The distribution of trace elements in deep-sea sediments of the Atlantic Ocean

The distribution of trace elements in deep-sea sediments of the Atlantic Ocean

EARTH AND PLANETARY SCIENCE LETTERS 1 (1966) 161-168. NORTH-HOLLAND PUBL. COMP., AMSTERDAM T H E D I S T R I B U T I O N OF T R A C E E L E M E N T S...

1MB Sizes 3 Downloads 152 Views

EARTH AND PLANETARY SCIENCE LETTERS 1 (1966) 161-168. NORTH-HOLLAND PUBL. COMP., AMSTERDAM

T H E D I S T R I B U T I O N OF T R A C E E L E M E N T S IN D E E P - S E A S E D I M E N T S O F T H E A T L A N T I C OCF..AN K a r l K. TUREKIAN and John IMBRIE Department of Geology, Yale University, New Haven, Connecticut and Department of Geology, Columbia University, New York, New York Received 26 May 1966

The distributions of barium, cobalt, copper, nickel, lead, chromium, manganese and tin have been determined in the tops of deep-sea cores from the Atlantic Ocean. The trace elements show no correlations with clay mineralogy or depth of water. The strongest correlations are. (1) among manganese, nickel and cobalt which can be related generally to areas of low clay accumulation rates hence possibly representing a fine grained pelagic component, and (2) the correlation of copper with calcium carbonate.

A s y s t e m a t i c study of the t r a c e - e l e m e n t c o m position of the tops of c o r e s r a i s e d by the Lamont Geological O b s e r v a t o r y in the Atlantic Ocean has been made u s i n g an e m i s s i o n s p e c t r o graphic technique [1]. The e l e m e n t s d e t e r m i n e d w e r e b a r i u m , copper, cobalt, nickel, lead, c h r o m i u m , m a n g a n e s e and tin. As the c o n c e n t r a t i o n of tin was below the l i m i t of detection (2 ppm) in many c o r e s it is not included in the s t a t i s t i c a l a n a l y s i s d e s c r i b e d below and the r e sults a r e not r e p o r t e d h e r e although it should be noted that a random d i s t r i b u t i o n p a t t e r n a p p e a r s to exist for this element. Figs. 1-5 show the d i s t r i b u t i o n s of cobalt, nickel, m a n g a n e s e , c h r o m i u m and copper, on a c a l c i u m c a r b o n a t e - f r e e b a s i s , in the tops of c o r e s r a i s e d i n the Atlantic Ocean. Maps of the d i s t r i b u t i o n s of b a r i u m and c a l c i u m c a r b o n a t e have been r e p o r t e d p r e v i o u s l y [2]. T h e r e was no s t r o n g p a t t e r n to the lead d i s t r i b u t i o n , hence a map of it is not included. It is evident that cobalt, nickel, m a n g a n e s e and copper a r e p r e s e n t in higher c o n c e n t r a t i o n s in the m i d - o c e a n i c a r e a r e l a t i v e to the deeper a r e a s between the MidAtlantic Ridge and the c o n t i n e n t a l m a r g i n s . This is also t r u e of b a r i u m , g e n e r a l l y , and also of c a l c i u m carbonate. B a r i u m is known to be a s s o ciated with high biological activity in some p a r t s of the oceans [2, 3] and the c a l c i u m carbonate d i s t r i b u t i o n r e f l e c t s both i n t e n s e productivity and the a s - y e t - u n r e s o l v e d effects of water depth. In o r d e r to pick out p o s s i b l e a s s o c i a t i o n s of the t r a c e e l e m e n t s with each other, w a t e r depth, c a l c i u m carbonate, and m i n e r a l o g y , a s t a t i s t i c a l a n a l y s i s of the data was made. The object of

such an a n a l y s i s is to quantify and evaluate c o r r e l a t i o n s which a r e intuitively apparent as well as to focus attention on c o r r e l a t i o n s not c l e a r l y d i s c e r n e d . With such c o r r e l a t i o n s or a b s e n c e s of c o r r e l a t i o n s we can then p r o c e e d to draw i n f e r ences about the p r o b a b l e p r o c e s s e s operative to explain the o b s e r v e d d i s t r i b u t i o n s and a s s o c i a tions. The m i n e r a l o g i c a l data a r e those of B i s caye [4]. The t r a c e e l e m e n t and carbonate d e t e r m i n a t i o n s were made on the same sample on which the clay m i n e r a l o g y was d e t e r m i n e d . Two sets of data were analyzed by a s t a t i s t i c a l technique (factor analysis) d e s c r i b e d p r e v i o u s l y [5]: (1) a set of 95 c o r e s for which b a r i u m data as well as the other data were available, totalling 16 v a r i a b l e s ; and (2) a set of 252 c o r e s including all the v a r i a b l e s except b a r i u m , totalling 15. A p r i n c i p a l components factor a n a l y s i s indicates that t h e r e a r e e s s e n t i a l l y nine independent sets of influences o p e r a t i n g in both sets of data. A v a r i m a x rotation p r o c e d u r e f u r t h e r i n d i c a t e s that the nine v a r i a b l e s displaying g r e a t e s t mutual independence a r e those listed f i r s t in each c l u s t e r in table 1. The tabled values a r e s t a n d a r d i z e d p a r t i a l l i n e a r r e g r e s s i o n coefficients r e l a t i n g the nine s e l e c t e d v a r i a b l e s to each of the sixteen. Only the most significant coefficient is r e c o r d e d for each v a r i a b l e . The r e s u l t s have been r e corded in table 1 to b r i n g out groupings of v a r i a b l e s with s i m i l a r dependencies. The clay m i n e r a l o g i c a l s t a t i s t i c a l data a r e in t h e m s e l v e s not p a r t i c u l a r l y i n f o r m a t i v e s i n c e the d i s t r i b u t i o n maps of the m i n e r a l s have been adequately i n t e r p r e t e d by B i s c a y e [4]. It is obvious f r o m the v i s u a l c o m p a r i s o n of the t r a c e -

162

K.K. TUREKIAN and J. IMBRIE

105

90

75

60

45

30

15

0

15

30

45

60

75

I

60

60

....

45

o..!

45

f •



e•

•o

/

°0 ~3

30

U

:50

30

• b . . . . . . . . . . . .

-L~ P P M

45

Copper

I

(carbonate-free)

I

o - 75 75-

o

45

150

% 150 - 3 0 0

60

I

105

n

e~ I

75

=~

I

60

45

I

~10

300 - 600

60

I

|

L

I

I

I

15

o

15

30

45

60

F i g . 1. M a p o f c o p p e r c o n c e n t r a t i o n in b o t t o m s e d i m e n t s o f t h e A t l a n t i c O c e a n calculated on a carbonate-free basis.

75

DISTRIBUTION OF TRACE ELEMENTS

105

90

75

60

45

30

15

IN D E E P - S E A

0

15

SEDIMENTS

30

163

45

60

60 !:.-.-$'/

..'i

75

60

,B,

iiii!!iiiiii!ii 45

45

30

30

I..,

°

Q

U

30

30



45

:

".

" .

/



.

PPM

/:

Cobalt

t

lip

(carbonate

I

- free)

45

2 - zo 20 - 40 40 - 80

"

60 o • 105

90

75

6O

" 45

30

15

0

t5

l l

8 0 - 160

l l

160 ° 3 2 0

30

45

F i g . 2. M a p o f c o p p e r c o n c e n t r a t i o n in b o t t o m s e d i m e n t s o f t h e A t l a n t i c O c e a n calculated on a carbonate-free basis.

60

6O

75

164

K . K . T U R E K I A N and J. IMB R IE

105

90

75

60

45

30

15

0 I

30

45

60

75

e Q

60

60

45

45

30

30

o

0

~)

30

0 •

0

e

PPM Nickel

45

I lip

" t:

(carbonate -free)

J

45

o-4o 40 - 80

%

8 0 - 160

1 1

.~',=

60

Q~ 0

105

90

7'5

60

45

30

15

0

15

3O

1 6 0 - 3,20 60

>

320

45

F i g . 3. Map of n i c k e l c o n c e n t r a t i o n in b o t t o m s e d i m e n t s of t h e A t l a n t i c O c e a n c a l c u l a t e d on a c a r b o n a t e - f r e e b a s i s .

6O

75

DISTRIBUTION

105

90

75

60

OF TRACE

45

ELEMENTS

30

i5

IN DEEP-SEA

0

15

SEDIMENTS

30

165

45

60

75

r~

60 .

.

.

.

.

.

.

.

.

.

.

.

.



.

.

.

.

.

.

.

.

60

!

.

!ii!iii.!.

•" ""................. 45



,r~Q ~,0

. .o

°:i

45

.... . .. 30

~..~i...~. ..........

============================================================

~D • .e..el.

~0

30

1~ ~ ~ , ~ ~,:~ ~?:~ 2i~iii!!!iii:.i;:?:iii:i~" .............................

45

e..,

/'iiiii?ili!i?i?)!ii)i!!?!2?::".

PPM

Manganese (carbonate-free) I

45

I o -looo

lip

IO00 - 5 O 0 0 5000 - I0,000

1

60

~o,ooo - 5o,ooo

60

e 105

90

75

60

45

30

15

0

15

Fig. 4. Map of manganese concentration in bottom sediments calculated on a carbonate-free basis.

30

of the Atlantic

4~

Ocean

60

75

166

K.K. TUREKIAN and J. IMBRIE

105

90

75

60

45

30

t5

0

t5

30

45

60

60

45

75

60

%t

45

30

30

15

15

30 "

45

45



"~(~:l:L

E

j o-,~

:;iii!iiiiiiii~;. . . . . % 9O - 180

. ,

• •

60

~

>

180

60

Q

105

I 90

I 75

l

60

45

I 30

l

I

t5

O

F i g . 5. M a p of c h r o m i u m c o n c e n t r a t i o n in b o t t o m s e d i m e n t s c a l c u l a t e d on a c a r b o n a t e - f r e e b a s i s .

I 15

I 30

I 45

of the A t l a n t i c O c e a n

I

75

DISTRIBUTION OF TRACE ELEMENTS IN DEEP-SEA SEDIMENTS Table 1 Results f r o m oblique projection m a t r i c e s (expressed as p a r t i a l l i n e a r r e g r e s s i o n coefficients) *. Variable No.

Including b a r i u m (sample = 95)

Excluding b a r i u m (sample = 252)

1

MANGAN NICKEL COBALT

1.000 0.914 0.764

NICKEL MANGAN COBALT

1.000 0.884 0.851

2

GIBILL KAOLIN

1.000 0.892

KAOLIN GIBILL CHLOR

1.000 0.670

-0.561

3

QUAILL AMPILL

1.000 0.860

QUAILL

1.000

4

MONT ILLITE CH LOR

1.00O -0.724 -0.794

MONT ILLITE

5

CALCAR COPPER

1.000 0.671

CALCAR COPPER

1.000 -0.827 1.000 0.846

6

LEAD

1.000

LEAD

1.000

7

CHROMI

1.000

CHROMI

1.000

8

DEPTH

1.000

DEPTH

1.000

9

BARIUM

1.000

AMPILL

1.000

a n d i s p r o b a b l y d u e to t h e d e p o s i t i o n of f i n e m a t e r i a l w i t h h i g h c o n c e n t r a t i o n s of t h e s e e l e m e n t s transported from the continents. A similar dist r i b u t i o n h~as b e e n o b s e r v e d f o r M n i n d e e p - s e a s e d i m e n t s of t h e P a c i f i c O c e a n b y S k o r n y a k o v a [7]. T h e c a l c i u m c a r b o n a t e i s a r e f l e c t i o n of t h e preserved productivity and although copper is n o t i n t h e l a t t i c e of t h e c a r b o n a t e t e s t s , i t i s i n s o m e way b i o l o g i c a l l y a s s o c i a t e d a n d e x t r a c t e d from sea water and preserved with the calcium c a r b o n a t e f r a c t i o n . R e v e l l e e t al. [8] a l s o n o t e d this qualitatively for Pacific sediments. The average trace-element concentration values for the Atlantic Ocean deep-sea clay sediments based on these results are compared with Wedepohl's averages for the Atlantic and Pacific in t a b l e 2. A d i s c u s s i o n of t h e b e a r i n g o f t h e s e r e sults on material balance type calculations in Table 2 T r a c e element concentrations in p a r t s p e r million. Present results Atlantic

* The code n a m e s for the v a r i a b l e s have the following meanings: MANGAN, NICKEL, COBALT, LEAD, BARIUM, CHROMI, COPPER stand for the concent r a t i o n s of the obvious t r a c e e l e m e n t s on a calcium c a r b o n a t e - f r e e b a s i s . KAOLIN, MONT, ILLITE, CHLOR r e p r e s e n t the percentage of each obvious clay m i n e r a l in the < 2# non-carbonate fraction. They total 100%. GIBILL, QUAILL, AMPILL a r e r e s p e c t i v e l y the gibbsite/illite, q u a r t z / i l l i t e , and a m p h i b o l e / i l l i t e peak height r a t i o s for the 2-20~ n o n - c a r b o n a t e fraction. CALCAR is the percentage calcium carbonate. element data with the mineralogical data that the mineralogical distributions are primarily latitud i n a l l y c o n t r o l l e d - m a i n l y r e f l e c t i n g i n t e n s i t y of weathering on the adjacent continents - while all the trace-element distributions except chromium and lead are controlled by longitudinal features. I t i s n o t s u r p r i s i n g t h e n t h a t no c o r r e l a t i o n w a s found in the statistical analysis between the mineralogy and the trace elements. The variables that might have been correlated, intuitively, are i l l i t e a n d c h r o m i u m i n t h a t t h e y b o t h a p p e a r to b e h i g h e r i n t h e n o r t h A t l a n t i c r e l a t i v e to t h e s o u t h A t l a n t i c . T h e r e i s no c o r r e l a t i o n , h o w e v e r , b e t w e e n t h e s e two v a r i a b l e s . Similarly l e a d s h o w s no a s s o c i a t i o n w i t h m i n e r a l o g y . The strongest correlations for the trace elem e n t s a r e two: (1) m a n g a n e s e , c o b a l t a n d n i c k e l a n d (2) c o p p e r a n d c a l c i u m c a r b o n a t e . T h e m a n ganese-cobalt-nickel association is obviously r e l a t e d to r e g i o n s of low c l a y a c c u m u l a t i o n [2, 6]

167

Depth (m) % CaCO 3 Pb Cr Cu Ni Co Mn Ba

95 o b s e r vations

252 o b s e r vations

4209 55.3 62 88 139 92 45 4508 1602

3920 48.3 52 80 115 79 39 3982

Wedepohl [9] compilation Atlantic

Pacific

45 86 130 140 38 4000 700

110 78 400 300 110 9400 6700

e s t i m a t i n g t h e r e l a t i v e r a t e s of c l a y a c c u m u l a t i o n i n t h e A t l a n t i c r e l a t i v e to t h e P a c i f i c a s s u g g e s t e d b y W e d e p o h l [9] o n t h e b a s i s of t r a c e element concentration differences between the s e d i m e n t s of t h e two o c e a n s i s d i s c u s s e d e l s e w h e r e [10]. W e t h a n k P r o f . M a u r i c e E w i n g , D i r e c t o r of the Lamont Geological Observatory (Columbia U n i v e r s i t y ) f o r t h e c o r e s a m p l e s u s e d in t h i s study. Carolyn Wellman assisted in the laboratory. This research has been supported mainly by the National Science Foundation Grant GP2456 to KKT.

References [1] K.K. Turekian and D . F . S c h u t z , in: Symposium on Marine Geochemistry, N a r r a g a n s e t t Marine Lab. Occas. Publ. No. 3 (1965) p. 41.

168

K.K. TUREKIAN and J. IMBRIE

[2] K.K. Turekian and E. H. Tauseh, Nature 201 (1964) 696; K.K.Turekian, Trans. N.Y. Acad. Sci. 26 (1964) 312. [3] E. D. Goldberg and G.O.S. Arrhenius, C,eochim. Cosmochim. Acta 13 (1958) 153. [4] P . E . B i s c a y e , Bull. Geol. Soc. Am. 76 (1965)803; P. E. Biscaye, Ph.D. Thesis, Yale Univ. (1964). [5] J. Imbrie and T. H. Van Andel, Bull. Geol. Soc. Am. 75 (1964) 1131; V. Manson and J. Imbrie, Karts. Geol. Survey Special Dist. Publ. 13 (1964).

[6] K. K. Turekian and M. Stuiver, Science 146 (1964) 55. [7] N. S. Skornyakova, Akad. Nauk SSSR No. 5 (1964) 3. [8] R. Revelle, M. Bramlette, G. Arrhenius and E.D. Goldberg, Geol. Soc. Am. Special P a p e r 62 {1955) 221. [9] K.H.Wedepohl, Geochim. Cosmochim. Acta 18 (1960) 200. [10] K.K.Turekian, in: The quaternary history of ocean basins, B.C. Heezen, ed. (INQUA Symp. Publ., in press).