DISCRETE MATHEMATICS ELSEVIER
Discrete
Mathematics
131 (1994) 335-337
Communication
A curious binomial identity Neil J. Calkin School qf Mathematics,
Georgia Institute
of Technology,
Atlanta,
GA 30332, USA
Communicated by G.E. Andrews Received 22 October 1993
Abstract In this communication binomial
we shall prove a curious identity of sums of powers of the partial sum of
coefficients.
1. An identity Theorem.
C;=O (~~_o(~))3=n23”-1+23”-~2”(~).
Proof. Definef,=C;=,
(Ci=O(k”))3. It is sufficient
to show that
Write A,=C:=,(,“). Then fn=C;=oA:.
0012-365X/94/%07.00 Q 1994-El SSDI 0012-365X(92)00575-A
sevier Science B.V. All rights reserved
336
N.J. Calkin/ Discrete Mathematics 131 (1994) 335’337
L+I
-8f,=2
3n+‘+~~~*-(;))l-(2A,)3
=23n+3 -~12A:(;)+~6Al(~~-~(q)3. I=0
Observation 1. Cf=oAI(~)“=$2”(~)+~C;=o(~)3.
Indeed,
~Al(;)‘=~An-l(.1,)‘=~An-l(3 and since Al + Anel =2”+(T) we have
gA(lly=g(2”+(;))
(1)
=1$2n(;)2+lg)3
=;2f’,“)+;&(;)‘.
Observation 2. CyzoAf(l)=
iP3 f2 12”(z,n)+&=o(~)3
Indeed, 2”“=A.‘=~A;-A:_1=~A:I=0
=~3A:(;)-~3A1(;)2+~(1)
=~3A~(;)-~2n(~)-~~(~~. Hence 2 A:(;)=T+f2f3+$(7. I=0
A,I=0
(
‘I 0)
3
NJ.
Putting
these together,
CalkinlDiscrete
we indeed
f,+1-8f,=4.23”-3.22”
Mathematics
131 (1994) 335-337
331
find that
‘,” 0
as required.
0
2. An application In this section we shall discuss an application of this to order statistics. Observe that the expected value of the maximum of three independent Bernoulli random variables B(n, 3) is
Hence, by the central limit theorem, independent normal N(0, 1) random
the expected value m3 of the maximum variables is
subtracting off the mean, dividing by the standard formula for the asymptotics of n!
deviation
and applying
of three
Stirling’s