A Middle Miocene palynoflora from sinkhole deposits from Upper Silesia, Poland and its palaeoenvironmental context

A Middle Miocene palynoflora from sinkhole deposits from Upper Silesia, Poland and its palaeoenvironmental context

Review of Palaeobotany and Palynology 163 (2010) 1–10 Contents lists available at ScienceDirect Review of Palaeobotany and Palynology j o u r n a l ...

3MB Sizes 412 Downloads 302 Views

Review of Palaeobotany and Palynology 163 (2010) 1–10

Contents lists available at ScienceDirect

Review of Palaeobotany and Palynology j o u r n a l h o m e p a g e : w w w. e l s ev i e r. c o m / l o c a t e / r ev p a l b o

Research papers

A Middle Miocene palynoflora from sinkhole deposits from Upper Silesia, Poland and its palaeoenvironmental context Elżbieta Worobiec a,⁎, Joachim Szulc b a b

Władysław Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, PL-30-063 Kraków, Poland

a r t i c l e

i n f o

Article history: Received 25 March 2010 Received in revised form 10 June 2010 Accepted 15 June 2010 Available online 21 June 2010 Keywords: Miocene sinkhole palynology palaeoenvironment Poland

a b s t r a c t The paper presents results of pollen analysis of lignite sediments filling one of the sinkholes developed within the Triassic limestone outcropped in Tarnów Opolski, Upper Silesia, SW Poland. Vertical changes in composition of sporomorph and algal assemblages of the sinkhole fill, clearly reflect a facies succession from open aquatic (pond)—with abundant fresh-water algae, to marshy one—with a considerable contribution of swamp forests, composed of Taxodium, Glyptostrobus, Nyssa and probably Alnus. The pond was surrounded by swamp–aquatic vegetation, composed of herbs, as well as riparian forests probably dominated by Carya and Pterocarya. Drier habitats were vegetated by mixed forests composed of Carpinus, Quercus, Fagus, Cercidiphyllum, Tilioideae and conifers, with an admixture of thermophilous taxa (such as Castanea, Engelhardia, Platycarya, Reevesia, and Symplocos). Results of the pollen analysis indicate that the climate was warm temperate and moderately wet. Composition of pollen spectra and frequencies of palaeotropical and arctotertiary elements point at a Middle Miocene age of the deposits. © 2010 Elsevier B.V. All rights reserved.

1. Introduction

2. Geological setting

Palynological studies of Neogene continental sediments in Poland concern mostly material from lacustrine, lignite-bearing deposits (Grabowska and Słodkowska, 1993). Studies dealing with palynological matter from Neogene sinkholes fill deposits are extremely rare in both, Polish and world literature (e.g., Takahashi and Jux, 1982; Walsh et al., 1996; Rogala and Sadowska, 2003; Shunk et al., 2009). Also studies concerning Neogene macroremains preserved in palaeosinkholes are rare (Baranowska-Zarzycka, 1980; Ferguson and Knobloch, 1998; Farlow et al., 2001). The current paper presents results of comprehensive investigation concerning the spore–pollen palynoflora and the algal micro-remains preserved in pond sediments filling a palaeosinkhole at Tarnów Opolski, Upper Silesia, Poland (Fig. 1). Well preserved sporomorphs and fossil fresh-water algae co-occurring allow for a detailed palaeoenvironmental reconstruction of a fresh-water algal palaeocommunity and a vascular plant assemblage in this region. Furthermore the sporomorphs enable to date the sinkhole deposits.

The studied materials originate from one of the sinkholes developed within the Middle Triassic limestone outcropped in the western part of the Upper Silesian Upland, SW Poland (Figs. 1 and 2). The sinkholes visible in Tarnów Opolski quarry form depressions developed in reefal and bioclastic carbonates of the Karchowice and Diplopora Beds and range from 10 to 150 m in diameter attaining 30 m in depth. Downward progress of the sinkholes was constrained by underlying, impermeable marl deposits of the Terebratula Beds (Fig. 3). The sinkholes are filled by variegated clayey and sandy clastics, sometimes with lignites. The latter are lining the bottom and sidewalls of the depression or form layered intercalations between the clastic fill. Other common component are iron hydroxides (limonite) forming irregular agglomerates exploited in prehistoric and medieval ironworks. Unfortunately, owing to quarrying operation, original structures of the karst filling are commonly disturbed making the field observation difficult. Nonetheless, careful exploration of the sinkholes allows recognising the sedimentary succession of the sinkhole fill. The age of the karst sinkholes and their sediments was uncertain so far, or generally is estimated as Neogene (Rogala and Sadowska, 2003). In the neighbouring area similar variegated siliciclastic deposits, including lignite debris, are sandwiched between Middle Miocene marine sediments and the Pleistocene till deposits hence their age has been assumed as Late Miocene (Michael, 1914; Quitzow,

⁎ Corresponding author. Tel.: +48 12 4241772; fax: +48 12 4219790. E-mail addresses: [email protected] (E. Worobiec), [email protected] (J. Szulc). 0034-6667/$ – see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.revpalbo.2010.06.007

2

E. Worobiec, J. Szulc / Review of Palaeobotany and Palynology 163 (2010) 1–10

Fig. 1. Geological map of western part of Upper Silesia and location of the studied site.

1915). A more recent study on land snails occurring in comparable sediments from Opole (ca. 15 km NW from Tarnów Opolski) indicates a Middle Miocene age of these deposits (Stworzewicz, 1998). 3. Material and methods The material was collected from a sinkhole at Tarnów Opolski (Fig. 2). A total of 16 samples were taken in 35 cm intervals from the depth of about 100 to 625 cm. Samples for pollen analysis were prepared according to the modified Erdtman's acetolysis method (Faegri and Iversen, 1975; Moore et al., 1991) using hydrofluoric acid to remove mineral matter. The microscope slides were made using glycerine jelly as a mounting medium. Depending on frequency of sporomorphs 1–3 slides from each sample were examined, and data from all spore–pollen spectra have been used to construct pollen diagram (Fig. 4). To simplify the pollen diagram some taxa with low frequencies are presented together. The percentage shares of the taxa

presented in the pollen diagram have been calculated from the total sum of pollen grains and spores; the proportion of fresh-water algal micro-remains was computed separately in relation to the total sum using the POLPAL computer program (Nalepka and Walanus, 2003). The taxa have been classified in terms of palaeofloristical element, mainly on the basis of the checklist of selected pollen and spore taxa from the Neogene deposits (Ziembińska-Tworzydło et al., 1994). The following elements have been distinguished in the studied material: palaeotropical (including tropical and subtropical), as well as arctotertiary (which includes warm temperate and temperate). Selected microphotographs of sporomorphs and fresh-water algal microremains are shown on Plates I–III. 4. Results of pollen analysis All studied samples yielded well-preserved sporomorphs suitable for detailed pollen analysis. The taxonomical composition of the

Fig. 2. Field photograph of the studied palaeosinkhole in Tarnów Opolski quarry. Arrow indicates the studied section of the sinkhole fill.

E. Worobiec, J. Szulc / Review of Palaeobotany and Palynology 163 (2010) 1–10

3

Fig. 3. Model showing inferred sequence of infilling of the studied palaeosinkhole. A. Initial stage of sinkhole development with open vadose conduits. B. Plugging of the vadose conduits and formation of a pond. C. Advanced stage of the sinkhole filling. 1. Triassic limestone bedrock. 2. Triassic marly bedrock. 3. Neogene clay sediments and residuum. 4. Plugged karstic conduits. 5. Lignite deposits.

pollen and spore assemblage analysed and the excellent state of preservation of most sporomorphs suggest that they occur in situ. No micro-remains re-deposited from older sediments have been found. About 500–600 (max. 850) pollen grains and spores, as well as about 20–380 specimens of fresh-water microalgae are encountered in almost each of these samples. In two samples (depth 205 cm and 590 cm) the frequencies are lower and in these samples about 160– 180 sporomorphs and 10–20 specimens of fresh-water algae are encountered. The studied spectra are morphologically differentiated, and a total of 127 taxa from 84 genera of pollen and spores are identified (see Appendix A). In all the samples pollen grains of conifers dominate. Among them Pinus (Pinuspollenites; mainly Pinus sylvestris type), Sciadopitys (Sciadopityspollenites) and Cupressaceae (mainly morpho-genus Inaperturopollenites related to pollen of Taxodium and Glyptostrobus, and only a few pollen grains of Cupressacites) are most frequent. Pollen grains of Picea (Piceapollis), Tsuga (Zonalapollenites), Abies (Abiespollenites), Cathaya (Cathayapollis), Keteleeria (Keteleeriapollenites dubius), and Sequoia (Sequoiapollenites) are regularly encountered. Deciduous trees are represented mainly by Nyssa (Nyssapollenites pseudocruciatus), Alnus (Alnipollenites verus, with distinct predominance of tetraporate pollen grains), Quercus (Quercoidites), Carpinus (Carpinipites carpinoides), Ulmus (Ulmipollenites) + Zelkova (Zelkovaepollenites potoniei), Carya (Caryapollenites simplex), Salix (Salixipollenites), Betula (Trivestibulopollenites betuloides), and Pterocarya (Polyatriopollenites stellatus). Pollen grains of Eucommia (Eucommioipollis parmularius), Tilioideae (Intratriporopollenites instructus and Intratriporopollenites cordataeformis), Castanea/Castanopsis (mainly Castaneoideaepollis oviformis), Fagus (Faguspollenites verus), Liquidambar (Periporopollenites), Acer (Aceripollenites), and Celtis (Celtipollenites) are regularly encountered. Among shrubs and climbers pollen of Myrica (Myricipites), Cyrillaceae/Clethraceae (mainly Tricolporopollenites exactus), Ericaceae (Ericipites), and Ilex (Ilexpollenites) occurs. Pollen of the morphotaxa Tricolporopollenites fallax and Tricolporopollenites liblarensis, associated with the present-day families Fabaceae, Fagaceae, Com-

bretaceae and Verbenaceae, also potentially were parts of the shrub layer. Herbs are not abundant but differentiated; among them Poaceae (Graminidites), Cyperaceae (Cyperaceaepollis), Asteraceae (Artemisiaepollenites sellularis, Cichoreacidites gracilis, and Tubulifloridites granulosus), and Polygonaceae (Persicarioipollis) regularly occur. Aquatic and near water plants are represented by Sparganiaceae (Sparganiaceaepollenites), Potamogeton (Potamogetonacidites), Typha (e.g., Tetradomonoporites typhoides), Alismataceae (Orapollis potsdamensis and Punctioratipollis sagittarioides), Nuphar (Nupharipollenites echinatus), Utricularia (Utriculiariaepollenites elegans), and ?Aldrovanda (Saxonipollis saxonicus). Spores are not abundant, only a few specimens of Sphagnum (Stereisporites), Polypodiaceae s.l. (Laevigatosporites), Osmunda (Baculatisporites), other ferns, as well as Lycopodiaceae (Retitriletes) and Selaginellaceae (Echinatisporis) are encountered. Besides pollen and spores abundant and diverse fresh-water algae, including Botryococcus, Sigmopollis, as well as zygospores of Zygnemataceae (e.g., Diagonalites, Megatetrapidites, Ovoidites, Stigmozygodites, and Tetraporina), and resting zygotes of desmids (Closteritetrapidites) are recorded. Frequency of the algal microfossils varies from almost 4% in the upper section to over 43% in the lower section. 5. Reconstruction of vegetation Results of pollen analysis show a dominant role of wetland and riparian vegetation at the time of sedimentation. The occurrence of abundant fresh-water algae, as well as pollen of aquatic plants and Salviniaceae/Azollaceae micro-remains, points at the presence of a water body. All identified algal micro-remains represent fresh-water taxa. Most of these algae prefer meso- to eutrophic conditions, and are characteristic for stagnant or slowly flowing, shallow water (Worobiec and Worobiec, 2008; Worobiec, in press). The presence of resting cells (e.g., zygospores of Zygnemataceae and desmids) suggests that the water body periodically might have dried out or, at least, underwent seasonal warming. In the water body e.g.

4

E. Worobiec, J. Szulc / Review of Palaeobotany and Palynology 163 (2010) 1–10

filamentous algae from the Zygnemataceae family (such as Mougeotia, Spirogyra and Zygnema) as well as Botryococcus and some desmids occurred. Among plants floating on water surface and fixed to the bottom Nuphar, Potamogeton, Utricularia and probably Aldrovanda occurred. In shallow water and in the marginal zone Typha and Sparganium grew. The fresh-water body was surrounded by swamp– aquatic vegetation, composed of herbs (including members of the families Cyperaceae, Poaceae, Apiaceae, Polygonaceae, Lamiaceae, Chenopodiaceae, and Asteraceae), as well as riparian forests, probably dominated by Carya and Pterocarya, accompanied by Liquidambar, Alnus, Ulmus, Juglans, Salix and Acer. Drier habitats were vegetated by mixed forests composed of Carpinus, Quercus, Fagus, Cercidiphyllum, Tilioideae and conifers, with an admixture of thermophilous taxa (such as Castanea, Engelhardia, Platycarya, Reevesia, and Symplocos). The undergrowth consisted of e.g. Ilex and probably plants producing pollen of morpho-species Tricolporopollenites fallax and Tricolporopollenites liblarensis. On conifers lived the parasitic Arceuthobium. Some pollen grains of Pinaceae (Pinus, Picea, Abies and Tsuga) possibly come from plant communities growing on elevated terrains in the distance (maybe far distance) from the water body (Mai, 1981, 1995; Kohlman-Adamska, 1993; Worobiec, 2009). Changes in composition of sporomorph and algal assemblages clearly reflect a facies succession from open aquatic to swampy conditions. In the pollen diagram two sections have been distin-

guished (Fig. 4). The assemblage of the lower section (A) is rich in fresh-water algal taxa, suggesting that in this phase the palaeosinkhole was completely filled with water. In contrast, the assemblage of the upper section (B) displays abundant pollen of Nyssa and Taxodium/Glyptostrobus. These plants are components of a swamp forest that might have overgrown the studied site, although some remnant water body still existed confirmed by the continuous presence of algal micro-remains and pollen of aquatic plants. Also Sciadopitys, Sequoia, Castanea/Castanopsis, Tricolporopollenites fallax/ Tricolporopollenites liblarensis and Arceuthobium, as well as Sphagnum all have a clear affinity to the swamp phase (B) of the section. 6. Age and palaeoenvironmental context Results of pollen analysis of the studied material indicate that the climate was warm temperate and moderately wet. In all the studied samples, pollen and spores of the arctotertiary palaeofloristical element (mainly warm temperate) distinctly prevail. The palaeotropical elements are represented by: Leiotriletes wolffi, Neogenisporis neogenicus, Araliaceoipollenites euphorii, Araliaceoipollenites reticuloides, Arecipites sp., Castaneoideaepollis oviformis, Castaneoideaepollis pusillus, Ilexpollenites iliacus, Ilexpollenites margaritatus, Magnolipollis neogenicus minor, Momipites sp., Myricipites sp., Platycaryapollenites sp., Quercoidites henrici, Quercoidites microhenrici, Tricolporopollenites

Plate I. Pollen grains from Tarnów Opolski. 1–2. 3–4. 5. 6. 7. 8. 9. 10. 11–12. 13. 14.

Keteleeriapollenites dubius (same specimen, various foci), depth 380 cm. Sciadopityspollenites serratus (same specimen, various foci), depth 380 cm. Sciadopityspollenites miniverrucatus, depth 240 cm. Inaperturopollenites concedipites, depth 380 cm. Sequoiapollenites undulatus, depth 310 cm. Inaperturopollenites verrupapilatus, depth 240 cm. Zonalapollenites spectabilis, depth 240 cm. Zonalapollenites oertlii, depth 170 cm. Periporopollenites stigmosus (same specimen, various foci), depth 170 cm. Polyatriopollenites stellatus, depth 450 cm. Eucommioipollis parmularius, depth 310 cm.

Plate II. Pollen grains from Tarnów Opolski. (see on page 6) 1–2. 3–4. 5. 6. 7. 8. 9. 10. 11–12. 13. 14. 15. 16–17. 18. 19. 20. 21. 22.

Nyssapollenites pseudocruciatus (same specimen, various foci), depth 380 cm. Nyssapollenites pseudocruciatus (same specimen, various foci), depth 240 cm. Caryapollenites simplex, depth 240 cm. Intratriporopollenites instructus, depth 240 cm. Ericipites roboreus, depth 485 cm. Zelkovaepollenites potoniei, depth 450 cm. Quercoidites cf. henrici, depth 415 cm. Symplocoipollenites vestibulum, depth 170 cm. Tricolporopollenites marcodurensis (same specimen, various foci), depth 380 cm. Myricipites sp., depth 380 cm. Tricolporopollenites megaexactus, depth 135 cm. Tricolporopollenites exactus, depth 380 cm. Ilexpollenites margaritatus (same specimen, various foci), depth 170 cm. Castaneoideaepollis oviformis, depth 380 cm. Tricolporopollenites liblarensis, depth 100 cm. Spinulaepollis arceuthobioides, depth 310 cm. Sparganiaceaepollenites polygonalis, depth 520 cm. Nupharipollenites echinatus, depth 380 cm.

Plate III. Pollen grains and fresh-water algal micro-remains from Tarnów Opolski. (see on page 7) 1–2. 3–4. 5. 6. 7–8. 9. 10. 11. 12. 13. 14. 15.

Tetradomonoporites typhoides (same specimen, various foci), depth 380 cm. Potamogetonacidites ovalis (same specimen, 4—phase contrast), depth 240 cm. Botryococcus braunii, depth 520 cm. Sigmopollis laevigatus, depth 625 cm. Sigmopollis pseudosetarius (same specimen, various foci), depth 485 cm. Stigmozygodites mediostigmosus, depth 415 cm. Ovoidites gracilis, depth 135 cm. Closteritetrapidites reductus, depth 520 cm. Stigmozygodites ministigmosus, depth 520 cm. Ovoidites minoris, depth 625 cm. Tetraporina sp., depth 450 cm. Diagonalites diagonalis, depth 520 cm.

E. Worobiec, J. Szulc / Review of Palaeobotany and Palynology 163 (2010) 1–10

Plate I.

5

6

E. Worobiec, J. Szulc / Review of Palaeobotany and Palynology 163 (2010) 1–10

Plate II (caption on page 4).

E. Worobiec, J. Szulc / Review of Palaeobotany and Palynology 163 (2010) 1–10

Plate III (caption on page 4).

7

8 E. Worobiec, J. Szulc / Review of Palaeobotany and Palynology 163 (2010) 1–10

Fig. 4. Percentage diagram of selected sporomorph and algal taxa from Tarnów Opolski.

E. Worobiec, J. Szulc / Review of Palaeobotany and Palynology 163 (2010) 1–10

exactus, Tricolporopollenites fallax, Tricolporopollenites liblarensis, Tricolporopollenites marcodurensis, Tricolporopollenites megaexactus, Tricolporopollenites pseudocingulum, Reevesiapollis triangulus, and Symplocoipollenites vestibulum. Composition of pollen spectra and frequencies of palaeotropical and arctotertiary elements, compared with data from other pollen sites from Poland (e.g., Ziembińska-Tworzydło, 1998), point at a Miocene age of the deposit. The most similar assemblages are known from the Middle Miocene, especially from the so called 1st Middle Polish lignite seam group (Piwocki and Ziembińska-Tworzydło, 1995, 1997; Słodkowska, 1998). During accumulation of the sediments of the 1st Middle Polish lignite seam group, the climate was warm and humid enough for development of vast marsh system. In this phase over the large part of the Polish Lowland were favourable conditions for expansion of swamp forests with Taxodium, Glyptostrobus and Nyssa, probably enriched in Alnus. The Taxodium–Nyssa swamp forests were widespread in Europe during the Oligocene to Pliocene period as one type of Neogene peat bog vegetation. Large peat bogs evolved in slowly subsiding tectonic basins or along the coast in some phases of sealevel change. In the Polish Lowland they had most favourable conditions in the Early and Middle Miocene. Presently similar forests occur in the Mississippi River delta, Florida, Georgia, North Carolina and the Gulf of Mexico coast (Mai, 1981; Barnes, 1991). In the study area, the limestone bedrocks of the Upper Silesian Upland underwent, under a warm and humid climate, intensive karstification resulting in the development of runnelled landscape with numerous sinkholes. As the corrosion reached the impermeable marls of the underlying Terebratula Beds, free circulation of vadose water stopped and meteoric water became accumulated in the sinkholes, giving rise to pond and mire environments. Moreover, the plugging was promoted by impermeable clay residuum, as the end product of karstification of the hosted limestone. As a result, the clastic and organic debris accumulated in the ponds, up to complete filling of the depressions (Fig. 3). Acknowledgements The author (E.W.) would like to express special thanks to Dr. hab. Grzegorz Worobiec (W. Szafer Institute of Botany, Polish Academy of Sciences in Kraków) for his help in collecting samples and taking microphotographs of sporomorphs. The authors also thank Dr. Torsten Utescher (Steinmann Institute, Bonn University) and an anonymous reviewer for critical reading of the manuscript and valuable comments. Appendix A List of spore and pollen taxa recorded in the studied material from Tarnów Opolski. Spores: Baculatisporites major (Raatz) Krutzsch Baculatisporites primarius (Wolff) Pflug & Thomson Cryptogrammasporis cf. magnoides Skawińska Echinatisporis longechinus Krutzsch Laevigatosporites haardti (Potonié & Venitz) Thomson & Pflug Laevigatosporites nitidus (Mamczar) Krutzsch Leiotriletes wolffi Krutzsch Monoleiotriletes gracilis Krutzsch Neogenisporis neogenicus Krutzsch Retitriletes sp. Stereisporites involutus (Doktorowicz-Hrebnicka) Krutzsch Stereisporites minor (Raatz) Krutzsch Stereisporites stereoides (Potonié & Venitz) Thomson & Pflug Stereisporites welzowensis Krutzsch & Sontag

9

Pollen of gymnosperms: Abiespollenites absolutus Thiergart Abiespollenites latisaccatus (Trevisan) Krutzsch Abiespollenites maximus Krutzsch Cathayapollis sp. Cedripites sp. Cunninghamiaepollenites janinae Stuchlik & Konzalová Cupressacites bockwitzensis Krutzsch Cupressacites cupressoides Kohlman-Adamska Inaperturopollenites concedipites (Wodehouse) Krutzsch Inaperturopollenites dubius (Potonié & Venitz) Thomson & Pflug Inaperturopollenites verrupapilatus Trevisan Keteleeriapollenites dubius (Khlonova) Słodkowska Piceapollis praemarianus Krutzsch Piceapollis tobolicus (Panova) Krutzsch Pinuspollenites labdacus (Potonié) Raatz Sciadopityspollenites crassus Krutzsch Sciadopityspollenites miniverrucatus Kohlman-Adamska Sciadopityspollenites serratus (Potonié & Venitz) Raatz Sciadopityspollenites varius Krutzsch Sciadopityspollenites verticillatiformis (Zauer) Krutzsch Sequoiapollenites polyformosus Thiergart Sequoiapollenites undulatus Kohlman-Adamska Zonalapollenites igniculus (Potonié) Thomson & Pflug Zonalapollenites maximus (Raatz) Krutzsch Zonalapollenites oertlii (Sivak) Ziembińska-Tworzydło Zonalapollenites spectabilis (Doktorowicz-Hrebnicka) ZiembińskaTworzydło Zonalapollenites spinosus (Doktorowicz-Hrebnicka) ZiembińskaTworzydło Zonalapollenites verrucatus Krutzsch Pollen of angiosperms: Aceripollenites sp. Aesculidites hippocastaneoides Sadowska Alnipollenites verus (Potonié) Potonié Araliaceoipollenites euphorii (Potonié) Potonié Araliaceoipollenites reticuloides Thiele-Pfeiffer Arecipites sp. Artemisiaepollenites sellularis Nagy Caprifoliipites sp. Carpinipites carpinoides (Pfug) Nagy Caryapollenites simplex (Potonié) Raatz Caryophyllidites hidasensis Nagy Castaneoideaepollis oviformis (Potonié) Grabowska Castaneoideaepollis pusillus (Potonié) Grabowska Celtipollenites sp. Cercidiphyllites minimireticulatus (Trevisan) Ziembińska-Tworzydło Chenopodipollis stellatus (Mamczar) Krutzsch Cichoreacidites gracilis (Nagy) Nagy Corsinipollenites sp. Cyperaceaepollis neogenicus Krutzsch Cyperaceaepollis piriformis Thiele-Pfeiffer Diervillapollenites megaspinosus Doktorowicz-Hrebnicka Erdtmanipollis major Krutzsch Ericipites callidus (Potonié) Krutzsch Ericipites ericius (Potonié) Potonié Ericipites roboreus (Potonié) Krutzsch Eucommioipollis parmularius (Potonié) Ziembińska-Tworzydło Faguspollenites verus Raatz Graminidites pseudogramineus Krutzsch Graminidites sp. Ilexpollenites iliacus (Potonié) Thiergart Ilexpollenites margaritatus (Potonié) Raatz Intratriporopollenites cordataeformis (Wolff) Mai Intratriporopollenites instructus (Potonié) Thomson & Pflug

10

E. Worobiec, J. Szulc / Review of Palaeobotany and Palynology 163 (2010) 1–10

Juglanspollenites sadowskae Kohlman-Adamska & ZiembińskaTworzydło Lamiaceae type Liriodendroipollis verrucatus Krutzsch Lonicerapollis gallwitzi Krutzsch Lythraceaepollenites sp. Magnolipollis neogenicus minor Krutzsch Momipites sp. Myricipites sp. Nupharipollenites echinatus (Krutzsch) Mohr Nyssapollenites pseudocruciatus (Potonié) Thiergart Oleoidearumpollenites sp. Orapollis potsdamensis Krutzsch Ostryoipollenites rhenanus (Thomson) Potonié Periporopollenites orientaliformis (Nagy) Kohlman-Adamska & ZiembińskaTworzydło Periporopollenites stigmosus (Potonié) Thomson & Pflug Persicarioipollis pliocenicus Krutzsch Platycaryapollenites sp. Polyatriopollenites stellatus (Potonié) Pflug Potamogetonacidites ovalis Grabowska & Ważyńska Potamogetonacidites paluster (Manten) Mohr Punctioratipollis sagittarioides Grabowska & Ważyńska Quercoidites asper (Pflug & Thomson) Słodkowska Quercoidites henrici (Potonié) Potonié, Thomson & Thiergart Quercoidites microhenrici (Potonié) Potonié, Thomson & Thiergart Reevesiapollis triangulus (Mamczar) Krutzsch Salixipollenites capreaformis Planderová Salixipollenites cinereaformis Planderová Saxonipollis saxonicus Krutzsch Sparganiaceaepollenites microreticulatus Grabowska & Ważyńska Sparganiaceaepollenites polygonalis (Thiergart) Potonié Spinulaepollis arceuthobioides Krutzsch Symplocoipollenites vestibulum (Potonié) Potonié Tetradomonoporites typhoides Krutzsch Thalictrumpollis thalictroides Stuchlik Tricolporopollenites cf. retiformis (Pflug & Thomson) Krutzsch Tricolporopollenites exactus (Potonié) Grabowska Tricolporopollenites fallax (Potonié) Krutzsch Tricolporopollenites liblarensis (Thomson) Grabowska Tricolporopollenites marcodurensis Pflug & Thomson Tricolporopollenites megaexactus (Potonié) Thomson & Pflug Tricolporopollenites pseudocingulum (Potonié) Thomson & Pflug Tricolporopollenites striatoreticulatus Krutzsch Triporopollenites coryloides Pflug Trivestibulopollenites betuloides Pflug Tubulifloridites granulosus Nagy Ulmipollenites maculosus Nagy Ulmipollenites stillatus Nagy Umbelliferoipollenites tenuis Nagy Utriculariaepollenites elegans Nagy Viscum type Vitispollenites sp. Zelkovaepollenites potoniei Nagy

References Baranowska-Zarzycka, Z., 1980. Sarmackie mchy, owoce i nasiona z Nowej Królewskiej Wsi koło Opola. Pr. Muz. Ziemi 33, 31–37. Barnes, B.V., 1991. Deciduous forests of North America. In: Röhrig, E., Ulrich, B. (Eds.), Ecosystems of the World. 7. Temperate Deciduous Forests. Elsevier, Amsterdam London–New York–Tokyo, pp. 219–344. Faegri, K., Iversen, J., 1975. Textbook of Pollen Analysis. Blackwell, Oxford. 250pp. Farlow, J.O., Sunderman, J.A., Havens, J.J., Swinehart, A.L., Holman, J.A., Richards, R.L., Miller, N.G., Martin, R.A., Hunt Jr., R.M., Storrs, G.W., Curry, B.B., Fluegeman, R.H., Dawson, M.R., Flint, M.E.T., 2001. The Pipe Creek Sinkhole biota, a diverse late Tertiary continental fossil assemblage from Grant County, Indiana. Am. Midl. Nat. 145, 367–378. Ferguson, D.K., Knobloch, E., 1998. A fresh look at the rich assemblage from the Pliocene sink-hole of Willershausen, Germany. Rev. Palaeobot. Palynol. 101, 271–286. Grabowska, I., Słodkowska, B., 1993. Katalog profili osadów trzeciorzędowych opracowanych palinologicznie. Państwowy Instytut Geologiczny, Warszawa. 80pp. Kohlman-Adamska, A., 1993. Pollen analysis of the Neogene deposits from the Wyrzysk region, North-Western Poland. Acta Palaeobot. 33 (1), 91–298. Mai, D.H., 1981. Entwicklung und klimatische Differenzierung der Laubwaldflora Mitteleuropas im Tertiär. Flora 171, 525–582. Mai, D.H., 1995. Tertiare Vegetationsgeschichte Europas. G. Fischer, Jena, Stuttgart, New York. 681pp. Michael, R., 1914. Erläuterungen zur Geologischen Karte von Preußen und benachbarten Budesstaaten. Blatt Tarnowitz-Brinitz, 108 pp. Moore, P.D., Webb, J.A., Collinson, M.E., 1991. Pollen Analysis. Blackwell, Oxford. 216pp. Nalepka, D., Walanus, A., 2003. Data processing in pollen analysis. Acta Palaeobot. 43 (1), 125–134. Piwocki, M., Ziembińska-Tworzydło, M., 1995. Litostratygrafia i poziomy sporowopyłkowe neogenu na Niżu Polskim (summary: Lithostratigraphy and spore–pollen zones in the Neogene of Polish Lowland). Przegl. Geol. 43 (11), 916–927. Piwocki, M., Ziembińska-Tworzydło, M., 1997. Neogene of the Polish Lowlands— litostratigraphy and pollen-spore zones. Geol. Q. 41 (1), 21–40. Quitzow, W., 1915. Erläuterungen zur Geologischen Karte von Preußen und benachbarten Budesstaaten. Blatt Gleiwitz, 84 pp. Rogala, W., Sadowska, A., 2003. Wiek mułów węglistych wypełniających leje krasowe Garbu Chełma (zachodnia część Wyżyny Śląskiej) w świetle analizy palinologicznej. Materiały 37. Sympozjum Speleologicznego 54–55. Shunk, A.J., Driese, S.G., Farlow, J.O., Zavada, M.S., Zobaa, M.K., 2009. Late Neogene paleoclimate and paleoenvironment reconstructions from the Pipe Creek Sinkhole, Indiana, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol 274, 173–184. Słodkowska, B., 1998. Palynological characteristics of the Neogene brown coal seams. In: Ważyńska, H. (Ed.), Palynology and palaeogeography of the Neogene in the Polish Lowlands: Prace Państw. Inst. Geol., 160, pp. 28–33. Stworzewicz, E., 1998. Charakterystyka mioceńskiej fauny ślimaków z Opola. Materiały 32. Sympozjum Speleologicznego, Kamień Śląski. p. 38. Takahashi, K., Jux, U., 1982. Sporomorphen aus dem Paläogen des Bergischen Landes (West-Deutschland). Bull. Fac. of Liberal Arts, Nagasaki University, (Natural Science) 23 (1), 23–134. Walsh, P., Morawiecka, I., Skawińska-Wieser, K., 1996. A Miocene palynoflora preserved by karstic subsidence in Anglesey and the origin of the Menaian Surface. Geol. Mag. 133 (6), 713–719. Worobiec, E., 2009. Middle Miocene palynoflora of the Legnica lignite deposit complex, Lower Silesia, Poland. In: Worobiec, E., Worobiec, G. (Eds.), Middle Miocene flora and vegetation of the Legnica and Ruja lignite deposits, Lower Silesia, Poland: Acta Palaeobot., 49 (1), pp. 5–133. Worobiec, E., (in press). Late Miocene freshwater phytoplankton from Józefina (Poland). Micropaleontology. Worobiec, E., Worobiec, G., 2008. Kopalne zygospory glonów Zygnemataceae (Chlorophyta) z osadów górnego miocenu KWB “Bełchatów” (summary: Fossil zygospores of Zygnemataceae algae (Chlorophyta) from the Upper Miocene of the Bełchatów Lignite Mine). Przegl. Geol. 56 (11), 1000–1004. Ziembińska-Tworzydło, M., 1998. Climatic phases and spore-pollen zones. In: Ważyńska, H. (Ed.), Palynology and Palaeogeography of the Neogene in the Polish Lowlands: Prace Państw. Inst. Geol., 160, pp. 12–16. Ziembińska-Tworzydło, M., Grabowska, I., Kohlman-Adamska, A., Sadowska, A., Słodkowska, B., Stuchlik, L., Ważyńska, H., 1994. Checklist of selected genera and species of spores and pollen grains ordered in morphological system. In: Stuchlik, L. (Ed.), Neogene Pollen Flora of Central Europe. Part 1: Acta Palaeobot., Suppl. 1, pp. 31–56.