A Method for Modelling with Missing Observations

A Method for Modelling with Missing Observations

Copvright © IF.-\C Id entificat ion and S,'stelll Par;lllleter Estilllation 198:,. York . L't\.. I (I~F) A METHOD FOR MODELLING WITH MISSING OBSERV A...

953KB Sizes 4 Downloads 104 Views

Copvright © IF.-\C Id entificat ion and S,'stelll Par;lllleter Estilllation 198:,. York . L't\.. I (I~F)

A METHOD FOR MODELLING WITH MISSING OBSERV ATIONS

,

Zhang Zhong-jun* and Wang Zhiz-hong** *DI'P(II'I III f//I of AlllolIWlioll. Shllllghlli J illo TOllg [ ' /lii'l'nilv. SIII/IIghll i. Thl' Pl'()pll' 's RI'IJ/liJ/i1' of' Chillll **Depll rl 1111'11 I of PrecisiulI 111.111'111111' 111. Shllllghlli Jillll Tllllg [·II;"l'nily. S//{/IIg/lIIi. Thl' Pl'IJpll''s Rl'plliJ/ic ofChill1l

Abstract. This paper proposes a new method for e~tabli~hin R discrete models with missing observations. The authors firstly develop a formula for calculating the unbiased estimator of the variance of noise serie~ {e,} ; then the model parameters are eAtimated by Monto-Carlo Atatistic method. This proposed method is suitable not only for establishing AR mOdels in time series analysis, but also for e~tablishing AHY~ models. For input-output descret ~ systems with missing observationR in input and output data. this method is also appplicable for modelling. .,:'

Keywords. l'arameter estimation; Missing observations; Hierarchical systems; Optimisation; ~lonte-Carlo methods.

1. INTRODUCTION (2.2)

J

To identify many practical systems, the required observed data may be incooplete. e.g. a part of sampled data had been missed due to one or the other following causes: 1. Observed data were not completely taken; 2. The sensor for recording data failed to operate properly; 3. Some data are unreliable due to intensive interference; 4. One sensor is used by time-sharing in measuring and record in" different time serie" data sequence". Quintana (1982) investigated the problem to estimate system states with unreliable observati.ons for electrical power systems. Tugnai t (1983) did reseach work on state estimation for systems with interrupted observationA. But their workA a~ mainly based on Rubstituting the conditional expectations at the missing points as the misAing data. Up to present still insufficient work has been ~evoted to expound the parameter estiMation problem for Rystems with missing data.McGiffin (1980.1981) proposed a method to eqtimate parameters ot· AR models with missing observations. The authors in this paper present a new parameter ~stimation method with missin6 data, which is applicable not only for establishing All models. but also for establishing AH!·:A models. ,'or input-output deAcrete systems with missing observations in input an~ output data. this method is also applicable for modelling.

the estimated parameters of the model or the estimator i\ =(b~ ..... b, .-a, ..... _a.)' is obtained from the following condition: mint J) = J

9=

(2.4) '

y,

y,

Y..,

y,.,

y,

,Vi

x

y", y

u ...... ,., U't"OI! Y.: Yi Ul-' - - - - - - - - - -r- - - - - - - - - U'."_"HI ••• U, .., J .Y;"t l

,

.

.v ... .

Yi+"I

Y,.".,

I: I

U ....H1

Y...

y-.~

(2.5) Howevpr. eq.(2.4) is not directly applicable for the case where some observation data are missing. To tackle this problem. let us develop the followin~ theorpm. On bases of thiq theoreM. we propose 3. new method. (Theorem) ::luppose y" .,Vi, •••• 'Yi, in {Y.) sequence are missing. with i"i ...... 1. as the serial numbers of the mi s sin"j data. then the unbiased estimator of the \'ariance of (e.) is

Conoider the following s ystem model

(2.6)

0.-'= S / (N-n-m-p) (2.1)

where

3 = min J

I e=e·'YI.=y,: .... ,y,,=y,; (2.7)

(proof) Define E = [e.., .p~, ••••• e~.1T , the n the reA1dual equation is

+ a,z"+ ••• + a.z·· , •• + b~z(n and m are assumed known)

B(Z")

XT)(f'xTy Uti

NOISE VARIANCE

A(Z") =

(2.3)

where

n. THE UNBIASED ESTHIATOR. Or'

where

I e. e

As le,} is an uncorre la ted ze ro mean noise sequence. 9 can be rea
1

= b, z"+

E

= Y - )(.A

and eq.(2.2) can be

tu,) and {Y.} are input ann out. put sequenc~s respectively. "hile le,) is an uncorrelhted zero mean noise ~eq uence. The number of samplec points is N+n. To estimate parameters of the model froOl ohserved data ~equcnces often requires to define a quadratic performance criterion dS follows:

(?R) ~ritten

as

J ~ ET],; (2.9) Obviously. S Cfln not he f'xpressf'o hv an explicit solution any longer. Becau~e all of the mis~ing data are included in X and y. the residual vf'ctor E can be E'Xprp.3 :,,~j by a nonlinear function

14~l7

14~H

Zhang Zhong·jun and Wang Zhiz·hong (2 .1 0 )

=j{
I::

T


whf'rp

~x ~ ansi~ B

f'. )

at t~ 2 vicinity of ~. into a Tay3p.rics. afti'r irooning a ll but the linpar

lo~

tt")rng, we havp.

r. ,;f ( ~· )

M(~)I 4>=4>' ' 4

:1.

T

whprp thp incrcnlf'ot

f ind th" ;n i ni:nwn

TO

,Yi,1

T

0

(2.11)

At:; = (..:18 T ,A Yi, t~ "{h f ••• ,AYi,1 T f .J '
p.qu~tion

ing itera.tin g

E(l(·')= Attc } . ~.IJ('+ ElM'

(2.12)

where (k) o r (k+1) r ep re sent t he iteration numbprn; thE' matrlx A=nf/rt~T has thn following f o rm

..

A

-a~ .... 1_'1e..... ~b,: '3a"

l l.... " 'c)b",

Thus

S

= min

J

.-

lim min ( F,' ... 'TE,,·.. ,)

2

'1 e ••"

-ae .... :lJc .....

-'3a, :'1Yi,

?Y"

.,.= 0

( 2.14)

Substituting e'1.(;>.12) into eq.(2.14). we have 2 Af.I'l T ( A ~J ,,4>"'U() + E (le)} = 0 '~""=- CA ,<) TA"')"'

1. ().

A,·IT E'"

( ;>.15)

Now E'··'ITE lll4") = (A(.).A(P"·~ ")+ r;lll'f (A'·) . A4' ..(tc J +

ing step. 'Cl ~'/ ' ", y .... ,=y,., _~_J_ ~ (' 4) nalculate v . ( i 1JY'rc, y .... retun to step (?). ' '" ,

El.']

a,r' A"" £··... E'·')

= l-A."'( A"lT A""'" A.""T £"'+E""J T l-A"'(A."IT A

(3.1)

Por calculating e'1.(3.1). let us neiluce the expres"ion for -aJ,onhyr" and TJ'"'hy.""'. For simplir:1ty. thp supersc~ipt" (k) are omitted in subsequent lines. J

(Y_X9)T (Y-Xq)

(;> .13)

In each iteratton the necessary condition for the existance of minimizing is gran (I::'.... TE'.. ·').,•

w,c:)••.••

seaching n irections t and take w/,". uJ,~·) as step factor". which equal the relaxation factor ,,'~devided by Recond partial d"rivatives ?'J"hy""l (i=i, ••••• i, ). From the above discussion WE' suggp st thp. follOwing hierarchical optil1li7.atio!'l alg orithm; (1 ) Gues'l initial value" for missing da ta y; ( i=i, ••••• i,). say y,=(y,.,+y, .. )/2 (when the nata Re'1upnCe has close co rrelatio n ,
yTy _ yTX(XTXr'XTy

(>.2)

Taking partial derivative of J w.r.t. y,. we have HT

~=

2 Y_2"y'X9_2 y TH 9+26T XTn 9 'by, "y, '/) y. ~y,

IiY,

(3.3)

Noting the position of ~ in X and Y in eq.(?5) whf'n n
U.4)

l 0 ••• 01; 0 ... 0: 0 ••• 0)· X9 (U;.~•••• Ui_, ; Yi-..... Y,_I ) • e

l1Y\9

,y

E/IOT(I._ A'·'(A,"'TA"')"'A'·JT)E'"' ::K

trace(I .. - A(IC'(AVIJ'T A(allf' AllIl ' ] r-: tll ) EliOT

hen~e

th~

(;>.16)

B(z")U,-(1 - A(Z"))y, ~

('xPE'ct at i on of 3 i a

lim

E7~race

U!'

{
lim {N

17"' -


I I 'f'dA

"'T

9 X -

'ilY,

(2.17)

A

9 =

eT

0

si (N-n-l1I-p)

I

ui

IY'

Y.. -,""

In the las t ~pction. we sep. that if the minimum of eq.(2.7) is founo. thp.n th" :mbiaspd efltimator .. 'ca n be ohtn inpd from e'1.(2.17). HOllever. a " lobal optimizatio n algorithm to seak the conver5ence point ~. in eq.(?7) is a time-consuming task. In t his Rp.ction. «e propose a t,.(o If'vel hip.rarc hir:al opti miza tion a l gorithm for calculating 1;hp. solution o ~· p.o.(2.7). Eac h missing datuo is taken as a "pconn l<>vel subs.ystpm; minimize J with respect to (w.r.t.) parameter vector e aB the fi rst level. 1'ill;.3.1 shows tne structure of this algorithm.

I

:

I



IY' MI.I

(2. Hl)

Ill. THE HIERARGHICAL O?'lU!IZATION AWORITHM lOR ESTIr-:t.TlN(; THE NOISE VARIANCE

.

I U i .".,

Lp.. the unbiased esti!!lato r of cr' is

&-' '"

(3.6)

u, .•• ,

IU,,.,,.,,,,

(1.- A'"'(A''''A,IIfr'A'·'T)·
(N-n-m-p)
(3.5)

[ o... 0 i Y•••••• y, •. J . 9

E (.3) = lil1l E { I-: ""'T £ ""'}

.-

yt

e

Y,

( o... 0 ; y.t.... y,!. ). El

(3.7)

Jubstituting eqs.(3.4)-(3.7) into eq.(5.3). we have

~~ '3

= 2y. i

2yt -

2f{0 •.• O:y •••••• Y... )

'f

f"

- (0 •.. O;y,...... y ... )}9

2e~ - 2

r o ... 0 i ef..... et.. J . e

..

2(et + a.e~ + ••• + ~here

a.e!..)

7.A (z)e~

(3 .6)

et = y. - yf

(3.9)

In the s ame way . we g~t • Zt- •• • +a " ........ z ••• ' .) E",• ~ ={ <.~ (1 Ta.

'3y~

2 (A. ... ,., Z"ooi •• + •• .

+a. z·

In ord p. r to minimize J. wP. may take minus partial derivatives of J w.r.t. each missing data as the

) e~

N
(5.10)

" .U'.. l

J,.

fi g.) .' Thp hierarchical optimazation alg ori th"1 for minimizing J

:\ Methud fur Modelling with l\lissing OiJsen"ations ferent narametf'r es timat o r s . (4) C~lc ' llatinp, thp uv " mgc value s of par:.mpter estimator" ohtained in stop (5), thp.y ~ill be taken 303 thp pardmeter estimators of the monel.

+

8o,,(y, .., +8.,

"

Y;:tlH

+ •.. +a y; ....-b. u i 9t

+_.- .. .

=2(1+a~+ •.• +a:)

.

.!!...

D.11)

.

dimilarly

, -b",u, ... ~J

" + •.. +a • ) = { 2( 1+a,

(3.12)

2(9. ..\ .. + •.• +8.:)

'aY,l

discussion is o~ly for the situation data. For input sequence {u,) with missing data, we have similar expressions: Th~

In thp case ·...hpre bo th \Y.) and {u.) have Jli. Rslng ohservations, we JGa y morllfy the aho ve rcont o-:a r lo mpthorl : Firstly, for in put by arl~in G white noi s p scquence ~ith pr0per i ntesity to ~ " ... ,u~ till J=(N-n-m-p)~', thp.n for Olltput by arloiing another noi~e spquence to Yi , ' " ' ' Yi, till J=( N-n-m l iT-'.

abov~

~ith out~ut mis~in0

(j=j"j., ••• ,j,)

(3.13)

V. The genp-raliza tion AR we kno~, paran,gter esti;n"tion by usine GLS (Genp.mli7.ed Lgast dquares) is more accurate. Lpt the mo~el identified by ilL:'; haR the following :'orrn 1 ('i.' ) A( 7. .') Yt= B ( z .') u t + C(:>:") ct where A(z") and B(7.·') havp the same forms af> in

eq.(?.1); C(z·' )=1+c,7.·'+ ... +c,z·'. Put y,=C(z ") y, ann li.. =C(z·')u,, then eq.(5.') woulrl h~ rewritten as In a similar ~ay w~ can gpt similar hierarchical optimization ftlgorithm. The only rlifference is ~J

1Y ·

;<1 '3J

-=L--=- ' ~ 11 y, j.; 11 Yj 'Hi

1iJ ?J = - +c-+

, "aY",

raY~

By usinl~ the ah"vp- I)xpressions and thp. hierarchical optimi7.ation algorithm, ~. can be found readily. In this case ~'= J/(N-n-m-p-q).

=

1J~

-ay.

(' +c, Z + ••• +c, z, )

= 2G(z)·A(7.)e! I V. 'rHE ~10N'rO-CAlU.O ImTl!OV r'OR PARAr:'ETi.1

ESTIMATION ',HTH

~n3SING

DATA

With the hierarchical optimization algorithm. ~e can get not only the unbiased p.stimator of ~'. but also thp. ~. ~hich satisfies eo.(2.7). It must be emphasized that the vector e· ohtained ahove is not yp-t the model parameter estimator. AS ~how ahovp-. the expectation of J is (N-n-m-p)~l, while the expectation of J of the original model without missing data iA (N-n-m)~·. The statistical characterA of these t~o models are different. AO e· obtained above cann't be considered as the unbiased estimator of e. In fact, for a stochastic process it is impossible to determine the exact values of missing data, "hat we can do most is to establish a model from observation sequences with thp- same statistical properties without missing data. In order to maintain the same second order moment of noise sequence, we suggest the MontoCarlo metho~ as follOWS: Add zero mp-an white noise with proper intensity to Yi,'''''Yi, obtained above. Att/>=.p", J hal' the minimum value. Thus by adding noil'e with any intensity to Yi,' ••• ,Y." J ~ill bp. certainly increased. Increasing J from (N-n-m-p)~'up to (N-n-m)~' USing searching method with appropriate white noise repeatedly, we get several slightly different paramp.tp.r e ,nimators. The averaee valup.s of them may b~ t ~ ken as the parameter ~Rtimator of the model. Jwnmari7.ing thp above discussions. '.re state our 8ugges tpd methon for estimating model parameters with missinb observa tions as follo~s: (1) Calculatp ~. and y~ •••• ,y~ hy u~inF, hi~rar­ chical o~timi7.ation al30rithm. (2) Add 11 z? ro mean p:;euno-mndoJ~ ~hit~• .n0i3e sequencp, of ~hich the variance equals k ~ • to Y.~ ••. , ,ft, . By seaching, I
(5.3)

Evioently, if w~ Rubstitute C(Z)A(Z) ann C(z)B(z) for A(Z) and B("z) in sec.IlI. a Similar method can h~ oht'lir.erl. The Rimula tion rpsul ts aN' also sa tisfactory. To p.stiQate parameters of an AR model with missing observations the procedure is just the same aR in spctions II-IV except B(z~)=O in eq.(2.1). However. in the case of ARI'iA mortels. the calculation will be more complicated. Assume the following AHMA monel

~

~ - D(z~) e,

where

(5.4)

C(z~)=1+c.z~+

D(z-')=1+d,

--

+C"'Z

z~+

As we know, an A~~ model can be equivalent to a an AR model ",i th infinite terms, ?8 expressp.d by the following equation A( 7..,

whpre

)r, = et

(5.5)

A(z")=1+a, z"+a.z··+ ... + ...

::)uppose <#1= (c ....... ,Cl ,-0", ... I-d, 'Yi,,· .. ,:r;,)" ,

thp-n the above-mentioned method can be applicable for pammetpr eiltimation of ARI';}' m0dels with consideration of the following aspects: ( 1) El in an ARMA mod"l has to be c" lcula ted h.Y using nonlinear leaRt s'1uares, such ail ;1arquardt algorithm (1963). (2) Aftpr minimzing the performance criterion J of an AR mod~l with missing 1ata. take the Y~"" •.• ,y~ of this AR monel a ~ the i~itial v"lu~A of these miSSing data in the ~ip.rarchic a l optimization al,o;ortthm of the AIWEA morlpl. so ail to l"Pouce the numh"r 0" c",llin.'O the ,w"routine of nonlinear leas t "~\.L·H·~S for rerlllc in,:; thp comp 'lta tion time. D) '3J/tay, and 1i'J/~y.. are 1iffprent fro", tho1lC! in A~ model3. ~or an infinite AR modpl, ( <; .7)

Zhang Zhong-jun and Wang Zhiz-hong

I"O() Com;,ini:lF; wit " "q.(').6).

~

h'lve

','?

VI. CONCLU,lIONS

.Q~z.l. ~(Z") 'Hi - 2 C(z) C~z") Yi

_

How€":~r

~lJ/1J'y.l~

(,).8)

a.2

~

= 1 +

J'"

In thi" p~per a new llnthoi for efltablishin~ Aft and inp ,lt-out:)c.t "YRtpm monels is oror:oo",,,rl. r~(' C:1mnl..l.t r r ,~il:".ulation rpsillts are BRtiRfar.-

(').9)

AXi'.A

J

AR Box (1976) llpntion"a. '.tlpn thf' model satiRfie" invprtibility ~onctit~on (Le, . pvpry roo ts of C(w)=O ,,"'9 l oo:·,tf'd Ollt of trf' 'lnit circle) ~, '>() A.nri

thprl 3

HellOP

t

Um ['l1J /'tIY: l..,.ce t....,..o

-(1+J~'

REFERENCES

a'l )

Urn (g,e"!l· f'·'Y(1_e"g,)]

I; ,,,-2&.j=

Box, G.E.P., and G.M.Jnnkins (1176). Time serips analysis forf'castin" and control. rev.ed., !:lan ~'rtmcisco, Calif .• /!olden-Day. ~iarQuardt (131):5). An algoritlur. for l,.,ailt-sqLl."res estimation of nonlinear pa!'ameterR. J. of SIAN. D. ~31-441. --McGiffin, P.B .• anrl D.N.i'.Hurthy (19 nO,1981). i'arar'lp.te r e3timation for auto-reGressive sys tems wi th mis3 in;; obse rva tions -- pa rt I ann part 11. Int. J. of Ryst. sCi., 11. 10211034. and 12, (,5 7-663. -~uint?na. ·{.H. (19R2). Had data n,.,tection anrl identification techniques usine estimation orthogonal ml'tholis. lEEr; trans., pas-l01, 55'5(,-536~. --'fugnait, J.K. (19,9 3). On identification and adaptiv<' f'"ti'na tion for sy"tpms with interruntect ohsprvations. Automatica, 19. 6173. -

t.,. ...

.Fltl

< c.. (3. small p03itive r.umber) (5.11) ThuR we may sele'cot a sufficiently 19.r" e numher 1 to get. " satiAf""to"'y app roximate value of'liJ/'iJY:. a, •...• iL in nq.(').'1) can hp ohtained by 1ividing il(.,) '::!y C("'),

'I. ;3H:ULATIOt; RESULTJ

l EXclmp1e 1 J Usp a Zf'ro mean Garssian white noise sequence 9." (e.) . Among 100 sampled data. abnut 1/3 is miflsinp,. U"in~ non1inear leaAt square". to efltimate the narnmeters of the follow in,; AHnA model

=( 1 +0. 5 £' ) "'t

( 1- 1 • ~, £' +0 . 7 Z·, ):It

,

~ABr,II 1 Rpsul+' o"'irlulat:ion of ARI'lit. ~10de1 +

"

'"

er

d,

d,

c,

True values

1.0

-1.5

0.7

0.5

Without missing data

0.9fl3

-1.513

0.719

0.494

Wi th periodic missing data

0.982

-1.539

With missing data ___.

0.886

-1.542

O.;;J

r -- "random L

I

0.:4~

0.570

[V:xa!Jlnle 2) USf' two un~orrel"ted 7.f'ro mean ;}au~sian white noisD sequence w~th variances 1 and (j' respectiv,.,ly as {u.} and { Po. ) • i.. monp, lOO sampled ~ata, ahout 1/4 is mifl"ine. Using JL!:l to estimatp. th" parametern of the following model (1 -1.5£' +1. 4z" - O.fl5z-').v. = (z-' -z" +0. 5z")u. +e.

I( 1-0. 5z-' ... 0. 3z-')

TABLS 2 Results of !:limulation of Input-Output Model

True values Without missing data Cl! +' '+-I..,

'"

co I, e!l

h~

o

III ~CJ

....a

I .... 0

s..Ql.., ....

P-oO

..,s:: ~

I.... 0

~

L~

0",

r-.

....ID E

!

.... Cl.., ~

P-o 0

..,cE 0

~

a,

a.

b,

b.

bs

1.4

-0.85

1.0

-1.0

0.5

0.1026 -1.499 1.402 -0.858 0.994 -0.999 0.497 0.1061 -1.507 1.416 -0.861 0.995 -1.0230.535 0.1024 -1.501 1.406 -0.859 0.989 -1.003 0.506

{u..) &: {Y.}

0.1031 -1.505 1.410 -0.860 0.994 -1.012 0.519

( Ut)

0.1005 -1.501 1.408 -0.861 0.983 -0.999 0.505

{ Y.)

0.1031 -1.502 1.409 -0.860 0.993 -1.004 0.511

I u.)

&:

/Y.}

0.1058 -1.506 1.410 -0.858 0.992 -1.021 0.524 1.0

-1.5

'.4

-0.85

1.0

-1.0

0.5

1.035

-1. 366 1.350 -0.781 0.918 -0.941 O. 364 ~ -1.430 1.412 -0.809 0.865 -1.04') 0.708

/Y.)

1.021

-1.414 1.390 -0.797 0.934 -1.029 0.554

{uJ &: (Yt)

1.047

-1.403 1.386 -0.7850.791 -0.965 0.439

{Ut}

0.976

-1.399 1.384 -0.807 0.042 -0.981 0.411

{Y.}

1.012

-1.384 1.362 -0.778 0.889 -0.943 0.390

(u.) &: {Y.}

1.055

-1.405 1.404 -0.780 0.861 -').955 0.512

Without missing data I .... 0

a, -1.5

(Y. )

True values

Cl! +'

u0.1

{u.}

a0

(u.)

1.016

obsprvatiollf1 de lose in-

,"orn or 1",,,,, . Evirlpnt1y, t.he l~ss missin< Doint" in the o~servef. "equencp.. the hetter fo,.. lToorlt"lling.

(C;.10)

8,j') = U"lli t...,.o<> j"'l1"1

Ti:-;~iIlg

f OrnJat~ on

ga'>O j>l

"Urn ~

t or-y .. HO,",f!ver,