9

= 1,2,...

It follows that

(f,ux ) 1

-

and this gives a contradiction.

A

set of H*

3

0

i

= 0

Therefore,

E'[t.i(E',L)]

Let us see now that Let

(f,ux

f

{

L.

is a dual metric space.

be a separable absolutely convex, closed and bounded sub-

aU(L,E')].

A,

hence

A

is u(L,E')-compact

equicontinuous and so,

E'[k(E,L)]

and therefore

such that is p(E',L)-

A

is a dual metric space.

In the sequel we shall prove that (DF)-space.

H € 51

Then there is an element

E'[@(E',L)]

is not a

B y using a result of Amir and Lindestrauss [l] there

D

of

is dense in

B.

is an absolutely convex weakly compact and total subset Let

B

be the closed unit ball of

E.

E.

Let

Bn = B n n D. Bn

is weakly compact and

L

Since

is different of

not contained in

L,

B*

n

L

B*

n

L

u [Bn : n=1,2, ...] that u [Bn : n=1,2, . . . I

On the other hand,

Bn

B*

of

B

in

is a 8 L,E')-bounded

and, consequently,

Since

it follows

continuous.

{Bn : n=1,2,.. ]

E N , the closure

hence

is not g(L,E')-cornpact equicontinuous.

u

BY

n

L

E"

is

set which

is n o t p(E',L)-

is o(L,E')-dense

in

is not p(E',L)-equi-

is w(E',L)-equicontinuous,

457

ON SEMI-SUSLIN SPACES AND DUAL METRIC SPACES

n = 1,2,..., THEOREM

9.

and, t h e r e f o r e ,

i s a d u a l metric space,

E

If

i s n o t a (DF)-space.

E'[b(E',L)]

i s a semi-

E'[X(E',E)]

S u s l i n space. PROOF.

Since

has a c o u n t a b l e f u n d a m e n t a l s y s t e m of bounded s e t s ,

E

i t follows t h a t

E'[B (E' , E ) ]

c o u n t a b l e bounded s e t and, t h e r e f o r e ,

A

A

i s metrizable.

in

1.9.

If

i s r e l a t i v e l y compact i n

E

every

i s equicontinuous i n

E'[p(E',E)]

3.

c l u s i o n f o l l o w s u s i n g Theorem COROLLARY

Moreover,

E'[X(E',E)].

E

The con-

q.e.d.

i s a Frechet

space,

E"[X (E" , E l

)]

i s a semi-

S u s l i n space. PROOF.

u s e Theorem

i s a (DF)-space,

E'[B(E',E)]

Since

[4], it suffices t o

9 i n o r d e r t o o b t a i n the c o n c l u s i o n .

THEOREM 1 0 .

Let

E

be a dual metric space.

m e t r i z a b l e s u b s e t of

E'[

1 (E'

,E)]

,

If

q.e.d. A

i s a closed

i s separable.

A

PROOF. C o n s i d e r i n g Theorem 9 and Lemma 1 i t f o l l o w s t h a t A [ h ( E ' , E ) ]

i s a K-Suslin

space and,

COROLLARY 1 . 1 0 .

A

therefore,

i s separable.

Let

E

be a Frechet space.

m e t r i z a b l e s u b s e t of

E?'[

X (E" ,E' )]

NOTE

3.

,

A

If

A

q.e.d.

i s a closed

i s separable.

L e t u s m e n t i o n t h a t t h e o r e m of J. Diedonne e s t a b l i s h i n g

t h a t e v e r y FrLchet-Monte1 s p a c e i s s e p a r a b l e i s a p a r t i c u l a r c a s e of our C o r o l l a r y 1 . 1 0 . The p r o o f

o f t h e n e x t theorem n e e d s t h e f o l l o w i n g r e s u l t ,

which we g i v e i n [ l l ] . t h e r e i s on

E

a ) Let

b e a l o c a l l y convex s p a c e .

a m e t r i z a b l e l o c a l l y convex t o p o l o g y

than t h e o r i g i n a l topology, E[U(E,E')]

E

i s compact i n

3

If

coarser

t h e n e v e r y c o u n t a b l y compact s u b s e t o f

E[u(E,E')]

.

458

M.

THEOFU3M 11.

Let

VALDIVIA

be a d u a l metric space.

E

E.

U-compact g e n e r a t e d s u b s p a c e of K-Suslin

Then

Let

F

b e a weakly

F'[X(F',F)]

is a

topological space.

PROOF.

S i n c e t h e completioii o f a d u a l m e t r i c s p a c e i s i t s e l f d u a l

metric,

l e t u s suppose t h a t

+;he c l o s u r e of p.

F

in

to

G,

let

Theorem

f

If

9 , t h e r e i s a mapping

Definition

are verified.

in

n = 1,2,,..

I) = f o v .

Let x

(v,)

Then

which l i e s i n

q(x)

(E '/G' ) [ k( E'/ G ', G ) ]

into the

U s i n g P r o p o s i t i o n 1, of

P,

Let u s t a k e a sequence

b e a sequence i n (v,)

Ry

E'/GL.

P

i s an a r b i t r a r y p o i n t

(E'/GL)[h(E'/GL,G)].

Let

$(x).

onto

E'

s u c h t h a t c o n d i t i o n s 1 and 2 of

i t i s enough t o show t h a t i f i s compact i n

E'

from a P o l i s h s p a c e

Cp

,E)]

E'[X(E'

151,

i s t h e o r t h o g o n a l s u b s p a c e of

Gi

b e t h e c a n o n i c a l mapping from

c l o s e d s u b s e t s of

be

G

a t o t a l s e q u e n c e of weakly compact

G

a b s o l u t e l y convex s e t s .

Let

I t f o l l o w s from a ,5eorem of I i r e i n ,

E.

325, t h a t t h e r e i s i n

i s a complete s p a c e .

E

h a s an a d h e r e n t p o i n t i n

and t h e r e f o r e

(u,)

which l i e s i n

$(x),

(u,)

f(vn) = u

such t h a t

q(x)

$(x)

n'

E'[X(E',E)]

has an a d h e r e n t p o i n t i n hence

is rela-

$(x)

t i v e l y c o u n t a b l y compact i n t h i s s p a c e and u s i n g r e s u l t a ) i t f o l lows e a s i l y t h a t F' with

X(E'/GL,G)-compact.

is

can be i d e n t i f i e d w i t h Since

),(F',F).

follows t h a t NOTE

$(x)

4.

I n [S]

H.

and t h e t o p o l o g y

E'/GL

h(E'/GL,F)

F'[X(F',F)]

On t h e o t h e r h a n d ,

i s coarser than

i s a K-Suslin

X(E'/G',F) L(E'/GL,G)

space.

P f i s t e r h a s proved t h a t i n a

it

q.e.d. (DF)-space e v e r y

p r e c o m p a c t s u b s e t i s s e p a r a b l e and m e t r i z a b l e i n t h e c a n o n i c a l u n i formity.

We c a n o b t a i n t h i s r e s u l t f o r d u a l m e t r i c s p a c e s u s i n g

o u r Theorem 11 i n t h e f o l l o w i n g way:

s e t of a d u a l m e t r i c s p a c e convex h u l l of

A

l i n e a r h u l l of

B.

E,

let

i n t h e completion Then

F

If B

.

E

A

i s a precompact sub-

be t h e closed a b s o l u t e l y of

E.

Let

F

be t h e

i s weakly compact g e n e r a t e d s p a c e i n -

459

ON SEMI-SUSLIN SPACES AND DUAL METRIC SPACES

I?, s o t h a t

s i d e a d u a l m e t r i c space

L

b e t h e tOp0106T on

space.

Let

on

Therefore,

B.

t h e compact s e t

F'[LI]

F'

i s a K-Suslin

of t h e u n i f o r m c o n v e r g e n c e

i s metrizable,

h e n c e s e p a r a b l e and s o

It fol1.ows t h a t

i s metrizable.

B

F'[X(F',F)]

is separable

A

and m e t r i z a b l e i n t h e c a n o n i c a l u n i f o r m i t y .

BIBLIOGRAPHY 1.

AMIR,

D.

and J . LINDESTRAUSS:

s e t s i n Banach s p a c e s , Ann. 2.

BESSAGA, C .

and S . ROLEWICZ:

'3,

C o l l o q . Math.

3.

DIEUDON&,

Acad.

4.

5. 6.

(1964).

S u r l e s th6orhmes d e S . Banach e t L.

MARTINEAU, A . :

l e graphe ferm6.

PFISTER, H . :

PIETSCH, A.:

VALDIVIA,

M.:

VALDIVIA, M . :

Moliner, s.n.

SPAIN

-

(1968).

Valencia

(1976).

Berlin-Heidelberg-

1972.

Sobre una c i e r t a c l a s e d e e s p a c i o s t o p o l 6 g i c o s .

(1977).

Some c r i t e r i a f o r weak c o m p a c t n e s s .

m, 165-169

F a c u l t a d de Matem6ticas Burjasot

Schwartz

30, 43-51

Arch. d . Math. 2 6 , 86-92

N u c l e a r L o c a l l y Convex S p a c e s .

angew. Math.

Dr.

S t u d i a Math.

B e n e r k i n g e n zum S a t s fiber d i e S e p a r a b i l i t a t

C o l l e c t a n e a Math. 2 8 , 9-20 11.

Berlh-Heildelberg-

1969.

122, 150-162

New York, S p r i n g e r :

10.

Summa B r a s i l .

(195'+).

d e r F$echet-Montel-R8ume.

9.

C.R.

(1954).

Some examples o n l i n e a r t o p o l o g i c a l s p a c e s .

KOMURA, Y . :

concernant

8.

298, 19'+-195

Springer:

Math. Ann.

7.

O n bounded s e t s i n F - s p a c e s .

T o p o l o g i c a l Vector Spaces I ,

New York,

35-46 ( 1 9 6 8 ) .

89-91 ( 1 9 6 2 ) .

S u r l e s e s p a c e s (F) e t (DF).

2, 57-122

KOTHE, G . :

( 2 ) 88,

S u r l e s e s p a c e s d e Monte1 s e p a r a b l e s .

J.:

Sci. Paris

GROTHENDIECK, A . : Math.

The s t r u c t u r e o f weakly compact of Math.

(1972).

J. r e i n e