Infinite Dimensional Holomorphy and Applications, Matos (ed.) @ North-Holland Publishing Company, 1977
POLY NOE I 1PL AP P ROS I ElRT I ON 3 N COE 1PACT S CTS
By I I A R T I N S C H O T T E N L O H E R "
I n T h i s n o t e a s i m p l e p r o o f of t h e f o l l o w i n g r e s u l t g i v e n : A pseudoconvex, f i n i t e l y Runge open s e t U i n a
is
locally
convex Hausdorf f s p a c e w i t h t h e a p p r o x i m a t i o n p r o p e r t y i s p o l y n o m i a l l y convex. T h i s g e n e r a l i z e s r e s u l t s of
Dineen
141
and
of
the
Noverraz [13]. W e a l s o p r o v e a n a p p r o x i m a t i o n theorem Runge t y p e f o r s u c h domains.
F i n a l l y , i n t h e l a s t s e c t i o n of t h i s n o t e , we d i s c u s s
a
s t r o n g form o f t h e Oka-Weil a p p r o x i m a t i o n theorem, which i s u s e f u l i n t h e s t u d y o f t h e Nachbin t o p o l o g y T~ on t h e s p a c e
@ (U)
o f holomorphic f u n c t i o n s on U (see blujica [ll]).
1. NOTATIONS AND PRELIE~IINARIES L e t E b e a l o c a l l y convex Hausdorff s p a c e o v e r 6
s h o r t : l c s ) , and l e t c s ( E ) d e n o t e t h e set of c o n t i n u o u s norms on E . F o r a
€
cs ( E ) , x
€
E and r > o t h e " a - b a l l "
( for
semiabout
............................................................... *
Research s u p p o r t e d by t h e Brazilian-German C o o p e r a t i o n
Aqre-
- Gesellschaft fur
Mathe
ement (Conselho N a c i o n a l d e P e s q u i s a s m a t i k und D a t e n v e r a r b e i t u n g )
. 379
M.
380
SCHOTTENLOHER
x with the radius r is (x,r) = {y
B~
E EI
The "a-boundary distance" dz
cr(x-y) < rI :
U-
. for an open set U t E
[o,m]
is defined by :d
For B
(x) = sup {r >
c U we
" put dU
tance function
:
Ba(x,r)
( B ) = inf {d:
U
x E+
~ ~ ( x , a= )sup {r >
1x1
01
01
C
U}
(x)
I
,x x
U.
E
. Another
E B}
dis-
[o,m] is given by
x + ha
u
E
c r}, (x,a) E U
x
x
for all
E C,
E.
d" is continuous, while 6 u is in qeneral only lower semicontinu U
ous
.
An open set U C E is called pseudoconvex if -1oq plurisubharmonic, i.e. if the restrictions o f -1oq 6u plex lines in U
E are subharmonic. Let @ ( U )
x
is to
(resp.
denote the set of plurisubharmonic (resp. continuous
com-
@c(U)) plurisuh-
harmonic) functions on U, and let @4U) clenote the vector space of holomorphic functions on U. For
n
C
@(U)
and
I< C
U
the
"Q-convex hull" of K is defined by
KO
-
=
{x
UI
E
and for A c @ ( U ) KA
whereby
=
{x
I I fI I
v(x) 5 sup v(y) for all v YEK the "A-convex hull" of K is
UI
E
=
If(x)I 5 IlfllK for all f
sup
[ f (y)I Iy
E
E
01,
E A),
K l . Prom the characterization
of pseudoconvex sets in finite dimensional spaces one can
de-
duce (cf. [17]): PROPOSITION 1 a4e
Fo4
an o p e n s e t U
C
I.: t h e . ~ o ~ l o w i n gp t o p e a t i e n
equivalent 1? 20
U i b pbeudocanwex. a -log du i 6 p l u t i h u b h a a m o n i c
o n {x
E U I d$
(x)>o}
404
POLYNOMIAL APPROXIMATION a E cs(E)
euehy
30
d:
381
.
F o h e v e h y compuct
K C U
With
t h e h e i6
a E cs(E)
604 CVV.hY
compact K~u.Hehe,
( ? Q ( ~ ) ) > 0.
4Q
ii
phecompucf i n U
Q ( ~ )
L C U iA c u t l e d p4ecompuct i n U i.6 L iA phecampuci uvld i d Rhehe a E cs(E) with
d;(L)
exinto
> 0.
I t i s an open q u e s t i o n whether t h e above e q u i v a l e n c e s h o l d
if
@(U)
.
i s r e p l a c e d by G>c(U) A partial answer is given in section 2.
U i s c a l l e d h o l o n o r p h i c a l l y convex i f
k
(iT) is p r e m p a c t
i n U f o r e v e r y compact K C U . A h o l o m o r p h i c a l l y c o n v e x open s e t
U cE
i s p s e u d o c o n v e x . The c o n v e r s e i s t r u e f o r A a n d a!
p r o b l e m ) , f o r a! (IN) [ 7 ]
spaces E with a basis (cf. L O ] ,
[2]
,
E =
an
(Levi
and f o r c e r t a i n s e p a r a b l e
[S!, 1 1 7 1 ) . I t i s a n o p e n q u e s -
t i o n whether t h e c o n v e r s e h o l d s i n g e n e r a l . A p a r t i a l answer i s given i n t h e n e x t s e c t i o n .
u
c E i s polynomially convex i f
compact K C U, whereby
TI
C. B ( U )
Gn
u
i s precmpact i n
for all
denotes t h e space of a l l
con-
t i n u o u s p o l y n o m i a l s f r o m 1: t o a!. S i n c e n i s d e n s e i n Z ( E ) w i t h r e s p e c t t o t h e canpact o p n topology on
KT
kTr
( E ) , w e have
k@(E)
=
*
i s contained i n
2
=
{x
/ p ( x ) I 5 1Ip
F EI
lK
for all
p
n).
E
-
-
W e d o n ’ t know, w h e t h e r f o r a p o l y n o m i a l l y c o n v e x U, K = K
TI
is
t r u e i n g e n e r a l . I n t h e case of a F r 6 c h e t s p a c e E w i t h t h e a p p r o x i m a t i o n p r o p e r t y t h i s w i l l b e p r o v e d i n s e c t i o n 3. Closely r e l a t e d w i t h p o l y n o m i a l c o n v e x i t y o f a Runge o p e n s e t
U
E.
U i s c a l l e d Runge i f
s ( U ) w i t h r e s p e c t t o t h e compact open t o p o l o g y .
same a s t o s a y t h a t
8 (E)
is
the TI
notion
i s dense i n
This is
the
i s d e n s e i n z ( U ) . F i n a l l y , rJ i s c a l -
l e d f i n i t e l y Runye ( r e s p . f i n i t e l y p o l y n o m i a l l y c o n v e x )
i f for
382
M.
SCHOTTENLOHER
a l l f i n i t e d i m e n s i o n a l v e c t o r s u b s p a c e s F of E l U f l P i s
Runqe
( r e s p . p o l y n o m i a l l y convex) i n p .
2. POLYNOFIIAL CONVEXITY Throughout t h i s s e c t i o n l e t E b e a l c s w i t h t h e approxima t i o n property, i.e. every
E
cz. i f
and a ( x
m
Let
PROPOSITION 2 €3.
Then
doh
- $(x))<
K63(U) l e t
e(E)
for a l l x E K.
open
U I Xo&
XoE
K6qU)
-
with
@(U)
E
with
e u c h y compact R C U :
.
Then t h e r e i s v
E
U be a pbe.udoconifcx, d i n i t e l y Runge
I n o r d e r t o show K
v(xo) > sup v ( y ) . Y EK Due t o t h e s e m i c o n t i n u i t y of v t h e r e a r e a s >
e v e r y a E C S ( E ) and
> o t h e r e e x i s t s a c o n t i n u o u s l i n e a r map 4 : E+E
dimc $(El <
A e t in
f o r e v e r y compact F
cs(E), q > o and
o such t h a t f o r a l l x E K a B a ( x , 2 s ) ~ i land v ( y ) < v ( x0 1- rl f o r y E R ( ~ ~ 2 s ) .
Because E h a s t h e a p p r o x i m a t i o n p r o p e r t y t h e r e e x i s t s a c o n t i n u
ous l i n e a r
+:
x E K . Now
IJJ
E+E =
4
+
w i t h dimc $ ( C ) <
xo
-
and u ( @ ( x ) - x) < s f i r
m
@(xo) s a t i s f i e s n ( @ ( x )- x ) < 2 s
x E K , hence j (I;) C
I.'
f ? I'
where f = s p (@(I?)
v o @(x) < v(xo) I t follows f o r
VI
-
= vlr>
rl
1
f o r a l l x E I<.
e,:.f)1 ' )
:
and
for
POLYNOMIAL APPROXIMATION
Consequently, xo
4
.
A
~ ( K ) Q ( ~ ~ Since ~ ) U n F is pseudoconvex and
Runve, there exists a polynomial 9 19(xo) I
'1
383
:
F+@
with
141 I$(K) (cf. [9, p. 5 3 1 ) . Now 9 o JI E
19
(xo)I =
$
9(xo)l
-
hence x
'
11"1$(K)
= 114
and
T
$11,
I
0 !$ %CE) From the propositions 1 and 2 we deduce:
A p b e u d o c a n v e x , I j i n i t e L y Runge open b e t
COROLLARY 1
UC E
i b
hoLomotphicaLly convex. REPIARK
Since for domains R C C : " the main step in solving
Levi problem is to show that pseudoconvexity implies
the
holomor-
phic convexity, corollary 1 is a certain contribution to the s o lution of the Levi problem. However, in infinite
dimensional
spaces E a holomorphically convex domain need not be a
domain
of holomorphy. In fact, Josefson [lo] gives an example of
a
pseudoconvex domain Q in I? = co(A), A uncountable, which is not
a domain of holomorphy. Ploreover, since this domain can be
de-
it
is
fined by a global plurisubharmonic function v E @ ( E ) , finitely Runge and hence holomorphically convex. But
in
certain
infinite
dimensional
spaces,
for example in Silva spaces [15] , every holomorphically convex domain is a domain of holomorphy or even a domain of existence.
Fo4
TIIEOWH 1
a17 o p e n
b e t U C I?, t h e doli!owing p h o p e t t i e s a 4 e
eq u i va i! e n t : 10
U LO p b e u d o c o n v e x a n d d i n i . t e i ! y Runge.
2Q
U
A &
3?
U
i a pvlqnomiaf!Py convex.
h o l c m o 4 p h i c a l l q conL'ex and 17unge.
M.
384
PROOF
According t o c o r o l l a r y 1, U i s holomorphi-
20".
"19
SCHOTTENLOHER
c a l l y convex. T h e r e f o r e , i t s u f f i c e s t o show t h a t a
finitely
Runqe s e t i s a Runge s e t . T h i s was proved i n [I] i n a more g e n e r a l c o n t e x t . I n o u r s i t u a t i o n t h e p r o o f o f [l] i s a s
,
Let f E g ( U )
I<
c U compact,
follows:
> 0. Because of t h e
E
continuity
o f f t h e r e are a E c s ( E ) and s > o s u c h t h a t f o r a l l x
1 f(x) -
Ba ( x , s ) C U and
E
f (y) ] < 2 f o r y E B
There e x i s t s a c o n t i n u o u s l i n e a r 4 : E + E and a ( + ( x )
-
a
(x,s).
w i t h dimc @ ( E l < m
x ) < s f o r a l l x E K . IIence
$(K) c
U
n r,
where F = 4 ( E l
Ilf -
f
E
411,(?
0
,
and
*
Since U f l I' i s f i n i t e l y Runqe t h e r e i s a polynomial
IIf
with
u/II.'
I If -
E K
9
-
ql
0
$IIK 5 I I f -
<
E
5
. Now g f
0
+I!<
g
k I L jt h)e,r e
is f
E
+
IIf
0
4- g
0
+'I1;
%(U)
with ] f ( x o ) l
<
-
Now I<
- PI/K U{xo) =
-
kiu, is
<
1
2 (lf(xo)1-1\f\lK)8
>IlfllK. .
xo $
precompact i n U s i n c e U i s
E.
Fc86(L:).
S i n c e U i s Runge, t h e r e e x i s t s a polynomial p E n w i t h
/If
6:
o cp E n and
L e t Y C t' be compact. E v i d e n t l y T'N!.
"2?+3?".
I f xo E U , xo
I+(K)
g: ??*
'%[C)'
bloanorphically
convex. '13'.'*40"
i s t r i v i a l and " 4 ? 4 1 ? ' " f o l l o w s from
the
f i n i t e d i m e n s i o n a l r e s u l t s [9, p . 531. Applying a r e s u l t o f Noverraz [14, t h . 31 w c see
that
f o r a F r 6 c h e t s p a c e E w i t h t h e appro::imation p r o p e r t y t h e
fol-
REPmRI<
lowing i s t r u e : For any d e n s e v e c t o r s u b s p a c c s e c t i o n of a l l pseudoconvex domains '' C
r c I:
with
r
the
Cii,
intei i s equal
385
POLYNOMIAL A P P R O X I M A T I O N
t o t h e i n t e r s e c t i o n o f a l l domains o f e x i s t e n c e R C E ,
with
I n o t h e r w o r d s , t h e p s e u d o c o n v e x c o m p l e t i o n FQ of P aare
F C R.
es w i t h t h e h o l o m o r p h i c c o m p l e t i o n
of P.
3 . POLYNOMIAL PPPROXIMATION
I n t h i s s e c t i o n l e t C be a m e t r i z a h l e l c s w i t h
the
ap-
p r o x i m a t i o n p r o p e r t y . Moreover, l e t E b e h o l o m o r p h i c a l l y p l e t e , i . e . E = E o ( c f . f o r example [ 1 4 ] )
. We
need t h e
corn
follow-
i n n c h a r a c t e r i z a t i o n [14, P r o p . 101 : F m e t r i z a b l e l c s E i s ho-
se
l o m o r p h i c a l l y c o m p l e t e i f f o r e v e r y n o n - c o n v e r v e n t Cauchy E there exists f E %(E)
v i t h sup
I f (xn) 1
q u e n c e (x,)
in
THEOREM 2
L e t U b e n p e u d o c o n v e x , 4 i n i R e t r r Runge o p e n n e t i n
-
C, a n d l e t I: = I<
B(U)
=
m.
be n c o m p a c t b u h b e t o S 11. T h e n e v e h r r 4iinc-
t i o n f w h i c h i n holornoflphic i n a neiohbofihood 0 4 K can be
p t o x i m a t e d uni{ohmtr/ o n
1 :
brr c o n t i n u o u d po4trnominPd
I?g m
N o t e t h a t f o r any compact K C U ,
on R.
s p a c e s . Hence
BiU)
i s compact s i n c e
K
-
BW) -
accog
i s compact
d i n 9 t o t h e above C h a r a c t e r i z a t i o n of h o l o m o r p h i c a l l y
I<
np-
KB$iEf
complete
r
( ropos i ti on
2).
PROOF Or TIIEOREM 2 L e t E > 0 . T h e r e a r e a E cs ( C ) and
s >
0
s u c h t h a t f i s h o l o m o r p h i c o n T J = IC + n a ( O , s ) IT, and f o r E a x E: I ( , If ( x ) f ( y ) I < 3 i f 7 7 E R ( x , s ) . T*Te f i r s t show
all
T h e r e e x i s t s a f i n i t e r a n k l i n e a r o p e r a t o r rt, : E
d E
-
(*) fi
with .9
& q J
(1:) )
c l !
and n(Q\fx) - x) < s f o r all x E K .
L e t ( a n ) khe a n i n c r e a s i n n s e q u e n c e of c o n t i n u o i i s norms on E , a
5 (L n ' whjch n e n e r a t c s
t h e t o p o l o n v of R .
semiSince
E
386
SCHOTTENLOHER
M.
h a s t h e a p p r o x i m a t i o n p r o p e r t y t h e r e a r e c o n t i n u o u s l i n e a r maps
@n
x
dimc a n ( E ) <
: E-E,
A
Assume t h a t $ J n ( K )
E K.
fi
xn
E 4 , n ( ~ )\
v.
m,
s u c h t h a t an(4,,(x)-
@ i7 f o r
P u t E~ = s p (I;
u
a
x) <
for all
are
a l l n E I N . Then t h e r e [ r t l n ( ~ )
denote t h e c o m p l e t i o n of Eo. For a l l q
F
I n
F
IN)) and l e t E~
I
@(El),
(xn) 1
K), s i n c e $ n ( E l i s a f i n i t e d i m e n s i o n a l , h e n c e p l e m e n t e d s u b s p a c c of E l .
Pccordinn t o c u r choice of
(an)
( x n ) i s bounflinn i n E l a n J , s i n c e El i s a
Hence,
Frgchet space,
(x,)
xnj
rectly)
. Now
Wnj Thus xg E E ,
is
that
relatively
t h e proof i n [16] can h e t r a n s f c r r e c l
di-
s a hounrlinq Cauchy s e n u c n c e i n C : ,(I<)+ ! l n \ l I c f o r a11 n E % ( c ) . n1 I: i s h o l o m o r p h i c a l l y c o m p l e t e . P i n a l l v ,
< lim 1 1 0 o + n j I 1 1 < = I J n l Icr(xo) I = l i m I n ( x n j ) I j +m j +m T h i s i s a c o n t r a d i c t i o n t o xn $ V f o r a l l n E: I?!. TIC t h u s proved ( * )
anc?
xo.
(This is a straiqhtforward oeneralization of t h e r e s u l t
compact: f o r
cnm-
se p ar a b l e
h a s a converrrent suhseciuence
e v e r y bounilinq s e t i n a s e p a r a b l e Banach s p a c e
5
for
have
.
i s h o l o m o r p h i c i n T ' f-l I', whcrehv n hence i n a neinhhorhood o f L = 4 (I<) C L e t q:
Now f
%.)
=
(c),
r+
be
r
387
POLYNOMAIL APPROXIMATION
p 4 o p e h t i e b l? - 40 i n t h e o h e m 1 atie
The
COROLLARY 3
eqiiiva-
PetiR R c 5?
K
c I1
404
a!P c o m p a c t
=>
moor
Cvidentlv " 5 ~
K C [J.
k% ( E l
3911, s i n c e
.
I
C
ic.
To s h o v
a r c compact s i n c e E i s l e t I: C [J b e c o m p a c t . Then K and 1:. &YE) holomorphically complete and s i n c e U is p o lv n o mially convex. A L
k n (E\U)
so, KO =
i s compact. Now a h o l o m o r p h i c f u n c t i o n f can
-
-
u KO
be d e f i n e d i n a n e i n h h o r h o o d of K = Kg(r,
equal t o
0
i n a n e i n h b o r h o o d o f KBe(c)
and
f
by p u t t i n s
eoual t o
1
f
a
in
n e i a h b o r h o o d o f KO. C o r o l l a r v 2 i m p l i e s t h e e x i s t e n c e of a con t i n u o u s p o l y n o m i a l p: E + C with I - pi 1~ < 71 T h u s , I IpI 1 i.e. KO = d , < 2 < Ip (x)1 f o r a l l x F KO. I t follows
.
If
- . .
K = I<
%(C)
IK<
= "-
4 . Theor rn 2 c a n be f o r m u l a t e d i n t h e f o l l o w i n n way.For a
compact
T C I1
r
4
d e n o t e t h e s p a c e o f T e r m s of
%rL)
holomor-
p h i c f u n c t i o n s on L . Then, i f U i s a p s e u d o c o n v e x ,
finitely
PunFe open s e t i n a h o l o m o r p h i c a l l y c o m p l e t e , m e t r i z a b l e
Ics
w i t h t h e a p p r o x i m a t j on p r o p e r t y , t h e f o l l o w i n a h o l d s : ( 1 ) T o eue4lj c o m p a c t I , C J,
map"
@ (11) LA
-
c o n t a i n ~ n gK ,
denbe
412
%(L)
(Take L =
1'
c1
A U C ~t h a t
thehe
c o ~ ~ e n p o nad ~
compact
t h e imnqe undeh t h e " t e n t t i c t i o n
g ( L )
4enpec.t
1 ~ 4 t h
k,
,UI
).
t o ,the & u p n n h m
t o p o ~ o n r ro n
The same a p p r o x i m a t i o n r e s u l t
shown f o r a pseudoconvex domain U s p r e a d over a r r 6 c h e t
%a).
can 01
be
Cilva
3 88
M.
SCHOTTENLOHER
s p a c e w i t h a f i n i t e dimensional Schauder decomposition (aaain with L =
A
1.
i n t h e case of C = Q:
n
F\
,a
[IT]
s t r a i n h t f o r w a r d r e a s o n i n n shows
that
s h a r p e r v e r s i o n (1) holds f o r a p s e u d o
convex domain U (acrain w i t h L = K): ( 2 ) T o evehq
L
C
compact I.: cc
t h e f i e c o t 4 e ~ p o ~ dan
U, c o n t a i n i n g I<, ~ u c ht h a t t h e i m a g e u n d e t t h e
conip.c.t
“fiesttiction
map”
%$(u)id
%(Lf
A e y u e n t i a L L y d p n b e w i t h 4ebpec-t t o t h e n a t u f i a t i n d u c t i v e t i n-1
it R o p o L o g y o n % ( L ) , The i n d u c t i v e l i m i t t o p o l o n v on g ( L ) i s d e f i n e d by = l i m inr1 V Ff(L1
@(L)
where &(L)
8%
(v) ,
i s a base of open n e i q h b o r h o o d s of L and i%”(V)
is
t h e Banach s p a c e of bounded h o l o m o r p h i c f u n c t i o n s on V w i t h t h e s u p norm. ( 2 ) FOR A PSEUDOCONVEX DOFIRIN
PROOF OF
compact and L = I<
Let f E %(L).
t h a t f i s h o l o m o r p h i c on L ( s ) = L
hence I q ( x n ) l 5 xnj
Ilnl IL(+)
+
for a l l
L e t I<
CU
he
There c x i s t s s > o
such
Assume
that
B(o,s)
E
Cr”:
1’
c I I .
%(u).
€ 0 11o v r s
It
L f o r a subsequence (x
) o f (x,). Contradiction. nj Now l e t 1 8 ( t \C L ( s ) f o r o < t < s . A c c o r d i n q t o t h e approximaj xo E A
t i o n t h e o r e m o f 01:a-Vcil
\Ifm-
flIL(t)+o,
striction
mdr)
[ 9 , p. 911, t h e r e e x i s t fn
i.e. fm j
8%”(Iz( t ))-+
?%(I,)
t h e qerms o f fm c o n v e r n e t o f in
f in %‘(I(t)).
6
Rfll)v i t h
Since t h e
rc
i s c o n t i n u o u s , it follows that Bil,,.
W e d o n ’ t know w h e t h e r o r n o t ( 2 ) h o l d s for
all
open
POLYNOMAIL APPROXIMATION
s u b s e t s of Cn.
389
T h e r e e x i s t domains i n Cn s a t i s f y i n 9 ( 2 ) h u t n o t
b e i n ? pseudoconvex. ror e x a m p l e , i f 0 i s pseudoconvex and K C 2 i s compact s u c h t h a t U = Q \ K
connected, then U s a t i s f i e s ( 2 ) .
P r o p e r t y (2) i s p a r t i c u l a r l y i n t e r e s t i n n i n t h e
infinite
d i m e n s i o n a l case: T f an open s e t U i n a norme?. s p a c e E satisfies
(2), t h e n t h e Nachhin topo1oc.y j e c t i v e l i m i t of a11
,
(%(u)
T
w
T~
s(~ , K )c u
pro-
[12] i s o b t a i n e d a s t h e
compact:
) = lir, r ? v J T’C cpt.
(K).
T h i s i s d i s c u s s e d i n [ll] and [ 3 ! . T h e r e a r e o n l y few e x a m p l e s of o p e n s e t s i n i n f i n i t e m e n s i o n a l s p a c e s €or which i t i s known t h a t ( 2 ) i s e.n.
r
f o r a b a l a n c e d open s e t i n a n o r h i t r a y l c s
di-
satisfied,
cer-
and for
t a i n R e i n h a r d t open s e t s i n a n a n a c h s p a c e w i t h a n u n c o n d i t i o n d b a s i s [ll]. U n f o r t u n a t e l y , t h e methods p r e s e n t e d above as as t h a t of [17!
proof of
we1 1
do n o t p r o v i d e more e x a m p l e s . A l s o , t h e
( 2 ) f o r a pseudoconvex U C C
n
above
cannot be t r a n s f e r r e d t o
it can
domains i n i n f i n i t e d i m e n s i o n a l n o r n e d s p a c e s . IIowever, b e t r a n s f e r r e d t o t h e case of a pseudoconvex c7olnain U
in
an
a r b i t r a r y p r o d u c t CpA of l i n e s , b e c a u s e s u c h a domain i s t h e p r o duct R
c”,
x
CA’ o f a pseudoconvex
R in a certain C
n
an? t h e
space
A ’ = ~ \ { l , . . . n ~~ 2 1 .
ACKNOWLEDGEMENT:
I want t o t h a n k M.C.
Matos for h e l p f u l c a m n e n t s .
REFERENCES
[l]
R . ARON
-
PI.
SCIIOTTENLOHER, C o n p a c t h o l o m o r p h i c
mappincrs
o n Banach s p a c e s and t h e a p p r o x i m a t i o n p r o p e r t y . appear i n J . runct. Enalvsis
.
To
(Pnnouncement i n : R u l l .
Amer. rqath. Soc. 80 (19741, 1245
-
1249).
390
[Z]
M.
SCHOTTENLOHER
V . A U R I C I l , C h a r a c t e r i z a t i o n of d o n a i n s o f h o l o m o r p h y
over
a n a r b i t r a r y p r o d u c t of c o m p l e x l i n e s . D i p l o m a r l ~ e i t . !Tiinchen 1 9 7 3 . [3]
S. B.
CIIAE, I I o l o m o r p h i c nerms o n B a n a c h s p a c e s . P n n . I n s t .
F o u r i e r 2 1 ( 1 3 7 1 ) , 107 [4J
- 141.
f u n c t i o n s on locallv c o n v c x v c c t o r
S . DINCEN, I r o l o m o r p h i c
spaces IT. Ann. I n s t . F o u r i e r 2 3 ( 1 9 7 3 1 , 155
[5]
- 18s.
S . D I N E E N , A q r o w t h p r o p e r t y of p s e u t l o c o n v e x d o m a i n s
in
l o c a l l y c o n v e x t o p o l o u i c a l vcctor spaces. P r e p r i n t . [6]
S . DINEEN
-
P h . NOVERPJZ
- IY. SCIIOTTKNLOVJ?R, Le
prokl6me
de L e v i d a n s c e r t a i n s e s p a c e s v e c t o r i c l s t o p o l o n i o u n l o c a l e m e n t c o n v e x e s . To a p p e a r i n B u l l . P'ath. 171
L.
GRUKAN, T h e L e v i problem i n c e r t a i n i n f i n i t e d i m e n s b m l
v e c t o r spaces. I l l . J . Pqath. 18 ( 1 ? 7 4 ) , 20 [8]
L.
CRUtIAN
-
C.
KISELEIAN,
ces dc B a n a c h ( 1 9 7 2 ) , 1236 [9]
Trance.
L. HOPYANDER,
-
L e p r o h l k m e de L e v i d a n s l e s espp
base. C . P . ?.cad. S c i . P a r i s
-
26.
274
1299.
"An I n t r o d u c t i o n t o Complex D n a l y s i s i n S c v e
r a l V a r i a b l e s " . Van N o s t r a n d , P r i n c e t o n 1 3 6 6 .
[lo]
B.
JOSEI'SON, A c o u n t e r e x a m p l e t o t h e L e v i p r o b l e m . "Proceedinas on I n f i n i t e Dimensional S p r i n q e r L e c t u r e Notes 264 ( 1 9 7 4 ) 1 f j P
[ll] J . PILIJICA,
In:
ITolomorphv"
-
177.
S p a c e s o f oems of h o l o m o r n h i c f u n c t i o n s . T h & ,
U n i v . of P o c h e s t e r 1 9 7 4 . To a p n e a r i n F d v . i n M a t h . . See also t h i s proceedinns.
.
POLYNOMIAL APPROXIMATION
[12]
L . NACMBIN,
39 1
"Topolonv on s p a c e s of h o l o m o r p h i c
nappincrs"
.
S p r i n n e r - V e r l a n , New York 1 9 6 3 . [13] P!!.
S u r l a p s e u d o - c o n v e x i t 6 e t l a c o n v e x i t s poly
NO"ERP?Z,
n o n i a l e e n d i m e n s i o n i n f i n i e . Pnn. I n s t . F o u r i e r ( 1 9 7 3 ) , 113
-
134.
Pseudo-convex c o m p l e t i o n o f l o c a l l y
[14] PII. NOVCR?Z\Z,
23
convex
t o p o l o n i c a l v e c t o r spaces. P a t h . Pnn. 208 ( 1 9 7 4 1 , 5 9 69. [15]
~ € 7 . M ~ ~ V E R P . A Z ,? s e u d o - c o n v e x i t g
e.1.s.
I n : S6m. L e l o n n 13/74.
4 7 4 (19751, 6 3
[16] br.
e t h a s e de Schaucler clans les
-
S p r i n n e r L e c t u r e Notcs
82.
SCIIOTTENLOIIER, Boundinn s e t s i n Ranach s p a c e s and r e q u l a r c l a s s e s of a n a l y t i c f u n c t i o n s . I n : A n a l y s i s and A p p l i c a t i o n s
(Symposium
runctional R e c i f e , 1972) ,
S p r i y e r L e c t u r e Notes 284 ( 1 9 7 4 ) , 109
[ 171 M. SCHOTTENLOHER, P a s
-
122.
Leviproblem i n unendlichdimensionalen
Raumen m i t S c h a u d e r z e r l e q u n a .
IIabilitationsschrift.
Nunchen 1974. The L e v i p r o b l e m f o r domains
spread
o v e r l o c a l l y convex s p a c e s w i t h a f i n i t e d i m e n s i o n a l Schauder decomposition. T o appear
in
Ann.
Inst.
Fourier.
rlathematisches I n s t i t u t der U n i v e r s i t a t Munchen Theresienstr.
D
8
39
E'liinchen 2