Journal of Non-Crystalline Solids 124 (1990) 139-144 North-Holland
139
A study of the preparation conditions of Fe-B amorphous alloy powders produced by chemical reduction J. Jiang, I. D6zsi, U. G o n s e r a n d X. Lin a Universitiit des Saarlandes, Werkstoffwissenschaften, 1)-6600 Saarbriicken, FRG Institut fiir Physikalische Chemie, D-6600 Saarbriicken, FRG Received 18 April 1990
Ultrafine amorphous F e - B alloy powders were produced by chemical reduction. The experimental conditions (FeSO a, K B H 4 solution concentrations, volume ratio of the FeSO 4 to K B H 4 solutions, and reaction temperature) determining the structure and properties of the amorphous powders were investigated. The optimal conditions for production were determined.
1. Introduction Amorphous alloys are usually prepared as ribbons or films by melt spinning or by sputtering techniques. Recently, it was shown that ultrafine amorphous alloy powders can be prepared by chemical reduction performed at room temperature [1-5]. This result is important because with this method amorphous powders can be produced in large quantities. Because of the practical interest of these materials (magnetic recording media, catalysts, etc.) these powders have been extensively investigated in the past few years [1-5]. As early as 1953 Schlesinger et al. [6] prepared crystalline Fe-Co-base alloy powders by reducing FeSO 4 and CoC12 with potassium borohydride K B H 4. Recently, amorphous Fe-Co-base alloy powders were prepared by using a similar method [1]. The structure of the powder samples changes with differing conditions during preparation, However, the correlation between the conditions and the structure of the powder samples is not known. Since the chemical reaction is complex and is not precisely known, the optimal condition could be found only by a systematic change of the preparation conditions. In this paper we present results on the influences of various conditions on
the structure of the F e - B powder samples. Four parameters were varied systematically: the concentration of the FeSO 4 and KBH 4 solutions; the volume ratio of the FeSO 4 to KBH 4 solutions; and the reaction temperature. An optimal condition was determined for the production of the amorphous F e - B alloy powders.
2. Experimental The powder samples were prepared by the chemical reduction of FeSO 4 aqueous solution with potassium borohydride KBH 4. The process of sample preparation is shown in fig. 1. The aqueous solution of the metal salt, FeSO 4, was added in drops to an aqueous solution of the potassium borohydride, KBH 4, and vigorously stirred. Black precipitates formed and were collected on a filter, washed with distilled water and acetone and dried in a slow stream of air. Table 1 shows the various parameters applied during the preparation of the samples. The MiSssbauer spectra of the samples were measured at room temperature on a conventional constant acceleration type spectrometer. The absorbers were made b y pressing the powders gently between two synthetic
0022-3093/90/$03.50 © 1990 - Elsevier Science Publishers B.V. (North-Holland)
140
J. J i a n g et al. / F e - B a m o r p h o u s alloy p o w d e r s
t:? Ice end Wafer
Reduction
Fittering ond Washing
Drying
Fig. 1. Schematic illustration of the preparatory steps for the production of the amorphous F e - B alloy powders by chemical reduction.
foils. The single line source was 25 mCi Rh matrix.
All isomer
tive to the centre For
some
samples
57Coi n
a
shift values are given rela-
of a-Fe
at room
the X-ray
were taken using Cu Ka
temperature•
diffraction
a n d 9. It c a n b e s e e n i n fig. 2 t h a t t h e M ~ S s s b a u e r spectra
differ for the samples
ous concentrations
radiation.
~
and discussion
o. a t
The Mt~ssbauer spectra of the samples under
various conditions
are shown
with variUsing
1
pattern ,
~
::
3. Results
prepared
of the FeSO 4 solution.
prepared
.:
-
o.ao -
"" ."
1. O0
-- ",-o,,-~.,.~.,~:,~
¢.,.~.'v.-.,'~'¢~-~--%.'~"
--
7. Table 1
•
0. a4 -
The various conditions for the samples prepared by chemical reduction: concentration of the FeSO 4 and K B H 4 solutions, volume ratio of FeSO 4 to K B H 4 solutions, and reaction temperature T
¢~ ~ ~ 0.OO ~
Sample
.
"-
FeSO 4 /
T
*'-
"~
KBH4
KBH 4
(K)
>
,
A1 A2 A3 A4
1.0 0.5 0.1 0.05
1.0 1.0 1.0 1.0
1,0 1,0 1,0 1.0
279 279 279 279
B1 B2 B3
0.1 0.1 0.1
2.0 1 •0 0.5
1.0 1.0 1.0
279 279 279
w
.
: :.
.a ]¢
1. O0 - ,.~-~,.,~,r.,,..,~.
\ ;: ", ", :!
0.96 -
•~ .
279 279 279
DI D2 D3 D4 D5
0.1 0.l 0.1 0.1 0.1
1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0
309 299 289 279 273
.
'-- , -. . . ."" " . . .'.:. , . ". '. - ¢ ". : : "" ;, v
O.a6
O. 92 -
A3
:
.~ o . 9 8
0,2 0,6 1.0
• " "~ "
''" " "" ", "-".
FeSO 4
1.0 1.0 1.0
A2
2 -
:~'.r:" :
Concentration (mol)
0.1 0.1 0.1
I
.,: ...,.
_
i n figs• 2, 5, 7
C1 C2 C3
j
/~-,-,..~w:~
:-• ;
A4
.',. / -..~l
"~.-. I
I
-10
-5
' 0
I
5
VELOCITY Cmm/.]
I 10
Fig. 2• MtSssbauer spectra of the samples ( A 1 - A 4 ) prepared with various FeSO 4 solution concentrations. AI: 1 mol; A2: 0.5 mol; A 3 : 0 . 1 mol, and A 4 : 0 . 0 5 mol (other parameters maintained constant).
J. Jiang et al. / Fe-B amorphous alloy powders
mol FeSO 4 solution, the sample A1 was found to contain a larger amount of the crystalline phase and a smaller quantity of the amorphous component. A least-squares fitting of the spectrum shows three subspectra. The hyperfine parameters are given in table 2. On the basis of the hyperfine parameters and the X-ray diffraction pattern of sample A1, three components can be identified: a-Fe; 7 - F e 2 0 3 ; and an F e - B amorphous phase. The hyperfine parameters of the 7-Fe20 3 in the sample - isomer shift (0.26 m m / s ) and quadrupole splitting (0.78 m m / s ) - agree well with the reported data for 7-Fe20 3 particles with 6 nm average diameters [7]. These data indicate that the y-Fe203 phase exists in small particles. With a decrease ( < 1 mol) of the concentration of the FeSO 4 solution, the relative intensity of the amorphous component increased and the fraction of a-Fe and y-Fe203 components significantly decreased. The powder sample with the largest intensity of the amorphous component was obtained by using 0.1 mol FeSO 4 solution (as shown in fig. 2 for A3). In this case an a-Fe phase was not be detected. The M6ssbauer spectrum of the sample A3 could be fitted by a broadened sextet component with a hyperfine field distribution typical of amorphous alloys. The mean hyperfine field is 230 kOe. The amorphous state of this sample was also verified by its X-ray diffraction pattern, as shown in fig. 3, where no sharp diffraction peaks could be resolved. When the concentration of the FeSO 4 solution further decreased (fig. 2 for A4), the spectrum showed a broad splitting with a 227 kOe mean hyperfine field corresponding to an amorphous phase. It is worth noting that a paramagnetic doublet subspectrum also appeared in
-~ so .~" -
020
36 Fig. 3. X-ray
~ g
~ a== ~ ~
Component
~ v--
a-Fe 7-Fe203 amorphous F e - B alloy
H (kOe)
A (%)
-0.04(1) 0.26 (2)
0.00(1) 0.78 (2) -
331(1) -
32 42
0.00
261
26
0.03
s'o
66
70
diffraction pattern of sample A3.
fig. 2 for A3 and A4 samples, suggesting the existence of the ferric oxide component. These results indicate that the concentration of the FeSO 4 solution plays a very important role. In fig. 4 the change of the amorphous fraction as a function of the FeSO 4 solution concentration determined by the relative area of the Mi~ssbauer spectral components is shown. It was assumed that the Debye-Waller factor is the same for the various components. One can conclude that a predominating amorphous fraction could be produced by using a relatively low concentration of the FeSO 4 solution (0.1 mol). Schlesinger et al. [6] obtained crystalline alloy powders using highly concentrated FeSO 4 and CoC12 solutions (1 mol).
Table 2 Isomer shift (IS), quadupole spfitting (QS), internal magnetic field (H), and relative area (A) of the spectral components obtained for sample A1 QS (mm/s)
~
20 [degreesl
100
eo
IS (mm/s)
141
GO
1
/L. "/ " ' - \
I
\..
*-...
"~
~"~--. 40
"~~'--~. "
200 , 0
t
O.5
I
.1L,O
FeS04 Solution Concentration (mol) Fig. 4. Relative fraction of the amorphous F e - B alloy component vs. the concentration of the FeSO 4 solution in samples A1-A4.
J. Jiang et al. / F e - B amorphous alloy powders
142
I .,,-,-,.-..,:~,~....
1.00 I
I
I
I
I .¢,..,,~..,~,.~,~.,,131
' '
o. 96 t-
:= "''"4.:'
5- ,~--"
.. ,-."
0.9e 1.0o ~-:,-..-~.~-~.,.,~,,:,
........ ~..~" "~"...... " ~ 132
zO 7 z~ o . <
"
g8
3
" :" • -. "" .. . " , '; ~ v
I.-
~_ TM 0.96 .< 3 1.oo
t r u m c o n s i s t s of two c o m p o n e n t s , o n e ferric o x i d e a n d the o t h e r F e - B a m o r p h o u s c o m p o n e n t (fig. 5 for B1). T h e a m o r p h o u s f r a c t i o n d e c r e a s e d w i t h increasing KBH 4 concentration. The a-Fe phase was d e t e c t e d w h e n a 0.5 m o l c o n c e n t r a t i o n o f the K B H 4 s o l u t i o n was u s e d (fig. 5 for B3). T h e m e a n h y p e r f i n e field of the a m o r p h o u s c o m p o n e n t i n fig. 5 for B3 was 254 k kOe, w h i c h is l a r g e r t h a n the v a l u e for s a m p l e B2 (230 kOe). It is k n o w n t h a t the r e l a t i o n of the m e a n h y p e r f i n e field to the b o r o n c o n t e n t i n the F e - B a m o r p h o u s p o w d e r s a m p l e s is s i m i l a r to t h a t of F e - B a m o r p h o u s alloy r i b b o n s a m p l e s p r o d u c e d b y the m e l t s p i n n i n g t e c h n i q u e [8]. T h e m e a n h y p e r f i n e field decreases w i t h i n c r e a s i n g b o r o n c o n t e n t . A s we disc u s s e d in o u r earlier p a p e r [5], the h y p e r f i n e field is d e p e n d e n t o n v a r i o u s factors, b u t it c a n also b e r e l a t e d to the b o r o n c o n t e n t of the F e - B a m o r p h o u s s a m p l e . Based o n this a p p r o x i m a t i o n , the d e c r e a s e of the h y p e r f i n e field m a y i n d i c a t e
.,,.':.";i.:.+-:~-.~.-': ". 133
/,-...><,,~,~:,:..,
0.99
,.". ":. ." , .-. :" . , . . :...." -.-"'.: "-.'. ~-,.-
O. 9 f l
:
I
I
-In
I
I
I
I
I
-s o VELOCITY
s [==/s:]
zo
1. O0
"-,
"'.
z a.oo o 7tn0.98 z•K
\" -
~.-.-¢,.--~,.~,..~:.,,, '--.."~
. . . .
,
. . . .
,
. . . .
,
. . . .
..~,~,...,,,.-~_~_, ,."-C2 :':
'" ".
I-,
-'-:" " .-,-4
- -
T h e MiSssbauer s p e c t r a a n d the a m o r p h o u s f r a c t i o n s of the c o m p o n e n t s in the s a m p l e s prep a r e d w i t h s o l u t i o n s of v a r i o u s K B H 4 c o n c e n t r a t i o n s are s h o w n i n fig. 5 a n d fig. 6, respectively. F o r a c o n c e n t r a t i o n of K B H 4 > 1 mol, the spec. . . .
"
:,.s
constant)• O. 96
• oo
I
.,,,,~.,<~.~. ,,,~,~,-; : Cl
t,.
0.90
5. M ~ S s s b a u e r s p e c t r a o f s a m p l e s B 1 - B 3 p r e p a r e d w i t h various concentrations of KBH 4 solution• BI: 2 mol; B2:1 maintained
I
I
.-" ",.
Fig.
mol; and B3:0.5 mol (other parameters
- ~-,~..-.~--,~-.,,.~.. \
.
' ; n . 9 6
"
:
:
.... ;::~
:
"-: .....:..; ,J--
•-
~,
L
M-
~. 1. o o :
"\
o -~
m.
\\ 80
O. 98
~ :
"
\\
¢~
:
.
~
. _.
\\
. . . .
o.
P
0.5
. . . .
I
x~o
. . . .
~
x.5
. . . .
'
.
: : : - . - . . . ?,.:•' "
0.96 70
.
-
,, p..
C3
2.0
-
" ".
..
. . . .
.5
KBH4 Solution Concentration (nod
Fig. 6. Relative fraction of the amorphous Fe-B alloy component as a function of the FeSO4 solution concentration in samples B1-B3.
I -10
I -5
%
•
I 0
.. .' - ~ .~
1 S
I 10
VELOCITY t ~ / = ]
Fig. 7. Mt~ssbauer spectra of samples C 1 - C 3 prepared with various quantity ratios of FeSO4 to KBH4 solutions. CI: 0.2; C2: 0.6; and C3:1 (other parameters maintained constant)•
J. Jiang et al. / Fe-B amorphous alloy powders
t h a t the b o r o n c o n t e n t in s a m p l e B3 is lower t h a n in s a m p l e B2. O n e c a n c o n c l u d e that the high a m o r p h o u s f r a c t i o n c a n n o t be o b t a i n e d b y using a relatively high K B H 4 s o l u t i o n c o n c e n t r a t i o n ( > 1 mol). O n the o t h e r h a n d , one should r e m e m b e r that the a - F e p h a s e a p p e a r e d b y using a relatively low K B H 4 s o l u t i o n c o n c e n t r a t i o n . Therefore, an o p t i m a l K B H 4 c o n c e n t r a t i o n (1 mol) should be u s e d for o b t a i n i n g the l a r g e s t f r a c t i o n of a m o r p h o u s phase. F u r t h e r , we c o n s i d e r e d a n o t h e r p a r a m e t e r , the v o l u m e r a t i o of the F e S O 4 to K B H 4 solutions. F i g u r e s 7 a n d 8 show the MiSssbauer s p e c t r a a n d the c o n t e n t s of the a m o r p h o u s cornp o n e n t in the s a m p l e s p r e p a r e d with various v o l u m e ratios, respectively. It can b e seen that a m o r p h o u s F e - B alloy p o w d e r s a m p l e s can be p r e p a r e d o n l y with large v o l u m e ratios ( > 0.6) of the F e S O 4 to K B H 4 solutions. T h e m e a n h y p e r fine fields of the a m o r p h o u s c o m p o n e n t s for the s a m p l e s C2 a n d C3 are 198 k O e a n d 243 kOe, respectively. This c a n again be d u e to the different b o r o n c o n t e n t s of the samples. F r o m the i s o m e r shift values the s a m e c o n c l u s i o n can b e d r a w n . I n the s a m p l e C3 the i s o m e r shift is 0.12(1) m m / s a n d for the s a m p l e C2 it is 0.25(1) m m / s . F o r the a m o r p h o u s F e - B alloy system [8], the i s o m e r shift was f o u n d to d e c r e a s e with d e c r e a s i n g b o r o n content. A small a m o u n t of a - F e c a n also b e f o u n d in s a m p l e s C1 a n d C2, the reason for which at this m o m e n t is n o t known. F i g u r e s 9 a n d 10 show the M S s s b a u e r s p e c t r a a n d c o n t e n t s o f the a m o r p h o u s c o m p o n e n t , f o r the s a m p l e s ( D 1 - D 5 ) , respectively, p r e p a r e d at vari.I.00
.
.
.
.
I
.
g
.
.
.
/t"
t.
I
.
.
.
.?
I
I
.
I
D1
'-, "" % -:: " --.~';
0.a4 1. O0
. , :i , . _ .."/
.,-.
"" ~.-,.,~..,¢,~-~.~-.~..,
~ •
o.as F-
; _ -.\
~..,~..,-*,-~,~,~,"r~-,---
02
:/ -'-.
-
, ",:--:. -.: ::-";
0.96 ~z o 1.00
.-.,.. ,,_., ~ ' 03 " :. :" -: 0.91 : :. ~ - - . . . ? . ' . ,v ~ 0.e2 ~... -..:.. ,: i 7 1.00 ~ . . . . . . . . . . . "" ""~'~""......... ": :-" D4 0.9a : . . ": : ."-. '"" ! J ~ i .:"-: O. 96 " • --, ~. 0p . - . ~ . . . . . . . ~: -/.,,_,,.~.,~,,~.,,.,-,:, : ~5 0.9a -.. . .. .: ;:: : -- : : ' " . : 0. ge ~:< 1 i I I i i -10 -S 0 5 10 VEL0ClrV t,,,/,~ Fig. 9. Massbauer spectra of samples D 1 - D 5 prepared at various reaction temperatures. D I : 309 K; D 2 : 2 9 9 K; D 3 : 2 8 9 K; D 4 : 2 7 9 K; and D 5 : 2 7 3 K (other parameters maintained
constant). .tOO
g
'
t_
//
~
,.,
~
/
o.o
~ , I, ,
0.92
.
' 9o
1.0o
143
~
j_...~\ "..._.../~
\\
\
t-
o.s
z.o
~.s
U01ume Ratio of FeS04 to KBH4 S o l u t i o n Fig. 8. Relative fraction of the amorphous Fe-B alloy component in samples C 1 - C 3 vs. volume ratio of the FeSO 4 to KBH 4 solutions,
'\
2zo
2so
290
3oo
3~o
Reaction Tenperature (IO Fig. 10. Relative fraction of the amorphous Fe-B alloy component in the samples D 1 - D 5 plotted against reaction temperature.
144
J. Jiang et al. / Fe-B amorphous ahoy powders
0.25
....
, ....
, ....
, ....
0.20
"~
/~... 0.,5
., ~-, a.xo
, / ~ . - - /
-~'-~"--~
0.05
-~ ~= .'~ .~ "E _~ == ~=
240 2:30
~~--,.~
220
21o
~.
200
~\-,. \'~, \\
190 1oo ,7o2 7 0 . . . .
~.._ t .... 280
~ .... 290
~-~-" ~ . . .. :300
310
Reaction Tenperature (K) Fig. 11. Mean hyperfine fields and isomer shifts of amorphous Fe-B alloy components in samples D1-D5 as a function of reaction temperature.
ous r e a c t i o n t e m p e r a t u r e s . T h e s p e c t r a in fig. 9 show two c o m p o n e n t s , the a m o r p h o u s p h a s e a n d a p a r a m a g n e t i c ferric oxide d o u b l e t c o m p o n e n t . T h e l a t t e r increases with increasing r e a c t i o n temperature. Therefore, a low r e a c t i o n t e m p e r a t u r e ( < 279 K) s h o u l d b e used to a v o i d the f o r m a t i o n of the ferric oxide. F i g u r e 11 shows the c h a n g e of the m e a n h y p e r f i n e field a n d i s o m e r shift values of a m o r p h o u s F e - B c o m p o n e n t s as a f u n c t i o n of the r e a c t i o n t e m p e r a t u r e . It is seen that the b o r o n c o n t e n t d e p e n d s s t r o n g l y on the r e a c t i o n t e m p e r a ture. W h e n the t e m p e r a t u r e increases, the b o r o n c o n t e n t also increases.
4. Conclusions T h e results p r e s e n t e d in this p a p e r show that c e r t a i n p r i o r c o n d i t i o n s s h o u l d b e a d o p t e d in o r d e r tO p r e p a r e a m o r p h o u s F e - B alloy powders. Since the r e a c t i o n m e c h a n i s m is not sufficiently u n d e r -
stood, o n l y some e m p i r i c a l l y d e t e r m i n e d o p t i m a l p a r a m e t e r values can be o b t a i n e d . U s i n g a relatively high c o n c e n t r a t i o n of F e S O 4 s o l u t i o n ( > 0.1 mol) a larger crystalline c o m p o n e n t results. A larger a m o u n t of ferric o x i d e c o m p o n e n t forms when the s a m p l e s are p r e p a r e d b y using a low FeSO4 s o l u t i o n c o n c e n t r a t i o n a n d low v o l u m e ratios of F e S O 4 to K B H 4 solutions, high conc e n t r a t i o n of the K B H 4 s o l u t i o n a n d at high reaction t e m p e r a t u r e . T h e a - F e p h a s e forms at a relatively low K B H 4 s o l u t i o n c o n c e n t r a t i o n . T h e b o r o n c o n t e n t of the a m o r p h o u s F e - B alloy comp o n e n t varies with the c o n c e n t r a t i o n of the F e S O 4 a n d K B H 4 solutions, the v o l u m e r a t i o of F e S O 4 to K B H 4 solutions, a n d the r e a c t i o n t e m p e r a t u r e . A n o p t i m u m c o n d i t i o n for the p r e p a r a t i o n of the a m o r p h o u s F e - B alloy p o w d e r s c a n b e c o n c l u d e d to be as follows. (i) c o n c e n t r a t i o n of the F e S O 4 solution: = 0.1 mol (ii) c o n c e n t r a t i o n of the K B H 4 solution: = 1.0 mol (iii) q u a n t i t y r a t i o of F e S O 4 to K B H a solutions: > 0.6 (iv) r e a c t i o n t e m p e r a t u r e : < 279 K
References [1] J. van Wonterghem, S. Marup, C.J.W. Koch, S.W. Charles and S. Wells, Nature 322 (1986)622. [2] D. Buchkov, S. Nikolov, I. Dragieva and M. Slavcheva, J. Magn. Magn. Mater. 62 (1986) 87. [31 A. Inoue, J. Saida and T. Masumoto, Metall. Trans. 19A (1988) 2315. [41 A. Corrias, G. Ennas, G. Licheri, G. Marongiu, A. Musini, G. Paschina, G. Piccaluga, G. Pinna and M. Magini, J. Mater. Sci. Lett. 7 (1988) 407. [5] J. Jiang, I. D6zsi, U. Gonser, and J. Weissmiiller, J. NonCryst. Solids 116 (1990) 247. [6] H. Schlesinger, H.C. Brown, A.E. Finholt, J.R. Gilbreath, H.R. Hoekstra and H.R. Hyde, J. Am. Chem. Soc. 75 (1953) 215. [7] J. Jing, PhD Thesis, Universitiit des Saarlandes (1989). [8] S. Wells, S.W. Charles, S. Morup, S. Linderoth, J. van Wonterghem, J. Larsen, and M.B. Madsen, J. Phys. C, to be published.