1,1-dihaloalkyl heterocumulenes: Synthesis and reactions

1,1-dihaloalkyl heterocumulenes: Synthesis and reactions

Temhedron Vol 47, No Pnnted I” Great Bntam 9, pp 156~1601, 1991 0 TETRAHEDRON REPORT BOBBER l,l-DIHALOALKYL SYNTHESIS HETEROCUMULENES AND REACT...

2MB Sizes 1 Downloads 63 Views

Temhedron Vol 47, No Pnnted I” Great Bntam

9, pp

156~1601,

1991 0

TETRAHEDRON

REPORT BOBBER

l,l-DIHALOALKYL SYNTHESIS

HETEROCUMULENES AND REACTIONS

286

:

Yu I MATVEYEV, V I C~XBATENKO and L I SAMARAI Instttute of Orgamc Chemstry, Academy of Sctences of the Ukramran S S R , Kw 252094, (Receroed

14 May

oo4c4020/91 $5 oo+ 00 1991 PcTgamon Press pie

U SSR

1990)

CONTENTS I Introductton

1563

2 Methods of Syntheses 2 1 1,l -Dthaloalkyl tsocyanates 2 1 1 Curtms, Lossen and Hofmann reactrons 2 1 2 Addttton of phosgene and analogues to the C=N bond 2 1 3 Halogenatlon of alkyl, alkenyl, acyl tsocyanates and carbamates 2 1 4 Hydrolyses of perhalo-Zazaalkenes 2 1 5 Exchange reacttons 2 1 6 Arbuxov reactton 2 1 7 Spectal methods of syntheses of l,l-dtfluoroalkyl tsocyanates 2 2 1,1Dthaloalkyl tsotluocyanates 2 3 1,l -D!h~oalkyl ~r~llrnldes 2 4 Other l,l-dthaloalkyl heterocumulenes

1564 1564 1564 1567 1569 1572 1572 1573 1573 1575 1577 1580

3 Properties 31 Amonotroprc conversrons 32 Reacttons with protrc nucleophrhc agents 3 2 1 Reactions with alcohols, phenols, t~ophenols 3 2 2 Reactions wtth ammes 3 2 3 Hydrolysis 3 2 4 Reactions wtth other prottc nucleophdes 33 Reacnons wrth aprotrc nucleophtles 34 Reactrons with hydrogen halides, carboxyhc and other ands 35 Add&on of 1,I-dihalo~kyl tsocyanates to multtple bonds 36 Ehmmatron of hydrogen halides and halogens 31 Other converstons

1581 1582 1583 1583 1586 1588 1588 1589 1592 1593 1596 1596

1. INTRODUCTION

Progress m the chermstry of tsocyanates, tsothtocyanates, carboditmides and ketene munes 1s reflected m numerous revtews and books. Durmg recent years polyfunctional compounds cont~nlng heterocumulene and other reactive groups have become valuable reagents in organic syntheses. Among them, I,l-drhaloalkyl heterocumulenes, RCHal,N=C=X (X = 0, S, NR, CR2), are m the first 1563

Yu

1564

I MATWXEV et al

rank In these compounds the reactlvlty of the heterocumulene and the halogen atoms m the aposltlon 1s enhanced due to their mutual mteractlon The synthetic posslblhtles of these compounds are extremely wide The ablhty of some l,l-dlhaloalkyl heterocumulenes to participate m amonotropic rearrangements mvolvmg halogen mlgratlon m the azaallyhc triad 1s of particular interest

Hal = Cl, Br

The purpose of this Report 1s a presentation of available mformatlon on synthetic methods and chemical conversions of the compounds mentioned above Some reactions discussed here were considered m part, m the review’ on the chemistry of I-haloalkyl lsocyanates pubhshed m 1980 2 METHODS

OF SYNTHESIS

2 1 1,l-Dzhaloalkyl zsocyanates 2 1 1 Curtzus, Lossen and Hofmann reactions The Curtms rearrangement 1s one of the most general methods for the synthesis of alkyl and aryl lsocyanates mcludmg alkyl lsocyanates with halogen atoms m the cr-posltlon ’ This reactlon mvolves the thermal transformation of acyl azldes 1 mto lsocyanates 2 via mtermedlate acyl mtrenes Acyl azldes 1 may be obtained usmg two methods (1) the reaction of acyl halides with sodium azlde (method A) or (11)the reaction of acyl hydrazldes with nitrous acid (method B) 3-‘3 The Curtms reactlon may be also applied to the synthesis of dusocyanates mcludmg perfluoroalkyhdene dusocyanates O=C=N(CF,),N=C=O 3 ’ The dlsadvantage of the classical Curtms reaction 1s the necessity of workmg with highly dilute solutions because acyl azldes are thermally unstable and explosive This disadvantage 1s avolded m the modlficatlon of the Curtms reaction m which the thermally stable trlmethylsllyl azlde 1s used instead of sodium azlde (method C) 14*15 In this case the acyl azlde 1s decomposed zn sztu durmg the mlxmg of the reagents This increases the safety of the process and allows the use of mmlmal amounts of solvents

R-C-NHNH2

+

HNO2

0 R-;-N 1

3

:

-N2

R-N&=0

2

Hal = Cl, Br

Recently, a method which 1s a modlficatlon bls-sllyl derivatives of reaction of hydroxamlc

for the synthesis of perfluoroalkyl mono- and dl-lsocyanates was proposed of the Lossen rearrangement I6 It mvolves the thermal transformation of hydroxanuc acids 4 at 25&3Oo”C The denvatlves 4 are obtamed by the acids with hexamethyldlsllazane (HMDSA)

1565

l,l-Dlhaloalkyl heterocumulenes

Table 1. Isocyanatee2 obtained by the Curtiua reaction Compound

Method

B.p./torr 119-120°c/760

Yleld[%] Reference

CC13N=C=0

A

72

12

CF3N=C=O

A

-35'C/i'60

44

6

A

-36'C/760

26

5

C

-32'C/760

75

14

A

73-75'C/20

45

13

CBr N=C=O 3 BrCF2CClFN=C=O

A

89-91°C/760

12

IO

BrCF2CBrFN=C=0

A

107-llO'C/760

26

IO

BrCF2CF2N=C+

A

50°C/760

C1CF2CF2N*C=0

A

ClCF2CClFN=C=O CF3CF2N=C=O 0=N(CF2)2N=C=0

A

CF3(CF2)2N=C=O

A A

43

IO

31-31.5'C/760

29

10

A

68-69'C/760

62

IO

A

-.lO+ -5'C/760

20

10

23'C/746

32

11

24-26Oc/739

76

3, 4

24.5'C/760

82

5

A

27-29'C/760

84

7

Cl-C-(CF2)3N=C=O

C

80-83°C/760

17

15

CF3(CF2)3N=C=O

A

52-53'C/753

55

3

CF3(CF2)4N=C=O

A

75-78'C/735

50

3

C

77-79'C/76o

79

15

119°c/740

82

3

9

A A

122-123'C/760

75

7

82

15

C

118-120°c/760

CF3(CF2)7N=C=O

A

140°c/740

3

CF3(CF2)8N=C=0

A

160-161°c/743

3

CF3(CFp)9N=C=0

A

180°C/740

3

CF3(CF2),0N=C=0

A

200°C/740

3

@$-(CF~I~N=C=O

A

A

75

128-130°C/15

68

1566

Yu I MATWYEV~? Table 2. Diisooyamtes

al

3 obtained by the Curtius reaction

Method

Compound

A

0=C=N(CF2)3N=C=0

Yield[%] Reference

B.p./torr E~4-85~C/760

B 64-65OC/760

C

A

0=C=N(CF2)4NaC=0

105-106°C/760

B A

0=C=N(CF2)8N~C=0

HMDSA

i?

105°C/220

$&Me3 RFC=N-OSiMe

RFC-NHOH -

A 3

-I -(Me3SIJ20

72

8

37

8

78

15

78

8

34

8

32

0

P1

RFC-N:

T

4

c

RF = cIIF2 (59%)

RFN=C=O

CF3 C2F5

(66%)

C3F7

(83%)

CF,5

(55%)

$XiMe3

HMDSA

i?

(85%)

Me3SiO-N=C-(CF2),-y=N-0SiMe3 0Stie3

(CF2)n(C-~H~~)2

A 0=C=N(CF2),N=C=0

n = 1 (65%) 3 (75%)

3

Perfluoroalkyl lsocyanates have also been obtained by the Hofmann reaction from anhydrous salts of N-haloalkanamldes ‘7-‘g

: C3F7C-NH2

-

Ag20

0 II- + C3F7C-NH Ag

1. Br2 2. NaOH

0 + I,- C3F7C-N-BrNa

170°c

C3F7N&0 83%

The reaction of tnfluoroacetyl mtnte 5 with two moles of tnphenyl phosphate may also proceed via a mtrene intermediate leadmg to tnfluoromethyl lsocyanate ‘O

I,l-Dlhaloalkyl

heterocumulenes

o-lo"c

f CF3C-ON0 +

2 (PhO)3P

-1

5

1567

f1

CF3C-N:

-

CF3N&=0 23%

- 2 mo)3Po

2 1 2 Addmon of phosgene and analogues to the C=N bond Aroma& mtnles react with phosgene m the presence of hydrogen chlonde under forcing condltlons (heatmg m autoclave at 100°C for 200 hours) gvmg substituted 1,3,5-tnazmes 7 Using the ratio AKEEN COC12 HCl= 4 2 1 (Ar = Ph) phenyl dlchloromethyl lsocyanate 6 may be Isolated m 15% yield it exists predominantly m the N-chlorocarbonyhmme form 6a *L** Phosgenatlon of ahphatlc mtnles under similar condltlons does not lead to l,l-dlchloroalkyl lsocyanates because they eliminate hydrogen chloride glvmg I-chloroalkenyl lsocyanates 8 22-24

ArCEN

CCc12/HC1 -

Cl Ad-N&O bl 6

coc12/ric1 *

R. ,,CH-EN R

Cl N J\ 'N I'\ A Ar N As 7

z=Z Ary=N-p=O + Cl Cl 6a

Cl R bi-b-N&O 1, R hl

,N=C=O R, ,,C=C R 'Cl 8

- HCl

Fluorophosgene reacts with mtrlles only m the presence of catalysts (HF, NaF, CsF, HgF2) gvmg 1, I-dlfluoroalkyl lsocyanates 9, 10 In the case of ahphatlc mtnles, prolonged heating up to 20&3OO”C m an autoclave 1srequired *s-*~Aromatic mtnles react with fluorophosgene under mdder condltlons (50”C)30 but the yields of lsocyanates are low because substituted 1,3,5-tnazmes and aryl fluoromethanes are also produced COF2

Alk-EN

-

AlkCF2N=C=0 9 OH

COF2 Ar-CZN

NAN . ArCF2N=C=0 + 10

,",A AIT Al.

+

ArCF3

The simplest method for the synthesis of tnchloromethyl lsocyanate, which 1sused commeraally, 1s the condensation of chlorocyanogen with phosgene 3‘*3* This reaction 1s performed under forcing condltlons (3OO”C,autoclave) m the presence of activated charcoal as a catalyst Tnchloromethyl lsocyanate 11 which exists predommantly m the lsomenc form N-chlorocarbonyhmmophosgene lla ISobtained m 71% yield, bls(dlchloromethyhdene)urea 12 1sthe second product of the reaction

Cl-C=N +

COC12-

A

CC13N=C=0=C12C.N-C~o

+

i? C12C=N-C-N&Cl2

Cl 11

lla

12

Yu I MATVEYEV ei al

1568

Table 3. 1,1-Difluoroalkylisocyanates9, 10 B.p./760 torr

Compound

20-21°C

MeCF2N=C=O

29Oc EtCF2N=C=O

73-77Oc 58'C

Y&d[%]

Reference

25

25

45

26

65

25

96

26 25

n-PrCF2N=C=O

85.91'C

55

1-PrCF2N=C=O

69-74Oc

60

25

ClCH2CF2N=C=O

68-78'C

50

25

CC13CF2N=C=0

97-98OC

80

25

18

29

-8-O'C

75

25

136OC

60

25

PhCF2N=C=O

18

30

m-MeC6H4CF2N=C=0

13

30

p-MeC6H4CF2N=C=0

11

30

p-CF3C6H4CF2N=C=0

16

30

CF3CF2N=C=0

CF2-CF2 uCF2N.C.O

A preparatively convenient way for obtaining perchloroethyl lsocyanate 14 1s the interaction of trxhloromethyl lsocyanate with trlchloroacetomtrde at 120°C m the presence of catalytic amount of lron(II1) chloride 33 This reaction could be considered as an electrophlhc addition of N-chlorocarbonyhmmophosgene to the C=N bond of tnchloroacetomtrlle The bls(alkyhdene)urea 13 formed mltlally ehmmates chlorocyanogen giving the final product

CC13N=C=0z

c12C=N-C~o + CC13CaNCl

cc13. 4, $0 /C C c1 C$$i C Al

1

I

I

-

A

ClCN

13

-

CC13CC12N=C=0 14 (82%)

Synthesis of tnfluoromethyl lsocyanate by the condensation of fluorophosgene with fluoropotassmm thlocyanate27 or cyanamlde26 under forcing condltlons cyanogen 34 chlorocyanogen, (10&3OO”C) m the presence of catalysts has been described

I,l-Dlhaloalkylheterocumulenes

d S-GIN

1569

CF3N=C=0

H2N-CaN

2 1 3 Halogenatzon of alkyl, alkenyl, acyl zsocyanates and carbamates The chlormatlon of alkyl lsocyanates 1s achieved by heating (80-120°C) and UV lrradtatlon 3235,36Dependmg on the nature of a substltuent m the starting lsocyanates, products of the reaction may have one of two lsomerlc structures 15 or 15a, or be present as a mixture of both isomers Sulfuryl chloride may be used as a chlormatmg agent, instead of chlorine 37

CL/h9 RCH2N=C=0

? R-C-N=C=O,.R-y=N-y=O hl Cl Cl 15

15a

R = Cl (89X), C1CH2, CQCH (95%), CClg, Ph

S02C12 C1CH2CH2N=C=0

c 75-85'C

Cl ClCH&-N=C=O Cl 94%

N-Bromosuccmlmlde (BSI) 1s applied for the brommatlon of alkyl lsocyanates 38 Products of the reaction, 1,l-dlbromoalkyl nocyanates, m contrast to their fluorme and chlorme analogues, are not stable and decompose gradually under storage Bromotroplc conversions are charactenstlc of these compounds BSI MeN=C=O 80°C 60%

BSI *

t-BuCH2N=C=0 80°C

Br t-Bu,-N&O 4 Br

G

0 t-Buy=N-CB 'Br Br

70%

A convenient method for the preparation of l,l-dlfluoroalkyl lsocyanates 1s fluormatlon of the correspondmg chloro- compounds wth hydrogen fluonde39*40 or antnnony(II1) fluonde 4’ 42 After fluormatlon of tnchloromethyl lsocyanate with antlmony(II1) fluonde, a mixture of the lsomers-

Yu

1570

I MATVEYEV~~ al

fluoride 16a-was

dlchloro(fluoro)methyl lsocyanate 16 and N-(dlchloromethyhdene)carbamoyl isolated m the ratio (1 14) 41 3 HF/o"c CP3N&o 7896 cc13N=C=o=

C12C~~=&~ 16

SbF3

?

-

PhF-N=C=O =PhP=N-y=o Cl Cl Cl

(SbCl$

+ C12c=N_cp 'F 70% 16a

7 Phy-N&o F 72%

2-Phosphonyl vinyl lsocyanates 17 are chlormated by heating and UV lrradlatlon glvmg ISOcyanates 18 Fluormatlon of the compounds 18 with sulfur tetrafluonde IS accompanied by the cleavage of the C-P bond yielding the lsocyanate 19 43 C12/hd

Fi

X2P-CH=CH-N&O 17

P ?? - X2P-F-y-N&O 120°c ClCl 18

SF4

F CC13i;N=C=0

130°c 19 (70%)

X = Cl (77%) F (79%)

N-(Alkyhdene)carbamoyl lsocyanates 20 are very easily fluormated wth an a-fluormated tertiary amme glvmg the lsocyanate 21 An mteractton probably begins from a nucleophlhc attack of an amme a-fluorme atom on the electrophlhc carbon m the azomethme group of the compound 20 when the N-C=0 moiety shows pseudo-halogemc properties 44

0 CF ‘3,=,-;-N&, Cl' 20

+

F o"c ClFCH-kNEt2 A

B CF3E;N=C=0 21 (46%)

A preparative method for the synthesis of l,l-dlchloroalkyl lsocyanates 15 IS the reaction of acyl lsocyanates with phosphorus pentachlonde m botig chlorobenzene 45.46Phenyldlchloromethyl

l,l-D~haloakylheterocumulenes

lsocyanate may be obtamed under mild condltlons by the chlormatlon with elementary chlorme 47

0

PC15

R&&C&

71

RC-N=C=O ---c - POC13

y=N-y=o

bl

Cl

15

z

C12/200C

PhC-N&=0

- Xl2

Cl

15a

? Phy-N&O Cl

= 71%

1571

of thlobenzoyl tsocyanate

R = ClCH2 (85%) C12CH (73%) Ccl3 (62%) Ph (82%)

PhT=N-C=O Cl Cl

One method for the generation of lsocyanates 1s the reaction of N-substituted carbamates wth phosphorus pentachlonde ’ In several cases this method may be used for the synthesis of l,ldlchloroalkyl lsocyanates For example, interaction of N-tnfluoroacetylethyl carbamate with phosphorus pentachlonde at 175°C gave the lsocyanate 22 48

P

PC15/&

R

F1

CF3C-NH-C-OEt - POC13, EtCl, HCl

"3s;N-c=o 22 (34%)

N-(Alkyhdene)carbamate 24-the condensation product from trlchloromethylamme 23 and N,N-dlchlorocarbamate-treated with PCls or 23, gives dlalkylammodlchloromethyl lsocyanate 25 which exists m eqmhbnum wth the lmmocarbonyl chlonde form 25a 49 Slmdarly, phosphorylated dlchloromethyl lsocyanate 26 may be obtained So

Me2N-Ccl3 +

P

C12N-C-OEt

: - 2C12

23

P

Me2N-T-N-C-OEt _ Cl 24

62%

0

0

(RO)2$&N,;,O&t L1

*l5

- POC13, HCl, t-B&l

fl91 (RO) P-C-El=C=O Rde(4546) n-Pr(30%) 2 ix 26

Yu I MATVEYEV et

1572

al

2 1 4 Hydrolysis of perhalo-2-azaalkenes By careful hydrolysis of perfluoro-2-azapropene with copper(H) fluonde hydrate, tnfluoromethyl lsocyanate may be obtained m high yield “S The disadvantage of this method 1s the use of a large amount of azapropene as an acceptor for hydrogen fluoride Perfluoroalkyl lsocyanates are also obtained by treatment of perfluoro-2-azaalkenes with s&on droxlde5’ or sulfur tnoxlde53 under forcmg condltlons

CUT2

2H20/1000C

-

3 CF3N=CF2

CF N;;;," + 3

2 (CF3j2NH

sio2/1600C c

C3F7N=CF2

C3F7;;;=0 0

2 so3/1000c CF3N=C=0 63%

CF3N=CF2

+

(FS02)20

Tnchloromethyl lsocyanate 1s obtained m high yield by treatment of perchloro-2-azapropene with benzaldehyde or phthahc anhydride at 12G15O”C m the presence of Lewrs acid catalysts 54

PhCH=O (95%)

2 1 5 Exchange reactzons A number of methods exist for mtroducmg the rsocyanate group by exchange reactions Thus treatment of aryl bromodlfluoromethanes with silver cyanate gave aryl dlfluoromethyl lsocyanates 10 55The reaction proceeds m methylene chlonde at 20°C

AgOCN

_

ArCF2Br - AgBr

F A&N&=0 i 10

Ar = Ph (91%) P-ClC6H4 (90%) p-t-BUC6H4 (85%)

One of the mobile chlorme atoms m tnchloromethylammes 23 can be replaced by the lsocyanate group upon treatment with N,N’,N”-tnchlorouocyanurate 5c58 The reaction proceeds m dlchloromethane at 40-80°C Instead of tnchlorolsocyanurate, silver cyanate may be used 59

1573

1,l -Dlhaloalkyl heterocumulenes

Cl R2N-CC13 +

l/3

L

Cl

O'Z,J~O

? R2Ny-N=C=O S Cl 25

- Cl2

23

Ll

R,NP=N-y=O Cl Cl 25a

R2 = Me2 (52%) Et2 (61%) (CH215 (24%) C13P= (63%)

2 1 6 Arbuzov reactzon To obtam phosphonyl dlhalomethyl lsocyanates 26, treatment of tnchloromethyl and tnbromomethyl lsocyanates with phosphates or halophosphlte 1s convenient, this reactlon proceeds via an Arbuzov rearrangement ‘2,‘3~50,60 The reactlon 1s performed at 8CL 120°C m the presence of catalytic amount of lron(II1) chloride

X

X,+,OAlk

Hal3C-N=C=O +

)P-OAlk n Y

x f

-

1

Hal-

Kat

YP\ CHa12N=C=0

- AlkHal

p1

'P-F-N&O Y' Hal 26

2 1 7 Special methods of syntheses of 1,I-d@oroalkyl zsocyanates Carbonylatlon of some nitrogen-contammg compounds 1sused to obtam 1,l -dlfluoroalkyl lsocyanates Perfluoroazoalkanes react with carbon monoxide under forcing condltlons (325”C, 650 atm) glvmg perfluoroalkyl lsocyanates 2 6’ N-Bromodlfluoromethanelmme 27 reacts with carbon monoxide under mild condltlons

Table 4. Phosphonyl dlhalomethylxsocyanates 26 Hal

X

Y

B.p./torr

Cl

Cl

Cl

80-82'C/13 117-l 1g°C/760

Cl

F

F

Cl

Cl

OEt

Cl

OEt

OEt

B??

Cl

Cl

B??

F

Cl

Cl

F

Yield[%]

Reference

71

50

50

50

53-66OWO.06

20

50

61-63°C/0.05

20

12

58

13

125-127'C/20

62-68'C/20 0 0CH2CH2C1 70-72 C/O.05

27

13

37

60

YLI I MATWYEV et al

1574

(2O”C, UV-lrradlatlon) yielding bromodrfluoromethyl lsocyanate 62Treatment of the azlde 28 with nickel tetracarbonyl at 25°C m acetomtrlle yields the lsocyanate 29 63

CO/h3 RfN=C=O

F$N=NR*

Rf = CF3 (88%) C3F7 (11%)

2

CO/h3

? Br-y-N&=0 F 55%

F2C=NBr 27

NdC0)4

FI

-

MeO-C-CF2CF2N3

B

MeO-C-CF2CF2N=C=0 +

28

P

MeO-C-CF2CaN

29 (20%)

Photolysls of a mixture of perfluoro-2,3-dlazabuta-1,3-dlene trlfluoromethyl lsocyanate (yield 20-36%) and N-periluoroalkyl

and perfluoroacyl fluorides gives nnmoyl dlfluondes 64

hJ F C=N-Ii&F2 2

+

RfC(0)F -

CF3N=C=O +

RfN=CF2

Rf = C3F7, I-C3F7, n-C4Fg

An ongmal method for synthesis of trlfluoromethyl lsocyanate mvolves the treatment of oxazlndme 30 with mercaptans or alkah metal thlocyanate 65,66In the case of the reaction with potassium thlocyanate, the nucleophlle 1s supposed to attack the oxazlndme nitrogen mltlally The resulting adduct 311s then attacked with the excess of nucleophlle gvmg tnfluoromethyl lsocyanate (90%)

30

CF3N,gO 2

-

+

2o"c

KSCN -KF

0

XSCN

cF3%i:-F - -KF

11

1-(SW,

CF3i;;-SCN

31

CF3N=C=O

Accordmg to patent data, ” the lsocyanates 33 and 34 were prepared by fluormatlon of ammehne 32 m the presence of sodium fluonde as HF acceptor Isocyanates 33, 34 may explode under percussion

1575

1,I-D~haloalkyl heterocumulenes F2/OoC

H2NGyoH

: F2N-y-N&O F 33

XI

+

(F2*12y-*=CP0 F 34

32

l,l-Dlfluoroalkyl lsocyanates are obtained at the thermolysls of some nitrogen heterocycles Thus, dlazetldme 35-product of cycloaddltlon of tetrafluoroethylene to dlmethyl azodlcarboxylate-1s cleaved at 600°C zn U~CUOglvmg methoxydlfluoromethyl lsocyanate 36 68,69 Oxazetldme 37 obtained from dlphenyl ketene and trlfluoromtrosomethane yields tnfluoromethyl lsocyanate after heating to 300°C ” Tnfluoromethyl lsocyanate may also be obtained by pyrolysis of oxazetldme 38 at 400°C ”

P

0

0

MeOC-N=N-COMe 15o”c

+ F2C=CF2

0

MeO&-N-N-6OMe I I F2C-CT2

28 atm

I

A

MeO-$!-N=C=O F 36 (68%)

35

Ph*c=c=o

+CF3N=0

Ph2C-C=O I I 0-N-CF3

a CF3N=C=0 35%

37

1. loo-120°c RCF2N=o 2. H20/H+ O-NH + * II F2C-CF2 F2C=CF2

COF2 -

FI O-N-C-F I I F2C-CF2

A -

CF3N=C=0

- COF2 38

Trlfluoromethyl lsocyanate 1s obtained m low yield by treatment of tnfluoromethyl lsocyamde with bls(tnfluoromethyl)ammoxlde’* or mercury(I1) omde73 under mild condltlons (20°C)

(CF3)2~-~

-r-aF_

cF3i’c

CF3N=C=o

2 2 1, 1-Dlhaloalkyl zsothzocyanates 1,I-Dlhaloalkyl lsothlocyanates 40,41 are prepared m high yields by chlormatlon of fluorothlocarbonyl lsothlocyanate 39 under mild condltlons 74,75Isotlnocyanate 39 adds chlorofluonde gvmg the lsothtocyanate 42 which then yields the 1,2,4-dlthlazole 43 at heating 76,77

Yu

1576 c12/-7&

I MATVEYEVet al

F c12/40°c c1 m-L-N&S r F-C-N=C=S - SC12 A1 Al 40 (95%) 41 (91%)

i? F-C-N=C=SJ-3g

1 C1F'-800C

_

CIS_:_N.C=S

8ooc

_

pz~;v-&

B 42

(25%)

43

The lsothlocyanate 41 may be converted into other l,l-dlhaloalkyl lsothlocyanates 44-46 by treatment with alummmm chloride or antlmonmm(II1) fluoride 74 The synthesis of the lsothlocyanate 44 mvolves the reaction of perchloro-2-azapropene with phosphorus(V) sulfide at 150°C 78To obtain trlfluoromethyl lsothlocyanate 45, the reactlon of perfluoro-2-azapropene with thloacetlc acrd may be used 79 The interaction 1s supposed to proceed via an unstable addition product which ehmmates acetyl fluoride and hydrogen fluonde glvmg the final product 45 A1C13/200C

p4s10

CC13N=C=S d

CC13N=CC12 57%

44 F1

F-y-N=C=S Cl 41

CF3N=C=S

+

WC15) 45 (39%) - MeC(O)F, HF

F Cl-y-N=C=S F 46 (29%)

T P1 82%

I

2o"c CF3N=CF2 +

CF3NH-F-S-CMe F I

MeC/:'SH

Aryl dlfluoromethyl lsothlocyanates 47 are obtained by an exchange reaction of aryl dlfluorobromomethanes wrth silver thlocyanate at 20°C 55 According to patent data,28 l,l-dlfluoroethyl lsothlocyanate 48 may be obtained by treatment of acetomtrlle with fluorothlophosgene catalysed with hydrogen fluoride AgSCN

c

ArCF2Br - AgBr

CSF2/HF MeEN 0-80°C

9

Ar-(f-N&& F 47

? Me-$T-N=C=S F 48

Ar = Ph (34%) (43%) p-t-BuC6H4 (43%) p-c1cp4

1,l -Dlhaloalkyl heterocumulenes

1517

Alkyl thlocyanates RS-C=N are known to lsomenze mto more thermodynamically stable lsothlocyanates RN=CLS For 1,l -dlchloroalkyl thlocyanates RCCl,SCN, similar conversions are not observed *’

2 3 1,1-Dlhaloalkyl carbodamldes A general method for the synthesis of carbodumldes 49 contammg a trlfluoromethyl substltuent 1s a reaction of pertluoro-2-azapropene with pnmary ammes *I,*2The reaction 1s performed under mild condltlons (- 1O’C) m the presence of potassium fluoride as the HF acceptor If m this reaction organic bases, like tnmethylamme, are used, instead of potassium fluonde, then the carbodumldes 49 cannot be prepared because they gve dl- or tn-menc products 83

KF

CF3N=CF2

+

CF3N=C=NR

RNH2 - KHF2

Table 5. N-Alkyl(aryl)-~~~trlfluoromethyl R

a.p./torr

49

carbodumides Yield[%]

49 Reference

75Ow90

46

81

111 ‘C/760

72

81

46OC/70

58

81

61'C/9

69

81

45-47'C/4

80

81

p-MeOC6H4

81°C/2

69

81

! ye (Me0)2P-C

8g°C/2

58

82

92-94°c/2

60

82

40

82

50

82

72

82

Et H2C=CHCH2 t-Bu n-C6H11 Ph

it 8 ?" (EtO)2P-7 Et

I?Ye

(Et0)2P-y

n-Pr

& T”

(EtO)2P-y Xl-BU

7 Y”

(+BuO)2P-y

Et

Yu

1578

I MATVEYEV~~ al

To obtain l,l-dlfluoroalkyl carbodumldes 50 the Staudmger reaction between 1,1-dlfluroalkyl lsocyanates and phosphme lmmes may be used 42,84,85

- 2o"c RCF2N=C=0 +

w

Ph3P=NR'

RCF2N=C=NR'

- Ph3PO 50

When perchloroethyl lsocyanate 14 IS used m the Staudmger dumldes 51 or their isomers-dlchlorodlazadlenes 52 are formed only wth stencally hindered substituents R at the mtrogen atom, less sterlc hindrance (R = I-Pr, Ph) the reaction products are Me3C6H2, a mixture of the isomers 51 and 52 is obtained (1 7)

reaction, 1,l-dlchloroalkyl carbo*‘**6Carbodumldes 51 are obtained for example, when R = t-Bu With dlazadlenes 52, when R = 2,4,6-

52

51, R = t-Bu (76%) 52, R = 1-Pr (74%), Ph(47%) 51 + 52, R = 2,4,6-Me3C6H2 (67%)

A more preparatively convenient method for the synthesis of dlchlorodlazadlenes 52 mvolves treatment of N-(alkyhdene)ureas 53 with phosphorus pentachlorlde Treatment of N-mesltyl (alkyhdene)urea (53, R = 2,4,6Me3C6HJ with phosphorus pentachlorlde gives nse to a mixture

Table 6. Carbodimides 50 obtained by Staudingerreaction R CF3CF2

R' Ph

ccl3

I-Pr

cc13

Ph

ccl3

2,4,6-Me3C6H2

Ph Ph

I-Pr 2,4,6-Me3C6R2

B.p./torr

Yield[%]

Reference

72OC/7

37

84

87OC/lO

42

85

65OWO.04

43

85

98'C/O.O7

63

85

74-76'C/1

36

42

126-128'C/O.O2

75

42

1579

I,l-D~haloalkyl heterocumulenes

of isomers 51+52 The ureas 53 are obtained by the reactlon of perchloroethyl two moles of a pnmary amme at - 20°C m ether 8586

lsocyanate 14 with

Pc15/120°c

*rn2 CC13CC12N=C=0 - RNH2.HC1 14

CC13;;N-i-NHR - POC13, HCl 53

R = L-PIT,ph [4p*.

52

1

5, + 52

R = 2,4,6-Me3C,p2 76%

The chlormatron of bn(tetrachloroethy1) carbodumlde 54 gves rise to perchloro&azadlene 56, ’ Evidently, formation of dmzadlene 56 instead of expected bls(perchloroethyl) carbodumlde 55 86*8 1s a result of a chlorotroplc shift m the C-N=C tnad of the mtermedlate carbodumlde 55 Of the two possible chlorotroplc isomers 56 and 57, clear evidence (35Cl NQR and 13C NMR) 1s given m support of the structure 56 Cl2/h$ CC13PB-N-C=N-g~C13 Cl 54

___c

c

cm

160'c

1

F1 ? C-N~=N-CCC~ 331 Cl bl 55

?

CC13~=N-~&CC12CC13 Cl Cl

( CC13F=N-f-N=FCC13)

Cl

56 (95%)

Cl

Cl

57

1,l -Dlfluoroalkyl carbodurmdes 50 and 58 are obtained by fluormatlon of respective chlorme compounds with caesmm fluonde or anttmony(II1) fluonde m the presence of catalytic amount of antimony(V) chlonde *z-*’ CsF/150°C CC13~=N-~sNR Cl Cl

.

7 CC13;-N.C=NR

R = I-or (60%) 2,4,6-Me3c6H2(66%)

50

SbF3/1000C CC13F=N-y=N-CC12Cc13 Cl Cl

c (Sbc15)

7 7 CC13F-N=C=N-SCC13 F F 58 (46%)

Yu I MATWYEV~~ al

1580

Several special methods for the synthesis of perfluoroalkyl carbodumldes are noted In the presence of caesmm fluonde, perfluoro-2,4-dlazapenta- 1,Cdlene lsomenzes rapldly at room temperature glvmg bls(tnfluoromethy1) carbodnmlde 88Imldoyl azlde 60 prepared from perfluoroazomethme 59 on heating to 300°C undergoes a Curtms-hke rearrangement glvmg the perfluorocarbodnnude 61 *’ By treatment of petiuorooxazlndme 30 with tnmethylsllyl cyanide the N-sllyl carbodnmlde 62 1s obtained go

CsF ,- cF3N=C=NcF3

F2C=N-CF~-N=CF~

NaN3

c CF3N=dN3 'c(cF3)3

CF3N=ClF cm3)3

A

3

61 (73%)

2

60

59

CF N=CPN-C(CF~)~

_ N

- 100 + 22Oc +

CF3N=C=N-Sde3

Me3Si-CsN - COF2

62 (95%)

Tnfluoromtrosomethane with methyl lsocyamde gives the cychc adduct 63 which 1s cleaved by heating zn uucuo gvmg N-tnfluoromethyl carbodumlde 49 and methyl lsocyanate 7o The carbodnmlde 65 with a tellunum-mtrogen bond 1s obtamed by condensation of the amme 64 at - 80°C m the presence of potassium fluonde as HF acceptor ”

CF3N=0 + 2 Me&C

25'C

MeN=C-C=NhIe II 0-N-CF3

4oo"c -

CF3N=C=NMe +

MeN=C=O

49

63

KF

2 TeF5NHCF3 64

I

TeF5NH-y=N-CF3 F -rn2

TeF5N=C=NCF3 65 (10%)

2 4 Other 1,1-dlhaloalkyl heterocumulenes N-Tnfluoromethyl ketenelmmes 67 are obtamed m high yield by pyrolysis of oxazetldmes 66 which are produced by condensation of trlfluoromtrosomethane with allenes ”

1581

1,I-Dlhaloalkyl heterocumulenes (CF3)2N-CH=C=CRR' _(CF3)2B-~-_F=CRR' + 0-N-CF3 CF3N=0 66

+

CF3N=C=CRR' +

200-3OO'C

(CF3)2N-CH=0

67

67,

R=RLH (100%) R = H, ti= (CF3)2N (98%) R = R'= (CF3)2N (90%)

By treatment of perfluoropropyl lsocyanate with dlphenylmethylene(tnphenyl)phosphorane the ketenelmme 68 1s formed which lsomenzes to the perfluoroazadlene 69 with migration of a mobile a-fluorine atom m the C-N=C tnad even at ambient temperature 93

20°C, ether C3F7N=C=0 +

Ph3P=CPh2 - Ph3P0

CF3CF2CF2N=C=CPh2 I 68 I CF3CF2;.N-;=CPh2

69 (92%)

l,l-Dlfluoroalkyl lsoselenocyanate 70 1s obtamed by the exchange reactlon of aryl bromodlfluoromethane at 20°C m methylene chlonde 55 AgSeCN

:

p-t-i3uC6H4CF2Br - AgBr

B p-t-?3uC6H4FN=C=Se F 70 (39%)

3 PROPERTIES

A peculiarity of lsocyanates, carbodnmldes and other heterocumulenes with two halogen atoms m the cr-posltlon of their alkyl substltuents, 1stheir highly electrophlhc character and higher reactivity compared with usual alkyl(ary1) heterocumulenes In molecules of these compounds two electrophlhc centres exist Ifal _C-N&=X

81

Yu I MATWYEV~~~

1582

As a rule, reactions of 1,l-dlhaloalkyl heterocumulenes with nucleophlhc reagents proceed with parttapatlon of both heterocumulene group and a-C-atoms Differences m reactlvlty of these two groups may be dlfferentlated by a careful choice of nucleophlhc reagent and condltlons 3 1 Anlonotroprc conversions An important property of l,l-dlhaloalkyl heterocumulenes 1s their ability to undergo amonotropic conversions These conversions are most thoroughly investigated for 1-chloroalkyl lsocyanates ’ The posltlon of eqmhbnum A s B depends on the nature of a substltuent R and may be completely shifted towards one of the two forms For example, the heterocumulene structure A exists when R = Ccl,, CF3 but the eqmhbnum 1s completely shifted towards the lmmocarbonyl chloride form B when R = Ar ?

R-C-N=C=O = hl A

R-p=N-y=Q Cl Cl B

The munocarbonyl chloride form B 1s preferred wth increasing number of chlorine atoms at the a-carbon atom Thus, chloromethyl lsocyanate has the heterocumulene structure ClCH,N=C=O, dlchloromethyl lsocyanate IS a mixture of Isomers Cl&H-N-C=0 P ClCH-N-C(O)CI, and tnchloromethyl lsocyanate exists predommantly as N-chlorocarbonyhmonophosgene Cl,C=N-C(O)Cl For l,l-dlfluoroalkyl lsocyanates, no conversion mto the correspondmg lmmocarbonyl fluorides 1s observed As for the correspondmg bromo-compounds, they are unstable and may have either lsocyanate or the munocarbonyl bromide structure ’ 3 38 As was mentioned above (see 2 3 ), some l,l-dlchloroalkyl carbodumldes have a heterocumulene structure C only when stencally hindered substltuents R are located at the nitrogen atom In other cases an lsomenc dlazadlene structure D 1spreferred No conversion between these forms 1sobserved

?

CCl$;N=C=NR

C

CCl$;N-;;NR

D

RecentlyQ4 a reversible chlorotroplc lsomerlzatlon of perchloro-3,5-dlazahepta-2,4-dlene 56 mto perchloro-3,5-dlazahepta-2,5-dlene 57 was observed by rapid cooling of a molten compound 56 with hqmd nitrogen and subsequent crystalhzatlon of glassy product at ambient temperature The isomer 57 1s stable at liquid mtrogen temperature but converts completely mto the thermodynamically more stable compound 56 at ambient temperature durmg several days

CCl$=N-y=N-CC12CC13 Z Cl Cl 56

F1

CCl$N-$-N="CCl, bl hl e 57

As was mentloned above (see 2 4 ), N-( l,l-dlfluoroalkyl) ketenelmmes described m literature may exist either m heterocumulene E or the azadlene G form

1583

I,1 -Dlhaloalkyl heterocumulenes

9

/

/

R C-NxC=C\ fl F

All known I,1 -dlhaloalkyl exclusively

R$=N-F=C, F F

E

G

lsothlocyanates

RCHal,N==C=S

exist m heterocumulene

form

3 2 Reactions wzth protlc nucleophlhc agents 3 2 1 Reactions with alcohols, phenols, throphenols 1, 1-Dlchloroalkyl lsocyanates react with one mole of alcohol or phenol under mild condltlons (0°C) m the presence of an orgamc base producing N-alkyhdenecarbamates 71 which convert mto the carbamates 72 under the effect of excess alcohol ’ 2*43~50 56,60*g5*g6 The reaction of perchloroethyl lsocyanate 14 with two moles of p-chlorothlophenol proceeds slmdarly However the thlocarbamate 1s unstable thermodynamically and rearranges mto l;l-dl(arylthlo)alkyl lsocyanate 73 by heating to 130°C ” In contrast with l,ldlchloroalkyl aocyanates, the reaction of perfluoroalkyl lsocyanates with alcohols (0-20°C) mvolves only the N=C=O group leading to the relatively stable carbamates 74 The latter are cleaved by heating with excess alcohol glvmg perfluorocarboxylates 75 and carbamates 76 ’ a,98More stable addition products, the thlocarbamates 77, are formed m reactlons of perfluoroalkyl lsothlocyanates 45, with alcohols ” Et3N

F1

RC-N=C=O + bl

RbH

R&I,

+ - Et3N.HCl

Ry=N-F=O Cl OR' 71

Et3N

- Et3N.HCl

72,

CC13CC12N=C=O +

2 ArSH

.. Iy=N-y=o OR' OR' 72

R = Alk, Alk2N, (Alko)$'(o)

2 Et3N

Y CCl3FN-F=O 2 -2 Et3NsHCl SAT SlLr

Sk CCl3;;lrNEC=o

14 73 (72%) Ax'= p-C1C6H4

RfCF2N=C=0 f AlkOH -

P

RfCF2NH-C-OAlk

AlkOH/A f e - RfC-OAlk + AlkOCNH2 75

74 cao-90%)

CF3N=C=S + 45

ROH -

5

CF3NH-C-OR 77

76

R - Me (75%) Et (78%)

The behavlour of l,l-dlchloroalkyl lsocyanates containing an electron mthdrawmg substltuent R (like CC13, CF3) m reactions with catechols 1s unusual The reactlon proceeds under mild

Yu

1584

MATVEYEVet al

I

condltlons (G2O”C) m the presence of HCl acceptor, the products are the lsocyanato-1,3-dloxolanes 78 99 Apphcatlon of this reaction 1s restncted to catechol derivatives because ahphatlc 1,2-dlols m X

Cl

Rh-N&O 61

OH

0

N&IO

0

R

)3X

2 Et3N

0

+ Y

OH

-2 Et3N.HCl

78

these condltlons gve polycondensatlon products Wider scope 1s possible for a modified method”’ which consists of prehmmary addition of a methanol molecule to the lsocyanate group of compound 14 The carbamate 79, with ethylene glycol or catechol m the presence of tnethylamme, gves the dloxolanylcarbamates 80 and 81, respectively, which after heating with ethyl trlchlorosllane m benzene or with phosphorus pentachlorlde m toluene gave lsocyanato- 1,3-dloxolanes m good yields + CC1 C=N-$-OMe 31 Cl 0

CC13CCl,N=C=O + MeOH - HCl

14

79

As was already mentioned (see 2 3 ), for l,l-dlchloroalkyl carbodnmldes, the lsomerlc form of dlchlorodlazadlenes 1s preferred Interaction of the latter with some protlc nucleophlles gives rise to carbodnmldes Thus, dlchlorodlazadlene 52 treated with one mole of methanol m the presence of tnethylamme gives pnmarlly methoxychlorocarbodumlde 82, which ehmmates methyl chloride at heating to 90°C glvmg acyl carbodumlde 83 However, if the reaction of dlazadlene 52 with methanol 1s performed m the absence of HCl acceptor then no acyl carbodumlde 83 is obtained and the final product 1s a cychc compound 84 or 85 lo’ Table 7. Isocyanato-1,3-dloxolanes 78" R

X

Y

cm3

H

H

46

CF3

H

H

71

Cl

H

58

Cl

Cl

42

CF3 CF3

Yield[%]

1585

l,i-Dlhaloalkyl heterocumulenes pie

n

CC1 C-N=C=NPh 31 -MeCl Cl

fl

CC13C-N=C=NPh 83

82

MeCH

(89%)

cc13~_N~m cc13
_

A

-MeCl, HCl,

Treatment acceptor,

of dlazadlenes

as well as wth

91, respectively

52 and 56 with thlophenols

sodnnn

phenolates,

yields

NPh

NPh

cc1,c(o)c1

or ethylene

l,l-dlsubstltuted

glycol

of HCl

m the presence

carbodunudes

8688

and W-

86*87*101 2 ArSH, 2 Et3N 1

CC13~=N_~=Nph

Cl

CCl3E=C==;

cC1;~;=C=mh

~/_

Cl

52

Ar = P-ClCgH4

-2 Et3N HC.1 87 (90%)

I 2 PhONa

OPh

-

CC+N=C=NPh

-2 NaCl

OPh 88 (83%)

4 ArSH, 4 Et3N

SAr

?A'

CC13G~=C=N-E;~13

89

(89%)

Ar = p-ClC6H4

CC1 C=N-y=N-CC12CC13 31 Cl

Cl

1 ’ HonoH9 4 Et3N -4 Et3N*HC1

_

CC1;XN=C=;XCC13 UP

56

14 -4 NaCl

vo 90 (72%)

CC13;:.C=N~13 OAr

91

AAAr

or = Ph (80%), p-hbCgH4

(38%)

Yu

1586

I

MATVEYEV~~U~

3 2 2 Reactzons wzth amznes The reaction of 1,1-drchloroalkyl lsocyanates with primary ammes gave alkyhdeneureas 92 and 93 47~68~80~102 Slmdar products are obtamed with N-sllyl ammes lo3 2 d'iH2

?

2Rim2 Ry=N-y=O Cl N-l& - RbH2QIC1

.

RF-N=&0 Cl

- RtW2*HC1

P RT=N-C-d Nd

92

93

R = Alk, Ar, Alk2N R'= Alk, Ar

Perfluoroalkyl lsocyanates treated with one mole of primary amme at 0°C produce unstable ureas 94 which are cleaved with excess amme gvmg a mixture of products lo4 Reaction of perfluoroalkyl lsocyanates wth secondary ammes involves both electrophlhc centres and gves rise to alkyhdeneureas 95 lo4 Slmllar products are obtained if methylene-bls-dlalkylammes % are used lo5 RNH2

tl RNH2II s RfCF2NHCNHRRfCNHR + RNHCNH2 +

RfCF2N=C=0 -

(RNHj2C=0

94 m2NH

f) C2F5y=N-C-NPh2

C3F7N=C=0

NPh2 95 (709&l P

C2F5y=N-C-me2 -FCH2NhIe2

NNle2

Tnfluoromethyl carbodnmldes 49 react mth ammoma exothermlcally glvmg cyanoguamdmes 98 via the mtermedlate adducts 97 lo6 lo7 Phosphorus-contammg carbodmmdes 49 react with secondary ammes, the phosphorus coordmatlon number being changed 108*10g The last reaction IS unusual because the formation of hexacoordmated phosphorus compounds 99 IS assumed from respective tetracoordmated phosphorus compounds

NH3 RN=C=NCF3 A9

NH3 PJJH-P=N-CF3 I - NH4F NH2

.

RNH-T=N-CEN

97

R = Alk, Ar, (AlkO)2P-y Alk

a?

(R0)2P-y-~=c=~~~3 R' 49

R;NH "Y"' F4;$;NH 99 (33-47%)

R, R; RI= Alk

hx2 98 (50-905&I

1587

1,l -Dlhaloalkyl heterocumulenes

Dlchlorodlazadlenes 52 treated with eqmmolar quantity of mesldme m the presence of HCI acceptor (O’C, ether) are converted mto umdoyl carbodnmldes 100 lo1 One should note that the apphcatlon of this reaction IS restricted to the use of stencally hmdered aromatic ammes because N-aryl lrmdoyl heterocumulenes unthout substltuents m ortho-posltlons of the benzene nng are unstable and undergo easy conversion mto cychc products ’ ” ’ ’ ’ Treatment of dlchlorodlazadlenes 52 with pnmary ahphatic ammes also gives nse to lmldoyl carbodnrmdes 101 However, m contrast with the carbodnrmdes 100, the compounds 101are unstable and after 30-50 minutes gve substituted 1,Zdlhydro-1,3,5-tnazmes 102 ’ 12,1’ 3The rearrangement of lmldoyl carbodumldes 101 mto trlazmes 102 IS a 6n-electrocychc reaction *MMiH2,

2 Et3N

/-Mes CC13C-N=C=NR 100

R = ~-PI-(46%) Mes (86%) Ph (81%)

CC13i;NG;NR N-Cd CC13kN=C=NR

52 -2 Et3N.HCl

101

[1,5]H-shdt 2o"c

102 (68-96%) R = Ar f&H = 1-W. PhCH2, C-C6H,,

*Mes = 2,4,6-Me3C6H2

Perchlorodlazadlene 56, the chlorotroplc isomer of brs(perchloroethyl)carbodnmlde, reacts with pnmary aromatic ammes m the presence of a base under mild condltlons ((r2O”C, ether) yielding substituted 4-aryhmmo- 1,3,5-tnazmes( 1H) 104 ’ l4 This reaction seems to be connected with mtramolecular nucleophlhc substltutlon m the pnmanly formed adduct 103

ArNH2, Et3N CC13y=N-F=N-CC12CC13 Cl Cl

- Et3N.HCl

56

Arm29

,Y

3 Et3N

-3 Et3N.HC1

-

CCl;NkCl A, 104

Ar = Ph (85%) Mes (77%) 3

1588

Yu I MATVEYEV~~~

3 2 3 Hydrolysis Hydrolysis of 1,I-dlhaloalkyl lsocyanates, depending on Its condltlons (acid or alkaline medium),,_ gves nse to carboxyhc acids, their salts or amides 3-5,’ 4,’ * A careful hydrolysis of tnfluoromethyl lsocyanate with the use of hydrated salts produces bls(tnfluoromethyl)urea I4 Hydrolysis of perfluoroalkyl carbodumlde 50 leads to N-phenyl-N’qerfluoroproplonylurea 84 H20/H+ (

R-L,

RCOOHal = Cl, F

NlC12.0.5H20 2 CF3N=C=0 H20 C3F7N=C=Nl'h-

P CF3NH-C-NHCF3

P 17 C2F5C-NH-C-NHPh

50

3 2 4 Reactions wzth other protlc nucleophdes Tnchloromethyl lsocyanate, which exists predominantly m the lmmocarbonyl chlonde form, reacts with N-monosubstltuted amides of benzenesulfomc acid and dlalkyl phosphonc acid m bollmg organic solvents, giving N-(dlchloromethyhdene)ureas 105 and 106, respectively ’ ”

105 (60%)

CC13N=C=0

106

Perfluoropropyl lsocyanate reacts with acetamlde and urea even at ambient temperature ’ I6 In the first case the addltlon product, urea 107, 1s formed which hydrolyses easily glvmg dlacyl-urea 108 In the second case, even with the excess of lsocyanate, only one ammo group reacts and hydrolysis of a-CF,-group cannot be avoided As a result, perfluoroproplonyl bmret 109 1sobtained

fl

MeCNH2/200C

9 R C3F7NH-C-NH-CMe 107 (71%)

H2°

li' FI E - C2F5C-NH-C-NH-CM 50-60°C 108

C3F7N=C=0 f 4 !? C2F5C-NH-C-NH-C-NH2 109 (40%)

l,l-Dlhaloalkyl

1589

heterocumulenes

Reactions of l,l-dlhaloalkyl lsocyanates wtth blfunctlonal nucleophlles such as amldmes, hydrazmes, guamdmes and hydroxylammes provide convement approaches for the synthesis of various heterocychc compounds 68~‘02~117-12’

?

I

R-F-N&=0

+

R-C

#NH

RyNyOH

'NH2

Cl

-2 HCl

60-958

R = CC13, Ph R'= Alk, Ar, AlkS, ArNH

?

PhC-N=C=O

Z

Phy=N-7~0 Cl

61

+

PhyN,O

H2N-NH2

Cl

~--NH

-2 HCl

58%

F MeO-b-N&O B

2

-2 m

61%

3 3 Reactions with aprotlc nucleophrles Perfluoroalkyl lsocyanates give, with tertiary ammes and alkah metal fluorides, reactive adducts 110, 111which may be used for synthesis ‘22-‘24For example, alkylatlon of the adduct 111yields the carbamoyl fluonde 112 ’ 24

2o"c CJF7N=C=0

+

-.gO

Et3N

C3F7N=CGEt 110

CF3N=C=0

+

CsF -

-*o CF3N-Cy 'F 111

3 (72%)

BrCH2CH=CH2 Cs+

i? ,C-F

_ CF3N'CH CH=CH 2 2 112 (58%)

Under forcing condltlons (3OO”C),alkali metal fluondes catalyse the cleavage of perfluoroalkyl isocyanates givmg nitnles ‘X Heating of petiuoroalkyl lsocyanates with dver(I1) fluoride m the presence of hydrogen fluonde as a catalyst yields perfluoroazoalkanes l9

Yu I MATVEYEV~~ al

1590 FC3F7N&0

F-

Tr_

-

C2F5~-N-p=0 Fj F - F-

C2F5~'N'~'0 F F

f\ C2F5y=&F2-O- FFS

-

C2P5C=N +

COF2

AgF2/HF/60°C C2F5N=C=0

.

C2F5N=NC2F5

- CoF2, C4F,0

Perfluoroalkyl lsocyanates under forcmg condltlons (18O”C, autoclave) m the presence of tetraethyl ammomum bromide as a catalyst, react with oxlranes producmg 2-oxazohdones, for example, 113 ’ ** l,l-Dlchloroalkyl lsocyanates treated with oxlranes gve alkyhdene carbamates 71 96,‘26The last reaction IS performed by heating (1OO’C) m the presence of a Lewis acid

C3F7N=C=O +

\o/ 113 (20%)

AlCl3

?

RF-N=&0 f Cl

RT=N-y=O + Cl Cl

R' -V--

fl RF=N-C-0-C$CH2Cl Cl 71 (60-80%)

R = Cl , Alk, Ar; d=

H, Alk, Ar

Trlchloromethyl lsocyanate reacts with N-phosphoryl avndmes under mdd condltlons with openmg of the azlndme rmg glvmg N-phosphorylated alkyhdeneureas 114 and products of theucleavage ’ 27

2o"c CC13N=C=O S

-

Cl2C=N-Cf" Cl

&

c

+

s

,C-N&Cl2

(~0)2P-N 'CH2CH2C1 114 114, R = Et (15%) n-Pr (20%)

+

B

(R012P-Cl +

C1CH2CH2N=C=0

l,l-Dlhaloalkyl heterocumulenes

1591

l,l-Dlhaloalkyl lsocyanates are urldely used as electrophlhc components of for the synthesis of a-phosphorylated alkyl lsocyanates “’ Dlchloromethyl lsocyanates react with phosphates and halophosphltes producing a mixture vanous extents of phosphorylatlon 1’5, 116, dependmg on the condttlons

Cl R&N&O bl

z

Ry=N-y=O + Cl Cl

f ? FI A X2P-y-N=&0 + (X2P)2F-.N=C=O AlkO-PX2 _ - AlkCl R R 116

115 R = H. Cl

X=Cl.F

the Arbuzov reaction and tnchloromethyl of lsocyanates with of the reactlon and

OAlk

reagents ratio Reaction 1s performed on heating the reagent mixture, m the presence or absence of a catalytic amount of anhydrous u-on(II1) chlonde 50,6096,‘29-‘3’When dlalkylammodlchloromethyl lsocyanates 25 are used m Arbuzov reaction, phosphorylated formamldmes 117 are obtained 56

?

Alk2Ny-N=C=O = Cl 25

Alk2Ny=N<=O Cl Cl

+

2 (EtO13P A - EtCl

25a

PP

Alk2Ny=N-C-P(OEt)2 P(0)(OEt)2 117 (50-54%)

Phenyl dlchloromethyl lsocyanate reacts with sodium azlde m aqueous acetone at 30°C to produce 5-phenyltetrazole 47,‘02In anhydrous solvent this reactlon gves nse to a complex mixture of heterocychc products

?

PhT-N=C=O Z Cl

Php=N-p=O Cl Cl

+ NaN3 53%

Dlchlorodlazadlenes 52-chlorotroplc isomers of l,l-dlchloroalkyl carbodunudes-m contrast to the reactlons of protlc nucleophlles where they mamfest themselves as latent carbodumldes (see 3 2 1 ,3 2 2 ), show the features of lmldoyl chlonde reactlvlty when treated with ttvnethylsllyl avde Imtlal reaction products (m bolhng benzene) are the tetrazoles 118 Upon treatment with excess tnmethylsllyl avde under forcmg condltlons (lOO”C, without solvent) bls-tetrazoles 119 are formed The reaction of trlmethylsllyl avde mth perchlorodlazadlene 56 1s unusual and the substituted 1,2,4-tnazole 121 1s formed Authors believe that the reaction proceeds vra the formation of the mtermedlate mtrene 120 86,132

Yu

1592 MegSiN CC13y=N-F=NR - rvZe3slc1 Cl Cl 52

I MATWYEV et al

Me3Sfl3 CC13y=N-f--+iR 9 - Me3SiCl Cl N, p N

CC13~-_T-p+IR N\ #N N /N N 'N'

118

119 119,

Me3SxN3/120°C CCl3y=N-y=N-CC12CC13 _ Cl Cl - Me3SiCl 56

-

R = 1-Pr (69%) Ph (89%)

CC13y=N-y=N-CC12CC13N3 Cl - N2

cc13JQccl 2 1- cc13~iL2cc cc1 3

121 (95%)

3 4 Reactions wrth hydrogen hahdes, carboxykc and other acids Addltlon of hydrogen halides to the lsocyanate group of 1, 1-dlhaloalkyl lsocyanates IS, as a rule,

a reversible process Thus, hydrogen chlonde easily adds to tnfluoromethyl lsocyanate to produce the carbamoyl chlonde 122 which IS stable only at temperatures below 0°C As was already mentioned (see 2 1 3 ), reaction of trlchloromethyl lsocyanate with hydrogen fluoride may be used for obtammg tnfluoromethyl lsocyanate 39,40

CF31I=C=O +

HCl c A

CF3NH-C:' Cl 122

Trlfluoromethyl lsocyanate gives unstable adducts wth carboxyhc acids, these adducts undergo degradation even at 20°C glvmg amides 123 133The main reactlon products from perfluoroalkyl lsocyanates and perfluorocarboxyhc acids or their anhydndes are mtnles and perfluoroacyl fluondes ’ 34

2o"c CF3N=C=0 + RCOOH -

1

P 13 CF3NH-C-O-CR

R

CF3NH-CR

-

- co2

R = Me, CF3

75Oc C7F15N=C=0 +

C7F,5COOH

- co2

C6F,3CaN +

rl C7F,5C-F

123

l,l-Dlhaloalkyl

1593

heterocumulenes

Reactlon of l,l-dlchloroalkyl lsocyanates with eqmmolar amounts of strong acids, such as tnchloroacetic acid and methanesulfomc acid, IS a convement method for the synthesis of acyl lsocyanates ’ 35-137For example, chlorocarbonyl lsocyanate 124, an important reagent m lsocyanate chemistry, IS obtamed by treatment of tnchloromethyl lsocyanate with methanesulfomc acid m high yield 137,138

MeS03H

0

CC13N=C=0 =

C12C=N-Cc Cl

- MeS02C1, HCl

Acidic phosphates add easily to the lsocyanate carbamoyl phosphonates 125 13’

CF3N=C=0 +

124 (88%)

group of perfluoroalkyl

2o"c

FI

(Alk0j2P-H

s Cl-C-N=C=O

lsocyanates

giving

!1? * CF3NHC-P(OAlk)2 125 (70-W%)

An example of the reaction of dlchloroalkyl lsocyanates with CH- acids IS the reaction of phenyldlchloromethyl lsocyanate wth dimedone, this proceeds under mild condltlons (ZO’C, ether) glvmg the btcychc oxazmone 126 I40

F1

PhC-N=C=O ZX'h~;N-;,O Al

+

o~"~Ho~o_22E::;Hc;

ph>'&,o

126 (30%)

3 5 Addltron of 1,l -dlhaloalkyl lsocyanates to multiple bonds Trlchloromethyl lsocyanate adds to the aldehyde carbonyl group m boding benzene, with pyndme as a catalyst, producing N-dlchloromethyhdene carbamates 127 14’ Ketones do not react m this way

0

CC13N=C=0 s

C12C=N-C/= Cl

+

RCH=O -

A

e

RYHO-C-N=CC12 Cl 127 R = Ccl3 (60%) Ph (57%)

Yu I MATVEYEVef al

1594

The reaction of tnchloromethyl lsocyanate with aryltnfluoromethyl ketlmmes 1s a preparative method for the synthesis of I-chloroalkyl lsocyanates 130 142*‘43 The m&ally formed adduct 128 ehmmates hydrogen chlonde m boding toluene gvmg N,N-bls(alkyhdene)ureas 129 The latter eliminate chlorocyanogen m the presence of acldlc (HCI) or basic (Et,N) catalysts and yield 1-chloroalkyl lsocyanates 130 CC13N=C=O =C12C=N-CR0 + 'Cl

0 CF Ooc CF A '3c=NH _c 3%NH-~-N=CC12--_ AdAl Ar' - HCl 128

FI 31,C=N-C-N=CC12 _ AT 129

FC

Fi;x;;c=O

130 130, Ar = Ph (70%) p-MeC6H4 (30%) p-MeOC6H4 (50%) p-C1C6H4 (55%) p-CF3C6H4 (75%)

Phenyldlchloromethyl lsocyanate reacts wth aromatic mtnles at 100°C m the presence of hydrogen chlonde yielding substituted 1,3,5-tnazmes 7 With ahphatlc mtrlles a mixture of products IS obtained including substituted 4(3H)-pynmldones 131, 132, and substituted pynmldme 133 ”

N$N " A Ar Ph"N

I

ArC=N/HCl

I

?

Phy-N&O Cl

===Phy=N-7~0 Cl Cl AlkCH2C=N/HC1

Ph$GfIO

+ +

PhC=N

N\,,Alk J Cl 131

132

133

As was mentloned above (see 2 1 2 ), the reaction of tnchloromethyl lsocyanate with tnchloroacetomtnle IS a convement method for the synthesis of perchloroethyl lsocyanate 33 Tnchloromethyl lsocyanate IS added to the C=N bond of aryl cyanates to produce bls(alkyl1dene)ureas 134 m bolhng benzene m the presence of a basic catalyst ‘44 Dlalkylammodlchloromethyl lsocyanates 25 are added to dlalkyl cyanamldes under mild condltlons giving bls(alkyl1dene)ureas 135 4v

1, I-Dlhaloalkyl .O

CC13N=C=O =

C12C=N-C, Cl

1595

heterocumulenes

+ ArOCPN -

i?

A

Ary=N-C-N&C12 Cl

(PSI

134 134,

Y1 Me2NF-N=C=O tNe2NpN-y=0 Cl Cl Cl

+

2o"c Me2N-C=N -

Ar = Ph (70%)

f? Me2Ny=N-C-N=$ZNMe2 Cl Cl 135

(87%)

25a

25

Alkyl(ary1) lsocyanates are known’45 to react with mtrlle oxldes with difficulty to produce [2 + 3]cycloaddltlon compounds 1,l -Dlchloroalkyl lsocyanates, m contrast with lsocyanates, react with mtnle oxides easily m the presence of catalytic amount of tertiary amme to give linear products 0-(alkyhdeneammocarbonyl)hydroxamoyl chlorides 136 146One should note that 1, I-dlchloroalkyl lsocyanates exlstmg m equlhbrmm v&h then lmmocarbonyl chlonde form, for example, ArCCl,N=C=O P ArCCl=N-C(O)Cl, do not react m this way even under forcing condltlons

?

RC-N&=0 bl

+

l&N-O

2o"c -

d&N Cl - '0 R-k-N-C\= A1 O 1

1 -

0 R(C=N_O&N=CR A1 bl 136 (58-8956)

R = Ccl?, CF3 R'= Ar, PhC(0)

Perfluoroalkyl lsocyanates react with ketenes at amblent temperature via [2 + 2]-cycloaddltlon producing azetldmedlones 137 ‘16 Reactions of perfluoroalkyl lsocyanates wtth both enammes and lsomtnles also proceed easily but lsolatron of the products 1s dficult However, stable ammopyrrohdones, for example 138, may be prepared by reaction of perfiuoroalkyl lsocyanates with enammes and lsomtnles ’ ** 2o"c C3FgbC=0

+

H2c=c=o

0 c3F7-

-

0

P

137

(77%)

+2o*c C3F,+kC=0 +

Me2C=CH-NZO

-

c-C6H,,N'C Me Me

Yu I MATVEYEV~~ al

1596

3 6 El~mmatlon of hydrogen halides and halogens

1, I-Dlhaloalkyl lsocyanates wth hydrogen atoms m the /?-posltlon may be converted mto vmyl lsocyanates by dehydrohalogenatlon Thus, 1,1,2-tnchloroethyl lsocyanate heated to 140°C m the presence of a catalyst (calcmm chlonde or activated charcoal) gives 1,Zdlchlorovmyl lsocyanate m high yield 37Dehalogenatlon of perhaloalkyl lsocyanates may be performed by treatment urlth zmc m dlglyme or tetrahydrofuran’ O,l47 or with methyl dlchlorophosphlte 43

?

A

ClCH2j;N=C=O -

ClCH=T-N=C=O Cl

- HCl

93x

T

XCF27-N=C=O R

2n/60°c CF2=7-N&O R

- znX2

3241%

X =

Cl, Br R = F, CF3

e

MeOPC12

C12P-CC12CC12N=C=0

* - MeCl, POC13

P Fl C12P-'f=C-N&O Cl 63%

Dechlormatlon of perchlorodlazadlene 56---&e chlorotroplc isomer of hs(perchloroethyl)carbodurmde-proceeds unusually Treated with ethyl dlchlorophosphlte, ths compound ehmmates two chlorme atoms m the 1,5-positions and undergoes cychzatlon producmg substituted 4H-nmdazole 139 This reaction 1s supposed to proceed via halophlhc conversion to form an rntermedlate lomc pan AB, W&I subsequent ehmmatlon of amon Cl- and cychzatlon to the final product 86,87Instead of ethyl dlchlorophosphlte, tnphenyl phosphme or zmc (m dlglyme) may be used as dechlormatmg agents

CC13y=N-y=N-CC12CC13 + Cl Cl

EtOPC12

e

56

3 7 Other conversions Trlfluoromethyl lsocyanate reacts with dlmethylformamlde smoothly to produce the formamldme 140 m high yield ‘48 Compound 140 1s also obtained m the reaction of trlfluoromethyl lsocyanate with 1,l -dlfluorotnmethylamme 149

l,l-Dlhaloalkyl

heterocumulenes

1597

Me2N-C&0/20%

-

COF2

Tnmethylsdyl cyanide adds to the c---O bond of tiifluoromethyl lsocyanate easily to produce the lmldoyl cyanide 141 If tnfluoromethyl lsocyanate 1s m excess and reaction 1s performed m forcing condltlons the heterocychc product substituted lmldazohdmedlone 142 1s obtained I4

CF,N=C=0/20'C

j’*

““‘t::::,

Me,S1_CPN

/ 2 CF3N=C=O/50°C

'

cF3.NftN,CF3

O”N-SrMe

3

142 (35%)

Trlfluoromethyl lsocyanate reacts with sulfur tetrafluonde and sulfur oxytetrafluorlde to produce the compounds 143 and 144 respectively l4 The heating with sulfur tnoxlde leads to a mixture of products, one of them 1s N,N-bu(fluorosulfonyl)carbamoyl fluonde 145 ls3 Fluormatlon of tnfluoromethyl lsocyanate wth xenon dlfluonde m mild condltlons gives nse to the substituted hydrazme 146 l4

SF4/1000C CF3N=SF2 143 (50%)

CF3N=S(0)F2 144

CF3N=C=0

0 (FS02)2~-CG

+

(FS02)20

145 (39%) 1

XeF2/200C

_ FC(O
Tnfluoromethyl lsocyanate easily adds hypochlonte 147 to the N=C=O group to produce N-chlorocarbamate 148 ’ 5oChlorofluonde and chlorosulfonyl fluonde are added to tnfluoromethyl lsocyanate m mild condltlons yielding denvatlves of N-chlorocarbammlc acid l5 ’

Yu I MATVJXEX~~~

1598

H(CF2)4CH20C1/20°C 147

? CF3y-C-OCK2(CF2)4H Cl 148 (57%)

7

C1F'-780C _

CF3N=C=o-j

,,,,C:;

D CF3yc-OS09 '1

96%

Perfluoroalkyl lsocyanates react with sulfur trmmdes 149 m mild condltlons (- 60-lo”C, ether) producing the compounds 150 “* The latter give thladlazetldmones 151 on heating (50°C) with excess perfluoroalkyl lsocyanate ’ 53

RfN=C=O +

fP

:

RN&*

NR

- RN=c=o

149

P

RfN=S TNR 150 (26-835&j

R = t-Bu, Me3Si

&ml-t CF3N=S\ NBu-t

+

CF~N=C=O - t-BUT&=0 -[

CF3N\\ _ pBu-t CB3N

150

I

t-BuN=C=O c

Ifu-t CFN rj 3 *s' >=o CF3N' ‘$T Bu-t 151 (64%)

Trlchloromethyl lsocyanate converts smoothly mto chlorocarbonyl with phosphorus pentasulfide m toluene or chlorobenzene ‘*

Ccl N&=0 = 3

90 Cl2&N-C 'Cl

A +

'2'5 - PSC13

lsothlocyanate

at boding

e cl-c-N&d 80%

Isotlocyanate 46 adds chlorme to the *S bond at 50°C to produce the sulfenyl chlonde 152, which may be chlormated to yield the lsocyamde dlchlonde 153 under forcing condltlons (8O”C), m the presence of catalytic amounts of mdme 74

1, 1-Dlhaloalkyl heterocumulenes

cl2 C1CF2N=C=S 46

Perfluoroalkyl lsocyanates alummmm hydnde ’ 54

,Cl cl2 C1CF2N=C, SC1 152 (73%)

1599

C1CF2N=CC12 153 (86%)

are easily reduced yleldmg secondary

ammes 154 with lithium

LtilH4/200C RfCF2N=C=0

RfCH2NHMe 154

Rf = C3F7 (74%) C7F, 5 (61%)

REFERENCES V I , Samaral, L I Synrhesrs 1%0,85 Gorbatenko, V I , Zhuravlev, E Z , Samaral, L I , Zsocrunafy, Naukova Dumka, Kiev 1987 Ahlbrecht, A H , Husted, D R U S Patent 2617817 (1952), CA 1%3,47,8774 Henne, A L , Stewart, J J J Am Chem Sot 1955, 77,1901 Barr, D A , Haszeldme, R N J Chem Sot 1956,3428 Yarovenko, N N , Motomy, S P , Klrenskaya, L I , Vasd’eva, A S Zh Obshch Khlm 1%7,27,2243 Sander, M Monatsh Chem 1964,95,608 Knunyants, L I , Krasuskaya, M P , Deltsova, D P Zzv Akad Nuuk SSSR, Ser Khlm 1966, 1110 Yagupolsky, L M , Mahchenko, N A Zh Obshch Khrm 1966,36, 1983 Mlddleton, W J J Org Chem 1973,38, 3924 Sankma, L V , Kostlkm, L I , Gmsburg, V A Zh Org Khlm 1974,10,460 Shokol, V A , Kozhushko, B N , tirsanov, A V Zh Obshch Khlm 1973,43,544 &hna, E B , Kozhushko, B N , Shokol, V A lbrd 1989,59,571 Lutz, W , Sundermeyer, W Chem Ber 1979,112,2158 Peterson, W R , Radell, J J FIuonne Chem 1973,437 MIddleton, W J J Org Chem 1!%4,49,4541 Barr, D A , Haszeldme, R N Chem Znd, London 1956, 1050 Barr, D A , Haszeldme, R N J Chem Sot 1957,30 Young, J A , Durrell, W S , Dresdner, R D J Am Chem Sot l!NO, 82,4553 Kryukova, L Yu , Kryukov, L N , Isayev, V L et al, Zh Vsesoyuzn Khzm Obshch D Z Mendeleyeva

1 Gorbatenko,

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

298

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

Yanaglda, S , Hayama, H , Yokoe, M , Komon, S J Org Chem 1%9,34,4125 Yanagda, S , Komon, S Syntheses 1973, 189 Ohoka, M , Yanaglda, S , Sugahara, K et al, Bull Chem Sot Japan 1973,46, 1275 Komon, S , Yanaada, S , Ohoka, M Japanese Patent 5 029451 (1975), R Zh Khlm 1976,23N81 Nottke, J E U S Patent 3 920 718 (1975), CA 1976,84,89604 Chfford, A F , Thompson, J W J Znorg Nucl Chem Suppl 1976,37 Fawcett, F S , Smith, W C U S Patent 3 118 923 (1964), CA 1964,60,9148 Chfford, A F , Rhyne, T C , Thompson, J W U S Patent 3666784 (1972), CA 1972, 77, 100776 Fawcett, F S , Tuliock, C W , Coffkann, D D J Am Chem Sot l&2,84,4275 Thompson. J W . Howell, J L . Clifford. A F Israel J Chem 1978.17. 129 Hagemann, H Br&sh Paient 1 i69 158 (i969), Bayer A G , CA Wb, ?‘2,42858 Hagemann, H , Schwan,H , Dormg, F Ger Offen 2 405 005 (1975)) C A 1975,83, 192614 Gercyuk, M N , Gorbatenko, V I , Samaral, L I Zh Org Khun 1979,15,214 Schachner, H , Sundermeyer, W J Fluorine Chem 1981,18,259 Holtschnndt, H , Dcgener, E Ger Offen 1 122058 (1962), CA 1%2,57,7112 Holtschmldt, H , Degener, E , Schmelzer, H G ef al, Angew Chem 1968,80,942 Kdmg, K H , Pommer, H Belgmm Patent 618061 (1962), CA 1%3,59,454 Reck, R C Jochtms, Chem Ber 1982,115,860 Baasner, B

, Klauke, E J Fluorme Chem 1982,19, 553

Klauke, E , Holtschmldt, H Bntish Patent 1 145225 (1969), CA 1969, 71, 12527 Kozhushko, B N , Shokol, V A Zh Obshch Hum l!MS, 58, 1516 Matveyev, Yu I , Gorbatenko, V I Zh Org Khrm 1989,2_5, 1572 Stukalo, E A , Doroshenko, V V , Markovsky, L N Zh Obshch Khzm 1975,45, 1022

1979, 24,

1600 44 45 46 47 48 49 50 51 52 51 54 55 56 57

Yu

I MATWYEV et al

Gercyuk, M N , Gorbatenko, V I , Dronkma, M I , Samaral, L I Zh Org Khzm 1979,15, 1556 Neldlem, R , Haussmann, W Tefruhedron Lett 1%5,2423 Neldlem, R , Haussmann, W Chem Ber 1966,99, 239 Tsuge, 0 , Yoshlda, M , Kanemasa, S J Org Chem 1974,39, 1226 Bolko, V I , Gercyuk, M N , Samaral, L I Zh Org Khzm 1988,24,451 Kukhar, V P , Shevchenko, M V lbzd 1975, II, 71 Shokol, V A , Kozhushko, B N , Gumenyuk, A V Zh Obshch Khzm 1975,4_5, 1965 Barr, D A , Haszeldme, R N J Chem Sot 1956,3416 Young, J A , Durrell, W S , Dresdner, R D J Am Chem Sot 1959,81, 1587 GQ~&~L, A, F ~U&yev, k F ~ Wx&ky, G 4 p &umy~~~& L I &G _Akaa! Nauk SSAW- _Fe -Khum. LQ78,2772 Fmdelsen, K , Wagner, K , Holtschmldt, H Synthesis 1972,599 Haas, A , Spltzer, M , Lleb, M Chem Ber 1988,121, 1329 Kukhar, V P , Shevchenko, M V , Klrsanova, N A Zh Org Khzm 1973,9,1815 Kukhar, V P , Klrsanov, A V , Klrsanova, N A , Shevchenko, M V USSR Patent 407 889 (1973), CA 1974,80, 95241 58 ~&o&V Ys , B&Q, A P z ~&xhx&&o, G F % rd , zh Obrh& &&m j97&dd, 52.51 V I , Povolotsky, M I , Pavlenko, N G Zh Org Khzm 1974,10,449 59 Kukhar, V P , Pasternak, 60 Kozhushko, B N , Gumenyuk, A V , Shokol, V A Zh Obshch Khzm 1977,47,2766 I TUJIM& C w , C0f&x&Q& a a I A_W ChfW SQc 1W&&f, 7237 61. UxUVJxqW 62 Baukmght, C W , Desmarteau, D D J Org Chem 1988,53,4443 63 Krespan, C E J Org Chem 1986,51,332 64 Ogden, P H zbzd 1968,33,2518 D D zbzd 1979,44, 113 1 65 Seklya, A , Desmarteau, 66 Seklya, A , Desmarteau, D D J Fluorzne Chem 1979,14,289 Fl.U&~ F 4 r Kf&xq R_ I r wQj& C D 11 P E&x>_ 2694 404 (1_972), c dL I!!& 77, s5!_462 67 68 Kauer. J C , Schneider, A K J Am Chem Sot 1960.82. 852 69 Kauer, J C U S Pateni 2860 154 (1958), CA 1959,5j, 7097 S P , Shpansky, V A , Gmsburg, V A Dokl Akad Nauk SSSR, 1%2,142, 596 70 Makarov, 71 Falk, R A , Readto, J D J Org Chem 1969,34,4088 12 Banks, R E , Haszeldme, R N , Stephens, C W Tetrahedron Lett 1972, 3699 13 Banks, R E , Haszeldme, R N , Stevenson, M J , Willoughby, B G J Chem Sot (C) 1969,2119 14 Dahms, G , Haas, A , Klug, W Chem Ber 1971,104,2732 15 Dahms, G Dzss Dokf Naturwzss , Abt Chem Ruhr-Unzv Bochum 1972,93 16 Dahms, G , Dldernch, G , Haas, A , Yardanbakhsch, H Chem Ztg 1974,98, 109 G . Haas. A Chem Ber 1976.109.3432 71 Dldernch. i , Jochlms, J C Chem Bt& 1981,114, 1746 78 Bunnenberg, A F ~ ~~~~~~~~j~~~Z L I~~ A_~~ ~~~ S~Sp, or ~~~~ 1~ ~~~ 79 cJlpltn_v E N r aykhfiv&_ya_< E G , Kajar, 80 Guy, R G , Pearson, J Bull Chem Sot Japan 1977,50, 541 4 F , T~XGI.QIWI,N 4 ~j ld , -I Fb~m~p_ Chum I‘IW&.IS, Vi9 Rll KuQ~.~xQ~_~1 L I_G&q 4 YU ,.P&J>xI, 4 N .Q~.&Y v B etld ,173 &&! &II&. SSSP., F&r aJW 1%7,1_1_77 8.1 &WE&~ P_ , &szeJ~x< e_ N &~y, P_ I I apm ti , &?? timjfi 19% 567 rLI Flrzuceq W T r !hddJJ2_, M P , Gambaryan, N P , Knunyants, I L Zzu Akad Nauk SSSR, Ser Khzm 1967, 84 Deltsova, D P , Krasuskaya, 2086 V I , Mafxy.qV~ I ~Gxy& M N , QUXUX I_ Z Zh 0~9 UWV 19&$, 20 2543 R15_Gx&_t~.tpJIJl.n, Kiev, 1987, 127 86 Matveyev, Yu I Dlssertatlon, 8_7 ML_veyev< Y?L 1 , Gn_b&~k_o< V Z r ‘&anxxa~_,L I_ et nl zh. 0’9 &X.m 19% 24,986 88 Ogden, P H , Mltsh, R A J Am Chem Sot 1969,89, 5007 E G , Knunyants, I L Zzv Akad Nauk SSSR, Ser Khzm 1984, 1438 89 Gontar, A F , Glotov, E N , Bykhovskaya, D D J Amer Chem Sot 1982,104,4034 90 Lam, W Y , Desmarteau, 91 Thrasher, J , Seppelt, K Znorg Chem 1985,24,4171 92 Coy, D H , Haszeldme, R N , Newlands, M J , Tlppmg, A E J Chem Sot , Chem Commun 1970,456 N P , Kmmyants, I L Dokl Akad Nauk SSSR, 1973,212,628 93 Deltsova, D P , Gambaryan, E A , Matveyev, Yu I , Gorbatenko, V I , Samaral, L I Dokl Aknd Nauk Ukr SSR, Ser B 1989, 94 Romanenko, 57 95 Kuhle, E Angew Chem 1%9,81, 18 V V , Stukalo, V A , Shokol, V A , Kozhushko, B N Zh Obshch Khzm 1971,41,2155 96 Doroshenko, V I , Samaral, L I Zh Org Khzm 1985,21, 1133 97 Gercyuk, M N , Dorokhov, 98 Dannley, R L , Lukm, M J Org Chem 1956,21, 1036 99 Bolko, V I , Samaral, L I Zh Org Khzm 1989,25,883 100 Samaral, L I , Bolko, V I , Gercyuk, M N zbzd 1987,23,455 V I , Matveyev, Yu I , Samaral, L I zbzd 1987,23,2385 101 Gorbatenko, 102 Yanaglda, S , Yokoe, M , Ohoka, M , Komon, S Bull Chem Sot Japan 1971,44,2182 N A , Stukalo, E A Zh Obshch Khzm 1977,47,2077 103 Smltsa, A D , Parkhomenko, D&y, R L ~Y~lxxn, P_ , T&x&_yy, R_ G I Qrg Chpm 19~99,244,1_7@4 IO4 N P , Deltsova, D P , Safranova, Z V Zzv Akad Nazdz SSSR, Ser Khzm 1987,1814 105 Gambaryan, 0 V et al, zbzd 1988,2399 106 Martynov, I V , Aksmenko, A Yu , Korenchenko,

1, I-Dlhaloalkyl 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

heterocumulenes

Martynov, I V , Chekhlov, A N , Aksmenko, A Yu et al, Zh Obshch Khan 1987,57,2285 Martynov, I V , Aksmenko, A Yu , Chekhlov, A N et al, Izv Akad Nauk SSSR, Ser Khlm 1987,168O Martynov, I V , Aksmenko, A Yu , Pushm, A N et al, zbld 1988,2123 Goerdeler, J , Weber, D Chem Eer l%S, 101, 3475 Samaral, L I , Bondar, V A , Derkach, G I Khrm Geferocycl Soyed 1%8,1099 Matveyev, Yu I , Gorbatenko, V I , Samaral, L I ef al, Zh Org Khlm 1987,23,2390 Goerdeler, J , Eggers, W Chem Ber E&6,119,3737 Gorbatenko, V I , Matveyev, Yu I Khrm Geterocycl Soyed 1!988,1699 Gorbatenko, V I , Lune, L F , Samaral, L I Zh Obshch Khtm 1978,48,2380 Deltsova, D P , Krasuskaya, M P , Kmmyants, I L Izv Akad Nauk SSSR, Ser Khzm 1%7,2567 Krenzer, J U S Patent 3 872298 (1975), CA 1975,83,58831 Degener, E , Holtschmldt, H , Swmcxkl, K Belgum Patent 633 232 (1963)) CA 1964,60, 13256 Degener, E , Schmelzer, H G , Holtschmldt, H Angew Chem 1%6, 78,98 1 Takahashl, M , Taklguchl, K , Imalznml, S Synthesis 1982, 155 Grohe, K , Heltzer, H , Lleblgs, J Ann Chem 1974,2066 Deltsova, D P , Gambaryan, N P Izv Akad Nauk SSSR, Ser Khrm 1971,148l Deltsova, D P , Zelman, Yu V , Gambaryan, N P rbld 1985,2533 Gontar, A F , Bykhovskaya, E G , Knunyants, I L zbld 1976,209 Banks, R E , Barlow, H G , Haszeldme, R N , Creath, M K J Chem Sot 1965,7023 Gunter, 0 German Patent 1262260 (1968)) CA 1%8,68, 114095 Gubmtskaya, E S , Semashko, Z T Zh Obshch Khrm 1978,48,2007 Shokol, V A , Kozhushko, B N Uspekhl Kbrmrr 1%5,54, 162 Shokol, V A , Kozhushko, B N Zh Obshch Khlm 1977,47,321 Shokol, V A , Kozhushko, B N , Doroshenko, V V , Klrsanov, A V tbrd 1973,43, 12 Kozhushko, B N , Shokol, V A tbtd 1988,58,1516 Matveyev, Yu I , Gorbatenko, V I , Samaral, L I et al, Zh Org Khrm 1988,24,2216 Tllkunova, N A , Gontar, A F , Bzov, Yu A et al, Izv Akad Nauk SSSR, Ser Khlm 1977,238l Pasqual, R J , J Fluorme Chem 1976,8,3 11 French Patent 2006011 (1969), Bayer AG , CA 1970, 73, 14177 Hagemann, H German Patent 1947498 (1977), R Zh firm 1978,4Nl74 Hagemann, H Angew Chem 1973,85, 1058 Hagemann, H Angew Chem 1977,89,789 Shchekotlkhma, N A , SIZOV, Yu A , Gontar, A F et al, Zh Vsesoyuzn Khlm Obshch D I Mendeleyeva 709 Tsuge, 0 , Tashlro, M , Haglo, S J Org Chem 1974,39, 1228 Gorbatenko, V I , Lune, L F , Samaral, L I Zh Org Khzm 1976,12, 1963 Fetyukhm, V N , Gorbatenko, V I , Samaral, L I lbtd 1975, II, 2440 Fetyukhm, V N , Koretsky, A S , Gorbatenko, V I , Samaral, L I lbzd 1977, 13, 271 Gorbatenko, V I , Lune, L F lbrd 1981,17, 398 Bast, K , Ohnstl, M , Hmsgen, R Chem Ber 1972,105,2825 Vovk, M V , Romanenko, E A , Pyrozhenko, V V et al, Ukr Khlm Zh 1989,55, 1071 Mlddleton, W J U S Patent 3 816495 (1974), CA 1975,82,4912 Gontar. A F . Vmoaradov. A S . Knunvants. I L Izv Akad Nauk SSSR. Ser Khlm Wt31.2168 Knunyants, I ‘L , DGyagma, N I’, Igumnov, s M zbtd 1981,860 Fokm, A V , Studnev, Yu N , Rapkm, A I , Pasevma, K I zbld 1980,2623 Sprenger, G H , Wnght, K J , Shreeve, J M Inorg Chem 1973,12, 2890 Tesky, F M , Mews, R Chem Ber l!X30,113,2183 Tesky, F M , Mews, R zbzd 1980,113,2434 Dannley, R L , Taborsky, R G J Org Chem 1956,21, 13 18

1601

1977,22,