Tetrahedron 68 (2012) 10065e10113
Contents lists available at SciVerse ScienceDirect
Tetrahedron journal homepage: www.elsevier.com/locate/tet
Tetrahedron report number 994
b-Elimination competitions leading to C]C bonds from alkylpalladium intermediates Jean Le Bras, Jacques Muzart * Institut de Chimie Mol eculaire de Reims, UMR 7312 CNRSdUniversit e de Reims Champagne-Ardenne, B.P. 1039, 51687 Reims Cedex 2, France
a r t i c l e i n f o Article history: Received 7 September 2012 Available online 20 September 2012 Keywords: Palladium Elimination Heterocyclisation Heck reaction Wacker reaction Aza-Wacker reaction Selectivity
Contents 1. 2.
3.
4.
5. 6. 7.
8. 9. 10.
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10066 Competitions between hydrogen(s) and ester or carbonate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10067 2.1. After addition to vinyl acetate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10067 2.2. After addition to an allylic ester . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10068 b-OCOR or b-OCO2R elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10068 2.2.1. b-H elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10071 2.2.2. Competitions between hydrogen(s) and hydroxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10076 b-OH elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10076 3.1. b-H elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10078 3.2. Competitions between hydrogen(s) and alkoxy(s), aryloxy, silyloxy or arylsulfonate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10084 4.1. After addition to a vinylic ether . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10084 4.2. After addition to an allylic ether . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10084 4.3. After addition to acrolein diethyl acetal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10088 4.4. After intramolecular addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10088 Competitions between hydrogen(s) and halide or arylsulfonyl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10090 Competitions between hydrogen(s) and amino derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10090 Competitions between hydrogen(s) and silane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10092 7.1. After addition to a vinylic silane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10092 7.2. After addition to an alkene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10094 Competitions between hydrogen(s), alkoxy and ester or hydroxy or arylsulfonyl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10094 Competitions between hydrogen(s), aryloxy and acetoxy or trichloroacetimidate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10094 Competitions between hydrogen(s), amino derivative or trichloroacetimidate and hydroxy or acetate or carbonate or alkoxy or carbamate or halide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10096
Abbreviations: Atm, atmosphere; Boc, t-butoxycarbonyl; cat, catalytic; COD, 1,5-cyclooctadiene; Cy, cyclohexyl; dba, dibenzylidene acetone; DMA, N,N-dimethylacetamide; dpp, 4,7-diphenyl-1,10-phenanthroline; dppb, 1,4-bis(diphenylphosphino)butane; dppe, 1,2-bis(diphenylphosphino)ethane; dppp, 1,3-bis(diphenylphosphino)propane; ee, enantiomeric excess; equiv, equivalent; Ii-Pr, 1,3-bis(2,4,6-tri-isopropyl-phenyl)imidazol-2-ylidene; L, ligand; MS, molecular sieves; Piv, 2,2-dimethyl-propanoyl; rt, room temperature; TBS, t-butyldimethylsilyl; TPS, triphenylsilyl; TEMPO, 2,2,6,6-tetramethyl-1-piperidinyloxy; THP, tetrahydropyranyl; tmeda, tetramethylethylenediamine. * Corresponding author. Tel.: þ33 3 2691 3237; fax: þ33 3 2691 3166; e-mail address:
[email protected] (J. Muzart). 0040-4020/$ e see front matter Ó 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tet.2012.09.076
10066
11. 12. 13.
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
10.1. After addition to vinyl acetate or a vinyl ether . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10096 10.2. After addition to an allylic alcohol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10100 10.3. After addition to an allylic alcohol derivative or an allylic halide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10101 Competitions between hydrogen(s), acetoxy and alkyl groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10102 Competitions between hydrogens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10103 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10109 References and notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10109 Biographical sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10113
1. Introduction
the pre-eliminated species. From their study of stoichiometric reactions,6,7 Lu and co-workers conclude that trans-elimination in acetic acid occurs with the rates in the following order: b-halide>b-OAc>b-OR>b-OHzb-H.7 The main aim of the present report is to examine, from literature examples, the selectivity of the different cleavage possibilities. The competitions are mainly between a CeH and a Cheteroatom bond or another CeH bond; examples of plausible competitions between two different heterosubstituents or between a C-heteroatom bond and a CeC bond have also been reported. The control of the elimination step is important to provide efficient and diversified selective procedures. This review, which is not comprehensive, is organized around the main b-elimination. Some procedures are, however, far from being selective, this leading to a somewhat arbitrary classification. Moreover, we will
The Pd-catalyzed C]C bond synthesis often proceeds via the reaction of a CePdII type intermediate, which involves the cleavage of the CePd bond and a CeH, C-heteroatom or CeC bond in the bposition. This reaction step is commonly named b-elimination,1 even in book courses.2 This is, in fact, an abuse of language, because this reaction is either the elimination of both elements or the transfer of the b-unit to palladium leading to a p-complex which, subsequently, release the product (Scheme 1). In the case of the CeH cleavage, a more appropriate name would be palladium-hydride elimination or dehydropalladation, as occasionally used in a review3 and a book,4 respectively, or dehydridopalladation since a hydride is usually eliminated. In this review, we will nevertheless use simplified names such as b-H elimination for the above case.
XPdZ
XPd Z
β-Z elimination
Z'
Z'
+ XPdZ
Z' Z and Z' = H, OH, OCOR, OCO2R, OSiR3, OSO2Ar, Cl, Br, NR2, SiR3, SO2Ar or CR3 Scheme 1.
Lin and co-workers have theoretically studied the concurrent
b-H and b-heteroatom eliminations from cationic complexes
[L2PdCH2CH2Z]þ where Z¼halide, OH, OMe, OAc, and L2¼H2PCH2CH2PH2.5 Their calculations indicated that the b-heteroatom elimination is thermodynamically and kinetically favoured when Z¼Cl, Br or I, whereas the b-H elimination is kinetically more favourable than the b-heteroatom elimination when Z¼F, OH, OMe or OAc. The authors pointed out that the olefinepalladium-hydride complex, which is formed as an intermediate, is, however, thermodynamically unstable relative to
not consider the hydride eliminations, which arise from h3-allylpalladium intermediates,8 and those leading to a,b-unsaturated carbonyl compounds via the dehydrogenation of carbonyl compounds9 or cascade reactions.10,11 As shown in Scheme 2, the elimination can, in some cases, arise from two positions. In order to easily differentiate between these two possibilities, the carbon having suffered the nucleophilic substitution will be named b, and the other b0 . As for the palladium species, it will be named CaePd intermediate or CaePd complex. When Z and Z0 ¼H, the H elimination selectivity will correspond to the value denoted by the b/b0 -H ratio.
XPdZ β-Z elimination Z'
Z NuPdX
Z'
PdX β' α β
Z'
β'
Nu
Z Nu
Cα-Pd intermediate Z = H, OCOR, OCO2R, OSiR3, OSO2Ar, Cl, Br, NR2, SiR3, SO2Ar or CR3 Z' = H, OH, OCOR, OCO2R, OSiR3, OSO2Ar, Cl, Br, NR2, SiR3, SO2Ar or CR3 Scheme 2.
β'-Z' elimination XPdZ' Z β
Nu
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
2. Competitions between hydrogen(s) and ester or carbonate
A more selective procedure towards stilbene was reported by Kasahara and co-workers using phenyl iodide, triethylamine and catalytic amounts of both Pd(OAc)2 and PPh3 in MeCN (Eq. 2).14 Since the reaction requires Pd0 for the insertion into the PheI bond, while the b-OAc elimination generates a PdII complex (Scheme 3), the tertiary amine is probably involved in the PdII reduction step.15,16 In the same solvent, but under Pd(dba)2 catalysis and with N-nitroso-N-phenylacetamide instead of phenyl iodide, Kikuwa et al. obtained styryl acetate as the main product (Eq. 3).17 Under these conditions, the phenylating reagent would be PhPdOAc (Scheme 4).
2.1. After addition to vinyl acetate In 1968, Heck disclosed the reaction of vinyl acetate with PhPdCl generated from phenylmercury chloride and catalytic amounts of Li2PdCl4 via a transmetalation reaction, the catalyst being regenerated with CuCl2.12 As depicted in Eq. 1, the results were highly dependent on the nature of the solvent. When the addition led to palladium attached to the terminal carbon (Scheme 3, path a), the b-elimination would only involve the acetate. When palladium is attached to the central carbon (Scheme 3, path b), both b-H and bCOMe13 eliminations occurred. Stilbene was produced via either a b-H elimination from styrene (Scheme 3, path c) or a b-OAc elimination from styryl acetate (Scheme 3, path d). This last compound was isolated only with AcOH as the solvent.
Li2PdCl4 (0.1 equiv.) CuCl2 (1 equiv.) Ph PhHgCl + OAc solvent (10 equiv.) rt, overnight AcOH: MeCN: Me2CO:
10067
isomerisation PhN(NO)COMe
PhN2OAc
Ph Ph +
+
34% 20% 31%
Ph
3% 2% 3%
Ph
PdII PhPdII
O
+ Ph
33% 8% 10%
+ Ph-Ph
OAc
Ph II
Pd
Ph
PdIIH Ph
β-H elimination
(b) PdII Ph
β-H elimination
(c)
Ph
OAc O
PdIIH
Ph
PdIIOAc OAc PhPdII (d)
Ph
Ph
β-OAc elimination OAc
β-COMe elimination
O
(2)
3%
12%
PdIIOAc
(a)
O
30%
PhPdII β-OAc elimination
Ph
OAc +
Ph
O
II
Pd
Ph O
PdIICOMe Scheme 3.
PhN(NO)COMe +
Pd(dba)2 (0.1 equiv.) OAc (2 equiv.)
PhPdOAc + N2
Scheme 4.
Pd(OAc)2 (0.01 equiv.) PPh3 (0.02 equiv.) NEt3 (1.2 equiv) Ph PhI + OAc MeCN, 100 °C, 8 h (1.2 equiv.) 52%
Ph
Pd0
Ph
OAc +
MeCN, 40 °C, 0.5 h 43%
Ph
Ph 10%
(3)
(1)
10068
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
Using a supported palladium catalyst, Choudary et al. isolated stilbene in high yield from the coupling of vinyl acetate with phenyl iodide (Eq. 4).18 According to their analysis of the reaction course, at least some stilbene was produced from styryl acetate.
PdCl2 supported on montmorillonite (0.00085 equiv. Pd) PhI +
OAc (1.25 equiv.)
count by Pan and Jiao, which is mainly oriented towards the highlights of their results.20 2.2.1. b-OCOR or b-OCO2R elimination. The stereochemistry of the products shown in Schemes 5, path a and 6, path a, which were
Ph
n-Bu3N (1.25 equiv.) 100 °C, 24 h
(4)
Ph 85%
According to the above results and other literature data,19 it appears that the regioselectivity of the addition and the b-elimination selectivity depend on both the nature of the arylating agent and the experimental conditions. 2.2. After addition to an allylic ester The b-H versus the b-OAc elimination for the Pd-catalyzed arylation of allylic esters has been discussed in an interesting ac-
obtained from the syn addition to cyclic esters of organopalladium reagents generated from the Hg/Pd transmetalation, indicates an anti b-ester elimination.21 Daves considered that the antiperiplanar alignment of PdOAc and b-OAc seems to be required for the elimination of Pd(OAc)2.22 In agreement with this proposal, et al. recently demonstrated the anti b-OAc elimination from Gagne an isolated Pd complex, through a low rate reaction, likely occurring via a boat transition state (Scheme 7).23 Lautens et al. observed selective b-OAc eliminations from the Pd0-catalyzed reaction of aryl iodides with various allylic acetates.24
Me N
MeOCH2O O MeOCH2O
MeN
+ Pd(OAc)2 O (1 equiv.) HgOAc
+ RO
NMe
R = COn-Pr (a)
NMe
O
MeCN (b)
rt, 24 h
Me N
MeOCH2O
R = CH2OMe or Si(i-Pr)3
(1 equiv.)
O
O
NMe O
RO Scheme 5.
O
Me N
NMe Ph
O
Ph
O O RO
O
MeN
R = COMe NMe
+
O
+ Pd(OAc)2 (1 equiv.)
MeCN rt, 24 h
O O
NMe O O (i-Pr)3SiO
Scheme 6.
O
Me N
(b)
Ph
(1 equiv.)
O
(a)
R = Si(i-Pr)3
HgOAc
O
O O
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
Et3P OAc O
AcO AcO
PEt3
Br
Pd PEt3
AcO
C6D6 rt
OAc AcO AcO
10069
Br OAc O
Pd PEt3
AcO AcO
O
PEt3 + AcO
Pd
Br
PEt3 OAc
14 d: 40% conversion
Scheme 7.
The selective formation of isomeric coupling products from isomeric acetates, such as (E)-but-2-enyl acetate and but-3-en-2-yl acetate (Scheme 8),24 showed that these reactions occurred via a Heck-type pathway, rather than via a p-allyl intermediate. Somewhat different experimental conditions were used by Li and co-workers for the Heck-type diarylation of allylic esters or carbonates (Eq. 5), the first arylation leading to b-elimination of the heterounit.25
amine.15,16 The use of arylboronic acids, instead of aryl halides, does not require such a reduction, since the reactive arylating species can be formed from their transmetalation with PdII species.26,27 Thus, Maddaford and co-workers carried out the addition of various arylboronic acids to peracetylated glycols using only catalytic amounts of Pd(OAc)2 in MeCN (Eq. 6).28 According to the authors, syn addition of ArPdOAc from the less congested face is followed by
PdII OAc
ArI
OAc
Pd/C (0.1 equiv.) n-Bu4NCl.xH2O (3 equiv.) n-BuMe2N (4 equiv.) H2O (1 equiv.)
Ar Ar = 1-naphthyl: 51%
Ar
PdIIOAc
n-BuMe2N H2O
OAc
DMF, 180 °C, 3 h
PdII Ar
Pd0
Ar OAc Ar = 1-naphthyl: 83%
Scheme 8.
I + R
Z
Pd(OAc)2 (0.1 equiv.) n-Bu4NCl (1.5 equiv.) MeO NEt3 (8 equiv.), air
OMe (5)
MeCN, 120 °C, 12-14 h
MeO (2.5 equiv.)
R R = H, Z = OAc (89%), OCOPh (58%), OCOBn (62%), OCO2Et (58%) R = Ph, Z = OAc (30%)
The above catalytic procedures lead to the elimination of PdII species, which have to be reduced to Pd0 to close the catalytic cycle. It is usually admitted that this reduction is promoted by the tertiary
AcO PhB(OH)2 + (2 equiv.) AcO
O Pd(OAc)2 (0.1 equiv.) AcO MeCN, rt, 24 h OAc
the selective anti-elimination of Pd(OAc)2. The b-H elimination was not observed, but the authors pointed out that this elimination could be reversible29 under their conditions.
O
Ph (6)
AcO 82%
10070
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
In contrast to the above methods, the procedures developed by Sawamura and co-workers led to syn b-OAc eliminations. As catalyst, they used either a cationic PdII complex generated from Pd(OAc)2, 1,10-phenanthroline and AgSbF6 (Scheme 9),30,31 or a palladiumII dimer, which is the precursor of a monomeric PdII complex having a vacant coordination site (Scheme 10).32 For both procedures, the regioselective insertion of the PhPd species into the C]C bond would be assisted by intramolecular coordination of the carbonyl oxygen of the acetoxy group to the palladium centre. The elimination would involve a palladacycle, as shown in Scheme 11 when the active catalyst is the neutral PdII monomer.32 A similar scheme was proposed for the catalysis with the cationic complex.30,32
anions inhibit the b-H elimination, thus favouring the b-OAc elimination.36 This inhibition is probably due to the absence, under such conditions, of a vacant coordination position, which would be a prerequisite for the PdH elimination.37,38 This influence of the nitrogen ligands encouraged Lu’s team to use the association of Pd(OAc) 2 and bipyridine as catalyst to perform the acetoxypalladation-initiated cyclisation of 1,6-enynes outlined in Eq. 9.39,40 Using diastereoisomeric substrates, they disclosed that both syn and anti b-OAc elimination can apparently occur under similar experimental conditions (Scheme 12).39 Activation of the triple bond of the substrate by coordination to palladium leads to the trans-addition of acetate
Pd(OAc)2 (0.1 equiv.), AgSbF6 (0.1 equiv.) 1,10-phenanthroline (0.12 equiv.) AgOAc
N PdOAc N
SbF6 Ph
OAc PhB(OH)2 + (1.5 equiv.)
n-Bu ClCH2CH2Cl, 60 °C, 6 h 97% ee
n-Bu 65% yield, 97% ee
Scheme 9.
NO2 O2S N
Pd
O O (0.05 equiv.)
N O2S
O O
Pd
NO2
NO2 O2S N
OAc
OAc TPSO(CH2)2 97% ee
Pd
+ PhB(OH)2 (1.1 equiv.)
ClCH2CH2Cl, 60 °C, 6 h
Ph TPSO(CH2)2 76% yield, 96% ee
Scheme 10.
Recently, Li, Deng and co-workers reported Pd-catalyzed diarylations of allyl acetate with arylboronic acids in the presence of n-Bu4NCl and an inorganic base, especially KH2PO4 (Eq. 7).33e35 The study of the stoichiometric reaction depicted in Eq. 8 led Lu’s team to observe that, in AcOH, nitrogen ligands or chloride
giving 12Ac and 12At, respectively. This is followed by the cisinsertion of the CePd bond into the C]C bond. The only possible cis fusion of five- and six-membered rings leads to the formation of 12Bc and 12Bt, respectively. These intermediates evolve via elimination of AcOPdII to afford the same bicyclic compound.
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
Ph
N
R1
R2
N
cinnamyl acetate and 2-phenylallyl acetate from the phenylation of allyl acetate (Scheme 13, path b).47 Under their experimental conditions (Scheme 13, path a),41 Jiao et al. did not observe traces of allylbenzene from the coupling of PhI with allyl acetate. They proposed a mechanism similar to that depicted in Scheme 15. The high regioselectivity would be due to the chelation between the carbonyl oxygen of the acetoxy group and the palladium atom; this chelation would impede the rotation about the C1eC2 bond, favouring the syn relationship between Pd and a hydrogen in C3 leading to the corresponding b-H elimination.41 There is, however, a contradiction between the Sawamura30e32 and Jiao41 proposals. Indeed, both teams have proposed the Pd/acetoxy coordination, but to explain either the b0 OAc elimination (Scheme 11) or the b-H elimination (Scheme 15), respectively. In fact, Jiao suspected that Ag2CO3 serves not only as a source of silver to scavenge the halide, but also as a base. This leads us to propose a different explanation for the absence of b-OAc eliminations in the presence of Ag2CO3 (Scheme 16). Insertion of
PhB(OH)2
Pd OAc
AcOB(OH)2 R2 R1
Ph N N
N N
O
Pd
Ph Pd
O N N
Ph Pd
OAc R2 R1
R1
R2
OAc
Scheme 11.
Pd(OAc)2 (0.1 equiv.) n-Bu4NCl (1.5 equiv.) KH2PO4 (2 equiv.) OAc Ph DMF, 120 °C, 6 h
PhB(OH)2 + (2.5 equiv.)
Pd AcO
Ph
O
OAc
+
(10 equiv.)
(7)
90%
H N
H N
10071
H N
L AcOH, rt
O
+
(8)
O OAc
2
L = pyridine (2 equiv.): 69% L = bipyridine (1 equiv.): 81% L = LiCl (10 equiv.): 75% Without L:
OAc
66%
Pd(OAc)2 (0.05 equiv.) AcO bipyridine (0.06 equiv.) (9)
Z
AcOH, 80 °C
Z
Z = O (12 h, 94%), NTs (4 h, 97%), C(CO2Me)2 (48 h, 87%) Inter- and intramolecular coupling reactions with selective elimination of ethyl carbonate are also documented (Eqs. 5,25 10 15 and 11 33e35). 2.2.2. b-H elimination. In the presence of Ag2CO3, the Pd-catalyzed reaction of linear allylic acetates with aryl iodides (Scheme 13, path a),41,42 aryliodine diacetates (Eq. 12),43 arene carboxylic acids (Scheme 14),44,45 furans and thiophenes (Eq. 13)46 selectively affords the 3-arylated allylic acetates. The selectivity can, however, depend on the reaction conditions. Indeed, Mino et al.,47 using a slightly modified version of Jiao’s procedure (Scheme 13, path a),41,42 mainly 80 C in PhMe, instead of reflux in PhH, obtained a mixture of
PhPdII into the C]C bond and partial transmetalation of Ag2CO3 would afford AgI and the bimetallic complex 16A, this latter species evolving towards the Heck product in liberating AgI, CO2 and the catalyst. We are conscious that this proposal is not fully satisfactory, since the optimum Jiao conditions utilised only 0.6 equiv of Ag2CO3. Nevertheless, subsequent researchers used 1e3 equiv of this salt or 0.5 equiv of both Ag2CO3 and CaCO3. Moreover, AgOH, which, according to Scheme 16, would be liberated, could participate in the elimination reaction. Jiao’s team retained their chelation proposal to explain the regioselective arylation and the selective b-H elimination for the
10072
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
AcO Pd
OAc a
II
OAc AcO
PdII
AcO
PdII
OAc
OAc AcO
E
E
E E = CO2Me
E
E
12Bc AcOPdII
AcO Pd
OAc a
E
E
12Ac
E
E
II
OAc AcO
E
E
E
PdII
AcO
PdII
OAc
OAc 89% from cis-substrate 88% from transsubstrate
12Bt
12At
a: Pd(OAc)2 (0.05 equiv.), bipyridine (0.06 equiv.), AcOH, 80 °C Scheme 12.
Pd2(dba)3.CHCl3 (0.05 equiv.) P(o-tolyl)3 (0.22 equiv.) n-BuNMe2 (2 equiv.)
I
OCO2Et
O
56% O
Pd(OAc)2 (0.1 equiv.) n-Bu4NCl (1.5 equiv.) MeO OCO2Et KH2PO4 (2 equiv.)
B(OH)2 + MeO
(10)
MeCN/H2O (10:1) microwaves (160 °C), 1 min
OMe (11)
DMF, 120 °C, 6 h (2.5 equiv.)
75%
reaction of alkenyl boronates and arylboronic acids with linear allylic esters or carbonates.48 For such reactions, the optimum conditions required various additives such as those depicted in Eq. 14, low yields being obtained in the absence of the fluoro additives, or, surprisingly, using Ag2CO3 instead of AgOAc. The function of the fluoro additives has not been explained, some role in the promotion of the reactivity of the boron substrates being conceivable.49 The
mechanism that we suggested above to explain the absence of the OAc elimination (Scheme 16) is inadequate for the present Hecktype reaction. The arylating species, which interacts with the substrate is, however, different, since it is generated from B/Pd transmetalation. This leads us to consider a reaction involving the acetate ligand and arising from the transition state 17A (Scheme 17). As for Scheme 16, the elimination would concern
R PhH, reflux air Pd(OAc)2 (0.05 equiv.) (a) Ag2CO3 (0.6 equiv.)
R PhI +
OAc (2 equiv.)
Ph
OAc
R = H, 10 h: 94%, E R = Me, 15 h:73%, E/Z = 80:20
(b)
R=H PhMe, 80 °C 8 h, air Ph
Ph OAc + 76%
Scheme 13.
OAc 6%
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
PhI(OAc)2 + (1.1 equiv.)
OAc
Pd(OAc)2 (0.05 equiv.) TEMPO (0.1 equiv.) Ag2CO3 (0.5 equiv.) CaCO3 (0.5 equiv.)
Ph
OAc
MeCN, 70 °C, 8 h
10073
(12)
87%
MeO
MeO
MeO
OAc
+
+ MeO
OMe
OMe OAc MeO
MeO R=H
MeO
R
CO2H
OAc
+ MeO
OMe
(2 equiv.)
Pd(OAc)2 (0.1 equiv.) Cu2O (0.01 equiv.) Ag2CO3 (3 equiv.)
95%, 10:2:1
(b)
R = Me MeO
MeO
OAc OMe
OAc
+
+ MeO
OMe
(a)
dioxane/DMSO (95:5) 110 °C, 2 h
MeO
OAc
OMe OAc MeO
MeO
OMe
62%, 5:1:4 Scheme 14.
+
Pd(OAc)2 (0.05 equiv.) OAc Ag2CO3 (1 equiv.)
OAc OAc +
DMSO/dioxane (5:95) 110 °C, 12-15 h
Z (5 equiv.)
AcO
+
Z
(13) Z
Z Z = O: 60%, 75:17:8 Z = S: 66%, 78:15:7 O
O
PhPd
H
2 3
Pd O
1
Ph
β H
Ph
O
OAc + HPd
β' Scheme 15.
a proton instead of a hydride. This proposal is more or less in agreement with other calculations, some leading to a sixmembered transition state for the accepting by an acetate coordinated to Pd of a proton from a substrate also bound to the metal,50 whereas others discarded a seven-membered transition state and also an intermediate rather similar to 17A because of their too-high energy.51 Nevertheless, these calculations were for experimental conditions and substrates different to those of Eq. 14; in particular, they did not consider a system with a second acetate, which could stabilise an intermediate such as 17A.
Under Li/Deng experimental conditions, the use of potassium aryltrifluoroborates instead of arylboronic acids with allyl acetate provided the monoarylation adduct (Eq. 15) instead of the diarylated compound (Eq. 11).33 According to the authors, the reason for this observation is the difference of stability between ArBF3K and ArB(OH)2.33 In our opinion, their mechanistic proposal is, however, unexpected34 and the corresponding scheme contains errors. Chelation generated from the coordination of both the olefin and the acetate carbonyl oxygen to cationic palladium was also
10074
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
Ph
(Eq. 16)54e57 or alkenes (Eq. 17),58 and for the coupling of phenylboronic acid with undec-1-en-3-yl acetate (Eq. 18).59 The mechanism shown in Scheme 17 does not propose the formation of PdH species. Under Xiao’s conditions, which used (AcO)2Pd(dppp) as the catalyst (Eq. 19), such species would, however, be formed, the regeneration of the active PdII catalyst occurring via the reduction of acetone.60 The unusual phenylation in the C2 position could be due to steric hindrance provided by the diphosphine, which precludes the coordination of the acetate to palladium at the level of a p-complex. After the b-H elimination, some migration of the terminal double bond arises.60e62 Recently, Liu and co-workers disclosed the synthesis of 2-deoxy-Caryl glycosides via the decarboxylative Heck coupling reaction of benzoic acids with various glycols (Eq. 20).63 Due to the steric hindrance created by the C-3 substituent, the cis addition of the ArPdII intermediate proceeds on the top face of the C]C bond, this giving an intermediate with no syn relationship between the palladium unit and the hydrogen geminal to the Ar group.64 In contrast, such a relation-
OAc 0
PhI
Pd
+ AgOH + CO2 O
PhPdI O
OAc
O
AgO H
Pd
Ph
16A
O H
I Pd Ph
AgI
O O
O AgO
OAg Scheme 16.
PhB(OH)2 +
OAc
Pd(OAc)2 (0.05 equiv.) AgOAc (2 equiv.) CuF2 (1 equiv.), KHF2 (2 equiv.) OAc + Ph 91%, E/Z = 20:1
acetone, 85 °C, 5 h
(2 equiv.)
Ph
(14) 2%
Ag0 Pd(OAc)2
PhB(OH)2
2 AgOAc AcOB(OH)2
Pd0
PhPdOAc Ph
OAc
OAc
+ AcOH AcO
O O
O
Pd
Pd
Ph
H
O
O
Ph H
O
17A Scheme 17.
PhBF3K + (2.5 equiv.)
Pd(OAc)2 (0.1 equiv.) n-Bu4NCl (1.5 equiv.) KH2PO4 (2 equiv.) OAc Ph DMF, 120 °C, 12 h
OAc
(15)
55%
proposed when aryldiazonium terafluoroborates were used (Scheme 18, path a).52a Switching from allylic esters to vinyllactones precluded such a chelation; thus, more vigorous experimental conditions were required to obtain valuable yields (Scheme 18, path b).52 Chelation as proposed in Schemes 16 and 17 could also occur for the dehydrogenative Heck reactions53 of allylic esters with arenes
ship can occur with the C-3 hydrogen. Although the authors proposed the syn-elimination of HPd to afford the coupling product, a mechanism implicating Ag2CO3, as depicted in Scheme 16, could be involved. The diarylation of (S)-oct-1-en-3-yl acetate using the transmetalation of an arylstannane with a palladiumII-N-heterocyclic carbene suffered no erosion in enantiomeric excess (Scheme 19, path a), showing that the plausible reversible elimination of the hydrogen
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
10075
MeO OAc N2BF4
n-Bu Pd2(dba)3 (0.04 equiv.) NaOAc (3 equiv.) PhCN
OAc
rt, 1 h
68%
(a)
n-Bu OMe
(b)
OMe
OMe (1.1 equiv.)
O O
O
O
25 °C ,12 h: 30% 80 °C, 5 h: 68%
MeO
Scheme 18.
Procedure A, B or C OAc Ph OAc PhH + (excess) Procedure A.54 Pd(OAc)2 (0.1 equiv.), AgOAc (2 equiv.), DMSO (5%/PhH), 110 °C, 12 h: 43% Procedure B.55 Pd(OAc)2 (0.05 equiv.), Ag2CO3 (0.6 equiv.), n-BuCO2H (16 equiv.), benzoquinone (2 equiv.), air, 80 °C, 48 h: 51% Procedure C.56 Pd(OAc)2 (0.05 equiv.), 3,5-dichloropyridine (0.05 equiv.), PhCO3t-Bu (1 equiv.), AcOH, 100 °C, 6 h: 57% + Ph2C=CHCH2OAc (5%)
R1
+
OCOR2
Pd(OAc)2 (0.15 equiv.) AgOAc (2.5 equiv.)
R1
(16)
OCOR2
(17)
DMSO/ClCH2CH2Cl (5:95) 110 °C
(3 equiv.)
R2 = Me, R1 = Ph (20 h, 81%), Cy (24 h, 70%) R2 = R1 = Ph (10.5 h, 70%)
O
O
Ph OAc PhB(OH)2 + (1.5 equiv.)
S Ph (0.1 equiv.) Pd(OAc)2 benzoquinone (2 equiv.) AcOH (4 equiv.)
OAc
OAc +
n-oct dioxane, 45 °C, 4 h Ph
n-oct 98%, 41:1
PhB(OH)2 +
OAc (2 equiv.)
Pd(OAc)2 (0.02 equiv.) dppp (0.03 equiv.)
Ph
Ph
Ph OAc +
acetone, 70 °C, 20 h
38%
(18)
n-oct
OAc 34%
(19)
10076
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
OMe
O CO2H +
3
DMF/DMSO (20:1) 80 °C, 4 h
OR (2 equiv.)
OMe
OMe
Pd(OAc)2 (0.1 equiv.) PPh3 (0.4 equiv.) OR Ag CO (3 equiv.) 2 3
OR
O
OR
OMe
(20)
OR
OR R = Ac (79%), t-BuCO (65%), t-BuOCO (55%), Bn (70%), t-BuMe2Si (73%)
OMe SnBu3 Pd(Ii-Pr)(OTs)2 (0.06 equiv.) MeO (3 equiv.) Cu(OTf)2 (0.25 equiv.), O2 (balloon) (a)
OAc
MS 3 Å, DMA, rt, 16 h
OAc Me(CH2)4 68%, 98% ee
Me(CH2)4
Ph2N2BF4 (1.5 equiv.) Pd2(dba)3 (0.05 equiv.)
(b)
(98% ee)
Ii-Pr:
N
N
i-Pr
i-Pr
OAc Me(CH2)4
DMA, rt, 16 h i-Pr
i-Pr
OMe
Ph 91%, 98% ee
Scheme 19.
geminal to the acetate substituent did not arise.65 In contrast, the reaction leading to the HPd species formed after the addition of the first aryl group was reversible. This afforded a p-benzyl intermediate, which yielded the diarylated product through a second transmetalation (Scheme 20). No erosion in enantiomeric excess was also noted in the
course of the Pd0-catalyzed phenylation of the same substrate with phenyldiazonium tetrafluoroborate (Scheme 19, path b).66 3. Competitions between hydrogen(s) and hydroxy 3.1. b-OH elimination
II
Cu , O2 OAc R
ArSnBu3
PdII
Ar Pd0
Ar
ArPdII OAc R
ArSnBu3 OAc
II
Pd
OAc
R
R
H R'
OAc
PdII
R
Ar H
Scheme 20.
Ar HPdII
In 1994, Hosokawa et al. assumed that the synthesis of methyl 2(methoxymethyl)acrylate from methyl 2-(hydroxymethyl)acrylate and methanol in the presence of PdCl2 involves the alkoxypalladation of the C]C bond followed by the elimination of ClPdOH (Scheme 21).67 From their study of the stoichiometric reaction depicted in Eq. 21, Lu’s team disclosed that, in AcOH, the addition of LiCl favours the b-OH elimination over the b-H elimination.7,68 The formation of both the substituted allylic alcohol and the cyclic compound shows that the hydride elimination occurs from the two possible carbon sites. The b0 -H elimination leads to an enol evolving to the corresponding aldehyde, which undergoes an intramolecular reaction with the amide unit. The dependence of the amount of the chloride anion on the elimination selectivity has also been discussed (Eq. 22).7 The trans-stereochemistry of the elimination of palladium and hydroxide in acetic acid containing an excess of LiCl has been assumed from a study of the catalytic cyclization reaction depicted in Eq. 23, but, in our opinion, the relative stereochemistries of the suspected intermediates are rather
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
PdCl2 (0.1 equiv.) MeOH (5 equiv.)
CO2Me OH
ClPd MeO
DME, 50 °C
CO2Me OH
10077
CO2Me MeO
+ HOPdCl 77%
+ HCl Scheme 21.
H N Pd AcO
O
O
H N O
+
O
β
without LiCl: with LiCl:
OH (1.1 equiv.)
H Pr
30%
64%
Ph
AcOH, rt
+ Ph
Ph
(22)
O
0 equiv.: LiCl 2 equiv.: 10 equiv.:
59% 39% 13%
18% 34% 64%
Pr
PdCl2(PhCN)2 (0.05 equiv.) Cl LiCl (4 equiv.)
Pr Cl O
+ O
OH (21)
39%
Ph LiCl (0-10 equiv.) Ph
PhPdI(tmeda) +
O
N
+
β' OH
2
HO
H N
LiCl (0 or 10 equiv.) OH + AcOH, rt (20 equiv.)
AcOH, rt, 60 h
Pr
O
Pr O 23%, E/Z = >97:3
ambiguous.6 The syn-elimination mediated by palladium requires a free coordination site on the palladium atom.5 In the presence of the large excess of LiCl, palladium is coordinatively saturated; consequently, such a syn-elimination is precluded. Moreover, this coordination of chloride anion to Pd increases the electron density of Pd, resulting in the weakening of the CePd bond.7 Therefore, the OH elimination would proceed via an E2like mechanism promoted by halide ion coordination to Pd (Scheme 22). The apparent syn-elimination will only occur under particular conditions, as observed by Hacksell and Daves.69 The addition of 1,4-
Li Cl
O
O
(23)
Pr 51%
anhydro-2-deoxy-5-O-(methoxymethyl)-D-erythro-pent-1-enitol to an acetonitrile solution of (1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)mercuric acetate and palladium acetate led, at room temperature, to the adduct 23A (Scheme 23). Its exact structure has not been determined, but the cis relationship between the PdOAc and the pyrimidinyl unit was demonstrated from its reaction with NaBD4. At 70 C, the adduct evolved to (20 -S-trans)-5-[20 ,50 -dihydro50 -[(methoxymethoxy)methyl]-20 -furanyl]-1,3-dimethyl-2,4(1H,3H)pyrimidinedione. The authors proposed the formation of palladooxacyclobutane 23B as intermediate and the subsequent elimination of palladium oxide.
Cl Li
Li Cl OH
PdX
ArPdX n LiCl
Ar
Ar OH
Li Cl Scheme 22.
+ LiOH + XPdCl + (n-1) LiCl
10078
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
O R
O
MeN
R NMe
rt
O HO
NMe
MeCN + Pd(OAc)2
+
O O
HO L PdOAc 2 23A
HgOAc
N Me
AcOH R
O
NMe
NaBD4
R = CH2OCH2OMe
O
70 °C R
O O R
NMe HO
D
N Me
O
O
O
PdL2
N Me 23B
O
O L2Pd=O
O
NMe N Me
O
Scheme 23.
The Pd-catalyzed reaction of allyl alcohol with prop-1ynylbenzene and CuCl2 afforded (E)-(1-chloro-2-methylpenta-1,4dienyl)benzene as the main product (Eq. 24).70 According to Jiang’s team, trans-chloropalladation of the triple bond71 is followed by insertion of the resulting vinylpalladium species into the C]C bond of allyl alcohol. Subsequent cleavage of the CePd and CeO bonds provides the dienic compound (Scheme 24).70 Jiang and co-workers also reported the synthesis of chloro-1,3-dienes from alkynols and alkenes through reactions involving successive b-H and b-OH eliminations (Scheme 25).72 The reaction of the vinylpalladium species 25A with the alkene gives the s-alkylpalladium complex 25B, which suffers a b-H elimination, leading to 25C. The re-addition of HPdCl produces 25D. Subsequent 1,3-rearrangement affords 25E. The diene is obtained from 25E via the b-OH elimination, whereas CuCl2 mediates the regeneration of the catalyst.
(3 equiv.)
HOAc/H2O (1:1), rt, 12 h
Wang and co-workers recently reported the kinetic resolution of BayliseHillman adducts such as that depicted in Eq. 25.73 The CaePd intermediate was formed via the selective addition of the chiral arylating agent to the C]C bond of the (R)-substrate.
Cl Ph
Ph
PdCl2
+ HOCuCl CuCl2 PdCl
Cl
3.2. b-H elimination An array of reports concerns Heck reactions of allylic alcohols involving hydride eliminations as the main reactive pathways.1,75,76 For such reactions, the arylation usually occurs on the terminal carbon, leading to the internal carbon substituted by palladium. Thus, the H elimination implies a hydride geminal either to the aryl group (b-H elimination) or to the hydroxyl moiety (b0 -H elimination), leading to the arylated allylic alcohol or carbonyl compound,
PdCl2 (0.056 equiv.) . CuCl 2 2 H2O (2 equiv.) Cl OH
+
Ph
Although benzylic hydrogens were available in the b and b0 positions, the hydroxy substituent was selectively eliminated. Moreover, given the enantiomeric excess of the addition product, this intermediate was not in equilibrium with the corresponding oxo-h3-allylpalladium species.74
Cl
PdCl
OH Ph Ph OH Scheme 24.
Ph + Cl Ph
(24)
87%, 99:1
respectively (Scheme 26). For this latter derivative, the formation of an enolic species is admitted as intermediate.77,78 The carbonyl compound could be obtained from 26C via either free enol 26D (path a) or addition/elimination of HPdBr (path b) as suggested by Heck.79 Smadja et al. showed that path a is, at best, a minor reactive pathway;80 this is also demonstrated in a recent study.81 Chalk and Magennis proposed plausible equilibria between intermediates 26A, 26B, 26C, 26E and 26F, the selectivity depending on the stability of these complexes and the different rates of the HPX elimination/addition.78 We envisaged that the halide-mediated reductive elimination (path c) could compete with the usually accepted hydride elimination (path b) for the formation of the carbonyl compound from 26E.82 This proposal was inspired by a report from Goddard et al., concerning DFT calculations on mechanisms relevant to the Wacker process,83 and is based on some similarity between the Heck reaction and the Wacker oxidation, the latter involving an enolic intermediate similar to 26C.78,84 For the Wacker process, it has been shown that the elimination product never leaves the coordination sphere of the palladium at this level, the formation of the aldehyde occurring through the addition/
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
Cl
R + HOCuCl
10079
HO PdCl2
CuCl2
HO
Cl
HOPdCl 25A R
ClPd R
Cl Cl
PdCl
R
ClPd HO
25E
Cl
R 25B
HO
Cl HO 25D
R PdCl
HPdCl Cl
R 25C
HO Scheme 25.
N N OH
PhB(OH)2 + (2 equiv.)
O
PdI2 N
Ph (0.15 equiv.)
O AgOTf (0.15 equiv.) NEt3 (0.5 equiv.) MeCN, rt, 24 h
O
(25) OH
O
+ Ph 38%, E/Z = 90:10 98% ee
elimination of HPdX,85 and, according to the calculations,83 via the halide-mediated reductive elimination. Under most experimental conditions, arylation and vinylation of the primary or secondary allylic alcohols with organic halides mainly provide the corresponding b-substituted carbonyl compounds.1,75,76 Such a selectivity can be also observed for the arylation with arenediazonium salts.86e89 In contrast, organic triflates90 and iodonium salts91 rather afford the substituted allylic alcohols. Nevertheless, Jeffery disclosed experimental arylation and vinylation procedures leading selectively to the substituted allylic alcohol, even from organic iodides, the key for such a selectivity being the use of silver acetate, silver carbonate or thallium acetate as additive and the absence of an ammonium salt (Scheme 27).92e94
58%, 38% ee
The role of these additives was not really rationalized by the author. Moreover, other parameters are probably involved, as exemplified in the formation of the aldehyde shown in Eq. 26,95 which was obtained under such conditions. The presence of ammonium salts often favours the formation of the carbonyl compounds (Scheme 27),93,96e99 but this nevertheless depends on the anion of the salt (Eq. 27),100 and also on the electronic properties of the aryl substituent (Scheme 28101 and Eq. 28 102). The decisive role of the experimental conditions on the selectivity has also been exemplified by the teams of Cacchi and Norrby, who observed b-H/b0 -H elimination ratios from 0.07 to 73 from the p-IC6H4CH2CH(PdX)CH2OH intermediates, depending not only on the additives but, moreover, on the solvent (Eq. 29).51
10080
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
XPdHβ
XPdHβ
Ar ArPdX OH
Ar
OH
OH β
26A
Ar
β'
OH 26D
(a) XPdHβ'
β'
tautomerisation XPdH
XPdH Ar
Ar
OH 26B
PdX
Hβ'
26C
26F
Ar (b)
Hβ'
PdX 26E
XPdH
PdX O
Ar
O
Ar
O
Ar
OH
Pd0 + HX H
(c)
Hβ'
OH Ar
Pd X O
H
Scheme 26.
Pd(OAc)2 (0.05 equiv.) Ag2CO3 (0.55 equiv.) n-Bu4NHSO4 (1.5-2.2 equiv.) MeCN, 70 °C, 4 h I
O (CH2)5Me
OH
+
54%
(CH2)5Me
OH
Pd(OAc)2 (0.03-0.05 equiv.) AgOAc (1.1 equiv.) DMF, 50-60 °C, 3-24 h
(CH2)5Me
61%
Scheme 27.
O Br
Pd2(dba)3.CHCl3 (0.025 equiv.) dppb (0.07 equiv.) Ag2PO4, CaCO3 OH
O
DMA
O H O
(26)
CHO
79%
OH Procedure A or B Ph PhBr + (1.2 equiv.)
Ph
Ph R Ph +
R +
R+
R OH O O OH R = n-C5H11 Procedure A. Pd(OAc)2 (0.012 equiv.), NaHCO3 (2 equiv.), n-Bu4NBr (3.1 equiv.), 130 °C, 3 h 85% 5% Procedure B. Pd(OAc)2 (0.012 equiv.), n-Bu4NOAc (3.3 equiv.), 70 °C, 0.5 h 85% 4% 5%
R
(27)
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
10081
O HN NH2 Et
Pd
Cl
2 (0.0001 equiv.)
X +
73%
MeO
K2CO3 (2 equiv.)
OH (1.5 equiv.)
R
X=I R = OMe
n-Bu4NCl (1 equiv.) H2O, 80 °C, 12 h
X = Br R = CO2H
OH 71%
HO2C Scheme 28.
OH PhI + (1.2 equiv.)
Pd(OAc)2 (0.05 equiv.) Ph ClNBnEt3 (1 equiv.) R NaHCO3 (2 equiv.)
OH R
OH (1.5-3 equiv.)
β
R
+
(28)
82% 61% 46%
27% 24%
Pd(OAc)2 (0.03 equiv.) base, additive solvent, 90 °C
β Ar Ar = p-MeOC6H4 OH +
Ar
O
MeCN, 50 °C, 24 h R = Br: R = OMe: R = Me:
ArI +
Ph
OH + Ar
(29) Ar O+
O + Ar β
n-Bu4NOAc (2 equiv.), K2CO3 (1.5 equiv.), KCl (1 equiv.), DMF, 2 h 37% 3% 18% 9% β/β'-H ratio: 6.4 n-Bu4NOAc (2 equiv.), K2CO3 (1.5 equiv.), KCl (1 equiv.), DMA, 3 h 40% 1% 32% 1% β/β'-H ratio: 73 n-Bu4NOAc (2 equiv.), DMF, 0.3 h 48% 3% 10% 18% β/β'-H ratio: 3.4 n-Bu4NOAc (2 equiv.), PhMe, 1 h 15% 12% β/β'-H ratio: 1.2 K2CO3 (1.5 equiv.), KCl (1 equiv.), DMF, 0.3 h 4% 20% β/β'-H ratio: 0.07 a MeCHArCHO (11%) was obtained.
β'
Ar
β'
OH
+ O
Ar β'
16%
15%
20%
22%
20%
a
10082
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
29A, the b-H elimination would proceed with the same hydrogen as that for path a, but leading to the hydridopalladium alcoholate 29B, which affords the C]O unit by elimination of palladium hydride (Scheme 29).90 When aryl iodides and primary allylic alcohols were used, the oxidation of the aryl allyl alcohol was suspected as another reaction pathway for the traces of the b-arylated a,b-unsaturated aldehyde that were formed.51,109,110 The formation of cationic palladium intermediates does not, however, imply the selective formation of 3-substituted allylic alcohols. Indeed, the HeckeMatsuda reaction, which uses arenediazonium salts, involves the coordination of the C]C bond to an ArPdþ species,111,112 but mainly affords the carbonyl compounds from allylic alcohols (Eq. 31).87e89,113 Moreover, traces of the cinnamaldehyde were detected from the reaction of allyl alcohol with
The Heck intermediates formed from organic halides are fairly different from those generated from organic triflates or iodonium salts. These latter salts are more prone to form cationic palladium intermediates, this depending, however, on the species present in the coordination sphere,103e105 and the solvent.106 When triflates90 and hypervalent iodonium salts107,108 were used as reagents, this selectivity towards the substituted allylic alcohol was explained by a chelation preventing the hydrogen atom on the hydroxy-bearing carbon from the syn relationship with palladium for the palladiumhydride elimination (Scheme 29); consequently, the elimination occurs with a hydrogen geminal to the aryl or vinyl group (path a). Cacchi and co-workers, having sometimes observed the formation of a b-arylated a,b-ethylenic ketone (Eq. 30), proposed the formation of palladacycle 29A (path b) as a plausible intermediate. From
Ar2IBF4 or ArOTf
Z OH
ArPd
Ar
Pd0 + HZ
Pd0 Z
OH
(a)
Pd
Ar
O
Ar
OH (b)
Z = BF4 or OTf
PdH2 Pd
HZ
Ar
O
Ar
OPdH 29B
29A Scheme 29.
OTf
OH
Pd(OAc)2 (0.03 equiv.) K2CO3 (2 equiv.)
(30)
+ DMF, 60 °C
Et
Ph
Ph
Ph OH 60%
N2BF4 + t-Bu (1.5 equiv.)
PhN2Cl +
OH
Et
Ph
+
O traces
+
O 23%
Et
Et
O Pd(dba)2 (0.05 equiv.)
i-Pr
i-Pr MeOH, 50 °C, 2.5 h t-Bu
Li2PdCl4 (0.02 equiv.) HCO2Na, NaOAc Ph OH MeCN/H2O (85:15) rt, 1.5-2 h
(31)
83%
Ph O +
O + Ph
41%, 90:10:traces
O
(32)
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
phenyldiazonium chloride (Eq. 32).86 This uncertainty in the anticipation of the results is also exemplified with the arylations depicted in Scheme 30: oct-1-en-3-ol afforded 1-phenyloct-1-en3-ol from the reaction with diphenyliodonium tetrafluoroborate, and 1-phenyloctan-3-one with phenyl triflate,107 although the active arylating species would be a similar cationic palladium intermediate.
Pd(OAc)2 (0.02 equiv.) NaHCO3 (2 equiv.) Ph2IBF4
DMF, rt, 1.5 h
OH Ph 83%
OH
n-C5H11
n-C5H11 O
Pd(PPh3)4 (cat.) K2CO3 or NEt3
PhOTf
Ph
DMF, Δ, 6 h
n-C5H11 84-86%
Scheme 30.
The Pd-catalyzed 5-endo-trig cyclization of substituted 1-(obromophenyl)prop-2-en-1-ols led to the corresponding indanone or indenone, depending on the experimental conditions and/or the
10083
substitution of the C]C bond of the substrate (Scheme 31). The formation of 2-phenylindan-1-one was explained via an intermediate corresponding to 26E of Scheme 26,82 whereas that of 2,3-diphenylinden-1-one would involve the pathway a of this scheme.114 Indeed, Pan and co-workers proposed that this indenone is formed via the corresponding indenol and its subsequent oxidation (Scheme 32); they have effectively observed that a similar indenol was smoothly converted into the corresponding indenone under the experimental conditions,110,114 but the formation of the indenol via an apparent trans b-H elimination (Scheme 32, step a) did not attract comment from the authors.64,114 We propose that the indenone could be rather produced via the Cacchi mechanism depicted in Scheme 29, path b. From their study of the addition of phenylboronic acid to pent-1en-3-ol mediated by a stoichiometric amount of Pd(OAc)2, Lei and co-workers recently demonstrated the strong influence of additives on the selectivity of the HPd elimination.115 At 0 C in DMSO/AcOH, the b-H/b0 -H elimination selectivity was very low (Eq. 33). In contrast, the presence of a Lewis acid such as CuCl2, ZnBr2, CuCl or LiCl led to the selective formation of 1-phenylpentan-3-one. The authors suggested that, as in Scheme 29, some coordination of the hydroxy to palladium could occur at the level of the carbopalladation intermediate (Scheme 33), which would induce the b-H elimination, producing 1-phenylpent-1-en-3-ol. The Lewis acid (MX) would efficiently coordinate to the hydroxyl; this interrupts the Pd/OH interaction and favours the formation of 1-phenylpentan-3-one.
O
Pd(OAc)2 (0.05 equiv.) cinchonine (0.1 equiv.)
Ph
R=H
OH
NaHCO3 (1.1 equiv.) DMF, 120 °C, 16 h
Ph Br
R R = Ph
76% O
Pd(OAc)2 (0.05 equiv.) PPh3 (0.15 equiv.)
Ph
K2CO3 (2 equiv.) DMF, 80°C, 24 h, air
55% Ph
Scheme 31.
OH O
KHCO3 + KBr Ph
Ph PdL2 Br
K2CO3 OH
Ph HPdBrL Pd0 + 2 HOAc 0.5 O2 H2O
Ph
Ph L
OH Ph
(a)
PdBrL2 Ph
OH
Pd(OAc)2
Ph
Ph
PdBrL Ph Scheme 32.
H
10084
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
OH PhB(OH)2 + Et (1.2 equiv.)
Pd(OAc)2 (1 equiv.) additive (0-1 equiv.)
Ph
O +
β' DMSO/AcOH, 50 °C Et without additive: 25% with CuCl2 (1 equiv.): 92% with ZnBr2 (1 equiv.): 100% with LiCl (1 equiv.): 91% with CuCl (1 equiv.): 90% with CuCl (0.5 equiv.): 79%
Ph
OH β
(33)
Et 17% 0% 0% 4% 0% 8%
XPd OH β-H elimination H
Ph Et
β Ph
OH β' Et
β'-H elimination Ph
O Et
MX
XPd H
H Ph
MX
HO
Scheme 33.
The CePd intermediate stemming from the reaction of aryl halides with tertiary allylic alcohols usually evolves via the b-H elimination (Eq. 34 116).117e119 Interestingly, the coupling of 4bromobenzophenone with 2-methylbut-3-en-2-ol catalyzed by the phosphinito complex shown in Scheme 34 provided, as expected, (E)-(4-(3-hydroxy-3-methylbut-1-enyl)phenyl)(phenyl)methanone under heating (path a), whereas both b-H and OH eliminations leading to (E)-(4-(3-methylbuta-1,3-dienyl) phenyl)(phenyl)methanone arose under microwave irradiation (path b).120
Arylation and alkenylation of 2,3-dihydrofuran at the 5-position are followed by the selective elimination of a hydride in the 3-position (Eq. 37),124 but the subsequent migration of the double bond can arise leading to 2-phenyl-2,3-dihydrofuran.124,125 Such a cascade reaction also occurs with 3,4-dihydro-2H-pyran as the substrate.19
4.2. After addition to an allylic ether With an alkoxy (Scheme 5, path b21; Eq. 38 126),59,127,128 benzyloxy (Eq. 20 63),127 aryloxy (Eq. 39 129) or silyloxy (Schemes 5 and
Ph Ph I
Ph
OH Ph
N CO2t-Bu +
OH
Pd(OAc)2 (0.1 equiv.) K2CO3 (2 equiv.)
N CO2t-Bu
(34)
DMF/H2O (1:1), 90 °C, 2 h N Boc
(45 equiv.)
4. Competitions between hydrogen(s) and alkoxy(s), aryloxy, silyloxy or arylsulfonate 4.1. After addition to a vinylic ether The arylation and alkenylation pathways of acyclic vinylic ethers, which produce the CePd intermediate having the alkoxy substituent in the b-position, involve the b-H elimination (Scheme 35,121 Eqs. 35 122 and 36 60).123
N Boc
90%
6, paths b21; Eq. 40 130)59,127,131 substituent in the b0 -position, the CaePd intermediate stemming from an intramolecular reaction usually eliminates a b-hydride, giving an allylic ether as the main product. This contrasts with the elimination of the ester substituent observed by Daves and Cheng under similar conditions (Schemes 5 and 6, paths a).21 As for the arylation of allylic alcohols (Eq. 27), the teams of Cacchi and Norrby reported a strong influence of the experimental conditions on the b-H/b0 H ratio (Eq. 41), the higher selectivity being
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
Ph Ph Ph Ph
OH
+
P
H
O
H PhCO
O Ph Ph
Cl Pd P
P Pd Cl
O PhCO
O
P
Ph
(0.01 equiv.)
OH
90 °C 6h
89%
(a)
Ph
AcONa (1.2 equiv.) DMF
Br (1.1 equiv.)
10085
microwave 200 °C, 20 min
(b)
PhCO
94% Scheme 34.
OMe
I + MeO
Pd(OAc)2 (0.01 equiv.) PPh3 (0.02 equiv.) NEt3 (1.1 equiv.) MeO OMe MeCN, 120 °C, 6 h
O +
aq. HCl
O
CH2Cl2 rt, 3 min MeO
(1 equiv.)
55% (overall)
MeO Scheme 35.
OEt OTf +
Pd(OAc)2 (0.03 equiv.) NEt3 (1.5 equiv.)
OEt (5 equiv.) DMSO, 60 °C, 3 h
1 PhB(OH)2 + R
(35) 82%
1) Pd(OAc)2 (0.02 equiv.) dppp (0.03 equiv.) acetone, 70 °C, 15 h OR2 (2 equiv.)
Ph 1
R 2) aq. HCl, rt, 1 h
O
R1 = H, R2 = n-Bu: 89% R1 = Me, R2 = Et: 85%
O PhI +
Pd(OAc)2 (0.05 equiv.) n-Bu4NOAc (2-2.5 equiv.) Ph MS 4 Å
O (37)
DMF, rt, overnight (10 equiv.)
78%
(36)
10086
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
OAc O
Ph(BOH)2 + AcO AcO (1.2 equiv.)
O OAc
OAc O OAc
Ph
OPh
(39)
79%
Pd(OAc)2 (0.05 equiv.) PPh3 (0.1 equiv.) OSiMe2t-Bu K2CO3 (2 equiv.)
Br + Me(CH2)4
OSiMe2t-Bu
(38)
O 71%
Pd(OAc)2 (0.05 equiv.) Cu(OAc)2 (2 equiv.) LiOAc (3 equiv.) OPh Ph DMF, 100 °C, 4 h
PhB(OH)2 + (1.2 equiv.)
OHC (2.5 equiv.)
Pd(OAc)2 (0.1 equiv.) Cu(OAc)2 (2 equiv.) LiOAc (3 equiv.) AcO AcO DMF, 100 °C, 1.5 h
(40)
DMF, 85-90 °C, 72 h OHC OSiMe2t-Bu Me(CH2)4
obtained with n-Bu4NOAc as additive (Procedure A).51 Isotopic labelling studies showed that, under these phosphine-free conditions, the styrenyl compounds are generated from b-H elimination and not from the isomerisation resulting from the b0 -H elimination and the subsequent re-addition of the HPd species.51,61 This led the authors to conclude that the corresponding product distribution is kinetic in origin.51,132 A meticulous DFT investigation performed to clarify the source of the selectivity found that acetate anions can
ArI +
OTHP
Pd(OAc)2 (cat.)
O
OSiMe2t-Bu 78%
influence the selectivity and that the product selectivity does not arise from competing b-hydride eliminations, but rather from a competition between b-elimination and hindered single-bond rotation in the initial carbopalladation product.51 According to their calculations, it seems that the carbopalladation intermediate shows a preference for a bidentate coordination mode with a single acetate ligand, even in the presence of excess acetate.51 In Scheme 36, we have summarised the proposed steps,51 which lead to the
O Pd
R
O
O Pd
n-Bu4NOAc (excess) Ar
OTHP
OTHP 36A
Ar
O
OTHP + HPdOAc
O
O
H H Scheme 36.
OTHP Ar
H
H Ar
36B
O Pd
Pd
OTHP 36C
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
formation of the allyl ether, rather than the enol ether. The hydride elimination requires that the carbopalladation product 36A loses the coordination of the aryl group. The energy for this coordination breaking and rotating to afford the agostic complex 36B is lower than the energy, which would give the agostic complex 36C. Some Pd-catalyzed syntheses of substituted allylic ethers have
OTHP
ArI +
(1.5 equiv.)
Ar = p-IC6H4
olefin at the less-hindered terminal carbon, the resulting alkylpalladium complex will evolve via the b0 -OEt elimination. Efficient exchange required the presence of CuCl2, and the author suggested that the CuCl2 only serves to regenerate PdII. Given the subsequent observations of Lu’s team summarised in Scheme 37, we suspect that the main role of the chloride salts was to favour this exchange reaction.
Procedure A, B or C
(41)
DMF, 90 °C OTHP +
β
OTHP +
Ar
10087
β
Ar Ar β'
Ar
β'
OTHP +
+ OTHP
Ar
OTHP
Procedure A. Pd(OAc)2 (0.03 equiv.), n-Bu4NOAc (2 equiv.), 0.5 h; 100% conversion 73% 6% 6% 4% 11% β/β'-H ratio: 7.9 Procedure B. Pd(OAc)2 (0.03 equiv.), Et3N (3 equiv.), 48 h; 58% conversion 27% traces 12% 17% 2% β/β'-H ratio: 0.9 Procedure C. Pd(OAc)2 (0.03 equiv.), Et3N (2 equiv.), n-Bu4NCl (1 equiv.), 1 h; 78% conversion 50% 1% 8% 17% 2% β/β'-H ratio: 2.0 been carried out in the presence of silver salts (Eqs. 20 63 and 42 54),44 but their role was to regenerate the PdII catalyst, the arylating agent being a benzoic acid,44,63,133 or an arene.54 The elimination of the ether group could be, at least in AcOH, obtained by the addition of LiCl. Indeed, Lu’s team, studying the
PhH + (excess)
Pd(OAc)2 (0.1 equiv.) OPh AgOAc (2 equiv.) Ph DMSO, 110 °C, 12 h
The CaePd intermediate formed from the intramolecular coupling of the hemiketal shown in Eq. 44 has available hydrogens and alkoxy substituents in both the b and b0 positions. Nevertheless, the elimination arose with the OTHP substituent, leading to the spirocyclic compounds with diastereoselectivities
OPh
(42)
43%
reaction of an arylpalladium complex with allyl ethyl ether (Scheme 37), observed that, in AcOH, the addition of a large excess of LiCl favours the b-OEt elimination over the b-H elimination.7,68 This elimination would proceed as assumed for the bOH elimination (Scheme 22). The promotion of the ethoxy elimination by chloride anion seems also apparent for the exchange reaction reported by Wenzel (Eq. 43).134 After Wacker-type addition of t-BuOH to the coordinated
and yields depending on the concentration of both the catalyst and the substrate. This process would involve the syn-elimination of ClPdOTHP, and this latter species could also catalyse the reaction.135 The elimination of the tosylate group in the course of the reaction of allyl tosylate with p-methoxyphenylboronic acid has allowed the formation of the 1,3-diarylated propene (Eq. 45).33e35
H N O AcOH, rt
H N Pd AcO
OEt
69% O 2
+
OEt (20 equiv.)
H N LiCl (10 equiv.) AcOH, rt
O 60%
Scheme 37.
10088
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
PdCl2 (1 equiv.) CuCl (2 equiv.), CuCl2 (4 equiv.) NaCl (2 equiv.) OEt t-BuO MeCN (4 equiv.) (40 equiv.) 7 mol/Pd t-BuOH, N2, 30°C
OH
O
OTHP
O
(43)
O
PdCl2(PhCN)2 (0.02-0.2 eq.) O
(44)
THF, rt, 15-60 min
O
O
O
51-91%
B(OH)2 + MeO
Pd(OAc)2 (0.1 equiv.) n-Bu4NCl (1.5 equiv.) MeO OTs KH2PO4 (2 equiv.)
OMe (45)
DMF, 120 °C, 7 h (2.5 equiv.)
81%
4.3. After addition to acrolein diethyl acetal
4.4. After intramolecular addition
The arylation of acrolein diethyl acetal can lead to mixtures.136,137 Cacchi’s team discovered experimental conditions, which lead to the arylation of the terminal carbon with subsequent selective elimination of either the b-H or the b0 -H (Scheme 38). After hydrolysis, these methods provide either cinnamaldehydes (path a)138 or ethyl 3-arylpropanoates (path b).139 The authors did not propose any explanation. From the different conditions they used to reach selective procedures, it seems that chloride and acetate anions have decisive roles. Thus, a tentative clarification could be based on a subsequent report they published with Norrby’s team, in which DFT calculations on the hydride elimination from PhCH2C(PdX)CH2OMe under phosphine-free conditions indicated that X¼OAc favours the b-H elimination, whereas the b0 -H elimination would be preferred when X¼Cl (Scheme 39).51 We suspect that DFT studies on the transformation of PhCH2C(PdX)CH(OEt)2 could lead to the same indications.
The cyclisation of o-(2-butenyl)phenol occurs via the 5-exo140 or the 6-endo141 pathway, depending on the experimental conditions (Scheme 40).142 The main compound resulting from the exo cyclisation corresponds to a b0 -H elimination, whereas the minor compound would be obtained from either the isomerisation of the main compound62 or the b-H elimination followed by migration of the C]C bond.143 As for the endo cyclisation, the formation of 2-methyl-2Hchromene also corresponds to a b0 -H elimination, but Larock et al. noted that this reaction could involve the h3-allylpalladium chemistry.141,144 The 5-exo cyclisations of allylic N-hydroxymethylcarbamates are also followed by selective b0 -H eliminations (Eq. 46 145).146 In contrast to the above examples, the h1-palladium complexes 41A147 and 42A148 obtained from exo cyclisations evolved via the cleavage of the internal C-alkoxy bond (Scheme 41) or the CeOAr bond (Scheme 42), respectively, although the availability of a syn b0 H. Sinou et al. suspected an ionic pathway, rather than a concerted mechanism, for the cleavage of the C-alkoxy bond.147
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
CO2Me Boc
N
10089
CO2Me
OH Pd(OAc)2 (0.05 equiv.) Boc O2 (1 atm)
N
O (46)
DMSO, 65-70 °C, 2 h 80%
1) Pd(OAc)2 (0.03 equiv.), n-Bu4NOAc (2 equiv.) K2CO3 (1.5 equiv.), KCl (1 equiv.) O Ar DMF, 90 °C, 1.5 h 2) aq. HCl Ar = p-IC6H4: 88% (a) β-H elimination OEt (b) β'-H elimination OEt (3 equiv.) Ar O 1) Pd(OAc)2 (0.03 equiv.) n-Bu4NCl (1 equiv.), n-Bu3N (2 equiv.) OEt DMF, 90 °C, 3 h Ar = p-IC6H4: 91% 2) aq. HCl
ArI +
Scheme 38.
Ph
OMe
β-H elimination
PdX Ph
X = OAc
OMe β
β'-H elimination
Ph
OMe
X = Cl
β'
Scheme 39.
Pd(OAc)2 (0.2 equiv.) Cu(OAc)2.H2O (0.5 equiv.) slow stream of O2 MeOH/H2O (25:2), 55 °C, 1 d
OH Pd(dba)2 (0.05 equiv.) KHCO3 (1.1 equiv.) DMSO/H2O (9:1) air, 60 °C, 3 d
+ O 54%
O traces
O 80% Scheme 40.
TBDMSO O O Br
Pd(OAc)2 (0.05 equiv.) TBDMSO PPh3 (0.1 equiv.) NEt3 (2.5 equiv.) OEt O n-Bu4NHSO4 (1 equiv.) MeCN/H2O (5:1) 80 °C, 1 d Scheme 41.
TBDMSO O
OH OEt PdBr
41A
OEt
O 57%
10090
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
TBDMSO O O Br
TBDMSO
TBDMSO Pd(OAc)2 (0.1 equiv.) OAr PPh3 (0.2 equiv.) O NEt3 (2.5 equiv.)
O
O OAr
n-Bu4NHSO4 (1 equiv.) DMF, 80 °C, 2 d
O
PdBr 55%
Ar = p-(t-Bu)C6H4
42A Scheme 42.
5. Competitions between hydrogen(s) and halide or arylsulfonyl
The coupling of 4-methylbenzenesulfonohydrazide with allylsulfonylbenzene occurred with selective b-H elimination (Eq. 50).153
In AcOH containing LiCl, the rate of the halide elimination is higher than those of the OAc, OR, OH and H eliminations.6,68 Halide ions could coordinate to palladium and, thus, promote the dehalogenation via an E2-like mechanism.7,149 These conditions are, however, not required to obtain the halide elimination, as exemplified in Eqs. 47,150 48 151 and 49.44,152 For the coupling depicted in Eq. 42, we suspect that the silver salt mainly functions as a base.133
6. Competitions between hydrogen(s) and amino derivative
N
LiPdCl3 (1 equiv.)
Cl
PhHgCl +
Ph
MeCN, rt, overnight
MeB(C6F5)3 Me Pd +
1) CD2Cl2, - 78 °C 2) rt, 30 min
OMe CO2H Br
+
+
SO2NHNH2 +
(48)
+
95% 5%
Pd(OAc)2 (0.1 equiv.) Cu2O (0.01 equiv.) Ag2CO3 (3 equiv.)
OMe
(49) PhMe/DMSO (95:5) 110 °C, 2 h
OMe
(1.2 equiv.)
(47) 61%
Cl (103 equiv.) ClCD2Cl
N
The XPdCaeCNR2 intermediates are not prone to elimination of the nitrogen substituent.154 This allowed the efficient amination of styrene in the presence of triethylamine (Eq. 51).155,156 Although the nitro group is an efficient leaving group for TsujieTrost-type reactions,157 the HeckeMatsuda reaction of allylic
88%
OMe
Pd(OAc)2 (0.1 equiv.) O2 (1 atm) SO2Ph DMSO/MeNO2 (1:1) 70 °C, 5 h
SO2Ph (50) 90%
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
O O
PdCl2(MeCN)2 (0.05 equiv.) O CuCl2 (0.05 equiv.) Ph NEt3 (0.1 equiv.) NH + Ph O N O2 (1 atm) (6 equiv.) DME, 60 °C, 24 h 99%
NO2 PhN2BF4 + (3 equiv.)
96% ee
(1.2 equiv.)
NH Ts
NHCbz
N(Boc)2
SO2NHNH2
X
77%
(1.1 equiv.)
+
(53)
CO2H
DMF, 50 °C, 6 h
Pd2(dba)3 (0.02 equiv.) AcONa (3 equiv.)
N2BF4 + MeO
(52)
bond usually arises via the b-H elimination, leading to the allylamine derivative (Eqs. 53,160 54 161 and 55 153).131,162 In contrast, b0 -H eliminations are involved for intramolecular reactions under Stahl’s experimental conditions (Eq. 56 163).164e168
Pd(OAc)2 (0.1 equiv.) P(o-tol)3 (0.2 equiv.) n-Bu4NCl (1 equiv.) CO2H K CO (5 equiv.) 2 3 NHCbz (1.04 equiv.)
(51)
NO2 Pd2(dba)3 (0.05 equiv.) NaOAc (3 equiv.) Ph OCbz OCbz MeCN, rt, 8 d 78% yield, 96% ee
nitro compounds can occur effectively with selective b-H elimination and the complete retention of configuration at the tertiary nitro C atoms, as shown in Eq. 52.158,159 When b-H and b0 -H are available from the CaePd intermediate generated by an intermolecular addition, the C]C
+ OTf
10091
N(Boc)2
MeCN, rt, 3 h
90%
MeO
Pd(OAc)2 (0.1 equiv.) O2 (1 atm) NHTs DMSO/MeNO2 (1:1) 70 °C, 5 h
Pd(OCOCF3)2(DMSO)2 (0.05 equiv.) O2 (4 atm), 3 Å MS
X
PhMe, 60 °C, 24 h
N
Ts X = O (76%), CH2 (92%), NTs (71%)
(54)
NHTs (55) 77%
(56)
10092
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
The exchange reaction shown in Eq. 57, which afforded, in a low yield, but with preservation of the configuration of the chiral centres, a key intermediate of the total synthesis of rhizobitoxine, is an example of the methoxy elimination in the presence of eliminatable hydrogens and N-substituents.169 Both vinylamine and allylamine derivatives can be obtained from the same substrate. Indeed, Filippini and co-workers observed
NHCO2Bn BnO
OH +
7.1. After addition to a vinylic silane In 1982, Hallberg and Westerlund disclosed the Pd-catalyzed reaction of vinyltrimethylsilane with aryl iodides (Eq. 60).176 The styrenes being the main products, the authors assumed that pal-
PdCl2(PhCN)2 (0.5 equiv.) NaH2PO4 (4.5 equiv.) 4 Å MS CO2Bn BnO
MeO
(3.2 equiv.)
NHCO2Bn
N
NHCO2Bn
DME, -20 °C, 21 h
a strong influence of the nature of the solvent on the vinylN/allylN ratio for the reaction of phenyl iodide with 1-(2-methylallyl)piperidine (Scheme 43).170 To explain this solvent effect, these authors assumed that the b-H elimination is favoured when the N atom of the piperidino moiety is coordinated to Pd, and that this chelation is disadvantaged in polar solvents. From a comparison with the results of Eq. 46, which are also obtained in DMF, the chelation efficiency would also be dependent on the nitrogen substituents.
PhI +
7. Competitions between hydrogen(s) and silane
O
CO2Bn
17%
NHCO2Bn
(57)
ladium promotes the cleavage of the vinylic silicon bond, rather than envisaging the b-SiMe3 elimination. The desilylation was also observed by Kikukawa and co-workers, who used arene diazotetrafluoroborates instead of aryl iodides, but they proposed a cleavage mediated by the fluoride ion.177e179 Using deuterated substrates, these authors assumed that both syn- and anti-elimination of Pd0 and SiMe3 can occur, as exemplified in Scheme 45.177 Cis addition of ArPdþ to the (Z)-PhCH]CDSiMe3 affords s-alkyl complexes 45A1 and 45B1. Cis b-H elimination from 45A1 leads to
PdCl2(PPh3)2 (0.01 equiv.) K2CO3 (2 equiv.) solvent, 80 °C, 2 h
XPd N Ph
(3.1 equiv.)
β'
β
X = I or Cl HPdX
Ph
+
N
PhMe: EtOH: DMF:
85% 60% 2%
Ph
N 10% 20% 72%
Scheme 43.
Allylic phthalimides are the main products from the coupling of phthalimide with cyclic alkenes (Eq. 58 171).172,173 Stahl and co-workers assumed a cis-aminopalladation of the cyclic alkene174 followed by a selective syn b0 -H elimination.171,172 The isomeric compounds would arise via Pd-hydride-mediated migration of the double bond.171
O
Pd(OAc)2 (0.1 equiv.) O2 (4 atm)
NH +
p-complex 45A2. Cis-readdition of HPdþ gives 45A3, which suffers anti-elimination mediated by fluoride to deliver (E)-Ar(Ph)C] CHD. As from 45B1, syn-elimination leads to (E)-PhCH] CDAr.177,180
O N
PhCN, 60 °C, 24 h (1.2 equiv.) O A b-N elimination is a key step of a cascade reaction generating benzo[c]phenanthridines (Eq. 59).175 This elimination is caused by the absence of hydride syn to Pd in intermediate 44A obtained from the insertion of the ArPdI species into the C]C bond of the azabicycle (Scheme 44). Consequently, 44A evolves by cleavage of the syn CeN bond to afford 44B and, subsequently, the amide.
75% O
isomeric + products
(58)
8%
For the reaction of p-iodoanisole with the substrates shown in Eq. 61, the teams of Blart and Ricci assumed that the isolated compounds are the result of syn-eliminations of Me3SiPdI (Scheme 46).181 Since Hallberg and Karabelas proposed that the elimination of SiMe3 is promoted by iodide,182 we suspect that this step could rather lead to Me3SiI and Pd0, as suggested in Scheme 47.
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
Pd(PPh3)2Cl2 (0.02 equiv.) ZnCl2 (0.5 equiv.) Zn (10 equiv.) NEt3 (0 or 8 equiv.)
BocN I
O
10093
+
O O (59)
CO2Me THF, 60 °C, 12 h
O (1.2 equiv.)
NH 90% O
O L2PdCl2 Zn
HN O
ZnCl2
I
PdLn
O
CO2Me ZnCl2 Zn, L LnIPd
PdILn
MeO2C NBoc
CO2Me
O
BocN
O CO2Me
O 44B
BocN
MeO2C
O
O PdILn
O
44A Scheme 44.
PhI +
Pd(OAc)2 (0.02 equiv.) PPh3 (0.04 equiv.) SiMe3 (2.5 equiv.) DMF, 125 °C, 0.5 h
Ph Ph
+
Ph
60%
The influence of the halide ion on the SiMe3 elimination is exemplified with the use of ArPdOAc instead of ArPdI as the arylating species, this mainly leading to the arylated alkenylsilanes via the syn-elimination of HPdOAc (Scheme 48).183 As shown in Scheme 46, path a, the SiMe3 elimination is subsequent to the elimination/readdition of HPdI. This SiMe3 elimination can be prevented in the presence of silver nitrate (Schemes 49176,182,184 and 50185). This was explained by the silver-mediated abstraction of iodide from the aryl (or alkenyl) palladium iodide leading to a cationic palladium complex, which adds to the vinylsilane.182,185 In agreement with this proposal, the use of alkenyl triflate instead of alkenyl iodide also provided effectively the corresponding 2-alkenylvinylsilane, even in the absence of the silver salt.185,186
SiMe3 + 5-25%
(60) SiMe3 traces
7.2. After addition to an allylic silane187 The Pd-catalyzed addition of phenyl iodide to allyltrimethylsilane mainly occurs to the terminal position. Hallberg’s team demonstrated that the corresponding subsequent elimination is highly dependent on additives and the temperature (Eq. 62).188 At 120 C in MeCN, the elimination from PhCH2CH(PdI)CH2SiMe3 mainly concerned a benzylic hydrogen, slight elimination either of the b0 -H or of the trimethylsilyl group being observed. With the addition of silver nitrate, the intermediate would be the cationic complex PhCH2CHPdþCH2SiMe3, and the b0 -H elimination increased. Under these conditions, the decrease of the temperature to 50 C led selectively to (E)-trimethyl-(3phenylprop-1-enyl)silane, i.e., to the b0 -H elimination as the main reaction pathway, without SiMe3 elimination.189
10094
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
ArN2BF4 SiMe3
BF4
Ar
Ph
Pd
D MeCN, 25 °C
H
Ar
Pd(dba)2 (0.2 equiv.)
N2 ArPd
Ph
Ar = p-NO2C6H4
H
Pd
Ph
Pd
Ar
D
H
Pd SiMe3 D
Ph
D SiMe3
Ph
SiMe3
H 45B1 D
H 45A1 D
SiMe3
Pd Ar
SiMe3 Ph +
H F3B-F Ar
HPd
SiMe3
Ph 45A2 D
Ar
Pd H
Pd0 + Me3SiF + BF3 H
SiMe3 Ar
Ph 45A3 D
D Ph 10%
Ph
F-BF3
Ar
D Ar H 77%
Scheme 45.
ArI + (2 equiv.)
R
Pd(OAc)2 (0.05 equiv.) dppb (0.1 equiv.) R NEt3 (2.5 equiv.) SiMe3
MeCN
R = CH2NHBoc, 80 °C, 16 h: Ar = p-MeOC6H4 R = CH2OCH(Me)OEt, 65 °C, 48 h: R = CH2OMe, 80 °C, 48 h:
Ar + R
(61)
Ar 65% 40% 24%
The influence of the presence of silver oxide on the differentiation between b0 -H and b0 -SiMe3 eliminations has been reported by Tietze’s team for an intramolecular reaction (Scheme 51).190,191 Jeffery proposed procedures, which led to either b-H elimination or b0 -SiMe3 elimination, thanks to the appropriate selection of the base, the additive and the solvent (Scheme 52),192 their respective role on the selectivity remaining rather elusive.193
7.3. After addition to an alkene Recently, Watson’s team disclosed experimental conditions leading efficiently to vinylic and allylic silanes from the coupling of iodotrimethylsilane with styrenes and terminal alkenes, respectively (Eqs. 63 and 64).194 Thus, these reactions involve the selective elimination of a b-H (Eq. 63) or a b0 -H (Eq. 64). The competing formation of the vinylic silane from the two terminal alkenes shown in Eq. 65 was, however, observed,194 indicating, for these substrates, the competition between the b-H and b0 -H eliminations. 8. Competitions between hydrogen(s), alkoxy and ester or hydroxy or arylsulfonyl A number of examples with such potential competition have been presented in a recent review devoted to oxaheterocyclizations.195 Consequently, only a few examples are included in this section.
6.5% 39% 1% The formation of 3-oxopropyl acetate, as the main compound, from allyl acetate under Wenzel conditions (Eq. 66) would arise via the alkoxypalladation leading to 53A, and then a b-H elimination and subsequent attack of the coordinated vinyl ether by traces of water, as depicted in Scheme 53, path a.133,196 The plausible formation of the t-butyl acetal 53B has been suspected as an alternative intermediate (Scheme 53, path b). From 53A, the b0 -OAc elimination is a minor reaction pathway (Scheme 53, path c). A similar b-H elimination rather than b0 -tosyl or b-methoxy would be involved in the cycloacetalisation of 2-tosyl-3-butenols (Scheme 54).197 The exo Wacker-type cyclisation of allylic esters (Eq. 67)198 and alcohols (Eq. 68)199 having a hydroxylated tether occurs with b0 elimination of the heterosubstituent. 9. Competitions between hydrogen(s), aryloxy and acetoxy or trichloroacetimidate We envisaged that the Pd-catalyzed addition of phenol to ethyl 2-(acetoxymethyl)acrylate under neutral conditions could involve a Heck-type reaction (Scheme 55).200 This would imply that the HPdOAc elimination is, for this reaction, preferred to the PdH2 and HPdOPh eliminations. Recently, Overman’s team prepared 2-vinylchromanes, 2vinyl-1,4-benzodioxanes and 2,3-dihydro-2-vinyl-2H-1,4enantioselective benzoxazines via the PdII-catalyzed
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
10095
ArPdI R
H Me3Si
ArPdI
R
Me3Si
H (a)
Ar PdI
H Me3Si
R
H
Ar
IPd
R
Me3Si
H
HPdI
H
H
Me3Si Me Si Ar 3
PdI
H
R
H
IPd
R
Ar
H
H H
Me3Si
H
Me3Si Me3Si H
R Ar
H H
H
PdI
Ar
R
Me3SiPdI Ar
Ar
H
R PdI
H
R
Ar R
Me3SiPdI Scheme 46.
I Me3Si
Me3Si
PdI
Pd
+ Me3SiI + Pd0
R R
R
Scheme 47.
PhN(NO)Ac Pd(dba)2 (0.2 equiv.) N2 Ph
PhPdOAc
Ph
SiMe3
Ph
MeCN 40 °C, 2 h
Ph + SiMe3
HPdOAc
SiMe3 + Ph
Ph + Ph
Ph
Ph
69%, 42:33:12:13
0
Pd + AcOH Scheme 48.
Pd(OAc)2 (0.02 equiv.) PPh3 (0.04 equiv.) NEt3 (1.36 equiv.)
Ph
PhI + 60%
DMF, 125 °C, 0.5 h
SiMe3 (2-2.5 equiv.) Scheme 49.
Pd(OAc)2 (0.03 equiv.) PPh3 (0.06 equiv.) AgNO3 (1 equiv.) NEt3 (1.2 equiv.) Ph MeCN, 50 °C, 5 h
74%
SiMe3
10096
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
+ 100 °C 15 h I +
57% conversion: 70%
SiMe3
12%
Pd(OAc)2 (cat.) SiMe3 (3 equiv.)
DMSO AgNO3 (1 equiv.) NEt3 (3 equiv.) 50 °C, 3 h
64%
SiMe3
Scheme 50.
PhI +
SiMe3
Pd(OAc)2 (0.05 equiv.) P(o-tol)3 (0.3 equiv.) AgNO3 (0 or 1 equiv.) NEt3 (1.2 equiv.)
(62)
MeCN Ph
SiMe3 β
+
SiMe3
β
+
Ph
SiMe3 β'
Ph
without AgNO3, 120 °C, 7 h: 60% β/β'-H ratio: 30.5 46% with AgNO3, 120 °C, 3 h: β/β'-H ratio: 1.88 with AgNO3, 50 °C, 48 h: 15% β/β'-H ratio: 0.37
SiMe3 +
Ph
Ph
+
1%
2%
9%
9%
15%
1%
25%
13%
7%
7%
3%
48%
16%
0%
1%
Pd(OAc)2 (0.05 equiv.) PPh3 (0.1 equiv.) Pr4NBr (1 equiv.) KOAc (3 equiv.) DMF, 55 °C, 3 h NCOCF3
Ph +
NCOCF3
81%
(a)
I (b)
Pd2(dba)3 (0.025 equiv.) PPh3 (0.1 equiv.) Ag2O (1 equiv.) DMF, 55 °C, 3 h
SiMe3
NCOCF3 NCOCF3 +
5%
64%
SiMe3
Scheme 51.
intramolecular addition of a phenolic unit to an allylic acetate or trichloroacetimidate (Eq. 69).201 These results imply that the elimination of the acetate and the trichloroacetimidate is, under the used experimental conditions, preferred to that of b-hydrogen, b0 -hydrogen and aryloxy groups. According to deuteriumlabelling and computational experiments, these cyclisations occur through anti-oxypalladation followed by the syn-deoxypalladation (Scheme 56).
10. Competitions between hydrogen(s), amino derivative or trichloroacetimidate and hydroxy or acetate or carbonate or alkoxy or carbamate or halide 10.1. After addition to vinyl acetate or a vinyl ether The Pd-catalyzed reactions of nitrogen nucleophiles with vinyl acetate (Eqs. 70 202 and 71 203) or vinyl ethers (Eq. 72 204) lead to the
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
10097
Pd(dba)2 (0.03 equiv.) Ph SiMe3 Ph DABCO (2.5 equiv.) SiMe3 + Ph + n-Bu4NCl (1 equiv.) β 79% 8% β' MeCN, rt, 19 h β/β'-H ratio: 9.88 (a) SiMe3 PhI + (b) (1.75-5 equiv.) Pd(dba)2 (0.03 equiv.) Ph PPh3 (0.09 equiv.) 95% n-Bu4NOAc (2.5 equiv.) MS 4 Å, DMF, 50 °C, 24 h
12%
Scheme 52.
Me3SiI + (2 equiv.)
(COD)Pd(CH2SiMe3)2 (0.05 equiv.) R t-BuPPh2 (0.105 equiv.) Me3Si NEt3 (2.2 equiv.)
R (63)
PhMe, 50 °C, 24 h
R = H (95%), m-OMe (97%), p-OMe (96%), p-F (83%), p-Cl (96%), p-Ac (84%), p-CO2Et (81%)
Me3SiI + (2 equiv.)
(COD)Pd(CH2SiMe3)2 (0.025 equiv.) t-BuPPh2 (0.053 equiv.) NEt3 (2.2 equiv.) Me3Si R
R
(64)
PhCF3, rt, 24 h
R = Ph (57%), Bn (64%), p-MeOC6H4 (67%), (CH2)6Me (60%), SiMe3 (49%)
Me3SiI + (2 equiv.)
AcO
(COD)Pd(CH2SiMe3)2 (0.025 equiv.) t-BuPPh2 (0.053 equiv.) NEt3 (2.2 equiv.) Me3Si R PhCF3, rt, 24 h
PdCl2 (0.025 equiv.) RCN (0.1 equiv.) CuCl (0.05 equiv.) AcO NaCl (0.05 equiv.) O2 (40 psi), t-BuOH, 1 h R = Me, 50 °C: R = p-NO2C6H4, 60 °C:
R + Me3Si
R
(65)
R = (CH2)2OPiv: 58%, 90:10 R = CH(OTBS)Ph: 78%, 68:32
O CHO + AcO 48% 55%
Ot-Bu
+
8% 18%
5% 0%
(66)
10098
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
HPdCl AcO
Ot-Bu
PdCl
PdCl2 AcO
AcO t-BuOH
β'
AcO 53B AcOPdCl
Ot-Bu
CHO
H2O Ot-Bu
β
53A
HCl
AcO
t-BuOH
(b)
(a)
H2O
(c)
Ot-Bu Ot-Bu
Scheme 53.
PdCl2 + MeOH
Ts
Ts
HCl
PdCl
Ts
HPdCl
β' β
R
R
OH
OMe
OH
R
OH
H+ or PdII PdCl2 (0.5 equiv.) CuCl2 (3 equiv.) MeC(OEt)3 (0.4 equiv.) Me2NCONMe2 (5 equiv.) MeOH, reflux, 5 h
OMe HPdCl
Ts
Ts
OMe R
O R = (CH2)2Ph (95%), Ph (69%), CH2i-Pr (81%), Me (69%)
R
OMe
O
HPdCl
PdCl
H
Scheme 54.
TBSO C12H25
TBSO
TBSO PdCl2(MeCN)2 (0.1 equiv.) OH
DME, rt, 12 h
C12H25
O
OH
CH2OBz
( )n
O
CH2OBz
PdCl2(MeCN)2 (0.1 equiv.) THF, 0 °C, 15 min
(67) O
R = t-Bu: 23%, 81:19 R = Ph: 29%, 83:17 R = biphenyl: 99%, 90:10
OCOR
HO
+ C12H25
( )n n = 0: 87%, 95% e.e. n = 1: 92%, 98% e.e.
(68)
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
10099
PhOH
OAc
Pd(dba)2 (0.05 equiv.) dppe (0.05 equiv.) OAc PhOPdH
O OEt
O
O
HPdOAc
OEt
OEt HPd
THF, rt, 29 h
52% OPh
OPh Scheme 55.
2
Pd
OAc i-Pr N R or S
Ph
2
R
O Ph (0.005-0.05 equiv.) R2 Ph
Co
OH Ph OR1
Z Z = CH2, O, S R1 = Ac, C=NH(CCl3)
O R or S
solvent, 23-60 °C
(69)
Z up to 98% yield and 98% ee
R OH
Y
R L*PdIIOAc
HOAc
O
Z
H
PdL*
D
O
H D Y = NH and R = CCl3 or Y = O and R = Me
Z
O Z
O
Y
D
L*Pd
II
L*Pd OCR=Y
O
H
Y
R O
D H Z Scheme 56.
formation of CeN bonds and to the elimination of the acetate or ether unit. According to Xu and co-workers, the N-vinylation of arylsulfonamides and acylamides with vinyl acetate (Eq. 71) occurs via the formation, mediated by potassium carbonate, of a PdeN bond (Scheme 57). Subsequent aminopalladation of the substrate is followed by b-OAc elimination.203 For the formation of enamides from butyl vinyl ether catalyzed with (4,7-diphenyl-1,10-phenanthroline)palladium(II) trifluoroacetate complex (Eq. 72), Stahl and co-workers suggested
O
a mechanism (Scheme 58),204 which differs from Xu’s proposal (Scheme 57). According to Stahl’s team, coordination of the olefin to palladium would afford the cationic complex 58A, which suffers addition of the nitrogen nucleophile leading to the h1 complex 58B and trifluoroacetic acid. The latter would remove the butyloxy group of 58B giving n-butanol and 58C, liberation of enamide from 58C regenerating the catalyst. According to this mechanism, there is no concomitant elimination of palladium and the leaving group; this contrasts with most mechanisms suggested for the formation of the C]C bonds.
O Na2PdCl4 (0.009 equiv.)
NH +
OAc (2.5 equiv.)
reflux, 20 h
N 85%
(70)
10100
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
Pd(OAc)2 (0.01 equiv.) Ii-Pr (0.02 equiv.) K2CO3 (1 equiv.) OAc R1R2N air, rt, 12 h R1 = Ph, R2 = Ts: 92% R1 = PhCO, R2 = H: 36%
R1NHR2 +
R1NHR2 +
(71)
(dpp)Pd(OCOCF3)2 (0.05 equiv.) R1R2N On-Bu air, 75 °C (10 equiv.) R1 = Me, R2 = Ts, 2 h: 64% R1-R2 = (CH2)3C=O, 3 h: 89% R1-R2 = (CH2)2OC=O, 1.3 h: 91%
L2Pd(OAc)2
NR1R2
(72)
R1NHR2 + K2CO3
KHCO3 + KOAc
AcO
L2 Pd
NR1R2 OAc OAc
L2Pd
NR1R2
OAc Scheme 57.
10.2. After addition to an allylic alcohol This section, which concerns the PdII-catalyzed addition of nitrogen nucleophiles to allylic alcohols, is limited to intramolecular
couplings. Indeed, the corresponding intermolecular additions seem to only involve h3-allylpalladium intermediates formed thanks to the participation of additives,75,205 whereas the intramolecular additions can provide h1-alkylpalladium intermediates.75
L2Pd(OCOCF3)2
On-Bu
1 2
NR R
L2Pd
L2Pd NR1R2
CF3CO2
CF3CO2
On-Bu
CF3CO2 58A
58C
n-BuOH
CF3CO2H
OCOCF3
R1NHR2
L2Pd R1R2N
On-Bu 58B
Scheme 58.
CF3CO2H
CF3CO2
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
According to various examples collected in a previous review75 and new reports, the exo cyclisations of allylic alcohols substituted at C2 by a tether bearing a nitrogen nucleophile lead to the elimination of the hydroxyl group (Eqs. 73,206 74 207 and 75 116 199,208 ).
10.3. After addition to an allylic alcohol derivative or an allylic halide In 1997, Hirai’s team disclosed the PdCl2(MeCN)2-catalyzed intramolecular N-addition of oxazolidin-2-one to an allylic ether,
CO2Me PdCl2(PhCN)2 (0.15 equiv.)
HO
NHBoc
OBn
10101
CO2Me
N
THF, rt, 12 h 77%
(73)
Boc
OBn OBn
THF, rt, 3 h
NH Boc
OBn
PdCl2(MeCN)2 (0.1 equiv.)
(74) N Boc 90%
OH
OH Boc
Boc CO2t-Bu N
HN CO2t-Bu PdCl2(MeCN)2 (0.1 equiv.)
(75)
MeCN, 90 °C, 24 h
N Boc
76%, cis/trans = 5:1
The five-membered nitrogen heterocycles shown in Eqs. 76,209 77 210 and 78 210 are formed from 5-endo-trig cyclisations and, mainly, elimination of the hydroxyl group, the minor compounds resulting from the b-H or b0 -H elimination (Scheme 59). These results agree with the syn-eliminations of HOPdCl and HPdCl.
N Boc which occurred with elimination of the ether group (Eq. 79).211 A few years later, Lu and co-workers reported that PdCl2(PhCN)2 did not catalyze the intramolecular reaction of an N-tosylcarbamate with an allylic tosylcarbamate, the reaction becoming efficient in the presence of LiCl; the best procedure was with a catalytic
OH ArCH2O HN
PdCl2(MeCN)2 (0.3 equiv.) ArCH2O THF, 20 °C, 1.5 h
(76) N
67%, 97% ee CO2Bn
Ar = p-MeOC6H4 CO2Bn
O
OH PdCl2(MeCN)2 (0.2 equiv.) R
HN
THF, rt, 21-22 h R
Ts R = H: R = Me:
N Ts 55% 77%
+ R
+ N Ts 22% 5%
R
(77) N Ts 4%
10102
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
OH PdCl2(MeCN)2 (0.1 equiv.) THF, rt, 1.5 h
HN
+
(78) N
N 83%
Ts
Ts
Ts
ClPd
OH ClPdOH
OH
OH
β'
β
HCl
7%
N
N
R
R
OH
PdCl2 Cl2Pd HN
HN
ClPd
R
R
OH
H PdCl
β'
β
HCl
N
β
-H2O
N
R
R
OH
O
N Hβ'PdCl
Ts
N
N
R
R
Scheme 59.
amount of Pd(OAc)2 and an excess of lithium bromide or chloride (Eq. 80).212 These conditions were also effective for the intramolecular addition to an allylic acetate, carbonate or chloride (Eq. 80).212 The selective OAc elimination also occurred for the 6-exo cyclisation occurring by addition of a tosylamide (Eq. 81).213 For this last reaction, Poli’s team demonstrated the irreversibility of the nucleophilic addition under the Pd(OAc)2/LiCl conditions.213
11. Competitions between hydrogen(s), acetoxy and alkyl groups From their study of the Pd-catalyzed intramolecular reaction of dimethyl [40 -acetoxy-20 -bromo-(20 Z)-butenyl]-2-propenylmalonate, Steinig and de Meijere showed that b-H, b-OAc and b-C eliminations were competitive reaction pathways (Scheme 61), the
PhOCO
PhOCO H
PdCl2(MeCN)2 (0.2 equiv.) NH
OMOM
H
O
O
O
NH
77%
O
O
O
(79)
N
THF, rt, 2 h
Pd(OAc)2 (0.05 equiv.) LiBr (4 equiv.) Z O THF, rt, 10 min
O (80)
N
Ts Ts Z = OCONHTs (97%), OAc (95%), OCO2Me (78%), Cl (96%) Intermolecular enantioselective additions of organic acids214,215 and phenols216,217 to allylic trichloroacetimidates have been disclosed by Overman’s team using chiral complexes such as that shown in Scheme 60.214,216 The mechanism of the formation of allylic esters has been particularly studied. According to a variety of experiments and DFT computational studies, their liberation from the Pd intermediates occurs via a syn-deoxypalladation pathway.218
ratio between them depending on the reaction conditions.219 5exo-trig Cyclization provides 61A, which evolves via either the b-H elimination giving the 1-acetoxymethyl-1,3-diene derivative, or the 3-exo-trig cyclisation leading to 61B. b-OAc elimination from 61B affords a bicyclic vinylcyclopropane, whereas a b-C elimination leads to 61C, which suffers the b-H elimination, liberating the cyclohexene derivative.
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
Bn O
10103
Bn
N
Pd(OAc)2 (0.2 equiv.) O LiCl (5 equiv.)
N (81)
OAc DMF, 80 °C, 4 h
NH Ts
N
98%, cis/trans = 85:15 Ts OAc 2
Pd
n-Pr 88%, 94% ee
OAc i-Pr N R or S
O n-Pr
NH
O Ph (0.01 equiv.)
Co
Ph
AcOH (3 equiv.) 23 °C, 17 h
Ph
Ph
CCl3
OPh
CH2Cl2 PhOH (3 equiv.) 38 °C, 36 h
n-Pr 86%, 92% ee
Scheme 60.
H E
Pd0
Br
E
PdBr β-H elimination
E
E
E
OAc
E
61A
E = CO2Me
H
H E
E
E
E
OAc
OAc
β-OAc elimination E PdBr
E
61B
BrPd
OAc
OAc β-C elimination PdBr β-H elimination
E
E E
E 61C
OAc
OAc Scheme 61.
12. Competitions between hydrogens The competition can arise between b-H and b0 -H, even in the presence of a b0 -heteroatom, as depicted in Scheme 62. Thus, the Cheteroatom bond can be preserved. This is exemplified in various above examples, especially with the arylation of acyclic substrates (Scheme 62, Nu¼Ar), the HPdX elimination giving the styrenyl derivative (Eqs. 8, 12, 15e19, 21, 28, 39e42, 50, 54, 55 and 62, Schemes 13, 14, 18, 19, 37, 43 and 52) or the allylic derivative (Eqs. 41 and 62,
Schemes 43 and 52), which evolves to the carbonyl compound when Z¼OH (21, 22 and 27e33, Schemes 27, 28, 30 and 38). Recently, the selective b-H elimination was observed in the course of the mono- and di-phenylation of 9-allyl-9H-purine (Eq. 82).220 In contrast, the phenylation of 1-alkenes yielded a mixture of arylated compounds (Eqs. 83 131 and 84 59,221).222 Besides the competitive hydride eliminations, there is the problem of the migration of the C]C bond due to either the readdition/elimination of HPdII species61 or the subsequent Pd
10104
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
PhI +
Pd(OAc)2 (0.05 equiv.) PPh3 (0.1 equiv.) N NaOAc (3 equiv.)
N
N N
OMe
OMe
OMe
N
or
N
N
DMF, 100 °C,, 8 h
N
N
N
N
N
Ph using 1.2 equiv. of PhI: using 3 equiv. of PhI:
(82)
Ph
Ph
88% 78%
O
O Ph
S Ph (0.1 equiv.) Pd(OAc)2 benzoquinone (2 equiv.) AcOH (4 equiv.)
C8H17
PhB(OH)2 + (1.5 equiv.)
(83)
dioxane, rt, 4 h Ph C8H17 Ph +
Ph
C8H17
C8H17
+
68%, 4:4:1; β/β'-H ratio: 1
O S Ph (0.1 equiv.) Pd(OAc)2 benzoquinone (2 equiv.) AcOH (4 equiv.) O
Ph
n-Pr
PhB(OH)2 + (1.5 equiv.)
(84)
dioxane, rt or 45 °c, 4 h Ph Ph
n-Pr β
+
Ph
β'
n-Pr
n-Pr
+
at rt: 78%, 10:7:1; β/β'-H ratio: 1.4 at 45°C: 75%, 8:1:1; β/β'-H ratio: 8
PdX α
H β Nu
β-H elimination H β'
Z
Nu
Z β'
(a) (b) β'-H elimination
Nu
Z
Z = OH
Nu
O
β
Z = leaving group
Scheme 62.
catalysis.62,223 Consequently, mixtures can be obtained, as observed for the couplings shown in Eqs. 58 171 and 85 224 and Scheme 63.225 The plausible C]C migration can lead to uncertainty in the initial hydride elimination. This is the case in Eqs. 41,51 62,188 65,194 83,131 84 59,221 and 86,41 and Schemes 43 170 and 52,192 where the reactions involve either both b-H and b0 -H eliminations, or b-H elimination and subsequent C]C migration. For the
phenylation of 3-methylhex-1-ene (Eq. 84), the dependence of the 1-phenyl-3-methylhex-1-ene/1-phenyl-3-methylhex-2-ene ratio on the temperature leads us to suspect the migration of the C]C bond. In contrast, the results depicted in Eqs. 19,60 87 60 and 88 226 clearly imply the C]C migration, since the H-elimination from the CaePd intermediate can only deliver the terminal double bond. The HeckeMatsuda reaction leading to 1-phenylcyclohexene
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
O O
CO2Me
O Pd(OAc)2 (0.1 equiv.) DMSO (5 equiv.) O2 (1 atm) O
10105
O +
PhMe, 45 °C, 84 h
O
(85)
conversion: 86%, yield: 51%, exo/endo = 2:1 Ot-Bu
Ot-Bu
Pd(OAc)2 (0.05 equiv.) n-Bu 4NCl (1 equiv.) I KOAc (3 equiv.) DMF, 90 °C, 43 h
+
H
H
44%
(2 equiv.)
45%
Ot-Bu Ot-Bu Br
H
Ph (2.40 equiv.)
Ot-Bu
+
Pd(OAc)2 (0.1 equiv.) PPh3 (0.22 equiv.) Ag3PO4 (2.45 equiv.) Ph DMF, 110 °C, 60 h conversion: 50%
H 39%
Ph
4%
Scheme 63.
under the experimental conditions of Eq. 89 227 likely involved also a C]C migration, because the CaePd intermediate has a syn hydride only in the b0 position. The C]C migration was, however, not observed for the HeckeMatsuda coupling depicted in Eq. 90, which also occurs from an intermolecular reaction with a cyclic alkene.228 In contrast, isomerised and non-isomerised coupling products were obtained from the reaction of 2,3-dihydrofuran with phenyl triflate shown in Eq. 91, the isomeric selectivity depending on the base.229 The 6-endo cyclisation depicted in Scheme 64, path a, involves, apparently, the selective b-H elimination;230 nevertheless, b0 -H elimination followed by migration of the C]C bond leading to the thermodynamic compound could also occur.61,223 In fact, the b0 -H
Ph OAc PhI +
elimination arose when the starting C]C bond was not terminal (Scheme 64, path b). b0 -H elimination occurred for the 6-exo cyclisation shown in Eq. 92,225 probably because of the anti relationship between Pd and b-H at the level of the h1-palladium intermediate. For the oxidative Heck arylations affording CaePd intermediates having a b-H, a b0 -H, a b-Ar and a b0 -carbonyl group, White’s team reported, in 2008, experimental conditions, which mainly gave the corresponding conjugated ketone or ester via, apparently, the b0 -H elimination (Eq. 93).131 As shown from the arylation of methyl but3-enoate, the selectivity was, however, greatly dependent on the substitution of the aryl group. Two years later, Sigman and Werner discovered that the b-H/ b0 -H selectivity of oxidative Heck arylations depends on the
OAc
Pd(OAc)2 (0.05 equiv.) AgOAc (0.6 equiv.)
Ph
OAc
+
air, PhMe, reflux
(86)
65%, 12:88
PhB(OH)2 +
OEt (2 equiv.)
Pd(OAc)2 (0.02 equiv.) dppp (0.03 equiv.)
Ph
Ph OEt +
acetone, 70 °C, 20 h
<5%
OEt 76%
(87)
10106
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
OTBS MeO
OTBS
PdCl2(MeCN)2 (0.2 equiv.) MeO LiCl (10 equiv.) benzoquinone (1.5 equiv.)
N NH
N (88) N
K2CO3 (3 equiv.) THF, 25 °C, 105 mn
100%
Pd(OAc)2 (0.005 equiv.) HO Ph Cl Bn
N
N (0.1 equiv.) (89)
PhN2BF4 +
EtOH, 36 °C, 3 h
Ph
(2 equiv.)
F3C
N2BF4 + (2 equiv.)
82%
Pd(OCOCF3)2 (0.1 equiv.) O O (0.2 equiv.) N N PhCH2 CH2Ph
CO2Me
CO2Me 2,6-di-(t-butyl)-4-methylpyridine (1 equiv.) CO2Me MeOH, 60 °C, 20 min
F3C
CO2Me
(90)
83%, 84% ee
O Pd2(dba)3 (0.015 equiv.) base (3 equiv.) PhOTf + (5.1 equiv.)
O
PPh2 PPh2 O (0.06 equiv.)
dioxane, 100 °C, 7 d
with EtN(i-Pr)2 as base: with 1,8-bis(dimethylamino)naphthalene as base: catalyst (Eq. 94).231 They also observed the influence of the substitution of the arylboronic ester (Eq. 95, Procedure A); the unusual Hammett correlation (i.e., break of linearity) between their electronic nature and the selectivity of the arylation of methyl but-3-enoate suggested a change in the reaction mechanism.231 From their results and preliminary mechanistic studies, the
Ph
+ O
90%, 77% ee 66%, 79% ee
Ph
+ O 1% 2%
Ph
(91) O
10%, 40% ee 33%, 44% ee
authors recently suspected that the electrophilic nature of the catalyst could allow for predictable determination of which CeH bond is cleaved.232 Subsequently, these authors observed that the b-H/b0 -H selectivity of the HeckeMatsuda arylation depended not only on the electronic properties of the arylating agent (Eq. 95, Procedure B),
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
10107
OMe
Ph Ph N
MeO OMe
Ph
N
MeO
Pd(OAc)2 (0.25-0.45 equiv.) P(o-tol)3 (0.43 equiv.) (a) R = H NEt3 (10 equiv.) Ph (b) MeCN, 100 °C, 15 h
96%
OMe
Ph
R = Me
Br
Ph N
MeO
R
94% Scheme 64.
Ot-Bu
o-tol P o-tol
Ot-Bu
PdOAc (0.02 equiv.) 2
H Br
n-Bu4NOAc (2.5 equiv.)
H (92)
H
DMF/MeCN/H2O (1:1:0.2) MeO 115 °C, 4.5 h
99%
MeO
O
O
Ph
ArB(OH)2 + (1.5 equiv.)
S Ph (0.1 equiv.) Pd(OAc)2 O benzoquinone (2 equiv.) AcOH (4 equiv.) Ar R dioxane β
O
O R
+ Ar β'
R
(93)
R = CH(NHBoc)Bn, Ar = Ph, 45 °C, 48 h: 62%, β/β'-H ratio: <0.05 R = OEt, Ar = 2-BrC6H4, rt, 4 h: 50%, β/β'-H ratio: 0.056 R = OMe, Ar = 2,5-F2C6H3, rt, 4 h: 51%, β/β'-H ratio: 0.058 R = OMe, Ar = Ph, rt, 4 h: unknown yield, β/β'-H ratio: 0.25
but also on the nature of the solvent (Eq. 96).66 According to the results shown in Eq. 95, the procedure also influences the selectivity towards the styrenyl or the aryl allyl compound. Under experimental conditions used for the synthesis of lactams,233 the intramolecular reaction of a-bromovinylsulfonamides derived from allylic amides generated a mixture of 5exo and 6-endo cyclisation compounds.234 Use of silver and thallium salts as additives favoured the 5-exo process, the
elimination only occurring with an exocyclic hydrogen; some migration of the C]C bonds can arise, but this was prevented with TlOAc (Eq. 97). Stahl and co-workers studied the mechanism of the cyclisation of N-(hex-4-enyl)-4-methylbenzenesulfonamide.166 From various isotopic labelling studies, including those depicted in Eqs. 98 and 99, they demonstrated the absence of the crossover product and the reversibility of the hydride elimination reaction.
10108
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
O Ph
PdLnX2 (0.06 equiv.) CuX2 (0.06 equiv.) O2 (balloon)
O +
B
OMe
O (3 equiv.)
(94)
DMA, 40 °C, 22 h O
i-Pr
i-Pr
Ph
Ii-Pr: N
N
i-Pr
i-Pr
O arylating agent +
O OMe
Pd(OAc)2, Cu(OAc)2: Pd(OAc)2, Cu(OTf)2: Pd(MeCN)2(OTf)2, Cu(OTf)2: Pd(Ii-Pr)(Cl)2, Cu(OTf)2: Pd(Ii-Pr)(OTs)2, Cu(OTf)2: White's conditions (Eq. 93):
Procedure A or B OMe DMA
R
+ Ph
OMe
35%, 6.2:1 56%, 2.0:1 99%, 3.4:1 61%, 4.4:1 96%, 9.8:1 1.2:1
R
O
O (95)
+ OMe
OMe
β β' (3 equiv.), Pd(Ii-Pr)(OTs)2 (0.06 equiv.), Cu(OTf)2 (0.06 equiv.), 40 °C, 22 h β/β'-H ratio: R = H (0.34), OMe (1.14), CO2Me (0.93), F (1.45) O Procedure B. ArN2BF4 (1.1 equiv.), Pd2(dba)3 (0.03 equiv.), rt, 20 min. β/β'-H ratio: R = H (6.03), OMe (7.87), CO2Me (7.69), F (6.12) O
Procedure A. Ar
B
O PhN2BF4 + (1.1 equiv.)
Pd2(dba)3 (0.03 equiv.) (96)
OMe solvent, rt, 15 min O Ph
O OMe
+ Ph
OMe
in DMA: 99%, 10.7:1 in MeCN: 15%, 0.3:1 in MeOH: 20%, 0.2:1
O2S
Bn N
Bn N O2S
Bn N +
O2S
Bn N + O2S
+
6-endo cyclisation compounds
Br
Pd(OAc)2 (0.05 equiv.), P(o-tol)3 (0.11 equiv.), n-Bu4NCl (2 equiv.), Na2CO3 (2 equiv), MeCN, reflux, 1 h: 10% 5% 10% 50% Pd(OAc)2 (0.1 equiv.), P(o-tol)3 (0.11 equiv.), Ag3PO4 (2 equiv), MeCN, reflux, 29 h: 58% 10% Pd(OAc)2 (0.1 equiv.), P(o-tol)3 (0.11 equiv.), Tl2CO3 (2 equiv), MeCN, reflux, 14 h: 52% 5% Pd(OAc)2 (0.1 equiv.), P(o-tol)3 (0.11 equiv.), TlOAc (2 equiv), MeCN, reflux, 2.5 h: 73%
(97)
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
NHTs
10109
CH3/CD3 Pd(OAc)2 (0.02 equiv.) pyridine (0.08 equiv.) O2 (1 atm), PhMe, 80 °C
(98)
kH/kD = 1.20 ± 0.05 C2H3 + N Ts
C2H2D +
C2HD2 +
N Ts
C2D3
N Ts
N Ts
54:0:38:8
Pd(OAc)2 (0.02 equiv.) pyridine (0.08 equiv.) CH2D O2 (1 atm) NHTs
PhMe, 80 °C
H/D N Ts
+ H D
N Ts 43:43:14
13. Conclusions As exemplified from the various examples gathered in this review, the formation of C]C bonds from alkylpalladium complexes can involve complicated chemo- and regioselectivities. Indeed, the elimination reaction depends on various factors, especially the nature of the leaving group and the ligands. Thus, additives such as silver or thallium salts, halide ions and nitrogen compounds, as well as the solvent and the nature, cationic or neutral, of the palladium intermediates may have a determining effect on the selectivity. Nevertheless, the amount of reported studies now allows, according to the experimental conditions, a relatively good anticipation of the main elimination pathway and, hence, the extensive applications of the corresponding catalytic palladium procedures in organic synthesis. References and notes 1. The MizorokieHeck Reaction; Oestreich, M., Ed.; Wiley: Chichester, UK, 2009. 2. (a) Davies, S. G. Organotransition Metal Chemistry: Applications to Organic Synthesis; Pergamon: Oxford, UK, 1982; (b) Hegedus, L. S. Transition Metals in the Synthesis of Complex Organic Molecules; University Science Books: Mill Valley, 1994; (c) Campagne, J. M.; Prim, D. Les complexes du palladium en synth ese organique; CNRS Editions: Paris, 2001. 3. Zeni, G.; Larock, R. C. Chem. Rev. 2004, 104, 2285e2309. 4. Tsuji, J. Palladium Reagents and Catalysts; Wiley: Chichester, UK, 2004; 15. 5. Zhao, H.; Ariafard, A.; Lin, Z. Organometallics 2006, 25, 812e819. 6. Zhu, G.; Lu, X. Organometallics 1995, 14, 4899e4904. 7. Zhang, Z.; Lu, X.; Xu, Z.; Zhang, Q.; Han, X. Organometallics 2001, 20, 3724e3728. 8. These reactions occur via the isomerisation of the h3-allylpalladium intermediate into the corresponding h1-allylpalladium complex and subsequent b-H elimination; for reviews, see: (a) Tsuji, J. Palladium Reagents and Catalysts; Wiley: Chichester, UK, 2004; 494e499; (b) Muzart, J. Eur. J. Org. Chem. 2011, 4717e4741 For reports concerning syn and anti hydride eliminations via such reactions, see: (c) Takahashi, T.; Nakagawa, N.; Minoshima, T.; Yamada, H.; Tsuji, J. Tetrahedron Lett. 1990, 31, 4333e4336; (d) Takacs, J. M.; Lawson, E. C.; Clement, F. J. Am. Chem. Soc. 1997, 119, 5956e5957; (e) Andersson, P. G.; Schab, S. Organometallics 1995, 14, 1e2; (f) Schwarz, I.; Braun, M. Chem.dEur. J. 1999, 5, 2300e2305. 9. For a review, see: Muzart, J. Eur. J. Org. Chem. 2010, 3779e3790. 10. For reviews of these reactions with b-H eliminations, see: (a) Tsuji, J. Tetrahedron 1986, 42, 4361e4401; (b) Tsuji, J.; Minami, I. Acc. Chem. Res. 1987, 20, 140e145; (c) Tsuji, J. Palladium Reagents and Catalysts; Wiley: Chichester, UK, 2004; 500e506.
H/D
H/D + D H
N Ts
H
(99)
H
11. For the synthesis of a-methylene ketones via cascade reactions involving a b-ester, b-OH or b-OMe elimination as the last step, see: (a) Tsuji, J.; Nisar, M.; Minami, I. Tetrahedron Lett. 1986, 27, 2483e2486; (b) Tsuji, J.; Nisar, M.; Minami, I. Chem. Lett. 1987, 23e24. 12. Heck, R. F. J. Am. Chem. Soc. 1968, 90, 5535e5542. 13. For the formation of a five-membered palladacycle from the chelation of an acetate group to palladium, see: Williams, B. S.; Leatherman, M. D.; White, P. S.; Brookhart, M. J. Am. Chem. Soc. 2005, 127, 5132e5146. 14. Kasahara, A.; Izumi, T.; Fukuda, N. Bull. Chem. Soc. Jpn. 1977, 50, 551e552. 15. Lautens, M.; Tayama, E.; Herse, C. J. Am. Chem. Soc. 2005, 127, 72e73. 16. Muzart, J. J. Mol. Catal. A: Chem. 2009, 308, 15e24. 17. Kikuwa, K.; Naritomi, M.; He, G.-X.; Wada, F.; Matsuda, T. J. Org. Chem. 1985, 50, 299e301. 18. Choudary, B. M.; Ravichandra Sarma, M. Tetrahedron Lett. 1990, 31, 1495e1496. 19. Arai, I.; Daves, G. D., Jr. J. Org. Chem. 1979, 44, 21e23. 20. Pan, D.; Jiao, N. Synlett 2010, 1577e1588. 21. Cheng, J. C. Y.; Daves, G. D., Jr. Organometallics 1986, 5, 1753e1755. 22. Daves, G. D., Jr. Acc. Chem. Res. 1990, 23, 201e206. , M. R. Organometallics 23. Munro-Leighton, C.; Adduci, L. L.; Becker, J. J.; Gagne 2011, 30, 2646e2649. 24. Mariampillai, B.; Herse, C.; Lautens, M. Org. Lett. 2005, 7, 4745e4747. 25. Liu, Y.; Yao, B.; Deng, C. L.; Tang, R. Y.; Zhang, X. G.; Li, J. H. Org. Lett. 2011, 13, 1126e1129. 26. (a) Dieck, H. A.; Heck, R. F. J. Org. Chem. 1975, 40, 1083e1090; (b) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457e2483. ~ as, M.; Pe rez, M.; Pleixats, R. J. Org. Chem. 1996, 61, 2346e2351. 27. Moreno-Man 28. Ramnauth, J.; Poulin, O.; Rakhit, S.; Maddaford, S. P. Org. Lett. 2001, 3, 2013e2015. 29. Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009e3066. 30. Ohmiya, H.; Makida, Y.; Tanaka, T.; Sawamura, M. J. Am. Chem. Soc. 2008, 130, 17276e17277. 31. Ohmiya, H.; Makida, Y.; Li, D.; Tanabe, M.; Sawamura, M. J. Am. Chem. Soc. 2010, 132, 879e889. 32. Makida, Y.; Ohmiya, H.; Sawamura, M. Chem. Asian J. 2011, 6, 410e414. 33. Yao, B.; Liu, Y.; Wang, M. K.; Li, J. H.; Tang, R. Y.; Zhang, X. G.; Deng, C. L. Adv. Synth. Catal. 2012, 354, 1069e1076. 34. Li, Deng and co-workers assumed the formation of the arylating palladium complex from the insertion of Pd0 species into the AreB bond,33 instead of the usually admitted BIII/PdII transmetalation when Pd(OAc)2 is the catalyst.26,27 For the study of the reaction of arylboronic acids with Pd0 complexes, see Ref. 27 35. According to the authors,33 the second arylation would involve an allylpalladium intermediate 36. Zhang, Q.; Lu, X.; Han, X. J. Org. Chem. 2001, 66, 7676e7684. 37. Henry, P. M. Acc. Chem. Res. 1973, 6, 16e24. nin, F.; Muzart, J. Organometallics 2001, 20, 1683e1686. 38. Aït-Mohand, S.; He 39. Zhang, Q.; Xu, W.; Lu, X. J. Org. Chem. 2005, 70, 1505e1507. 40. Zhang, Q.; Lu, X. J. Am. Chem. Soc. 2000, 122, 7604e7605. 41. Pan, D.; Chen, A.; Su, Y.; Zhou, W.; Li, S.; Jia, W.; Xiao, J.; Liu, Q.; Zhang, L.; Jiao, N. Angew. Chem., Int. Ed. 2008, 47, 4729e4732. 42. Chen, W.; Xu, M.; Bo, D. L.; Jiao, N. Chin. J. Org. Chem. 2010, 30, 469e473.
10110
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
43. Evdokimov, N. M.; Kornienko, A.; Magedov, I. V. Tetrahedron Lett. 2011, 52, 4327e4329. 44. Wang, J.; Cui, Z.; Zhang, Y.; Li, H.; Wu, L. M.; Liu, Z. Org. Biomol. Chem. 2011, 9, 663e666. 45. Liu, Z. Personal communication on the structure of 2-(2,4,5-trimethoxybenzyl) allyl acetate, April 13, 2011. 46. Zhang, Y.; Li, Z.; Liu, Z. Q. Org. Lett. 2012, 14, 226e229. 47. Mino, T.; Koizumi, T.; Suzuki, S.; Hirai, K.; Kajiwara, K.; Sakamoto, M.; Fujita, T. Eur. J. Org. Chem. 2012, 678e680. 48. Su, Y.; Jiao, N. Org. Lett. 2009, 11, 2980e2983. 49. Hudnall, T. W.; Chiu, C. W.; Gabbai, F. P. Acc. Chem. Res. 2009, 42, 388e397. 50. Davies, D. L.; Donald, S. M. A.; Macgregor, S. A. J. Am. Chem. Soc. 2005, 127, 13754e13755. 51. Ambrogio, I.; Fabrizi, G.; Cacchi, S.; Henriksen, S. T.; Fristrup, P.; Tanner, D.; Norrby, P. O. Organometallics 2008, 27, 3187e3195. 52. (a) Moro, A. V.; Cardoso, F. S. P.; Correia, C. R. D. Org. Lett. 2009, 11, 3642e3645; (b) Soldi, C.; Moro, A. V.; Pizzolatti, M. G.; Correia, C. R. D. Eur. J. Org. Chem. 2012, 3607e3616. 53. For a review on dehydrogenative Heck reactions, see: Le Bras, J.; Muzart, J. Chem. Rev. 2011, 111, 1170e1214. 54. Shang, X.; Xiong, Y.; Zhang, Y.; Zhang, L.; Liu, Z. Synlett 2012, 259e262. 55. Pan, D.; Yu, M.; Chen, W.; Jiao, N. Chem. Asian J. 2010, 5, 1090e1093. 56. Kubota, A.; Emmert, M. H.; Sanford, M. S. Org. Lett. 2012, 14, 1760e1763. 57. Li, Z.; Zhang, Y.; Liu, Z. Q. Org. Lett. 2012, 14, 74e77. 58. Zhang, Y.; Cui, Z.; Li, Z.; Liu, Z. Q. Org. Lett. 2012, 14, 1838e1841. 59. Delcamp, J. H.; White, M. C. J. Am. Chem. Soc. 2006, 128, 15076e15077. 60. Ruan, J.; Li, X.; Saidi, O.; Xiao, J. J. Am. Chem. Soc. 2008, 130, 2424e2425. 61. For the migration of the C]C bonds via the readdition/elimination of HPdII species, see: Cabri, W.; Candiani, I. Acc. Chem. Res. 1995, 28, 2e7. 62. For the PdII-catalyzed migration of the C]C bonds, see: (a) Harrod, J. F.; Chalk, A. J. J. Am. Chem. Soc. 1964, 86, 1776e1779; (b) Bingham, D.; Hudson, B.; Webster, D. E.; Wells, P. B. J. Chem. Soc., Dalton Trans. 1974, 1521e1524. 63. Xiang, S.; Cai, S.; Zeng, J.; Liu, X. W. Org. Lett. 2011, 13, 4608e4611. 64. It is usually considered that the elimination of HPd species requires the syn relationship between the palladium unit and the hydrogen: (a) Ref. 1. (b) Tsuji, J. Palladium Reagents and Catalysts, Innovations in Organic Synthesis; Wiley: ̈ Chichester, UK, 1995; 127. A number of reports concern however Heck-type cyclisations arising via the formal anti b-H elimination; for a review, see: (c) Ikeda, M.; El Bialy, S. A. A.; Yakura, T. Heterocycles 1999, 51, 1957e1970 see also: (d) Shea, K. M.; Lee, K. L.; Danheiser, R. L. Org. Lett. 2000, 2, 2353e2356; (e) Lautens, M.; Fang, Y. Q. Org. Lett. 2003, 5, 3679e3682; (f) Imbos, R.; Minnaard, A. J.; Feringa, B. L. Dalton Trans. 2003, 2017e2023 and the references cited in these reports. For a recent intermolecular reaction involving the formal anti b-H elimination, see: (g) Fu, H. Y.; Chen, L.; Doucet, H. J. Org. Chem. 2012, 77, 4473e4478. 65. Werner, E. W.; Urkalan, K. B.; Sigman, M. S. Org. Lett. 2010, 12, 2848e2851. 66. Werner, E. W.; Sigman, M. S. J. Am. Chem. Soc. 2011, 133, 9692e9695. 67. Hosokawa, T.; Sugafuji, T.; Yamanaka, T.; Murahashi, S.-I. J. Organomet. Chem. 1994, 470, 253e255. 68. Lu, X. Top. Catal. 2005, 35, 73e86. 69. Hacksell, U.; Daves, G. D., Jr. Organometallics 1983, 2, 772e775. 70. Huang, J. M.; Zhou, L.; Jiang, H. F. Angew. Chem., Int. Ed. 2006, 45, 1945e1949. 71. For the dependence of the stereochemistry of the halopalladation of triple bonds with the experimental conditions, see: Zhu, G.; Lu, X. J. Organomet. Chem. 1996, 508, 83e90. 72. Jiang, H.; Qiao, C.; Liu, W. Chem.dEur. J. 2010, 16, 10968e10970. 73. Wang, F.; Li, S.; Qu, M.; Zhao, M.-X.; Liu, L.-J.; Shi, M. Chem. Commun. 2011, 12813e12815. 74. For the formation of substituted cyclohexenones via oxo-h3-allylpalladium intermediates, the equilibrium between the C-enolate and the O-enolate has been proposed to assume a syn b-H elimination instead of the apparent anti b-H elimination.64c,f 75. Muzart, J. Tetrahedron 2005, 61, 4179e4212. 76. Le Bras, J.; Muzart, J. Synthesis 2011, 3581e3591. 77. Melpolder, J. B.; Heck, R. F. J. Org. Chem. 1976, 41, 265e272. 78. Chalk, A. J.; Magennis, S. A. J. Org. Chem. 1976, 41, 273e278. 79. Heck, R. F. Organotransition Metal Chemistry; Academic: New York, NY, 1974, pp 105e106. 80. (a) Smadja, W.; Ville, G.; Cahiez, G. Tetrahedron Lett. 1984, 25, 1793e1796; (b) Smadja, W.; Czernecki, S.; Ville, G.; Georgoulis, C. Organometallics 1987, 6, 166e169. 81. Wen, Y.; Huang, L.; Jiang, H.; Chen, H. J. Org. Chem. 2012, 77, 2029e2034. lez, I.; Bouquillon, S.; Roglans, A.; He nin, 82. Zawisza, A. M.; Ganchegui, B.; Gonza F.; Muzart, J. J. Mol. Catal. A: Chem. 2008, 283, 140e145. 83. Keith, J. A.; Oxgaard, J.; Goddard, W. A., III. J. Am. Chem. Soc. 2006, 128, 3132e3133. 84. Keith, J. A.; Henry, P. M. Angew. Chem., Int. Ed. 2009, 48, 9038e9049. 85. (a) B€ ackvall, J. E.; Akermark, B.; Ljunggren, S. O. J. Am. Chem. Soc. 1979, 101, 2411e2416; (b) Crabtree, R. H. The Organometallic Chemistry of the Transition Metals, 2nd ed.; Wiley: New York, NY, 1994; 195. 86. Kikukawa, K.; Nagira, K.; Wada, F.; Matsuda, T. Tetrahedron 1981, 37, 31e36. nin, F.; Muzart, J. J. Organomet. 87. Masllorens, J.; Bouquillon, S.; Roglans, A.; He Chem. 2005, 690, 3822e3826. 88. Perez, R.; Veronese, D.; Coelho, F.; Antunes, O. A. C. Tetrahedron Lett. 2006, 47, 1325e1328. 89. Barbero, M.; Cadamuro, S.; Dughera, S. Synthesis 2006, 3443e3452.
90. Bernocchi, E.; Cacchi, S.; Ciattini, P. G.; Morera, E.; Ortar, G. Tetrahedron Lett. 1992, 33, 3073e3076. 91. Zhu, M.; Song, Y.; Cao, Y. Synthesis 2007, 853e856. 92. Jeffery, T. J. Chem. Soc., Chem. Commun. 1991, 324e325. 93. Jeffery, T. Tetrahedron Lett. 1991, 32, 2121e2124. 94. Jeffery, T. Tetrahedron Lett. 1993, 34, 1133e1136. 95. Trost, B. M.; Corte, J. R.; Gudiksen, M. S. Angew. Chem., Int. Ed. 1999, 38, 3662e3664 In footnote 19, the authors noted that the effect of silver salts on the H elimination selectivity is opposite to that normally observed. 96. Jeffery, T. Tetrahedron Lett. 1990, 31, 6641e6644. 97. Jeffery, T. J. Chem. Soc., Chem. Commun. 1984, 1287e1289. 98. Heim-Riether, A. Synthesis 2008, 883e886. 99. van de Sande, M.; Gais, H. J. Chem.dEur. J. 2007, 13, 1784e1795. , V.; Nacci, A.; Monopoli, A.; Ferola, V. J. Org. Chem. 2007, 72, 2596e2601. 100. Calo 101. Kumar, N. S. C. R.; Raj, I. V. P.; Sudalai, A. J. Mol. Catal. A: Chem. 2007, 269, 218e224. 102. Krishna, J.; Reddy, A. G. K.; Ramulu, B. V.; Mahendar, L.; Satyanarayana, G. Synlett 2012, 375e380. 103. Cabri, W.; Candiani, I.; Bedeschi, A.; Santi, R. J. Org. Chem 1992, 57, 3558e3563. 104. Knowles, J. P.; Whiting, A. Org. Biomol. Chem. 2007, 5, 31e44. 105. Jutand, A. In The MizorokieHeck Reaction; Oestreich, M., Ed.; Wiley: Chichester, UK, 2009; pp 1e50. 106. Proutiere, F.; Schoenebeck, F. Synlett 2012, 645e648. 107. Kang, S. K.; Lee, H. W.; Jang, S. B.; Kim, T. H.; Pyun, S. J. J. Org. Chem. 1996, 61, 2604e2605. 108. See Ref. 91. 109. Ambrogio, I.; Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Sgalla, S. Synlett 2009, 620e624. 110. For reviews on the Pd-catalyzed oxidation of alcohols, see: (a) Muzart, J. Tetrahedron 2003, 59, 5789e5816; (b) Hayashi, M. Organometallic News 2003, 40e45 Chem. Abstr., 139, 133050; (c) Stoltz, B. M. Chem. Lett. 2004, 33, 362e367; (d) Zhan, B.-Z.; Thompson, A. Tetrahedron 2004, 60, 2917e2935; (e) Nishimura, T.; Uemura, S. Synlett 2004, 201e216; (f) Stahl, S. S. Angew. Chem., Int. Ed. 2004, 43, 3400e3420; (g) Sigman, M. E.; Jensen, D. R. Acc. Chem. Res. 2006, 39, 221e229; (h) Kaneda, K.; Ebitani, K.; Mizugaki, T.; Mori, K. Bull. Chem. Soc. Jpn. 2006, 79, 981e1016; (i) Parmeggiani, C.; Cardona, F. Green. Chem. 2012, 14, 547e564. 111. Sabino, A. A.; Machado, A. H. L.; Correia, C. R. D.; Eberlin, M. N. Angew. Chem., Int. Ed. 2004, 43, 2514e2518. ~ as, M. Chem. 112. For reviews, see: (a) Roglans, A.; Pla-Quintana, A.; Moreno-Man Rev. 2006, 106, 4622e4643; (b) Taylor, J. G.; Moro, A. V.; Correia, C. R. D. Eur. J. Org. Chem. 2011, 1403e1428; (c) Felpin, F.-X.; Nassar-Hardy, L.; Le Callonnec, F.; Fouquet, E. Tetrahedron 2011, 67, 2815e2831. 113. The mechanism of the arylations with arenediazonium salts in the absence of base is an intriguing question (a) Beletskaya, I. P.; Cheprakov, A. V. In The MizorokieHeck Reaction; Oestreich, M., Ed.; Wiley: Chichester, UK, 2009; p 59 ) which, at the present time, remains unsolved; (b) Roglans, A. Personal communication, February 14, 2012. 114. Chen, B.; Xie, X.; Lu, J.; Wang, Q.; Zhang, Q.; Tang, S.; She, X.; Pan, X. Synlett 2006, 259e262. 115. Chen, M.; Wang, J.; Chai, Z.; You, C.; Lei, A. Adv. Synth. Catal. 2012, 354, 341e346. 116. Ku, J. M.; Jeong, B. S.; Jew, S.; Park, H. J. Org. Chem. 2007, 72, 8115e8118. 117. (a) Yokoyama, Y.; Matsumoto, T.; Murakami, Y. J. Org. Chem. 1995, 60, 1486e1487; (b) Berthiol, F.; Doucet, H.; Santelli, M. Appl. Organomet. Chem. 2006, 20, 855e868. 118. (a) Patonay, T.; Vasas, A.; Kiss-Szikszai, A.; Silva, A. M. S.; Cavaleiro, J. A. S. Aust. nya, K.; Silva, A. M. J. Chem. 2010, 63, 1582e1593; (b) Vasas, A.; Patonay, T.; Ko S.; Cavaleiro, J. A. S. Aust. J. Chem. 2011, 64, 647e657; (c) Fekete, S.; Patonay, T.; Silva, A. M. S.; Cavaleiro, J. A. S. Arkivoc 2012, v, 210e225. 119. (a) Arylation and alkenylation of tertiary allyl alcohols can lead to epoxides through the suspected intramolecular addition of the aryl(or alkenyl)palladium alcoholate to the C]C bond: Hayashi, S.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2009, 131, 2052e2053; (b) Other allylic alcohols can also lead to epoxides, but this would be restricted to the reaction with polyfluoralkyl halides under basic conditions; the addition of the polyfluoralkylpalladium halide to the C]C bond was thus proposed: Fuchikami, T.; Shibata, Y.; Urata, H. Chem. Lett. 1987, 521e524. ~ o, R.; C 120. Sauza, A.; Morales-Serna, J. A.; García-Molina, M.; Gavin ardenas, J. Synthesis 2012, 272e282. 121. (a) Hallberg, A.; Westfelt, L.; Holm, B. J. Org. Chem. 1981, 46, 5414e5415; (b) Larhed, M.; Andersson, C.-M.; Hallberg, A. Tetrahedron 1994, 50, 285e304. 122. Andersson, C.-M.; Hallberg, A. J. Org. Chem. 1989, 54, 1502e1505. 123. Gaikwad, D. S.; Park, Y.; Pore, D. M. Tetrahedron Lett. 2012, 53, 3077e3081. 124. Jeffery, T.; David, M. Tetrahedron Lett. 1998, 39, 5751e5754. 125. Fitzpatrick, M. O.; Muller-Bunz, H.; Guiry, P. J. Eur. J. Org. Chem. 2009, 1889e1895. 126. Kishida, M.; Akita, H. Tetrahedron 2005, 61, 10559e10568. 127. Berthiol, F.; Doucet, M.; Santelli, M. Eur. J. Org. Chem. 2005, 1367e1377. 128. Zhou, Z.; Xie, Y.; Du, Z.; Hu, Q.; Xue, J.; Shi, J. Arkivoc 2012, vi, 164e172. 129. Du, X.; Suguro, M.; Hirabayashi, K.; Mori, A.; Nishikata, T.; Hagiwara, N.; Kawata, K.; Okeda, T.; Wang, H. F.; Fugami, K.; Kosugi, M. Org. Lett. 2001, 3, 3313e3316. 130. Nokami, J.; Furukawa, A.; Okuda, Y.; Hazato, A.; Kurozumi, S. Tetrahedron Lett. 1998, 39, 1005e1008. 131. Delcamp, J. H.; Brucks, A. P.; White, M. C. J. Am. Chem. Soc. 2008, 130, 11270e11271.
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113 132. For the required precautions to interpret the deuterium kinetic isotope effects, see: Simmons, E. M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2012, 51, 3066e3072. 133. For the decarboxylation mechanism and the double role (base and oxidant) of Ag2CO3, see: (a) Myers, A. G.; Tanaka, D.; Mannion, M. R. J. Am. Chem. Soc. 2002, 124, 11250e11251; (b) Tanaka, D.; Romeril, S. P.; Myers, A. G. J. Am. Chem. Soc. 2005, 127, 10323e10333. 134. Wenzel, T. T. J. Chem. Soc., Chem. Commun. 1993, 862e864. 135. Awasaguchi, K.; Miyazawa, M.; Uoya, I.; Inoue, K.; Nakamura, K.; Yokoyama, H.; Kakuda, H.; Hirai, Y. Synlett 2010, 2392e2396. 136. The arylation of acrolein diethyl acetal usually occurs at the terminal carbon, but without high selectivity of the subsequent hydride elimination: (a) Zebovitz, T. C.; Heck, R. F. J. Org. Chem. 1977, 42, 3907e3909; (b) Davies, S. G.; Mobbs, B. E.; Goodwin, C. J. J. Chem. Soc., Perkin Trans. 1 1987, 2597e2604; (c) Ref. 118. 137. Experimental conditions for the selective arylation at the central carbon of acrolein diethyl acetal have been recently disclosed: Qin, L.; Ren, X.; Lu, Y.; Li, Y.; Zhou, J. Angew. Chem., Int. Ed. 2012, 51, 5915e5919. 138. Battistuzzi, G.; Cacchi, S.; Fabrizi, G. Org. Lett. 2003, 5, 777e780. 139. Battistuzzi, G.; Cacchi, S.; Fabrizi, G.; Bernini, R. Synlett 2003, 1133e1136. 140. Hosokawa, T.; Okhata, H.; Moritani, I. Bull. Chem. Soc. Jpn. 1975, 48, 1533e1536. 141. Larock, R. C.; Wei, L.; Hightower, T. R. Synlett 1998, 522e524. 142. For the similar dependence for the cyclisation of methyl 2-allyl-4,5,6-tribromo3-hydroxybenzoate, see: Khan, F. A.; Soma, L. Tetrahedron Lett. 2007, 48, 85e88. 143. Hosokawa, T.; Miyagi, S.; Murahashi, S.; Sonoda, A. J. Org. Chem. 1978, 43, 2752e2757. 144. According to a subsequent review from the same laboratory, it seems that the oxypalladation is the preferred pathway for this cyclisation. Indeed, this report was included in the review, whereas the authors indicated in the introduction that heterocycles prepared via h3-allylpalladium intermediates chemistry will not be considered.3 145. Van Benthem, R. A. T. M.; Hiemstra, H.; Michels, J. J.; Speckamp, W. N. J. Chem. Soc., Chem. Commun. 1994, 357e361. 146. (a) Van Benthem, R. A. T. M.; Hiemstra, H.; van Leeuwen, PW. N. M.; Geus, J. W.; Speckamp, W. N. Angew. Chem., Int. Ed. Engl. 1995, 34, 457e460; (b) Van Benthem, R. A. T. M.; Hiemstra, H.; Speckamp, W. N. J. Org. Chem. 1992, 57, 6083e6085. 147. Nguefack, J.-F.; Bolitt, V.; Sinou, D. J. Org. Chem. 1997, 62, 1341e1347. 148. Bedjeguelal, K.; Bolitt, V.; Sinou, D. Synlett 1999, 762e764. 149. (a) Alcaide, B.; Almendros, P.; Martíez del Campo, T.; Soriano, E.; MarcoContelles, J. L. Chem.dEur. J. 2009, 15, 1909e1928; (b) Alcaide, B.; Almendros, P.; Martiez del Campo, T.; Soriano, E.; Marco-Contelles, J. L. Chem.dEur. J. 2009, 15, 9127e9138. 150. Heck, R. F. J. Am. Chem. Soc. 1968, 90, 5531e5534. 151. Foley, S. R.; Stockland, R. A., Jr.; Shen, H.; Jordan, R. F. J. Am. Chem. Soc. 2003, 125, 4350e4361. 152. See also: (a) Ref. 5. (b) Bergstrom, D. E.; Ruth, J. L.; Warwick, P. J. Org. Chem. 1981, 46, 1432e1441; (c) Ma, S.; Yu, Z. J. Org. Chem. 2003, 68, 6149e6152; (d) Foley, S. R.; Shen, H.; Qadeer, U. A.; Jordan, R. F. Organometallics 2004, 23, ski, s, M. T.; Gadzin 600e609; (e) Alcaide, B.; Almendros, P.; Alonso, J. M.; Quiro P. Adv. Synth. Catal. 2011, 353, 1871e1876. 153. Yang, F. L.; Ma, X. T.; Tian, S. K. Chem.dEur. J. 2012, 18, 1582e1585. 154. Nitrogen substituents have nevertheless leaving properties as exemplified either in the generation of h3-allylpalladium intermediates from allylic amine derivatives and Pd0 complexes: (a) Zhang, Y.; DeKorver, K. A.; Lohse, A. G.; Zhang, Y.-S.; Huang, J.; Hsung, R. P. Org. Lett. 2009, 11, 899e902; (b) Li, M.-B.; Wang, Y.; Tian, S.-K. Angew. Chem., Int. Ed. 2012, 51, 2968e2971 or from isomerisation reactions: (c) Ferber, B.; Lemaire, S.; Mader, M. M.; Prestat, G.; Poli, G. Tetrahedron Lett. 2003, 44, 4213e4216; (d) Oshitari, T.; Akagi, R.; Mandai, T. Synthesis 2004, 1325e1330. 155. Timokhin, V. I.; Anastasi, N. R.; Stahl, S. S. J. Am. Chem. Soc. 2003, 125, 12996e12997. 156. In the absence of an effective Brønstedt base, the aminopalladation can be a reversible process: Timokhin, V. I.; Stahl, S. S. J. Am. Chem. Soc. 2005, 127, 17888e17893. 157. (a) Tamura, R.; Kamimura, A.; Ono, N. Synthesis 1991, 423e434; (b) Barco, A.; Benetti, S.; Spalluto, G.; Casolari, A.; Pollini, G. P.; Zanirato, V. J. Org. Chem. 1992, 57, 6279e6286. 158. Nakano, T.; Miyahara, M.; Itoh, T.; Kamimura, A. Eur. J. Org. Chem. 2012, 2161e2166. 159. It has been noted that the use of NEt3 as base decomposes PhN2BF4.158 160. Crisp, G. T.; Glink, P. T. Tetrahedron 1992, 48, 3541e3556. 161. Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Sferrazza, A. Org. Biomol. Chem. 2011, 9, 1727e1730. 162. (a) Kao, L.-C.; Stakem, F. G.; Patel, B. A.; Heck, R. F. J. Org. Chem. 1982, 47, 1267e1277; (b) Malek, N. J.; Moormann, A. E. J. Org. Chem. 1982, 47, 5395e5397; (c) Arcadi, A.; Bernocchi, E.; Cacchi, S.; Caglioti, L.; Marinelli, F. Tetrahedron Lett. 1990, 31, 2463e2466; (d) Crisp, G. T.; Gebauer, M. G. Tetrahedron 1996, 52, 12465e12474; (e) Busacca, C. A.; Dong, Y. Tetrahedron Lett. 1996, 37, 3947e3950; (f) Dong, Y.; Busacca, C. A. J. Org. Chem. 1997, 62, nisson, Y.; Correia, C. R. D. J. Org. 6464e6465; (g) Prediger, P.; Barbosa, L. F.; Ge Chem. 2011, 76, 7737e7749; (h) Deng, Y.; Jiang, Z.; Yao, M.; Xu, D.; Zhang, L.; Li, H.; Tang, W.; Xu, L. Adv. Synth. Catal. 2012, 354, 899e907; (i) Kore, A. R.; Shanmugasundaram, M. Tetrahedron Lett. 2012, 53, 2530e2532; (j) Jiang, Z.; Zhang, L.; Dong, C.; Ma, B.; Tang, W.; Xu, L.; Fan, Q.; Xiao, J. Tetrahedron 2012, 68, 4919e4926. 163. Lu, Z.; Stahl, S. S. Org. Lett. 2012, 14, 1234e1237. 164. Fix, S. R.; Brice, J. L.; Stahl, S. S. Angew. Chem., Int. Ed. 2002, 41, 164e166.
10111
165. Kotov, V.; Scarborough, C. C.; Stahl, S. S. Inorg. Chem. 2007, 46, 1910e1923. 166. Ye, X.; Liu, G.; Popp, B. V.; Stahl, S. S. J. Org. Chem. 2011, 76, 1031e1044. 167. Redford, J. E.; McDonald, R. I.; Rigsby, M. L.; Wiensch, J. D.; Stahl, S. S. Org. Lett. 2012, 14, 1242e1245. 168. Under Stahl’s experimental conditions, a Wacker-type addition rather than an allylic CeH activation leading to a Tsuji/Trost-type reaction was assumed on the basis of experiments and DFT computational studies.166,167 Using different experimental conditions, White’s team reported 5- cyclisations of alkenes bearing tethered N-tosyl(or nosyl)carbamates, which occur via a h3-allylpalladium intermediate: (a) Fraunhoffer, K. J.; White, M. C. J. Am. Chem. Soc. 2007, 129, 7274e7276; (b) Jiang, C.; Covell, D. J.; Stepan, A. F.; Plummer, M. S.; White, M. C. Org. Lett. 2012, 14, 1386e1389. 169. Keith, D. D.; Tortora, J. A.; Ineichen, K.; Leimgruber, W. Tetrahedron 1975, 31, 2633e2636. 170. Filippini, L.; Gusmeroli, M.; Riva, R. Tetrahedron Lett. 1993, 34, 1643e1646. 171. Rogers, M. M.; Kotov, V.; Chatwichien, J.; Stahl, S. S. Org. Lett. 2007, 9, 4331e4334. 172. Brice, J. L.; Harang, J. E.; Timokhin, V. I.; Anastasi, N. R.; Stahl, S. S. J. Am. Chem. Soc. 2005, 127, 2868e2869. 173. Allylamines can be also obtained from the Pd-catalysed addition of amines to linear alkenes, but, such reactions would involve h3-allylpalladium intermediates, i.e., TsujieTrost type reactions, rather than aza-Wacker reactions followed by b0 -H eliminations: Liu, G.; Yin, G.; Wu, L. Angew. Chem., Int. Ed. 2008, 47, 4733e4736. 174. This contrasts with the reported stoichiometric trans-aminopalladation of , K.; Sjo € berg, K.; linear alkenes: (a) Akermark, B.; B€ ackvall, J. E.; Siirala-Hansen Zetterberg, K. Tetrahedron Lett. 1974, 15, 1363e1366; (b) Akermark, B.; B€ ackvall, n, K.; Sjo € berg, K. J. Organomet. J. E.; Hegedus, L. S.; Zetterberg, K.; Siirala-Hanse Chem. 1974, 72, 127e138. 175. Lv, P.; Huang, K.; Xie, L.; Xu, X. Org. Biomol. Chem. 2011, 9, 3133e3135. 176. Hallberg, A.; Westerlund, C. Chem. Lett. 1982, 1993e1994. 177. Kikukawa, K.; Ikenaga, K.; Wada, F.; Matsuda, T. Chem. Lett. 1983, 1337e1340. 178. (a) Kikukawa, K.; Ikenaga, K.; Kono, K.; Toritani, K.; Wada, F.; Matsuda, T. J. Organomet. Chem. 1984, 270, 277e282; (b) Ikenaga, K.; Matsumoto, S.; Kikukawa, K.; Matsuda, T. Chem. Lett. 1988, 873e876. 179. Another possibility would be a transmetalation promoted by fluoride ion: Hatanaka, Y.; Hiyama, T. Synlett 1991, 845e853 The transmetalation process occurs from alkenylpentafluorosilicates (Yoshida, J.; Tamao, K.; Yamamoto, H.; Kakui, R.; Uchida, T.; Kumada, M. Organometallics 1982, 1, 542e549.), alkenylsilanoates (Denmark, S. E.; Regens, C. S. Acc. Chem. Res. 2008, 41, 1486e1499.) and intramolecularly activated vinylsilanes (Matsumoto, K.; Shindo, M. Adv. Synth. Catal. 2012, 354, 642e650. Omote, M.; Tanaka, M.; Ikeda, A.; Nomura, S.; Tarui, A.; Sato, K.; Ando, A. Org. Lett. 2012, 14, 2286e2289.).. 180. Ikenaga, K.; Kikukawa, K.; Matsuda, T. J. Chem. Soc., Perkin Trans. 1 1986, 1959e1964. 181. Alvisi, D.; Blart, E.; Bonini, B. F.; Mazzanti, G.; Ricci, A.; Zani, P. J. Org. Chem. 1996, 61, 7139e7146. 182. Karabelas, K.; Hallberg, A. J. Org. Chem. 1986, 51, 5286e5290. 183. (a) Kikukawa, K.; Ikenaga, K.; Wada, F.; Matsuda, T. Tetrahedron Lett. 1984, 25, 5789e5792; (b) Ikenaga, K.; Kikukawa, K.; Matsuda, T. J. Org. Chem. 1987, 52, 1276e1280. 184. Karabelas, K.; Hallberg, A. Tetrahedron Lett. 1985, 26, 3131e3132. 185. Karabelas, K.; Hallberg, A. J. Org. Chem. 1988, 53, 4909e4914. 186. For other efficient conditions with ArI, which preserve the trimethylsilyl group, see: Jeffery, T. Tetrahedron Lett. 1999, 40, 1673e1676. 187. The arylation and alkenylation of allylic trifluorosilanes are out of the scope of this review, because these reactions proceed through Si/Pd transmetalations: (a) Hatanaka, Y.; Ebina, Y.; Hiyama, T. J. Am. Chem. Soc. 1991, 113, 7075e7076; (b) Hatanaka, Y.; Goda, K.; Hiyama, T. Tetrahedron Lett. 1994, 35, 1279e1282; (c) Hatanaka, Y.; Goda, K.; Hiyama, T. Tetrahedron Lett. 1994, 35, 6511e6514. 188. Karabelas, K.; Westerlund, C.; Hallberg, A. J. Org. Chem. 1985, 50, 3896e3900. 189. Under these conditions, the traces of propen-2-ylbenzene would be due to the subsequent desilylation of trimethyl(2-phenylallyl)silane.188 190. Tietze, L. F.; Schimpf, R. Angew. Chem., Int. Ed. Engl. 1994, 33, 1089e1091. 191. The eliminations of the SiMe3 group reported by Tietze’s team for similar intramolecular reactions when using Pd2(dba)3, (S)- or (R)-Binap, Ag3PO4 (Ref.190. Tietze, L. F.; Raschke, T. Synlett 1995, 597e598; Tietze, L. F.; Raschke, T. Liebigs Ann./Recueil 1996, 1981e1987) are, in our opinion, surprising. This leads us to suspect other intermediates than those of the Heck-type reaction, possibly h3-allylpalladium complexes.; formation of such complexes from allylic trimethylsilanes and PdII salts has been reported: Kliegman, J. M. J. Organomet. , N.; Gue rin, C. J. Organomet. Chem. Chem. 1971, 29, 73e77; Corriu, R. J. P.; Escudie 1984, 271, C7eC9; Hayashi, T.; Konishi, M.; Okamoto, Y.; Kabeta, K.; Kumada, M. J. Org. Chem. 1986, 51, 3772e3781; Fugami, K.; Oshima, K.; Utimoto, K.; Nozaki, H. Bull. Chem. Soc. Jpn. 1987, 60, 2509e2515; For corresponding catalytic reactions, ri, I.; Szabo , see: Muzart, J.; Riahi, A. Organometallics 1992, 11, 3478e3481. Macsa K. J. Chem.dEur. J. 2001, 7, 4097e4106. These reactions involve transmetalation reactions. 192. Jeffery, T. Tetrahedron Lett. 2000, 41, 8445e8449. 193. Jeffery considered that (E)-prop-1-enylbenzene was obtained from the isomerisation of allylbenzene.192 We suspect that this compound is rather generated by desilylation of cinnamyltrimethylsilane, as proposed by Hallberg’s team for the formation of prop-1-en-2-ylbenzene (Eq. 55).188,189 194. McAtee, J. R.; Martin, S. E. S.; Ahneman, D. T.; Johnson, K. A.; Watson, D. A. Angew. Chem., Int. Ed. 2012, 51, 3663e3667.
10112
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
195. Muzart, J. J. Mol. Catal. A: Chem. 2010, 319, 1e29. 196. Water is mentioned as an additive in author’s patent: Wenzel, T. T. U.S. Patent 5,136,105, 1992; Chem. Abstr. 1993, 118, 21944. Moreover, water is generated from the reoxidation of Pd0 into PdII under these reaction conditions: Muzart, J. Tetrahedron 2007, 63, 7505e7521. 197. Igarashi, S.; Haruta, Y.; Ozawa, M.; Nishide, Y.; Kinoshita, H.; Inomata, K. Chem. Lett. 1989, 737e740. 198. (a) Hattori, Y.; Furuhata, S.; Okajima, M.; Konno, H.; Abe, M.; Miyoshi, H.; Goto, T.; Makabe, H. A. Org. Lett. 2008, 10, 717e720; (b) Furuhata, S.; Hattori, Y.; Okajima, M.; Konno, H.; Abe, M.; Miyoshi, H.; Goto, T.; Makabe, H. A. Tetrahedron 2008, 64, 7695e7703. 199. Uenishi, J.; Vikhe, Y. S. Heterocycles 2010, 80, 1463e1469. nin, F.; Muzart, J. Tetrahedron 2000, 56, 8133e8140. 200. Roy, O.; Riahi, A.; He 201. Cannon, J. S.; Olson, A. C.; Overman, L. E.; Solomon, N. S. J. Org. Chem. 2012, 77, 1961e1973. 202. Bayer, E.; Geckeler, K. Angew. Chem., Int. Ed. Engl. 1979, 18, 533e534. 203. Xu, J.; Fu, Y.; Xiao, B.; Gong, T.; Guo, Q. Tetrahedron Lett. 2010, 51, 5476e5479. 204. Brice, J. L.; Meerdink, J. E.; Stahl, S. S. Org. Lett. 2004, 6, 1845e1848. 205. Muzart, J. Eur. J. Org. Chem. 2007, 3077e3089. 206. Eustache, J.; Van de Weghe, P.; Le Nouen, D.; Uyehara, H.; Kabuto, C.; Yamamoto, Y. J. Org. Chem. 2005, 70, 4043e4053. 207. Yokoyama, H.; Ejiri, H.; Miyazawa, M.; Yamaguchi, S.; Hirai, Y. Tetrahedron: Asymmetry 2007, 18, 852e856. 208. (a) Yokoyama, H.; Kobayashi, H.; Miyazawa, M.; Yamaguchi, S.; Hirai, Y. Heterocycles 2007, 74, 283e292; (b) Yokoyama, H.; Hirai, Y. Heterocycles 2008, 75, 2133e2153; (c) Yokoyama, H.; Hayashi, Y.; Nagasawa, Y.; Ejiri, H.; Miyazawa, M.; Hirai, Y. Tetrahedron 2010, 66, 8458e8463. 209. Saito, S.; Hara, T.; Takahashi, N.; Hirai, M.; Morikawe, T. Synlett 1992, 237e238. 210. Kimura, M.; Harayama, H.; Tanaka, S.; Tamaru, Y. J. Chem. Soc., Chem. Commun. 1994, 2531e2533. 211. Hirai, Y.; Watanabe, J.; Nozaki, T.; Yokoyama, H.; Yamaguchi, S. J. Org. Chem. 1997, 62, 776e777. 212. Lei, A.; Liu, G.; Lu, X. J. Org. Chem. 2002, 67, 974e980. 213. Ferber, B.; Prestat, G.; Vogel, S.; Madec, D.; Poli, G. Synlett 2006, 2133e2135. 214. Cannon, J. S.; Kirsch, S. F.; Overman, L. E. J. Am. Chem. Soc. 2010, 132,15185e15191.
215. (a) Kirsch, S. F.; Overman, L. E. J. Am. Chem. Soc. 2005, 127, 2866e2867; (b) Cannon, J. S.; Frederich, J. H.; Overman, L. E. J. Org. Chem. 2012, 77, 1939e1951. 216. Kirsch, S. F.; Overman, L. E.; White, N. S. Org. Lett. 2007, 9, 911e913. 217. Olson, A. C.; Overman, L. E.; Sneddon, H. F.; Ziller, J. W. Adv. Synth. Catal. 2009, 351, 3186e3192. 218. Cannon, J. S.; Kirsch, S. F.; Overman, L. E.; Sneddon, H. F. J. Am. Chem. Soc. 2010, 132, 15192e15203. 219. Steinig, A. G.; de Meijere, A. Eur. J. Org. Chem. 1999, 1333e1334. 220. Guo, H. M.; Rao, W. H.; Niu, H. Y.; Jiang, L. L.; Liang, L.; Zhang, Y.; Qu, G. R. RSC Adv. 2011, 1, 961e963. 221. This reaction of 3-methylhex-1-ene is only disclosed in the Supplementary data of the report.59 222. (a) Heck, R. F. J. Am. Chem. Soc. 1971, 93, 6896e6901; (b) Dieck, H. A.; Heck, R. F. J. Am. Chem. Soc. 1974, 96, 1133e1136. 223. For the Pd0-catalyzed migration of the C]C bonds, see: (a) Carless, H. A.; Haywood, D. J. J. Chem. Soc., Chem. Commun. 1980, 980e981; (b) Hoshino, Y.; Takeno, N. Bull. Chem. Soc. Jpn. 1994, 67, 2873e2875; (d) Zhang, Y. Q.; Zhu, D. Y.; Li, B. S.; Tu, Y. Q.; Liu, J. X.; Lu, Y.; Wang, S. H. J. Org. Chem. 2012, 77, 4167e4170. 224. Takeda, K.; Toyota, M. Heterocycles 2012, 84, 1271e1276. €bel, T.; Spescha, M. J. Am. Chem. Soc. 1998, 120, 8971e8977. 225. Tietze, L. F.; No , A. S.; Lau, C. K. Synlett 1997, 1312e1314; (b) Zakrzewski, 226. (a) Gowan, M.; Caille P.; Gowan, M.; Trimble, L. A.; Lau, C. K. Synthesis 1999, 1893e1902. 227. Pefiel, I.; Pastor, I. M.; Yus, M. Eur. J. Org. Chem. 2012, 3151e3156. 228. Correia, C. R. D.; Oliveira, C. C.; Salles, A. G.; Santos, E. A. F. Tetrahedron Lett. 2012, 53, 3325e3328. 229. (a) Andersen, N. G.; Parvez, M.; Keay, B. A. Org. Lett. 2000, 2, 2817e2820; (b) Andersen, N. G.; Parvez, M.; McDonald, R.; Keay, B. A. Can. J. Chem. 2004, 82, 145e161. 230. Black, D. St. C.; Keller, P. A.; Kumar, N. Tetrahedron 1992, 48, 7601e7608. 231. Werner, E. W.; Sigman, M. S. J. Am. Chem. Soc. 2010, 132, 13981e13983. 232. Sigman, M. S.; Werner, E. W. Acc. Chem. Res. 2012, 45, 874e884. 233. Pinho, P.; Minnaard, J.; Feringa, B. L. Org. Lett. 2003, 5, 259e261. 234. Merten, S.; Froehlich, R.; Kataeva, O.; Metz, P. Adv. Synth. Catal. 2005, 347, 754e758.
J. Le Bras, J. Muzart / Tetrahedron 68 (2012) 10065e10113
10113
Biographical sketch
Jean Le Bras Jean Le Bras was born in Brest and obtained his Engineering Diploma from Pierre et Marie Curie. In 1996, ENSCP-Paris and his M.Sc. degree (DEA) from Universite he joined the group of Dr. Hani Amouri where he studied iridium mediated phenols functionalization and obtained his Ph.D. in 1998. He then joined the group of Professor John A. Gladysz as a post-doctoral fellow in Salt Lake City (USA) and in Erlangen (Germany) and has worked on the synthesis of organometallic complexes with 17 valence de electrons and polyynediyl chains. In 2000, he became a CNRS fellow at Universite Reims Champagne Ardenne. Its current interests are concentrated on transition metal-catalysis with particular emphasis on oxidations, CeH activation and valorization of agricultural by-products.
Jacques Muzart Jacques Muzart was born in 1946, in Vienne la Ville, a small village in de the Argonne area, 200 km east of Paris. He studied chemistry at the Universite Champagne-Ardenne and received his degrees (Doctorat de 3eme cycle in 1972, Docte on photochemical rearrangements of torat d’Etat in 1976) for his work with J.-P. Pe a,b-epoxyketones and b-diketones. He was appointed at the Centre National de la Recherche Scientifique in 1971, and spent 15 months (1977e1978) as a post-doctoral fellow of National Science Foundation working with E. J. Corey at Harvard University on natural product synthesis. On his return to Reims, he mainly studied the photoreactivity of h3-allylpalladium complexes and anionic activation by supported reagents. Dirite since 2011, his research interests concentrate on recteur de Recherche Em e transition metal-catalysis with particular emphasis on oxidations, CeH activation and mechanisms. He is also involved in the valorisation of agricultural by-products.