The Work of Harvey Friedman1)

The Work of Harvey Friedman1)

HARVEY FRIEDMAN'S RESEARCH ON THE FOUNDATIONS OF MATHEMATICS, L.A. Harrington et al. (editors) Elsevier Science Publishers B.V. (North-Holland), 1985 ...

360KB Sizes 0 Downloads 85 Views

HARVEY FRIEDMAN'S RESEARCH ON THE FOUNDATIONS OF MATHEMATICS, L.A. Harrington et al. (editors) Elsevier Science Publishers B.V. (North-Holland), 1985

1

The Work o f Harvey Friedman A n i l Nerode and Leo A.

1)

Harrington

Mathematical l o g i c i a n Harvey Friedman was r e c e n t l y awarded t h e N a t i o n a l Science F o u n d a t i o n ' s annual Waterman P r i z e , h o n o r i n g t h e most o u t s t a n d i n g American s c i e n t i s t under t h i r t y - f i v e y e a r s o f age i n a l l f i e l d s o f science and engineering.

When a mathematician wins such an award, t h e mathematical community

n a t u r a l l y wishes t o understand t h e u n d e r l y i n g achievements, and t h e i r i m p l i c a tions.

Friedman c o n t i n u e s t h e g r e a t t r a d i t i o n o f Frege, Russel, and G'ddel.

This

can be c h a r a c t e r i z e d as t h e e x e r c i s e o f a c u t e p h i l o s o p h i c a l p e r s p e c t i v e t o d i s t i l l exact mathematical d e f i n i t i o n s and q u e s t i o n s f r o m i m p o r t a n t f o u n d a t i o n a l issues.

These q u e s t i o n s i n t u r n g i v e r i s e t o mathematical s u b j e c t s and theorems

o f depth and beauty.

Friedman's c o n t r i b u t i o n s span a l l branches o f mathematical

l o g i c ( r e c u r s i o n t h e o r y , p r o o f t h e o r y , model t h e o r y , s e t t h e o r y , t h e o r y o f computation).

He i s a g e n e r a l i s t i n an age o f s p e c i a l i z a t i o n , y e t h i s theorems o f t e n

require extraordinary technical v i r t u o s i t y .

We d i s c u s s o n l y a few s e l e c t e d

high1 i g h t s . Friedman's ideas have y i e l d e d r a d i c a l l y new k i n d s o f independence r e s u l t s . The k i n d s o f statements proved independent b e f o r e Friedman were m o s t l y d i s g u i s e d p r o p e r t i e s o f formal systems (such as Godel's theorem on u n p r o v a b i l i t y of cons i s t e n c y ) o r a s s e r t i o n s about a b s t r a c t s e t s (such as t h e continuum h y p o t h e s i s o r S o u s l i n ' s hypothesis).

I n c o n s t r a s t , Friedman's independence r e s u l t s a r e about

q u e s t i o n s o f a more c o n c r e t e n a t u r e i n v o l v i n g , f o r example, Bore1 f u n c t i o n s o r t h e H i l b e r t cube.

R e p r i n t e d from t h e N o t i c e s o f t h e American Mathematical S o c i e t y , (1984) "The Work o f Harvey Friedman",

by A n i l Nerode and Leo H a r r i n g t o n , Volume 31, pp. 563-

566, by p e r m i s s i o n o f t h e American Mathematical Society.

2

A. NERODE. L.A. HARRINCTON I n [l] Friedman showed t h a t B o r e l determinacy cannot be proved i n Zermelo

s e t t h e o r y w i t h t h e axiom o f c h o i c e (ZC), o r any o f t h e usual formal systems a s s o c i a t e d w i t h a t most c o u n t a b l y many i t e r a t i o n s o f t h e power s e t o p e r a t i o n , a f t e r M a r t i n [17] proved B o r e l determinacy from c e r t a i n reasonable e x t e n s i o n s o f Zermelo Fraenkel s e t t h e o r y with t h e axiom of c h o i c e (ZFC).

Subsequently, M a r t i n

[18] gave a p r o o f o f B o r e l determinacy u s i n g uncountably many i t e r a t i o n s o f t h e power s e t o p e r a t i o n . These r e s u l t s reached t h e i r mature f o r m i n [9] THEOREM 1 (FRIEDMAN [9]).

as f o l l o w s :

I t i s necessary and s u f f i c i e n t t o use uncountably

many i t e r a t i o n s o f t h e power s e t o p e r a t i o n t o prove t h e f o l l o w i n g .

Every symme-

t r i c B o r e l subset o f t h e u n i t square c o n t a i n s o r i s d i s j o i n t from t h e graph o f a Borel function.

I n p a r t i c u l a r , t h i s a s s e r t i o n i s p r o v a b l e i n ZFC b u t n o t i n ZC.

I n Friedman [4,9],

t h e c l a s s i c a l theorem o f Cantor t h a t t h e u n i t i n t e r v a l

i s uncountable i s analyzed.

C a n t o r ' s argument produces an

t e r m i n any g i v e n i n f i n i t e sequence

-

Borel diagonalization function y

(here

F(y)

a

= 1'

F : Q

+

i s t h e H i l b e r t cube).

E I

y?,...

yl,

I

.

F

many c o o r d i n a t e s o f

and x

.

x

-

y

F(y)

i s a coordinate o f

Friedman observes t h a t t h e v a l u e o f

coming from C a n t o r ' s argument.

t h e same coordinates,

which i s n o t a

Specifically, there i s a

such t h a t no

depends on t h e o r d e r i n which t h e c o o r d i n a t e s o f

f o r the

x E I

I

Let

mean t h a t

x = y

y

a r e given, a t l e a s t

mean t h a t

x,y E

5

have

i s o b t a i n e d by permuting f i n i t e l y

y

THEOREM 2 (FRIEDMAN [4,9]). t h e invariance condition of

x

.

If

F :q

-t

x = y + F(x) = F(y)

I

i s a Borel function s a t i s f y i n g

, then

some

F(x)

i s a coordinate

Furthermore, t h i s i s p r o v a b l e i n ZC b u t not i n ZFC w i t h t h e power s e t

axiom d e l e t e d (even f o r t h e weaker theorem w i t h Subsequently, Friedman [12]

r e p l a c e d by

-)

.

gave c l o s e l y re1 a t e d one-dimensi onal theorems

w i t h t h e same meta-mathematical p r o p e r t i e s .

K

-

We present two o f these.

s : K + K by (2) D e f i n e t h e "square" x(') f o r x E K by x S(X,) = x Let T n+l * n = x 2 ' n [ O , l ) w i t h a d d i t i o n modulo 1). We say t h a t F : K + K be t h e c i r c l e group (i.e., Let

= {O,l}w

be t h e Cantor s e t .

Define t h e s h i f t

3

The Work of Harvey Friedman

i s shift invariant i f invariant i f

.

F(sx) = F(x)

F(2x) = F(x)

.

THEOREM 3 (FRIEDMAN [12]). somewhere i t s square.

We say t h a t

F : T + T

i s doubling

K

Every s h i f t i n v a r i a n t B o r e l f u n c t i o n on

There i s a B o r e l ( i n f a c t , c o n t i n u o u s ) f u n c t i o n on

which agrees somewhere w i t h every d o u b l i n g i n v a r i a n t B o r e l f u n c t i o n on

T

is T

.

Furthermore, t h e s e ( t h r e e ) theorems a r e p r o v a b l e i n ZC h u t n o t i n ZFC w i t h t h e power s e t axiom d e l e t e d . Friedman [9] develops e x t e n s i o n s o f Theorem 2, which proved u s i n g uncountRecently, Friedman has extended

a b l y many i t e r a t i o n s o f t h e power s e t o p e r a t i o n . t h i s i d e a as f o l l o w s : space o f a l l subsets o f on

Let

Q

Q

.

be t h e r a t i o n a l numbers and Let

G

P(Q)

be t h e Cantor

be t h e B a i r e space of a l l p r o d u c t s d e f i n e d

.

w

THEOREM 4 (FRIEDMAN [ l l ] ) .

If

F : G

+

i s a B o r e l f u n c t i o n such t h a t

G

isomorphic elements go t o i s o m o r p h i c values, t h e n some imbeddable i n

.

x

F(x)

i s isomorphically

Furthermore, t h i s theorem i s p r o v a b l e i n ZC b u t n o t i n ZFC

w i t h t h e power s e t axiom d e l e t e d . THEOREM 5 (FRIEDMAN [ l l ] ) . I f

F : P(Q)

+

P(Q)

i s a B o r e l f u n c t i o n such

t h a t o r d e r isomorphic arguments go t o o r d e r isomorphic values, then some i s isomorphic t o an i n t e r v a l i n points i n

A)

.

A

(even o f t h e f o r m

(a,b)

where

a,b

F(A) are

Furthermore, t h i s theorem r e q u i r e s uncountably many i t e r a t i o n s

o f t h e power s e t o p e r a t i o n t o prove.

I n p a r t i c u l a r , i t i s p r o v a b l e i n ZFC b u t

n o t i n ZC. Friedman [9] a l s o develops f a r - r e a c h i n g e x t e n s i o n s o f Theorem 2 by combining t h e s e i d e a s w i t h Ramsey's theorem.

T h i s l e a d s t o independence r e s u l t s from f u l l

ZFC, and i n f a c t t o theorems about B o r e l f u n c t i o n s on t h e H i l b e r t cube f o r which i t i s necessary and s u f f i c i e n t t o use " l a r g e c a r d i n a l s " t o prove.

The l a r g e c a r d i n a l s i n v o l v e d a r e as f o l l o w s :

A < K

.

K

implies We say t h a t

2

A

< K

unbounded subset o f

K

, and

K

i s not t h e sup o f fewer t h a n

i s a Mahlo c a r d i n a l i f K

A c a r d i n a l i s i n a c c e s s i b l e if

K

K

c a r d i n a l s below

i s i n a c c e s s i b l e and every c l o s e d

c o n t a i n s an i n a c c e s s i b l e c a r d i n a l .

A. NERODE. L.A. HARRINGTON

4

The

1-Mahlo c a r d i n a l s a r e t h e Mahlo c a r d i n a l s .

are the

The

(n+l)-Mahlo c a r d i n a l s

n-Mahlo c a r d i n a l s i n which e v e r y c l o s e d unbounded subset c o n t a i n s an

n-Mahlo c a r d i n a l . The group o f a l l p e r m u t a t i o n s o f

a

a c t s on 71

by

Q

that

g x,y

-

by permuting c o o r d i n a t e s . (xl

,...,xn)

which f i x a l l b u t f i n i t e l y many numbers

w

T h i s group a l s o a c t s d i a g o n a l l y on any

,...,gx,) .

= (gxl

11

Q

x,y E

For

let

-y

x

indicate

a r e i n t h e same o r b i t under t h i s a c t i o n .

THEOREM 6 (FRIEDMAN [S]).

x

that if

€6,y,z

F(x

x s' t

, and

E

an i n f i n i t e sequence

{x }

k

,..., x t

1

for a l l

n

,

Let y

F : Q x $ + I

-z

from

, then

be a B o r e l f u n c t i o n such

F(x,y)

= F(x,z)

.

such t h a t f o r a l l i n d i c e s

.

Then t h e r e i s

1 n I n order t o prove t h i s

) i s the f i r s t coordinate o f x s+l n i t i s necessary and s u f f i c i e n t t o use t h e e x i s t e n c e o f

cardinals f o r a l l

<...
s < t

,

n-Mahlo

.

n

These ideas have been extended i n Friedman [ll] t o much l a r g e r c a r d i n a l s . measurable c a r d i n a l i s a c a r d i n a l measure on a l l subsets o f every set

E

x

.

x

of

B

K-additive

A Ramsey c a r d i n a l i s a c a r d i n a l

o f f i n i t e subsets o f

f o r f i n i t e subsets of

K

which c a r r i e s a

K

K

, there

, membership

i s an unbounded

in

{O,l)-valued such t h a t f o r

K

B

L=

such t h a t

K

depends o n l y on t h e c a r d i n a l i t y

E

. Let

G O

be t h e B a i r e space o f f i n i t e l y generated p r o d u c t s on

THEOREM 7 (FRIEDMAN [ l l ] ) .

Let

F : G: + Go

i s i s o m o r p h i c a l l y imbeddable i n t o a c o o r d i n a t e o f

w

.

be a B o r e l f u n c t i o n mapping

p o i n t w i s e isomorphic arguments t o isomorphic values. x

Then f o r some

.

x C G:,

F(x)

Furthermore, t h i s theorem

i s p r o v a b l e i n ZFC b u t n o t i n ZC.

be a B o r e l f u n c t i o n mapping 0 p o i n t w i s e isomorphic arguments t o isomorphic values. Then f o r some x E Gw 0 ' f o r a l l subsequences y o f x, F ( y ) i s i s o m o r p h i c a l l y imbeddable i n t o a THEOREM 8 (FRIEDMAN [ll]). Let

coordinate o f

y

.

F : G:

+

G

T h i s i s p r o v a b l e i n ZFC + " t h e r e i s a measurable c a r d i n a l , "

b u t n o t i n ZFC + " t h e r e i s a Ramsey c a r d i n a l . "

A

5

The Work of Harvey Friedman I n P a r i s - H a r r i n g t o n [21] an i n t e r e s t i n g example o f a theorem s t a t e d i n f i n i t e s e t t h e o r y b u t n o t p r o v a b l e i n f i n i t e s e t t h e o r y , i s given.

A l s o see

C231, C241.

ClSl,

THEOREM 9 (PARIS-HARRINGTON [21]). l a r g e t h a t i f a l l subsets o f then t h e r e i s a s e t

[l,n]

[l,n]

E

E

same c o l o r and t h e s i z e o f

F o r each

o f size

k

, there

k,r,s

s

r

are colored with

such t h a t a l l subsets o f i s at least

i s an

E

of size

and t h e minimum o f

E

n

so

colors,

k

.

have t h e Further-

more, t h i s i s p r o v a b l e i n f i n i t e s e t t h e o r y augmented w i t h d e f i n i t i o n by r e c u r s i o n on

, but

w

not i n f i n i t e set theory.

Subsequently, Friedman [7] found an i n t e r e s t i n g example of a f i n i t e theorem which i s c o n c e p t u a l l y even c l e a r e r and independent o f much s t r o n g e r systems. J u s t as Theorem 9 i s based on Ramsey's theorem,

Friedman's work i s based on t h e

f o l l o w i n g theorem o f J. B. K r u s k a l 1171. A t r e e i s a nonempty p a r t i a l o r d e r i n g w i t h a l e a s t element, such t h a t t h e set o f predecessors o f any element i s l i n e a r l y order. trees then h(a) an

5

h :T h(b)

1

+ T

, and

2

T are f i n i t e 1' 2 i s s a i d t o be a homeomorphic imbedding i f a 5 b iff T-

h(inf(a,b))

.

= inf(h(a),h(b))

If

T

We w r i t e

T2 exists.

h

THEOREM 10 (KRUSKAL [19]), t r e e s t h e n f o r some

i < j, Ti

NASH-WILLIAMS [20]).

5

If

T,I

T

< T

1-

T2,...

2

1 i f such

are f i n i t e

.

Tj

The formal system ATR i s o b t a i n e d f r o m f i n i t e s e t t h e o r y by i n t r o d u c i n g c o u n t a b l y i n f i n i t e s e t s w i t h t h e p r i n c i p l e o f d e f i n i t i o n by t r a n s f i n i t e r e c u r s i o n on c o u n t a b l e w e l l o r d e r i n g s .

T h i s system goes j u s t beyond what i s r e f e r r e d t o as

predicative analysis. THEOREM 11 (FRIEDMAN 17,133;

SIMPSON [22]).

large that for a l l f i n i t e trees

T

L...'

T

i <...< 1

i

k

such t h a t

T. 1

,...,T n

1

i

.

and

For a l l card(T.)

T h i s theorem,

1

k

t h e r e i s an

5 i , there

n

are

as w e l l as K r u s k a l ' s

1 k Theorem 10 above, a r e p r o v a b l e i n ZFC w i t h o u t t h e power s e t axiom, b u t n o t i n ATR.

A l s o see [16,23,24].

so

A. NERODE, L.A. HARRINGTON

6

THEOREM 12 (FRIEDMAN [8,13]).

Theorem 11 f o r

k = 12

i s p r o v a b l e i n ZFC

w i t h o u t t h e power s e t axiom i n a few pages, b u t any p r o o f i n ATR must use a t [lOOOl least 2 pages. Friedman

[lo]

has extended K r u s k a l ' s theorem i n an i n t e r e s t i n g way so t h a t

t h e theorem has y e t s t r o n g e r metamathematical p r o p e r t i e s . T r (n)

o f f i n i t e trees with

< T i f and 1-r 2 which i s a l a b e l - p r e s e r v i n g homeomorphic i m -

d i s t i n c t l a b e l s , and d e f i n e s

n

m

o n l y i f t h e r e i s an

He c o n s i d e r s t h e c l a s s

+ T 1 2 bedding, p r e s e r v i n g l e f t t o r i g h t n e s s , w i t h t h e a d d i t i o n a l c r u c i a l c o n d i t i o n t h a t

if

then

b

h : T

T

i s an immediate successor o f l(c)

1. l ( h ( b ) ) ( l ( c )

a

in

T

h(a) < c < h(b)

and

1

.

i s the label o f c)

in

T

2 '

" r " means

The s u b s c r i p t

"restricted". THEOREM 13 (FRIEDMAN i < j

t h e r e are

that for all

T

[lo],

,...,Tm

F o r every

.

< T F o r a l l k,n 1-r 2 E T r (n) w i t h each c a r d ( T . )

such t h a t

1

SIMPSON [22]).

T

a

...

.

T1,

T2,

t h e r e i s an

5

, there

... E T r m

m

(n)

,

so l a r g e

i <...< i 1 k These theorems a r e p r o v a b l e i n t h e s i n g l e i

are

1

T. < T < < T 1 -r i -r -r i 1 2 k s e t q u a n t i f i e r comprehension axiom system w i t h t h e f u l l scheme o f i n d u c t i o n 1 1 (nl-CA) , b u t not i n U1-CA w i t h s e t i n d u c t i o n i n s t e a d o f t h e f u l l scheme o f 1 i n d u c t i o n (nl-CAO)

such t h a t

.

Two o f t h e most fundamental concepts i n mathematical l o g i c a r e t h e model t h e o r e t i c concept o f t r a n s l a t a b i l i t y and t h e p r o o f t h e o r e t i c concept o f r e l a t i v e consistency.

Friedman [6]

t h e s e concepts c o i n c i d e . order theories.

proves t h a t under s u r p r i s i n g l y general c o n d i t i o n s , Specifically, l e t

We say t h a t

S

S

, when

be f i n i t e l y a x i o m a t i z e d f i r s t -

i s translatable into

o r d e r d e f i n i t i o n s o f t h e symbols i n axiom o f

S,T

T

i f there are f i r s t -

i n terms o f t h o s e i n

S

so t r a n s l a t e d , becomes a theorem o f

T

There are a few somewhat d i f f e r e n t ways o f d e f i n i n g relative t o

T

," considered

i n [6].

. "S

T

, such

t h a t every

i s consistent

We focus a t t e n t i o n on t h e f o l l o w i n g one:

L e t €FA ( e x p o n e n t i a l f u n c t i o n a r i t h m e t i c ) be t h e s t a n d a r d weak system o f a r i t h m e t i c based on

0,l

,< , = ,t ,

a p p l i e d t o bounded formulas only.

, and

e x p o n e n t i a t i o n , where i n d u c t i o n i s

The q u a n t i f i e r c o m p l e x i t y o f a f o r m u l a i s a

s t a n d a r d measure o f t h e number o f a l t e r n a t i o n s o f q u a n t i f i e r s t h a t a r e present.

7

The Work of Harvey Friedman

We say t h a t

i f f o r some f i x e d

n

, the

I f t h e r e i s an i n c o n s i s t e n c y p r o o f i n

S

then

i s consistent r e l a t i v e t o

S

f o l l o w i n g i s p r o v a b l e i n EFA.

t h e r e i s an i n c o n s i s t e n c y p r o o f i n c o m p l e x i t y i s a t most

n

T

T

which uses o n l y formulas whose q u a n t i f i e r

more t h a n t h e g r e a t e s t q u a n t i f i e r c o m p l e x i t y o f

formulas used i n t h e g i v e n i n c o n s i s t e n c y p r o o f i n

S

.

I t i s s t r a i g h t f o r w a r d t o see t h a t t r a n s l a t a b i l i t y i m p l i e s r e l a t i v e

consistency

.

THEOREM 14 (FRIEDMAN [S]). c o n t a i n i n g EFA

i f applicable).

Then

i s consistent r e l a t i v e t o

S

S,T

be f i n i t e l y axiomatized t h e o r i e s

and a weak t h e o r y o f f i n i t e sequences o f o b j e c t s o t h e r t h a n

n a t u r a l numbers if

Let

T

S

i s translatable into

T

i f and o n l y

.

Friedman [5] has i n i t i a t e d an i n t e r e s t i n g new branch o f model t h e o r y c a l l e d Borel model t h e o r y .

A t o t a l l y B o r e l model i s a s t r u c t u r e whose domain i s IR and

every r e l a t i o n t h a t i s d e f i n a b l e ( i n t h e language considered) over t h e s t r u c t u r e Friedman [ 5 l c o n s i d e r s t h e t h r e e fundamental q u a n t i f i e r s

i s Borel.

a l l i n t h e sense o f Lebesgue measure), Q

Q

m

(almost

( a l m o s t a l l i n t h e sense o f B a i r e C

category), and quantifiers

( u n c o u n t a b l y many), i n a d d i t i o n , o f course, t o t h e usual

Q

w1 V, P.

Friedman proves t h e f o l l o w i n g completeness and d u a l i t y theorem. THEOREM 15 (FRIEDMAN 151, STEINHORN [25]).

Q

(or m only i f

Qm

0

and

YJ)

.

0

Then

Let

0

be a sentence based on

i s t r u e i n a l l t o t a l l y B o r e l models i f and

can be proved using, r o u g h l y speaking, t h e f o l l o w i n g p r i n c i p l e s : 0

,

union o f two s e t s o f measure

0

s i n g l e t o n s a r e o f measure

subsets o f measure i s o f measure

0

0,R

a r e o f measure

i s not o f measure

almost a l l v e r t i c a l cross s e c t i o n s o f a two-dimensional

If

Qc

0

0

, and 0

(Fubini's

, t h e n t h i s i s t r u e i f "measure 0" m As a consequence we have t h a t 0 i s t r u e i n a l l

i s used i n s t e a d o f

i s replaced by "meager."

, the

s e t a r e o f measure

and o n l y i f almost a l l h o r i z o n t a l cross s e c t i o n s a r e o f measure theorem).

0

t o t a l l y Borel structures f o r

Q

m

Q

( o r (Q ,",a)) m

i f and o n l y i f

$*

i s true i n

if

8

A. NERODE, L.A. HARRINGTON

a l l t o t a l l y Bore1 s t r u c t u r e s f o r

( o r (Q Y,X)) C 1 (duality).

0 by r e p l a c i n g Q

Q

where

m*

i s obtained from

by Q m C Friedman has o b t a i n e d a number o f fundamental r e s u l t s i n i n t u i t i o n i s t i c s e t

theory.

The usual axioms f o r ZF a r e e x t e n s i o n a l i t y , p a i r i n g , union, i n f i n i t y ,

f o u n d a t i o n , power s e t , comprehension, and f i n a l l y replacement.

The axiom scheme

o f c o l l e c t i o n i s an a l t e r n a t i v e t o t h e axiom scheme o f replacement, b u t i t i s a fundamental theorem o f s e t t h e o r y t h a t t h e s e a r e e q u i v a l e n t . However, i f we use i n t u i t i o n i s t i c l o g i c i n s t e a d o f o r d i n a r y l o g i c , t h e n t h e p r o o f t h a t replacement i m p l i e s c o l l e c t i o n breaks down.

Thus we l e t ZFIR be ZF

w i t h i n t u i t i o n i s t i c l o g i c f o r m u l a t e d w i t h t h e scheme o f replacement, and ZFIC be ZF w i t h i n t u i t i o n i s t i c l o g i c f o r m u l a t e d w i t h t h e scheme o f c o l l e c t i o n . THEOREM 16 (FRIEDMAN [2]) ; FRIEDMAN-SCEDROV [15]). ZFIC.

ZFIR does n o t i m p l y

It i s p r o v a b l e i n a weak system o f a r i t h m e t i c t h a t o r d i n a r y ZFC i s

c o n s i s t e n t i f and o n l y i f ZFIC i s c o n s i s t e n t . Two b a s i c d e s i r a b l e p r o p e r t i e s o f i n t u i t i o n i s t i c formal systems (which almost never h o l d f o r o r d i n a r y formal systems) a r e t h e d i s j u n c t i o n p r o p e r t y , which a s s e r t s t h a t i f a d i s j u n c t i o n

A V B

i s p r o v a b l e t h e n one o f t h e d i s j u n c t s

i s provable; and t h e numerical e x i s t e n c e p r o p e r t y , which a s s e r t s t h a t i f (Zn)(Vn)

i s p r o v a b l e t h e n f o r some

n,AG

i s provable.

DP t r i v i a l l y f o l l o w s

f r o m NEP. Friedman proves t h e f o l l o w i n g h i g h l y s u r p r i s i n g theorem v i a a m y s t e r i o u s appl ic a t i o n o f Godel s e l f - r e f erence.

THEOREM 17 (FRIEDMAN [31).

Let

T

be a r e c u r s i v e l y axiomatized i n t u i t i o n -

i s t i c formal system s u b j e c t t o , r o u g h l y , t h e same weak hypotheses commonly used i n Godel's incompleteness theorems. t y i f and o n l y i f

T

Then

T

has t h e numerical e x i s t e n c e p r o p e r -

has t h e d i s j u n c t i o n p r o p e r t y . SELECTED REFERENCES

[l]H. Friedman, Higher s e t t h e o r y and mathematical p r a c t i c e , Ann. Math. L o g i c 2 (1971), pages 326-357.

9

The Work of Harvey Friedman

, The c o n s i s t e n c y o f c l a s s i c a l s e t t h e o r y r e l a t i v e t o a s e t t h e o r y w i t h i n t u i t i o n i s t i c l o g i c , J. Symbolic L o g i c , 38 (1973), pages 315-319.

, The

c31

d i s j u n c t i o n property i m p l i e s t h e numerical existence pro-

p e r t y , Proc. Nat. Acad. Sci.,

72 (1975), pages

communicated b y K u r t G i d e l ,

2877-2878. C43 ______ , H i g h e r s e t t h e o r y and e x i s t e n t i a l s t a t e m e n t s , October 1976, preliminary report.

C5l

--, On

[Sl

-__

C71

, Independence r e s u l t s i n f i n i t e graph t h e o r y March 1981, p r e l i m i n a r y r e p o r t .

C8l

, The e x i s t e n t i a l i n c o m p l e t e n e s s phenomenon preliminary report.

t h e l o g i c o f measure and c a t e g o r y 1, and Addendum, December 1978; September 1979, p r e l i m i n a r y r e p o r t s .

, T r a n s l a t a b i l i t y and r e l a t i v e c o n s i s t e n c y 1-11, November 1976; September 1980, p r e l i m i n a r y r e p o r t s .

, On

c91 Math.,

I-VII,

February-

I, A p r i l 1981,

t h e necessary use o f a b s t r a c t s e t t h e o r y , Advances i n

41 (1981), pages 209-280.

, Beyond

ClOl

K r u s k a l ' s theorem 1-111, J u n e - J u l y 1982, p r e l i m i n a r y

report.

, New

Clll

necessary uses o f a b s t r a c t s e t t h e o r y f o r B o r e l October 1983; J u l y 1983, p r e l i m i n a r y r e p o r t .

functions I - I V ,

, Unary

c121 i n Math.,

C131

B o r e l f u n c t i o n s and second o r d e r a r i t h m e t i c , Advances

50 (1983), pages 155-159.

, An

improved f i n i t e f o r m o f K r u s k a l ' s theorem,

May 1984,

preliminary report.

C141

, The

metamathematics o f K r u s k a l ' s theorem ( i n p r e p a r a t i o n ) .

C151 H. Friedman and A. Scedrov, The l a c k o f d e f i n a b l e w i t n e s s e s and p r o v a b l y recursive functions i n i n t u i t i o n i s t i c set theories, appear).

[16]

Advances i n Math. ( t o

G. K o l a t a , Does G i d e l ' s theorem m a t t e r t o mathematics?, Science, 218 (1982), pages 779-780.

C171 J. 8. K r u s k a l , Well q u a s i - o r d e r i n g , t h e t r e e theorem, and Vazsony's c o n j e c t u r e , Trans. Amer. Math. SOC. 95 (1960), pages 210-225. C181 D. A. M a r t i n , Measurable c a r d i n a l s and a n a l y t i c games, Fund. Math. 66 (1970), pages 287-291. C191

, Borel

d e t e r m i n a c y , Annals o f Math. 102 (1975), pages 363-371.

[201 C. Nash-Williams, On w e l l - q u a s i - o r d e r i n g f i n i t e t r e e s , Proc. Cambridge P h i l . SOC. 59 (1963), pages 833-835.

10 [21]

A. NERODE. L.A. HARRINGTON

J . P a r i s and L. H a r r i n g t o n , A mathematical incompleteness i n Peano a r i t h m e t i c , i n Handbook o f Mathematical L o g i c (Jon Barwise, Ed.), Holland, Amsterdam, 1977, pages 1133-1142.

North-

[22]

S. Simpson, U n p r o v a b i l i t y o f c e r t a i n c o m b i n a t o r i a l p r o p e r t i e s o f f i n i t e t r e e s ( t o appear).

[23]

C.

[241

, " B i g " news f r o m Archimedes t o Friedman, N o t i c e s Amer. Math. S O ~ . 30 (1983), pages 251-256.

[25]

C. Steinhorn, Bore1 s t r u c t u r e s and measure and c a t e g o r y l o g i c , ModelT h e o r e t i c L o g i c s (J. Barwise and S. Feferman, Ed.), North-Holland, Amsterdam ( t o appear).

Smorynski, The v a r i e t i e s o f a r b o r e a l experience, Math. I n t e l l i g e n c e r , 4 (1982), pages 182-189.