A SURVEY OF REDUCED ORDER SENSITIVIR MODELS
William R . Perkins Coordinated Science Laboratory and Department of E l e c t r i c a l Engineering U n i v e r s i t y of I l l i n o i s Urbana, I l l i n o i s 61801 USA
ABSTRACT Techniques f o r reducing t h e o r d e r of s e n s i t i v i t y models a r e surveyed. Work on s e n s i t i v i t y p o i n t s methods a r e d e s c r i b e d . Methods of o b t a i n i n g reduced o r d e r models u s i n g s t a t e r e p r e s e n t a t i o n s of systems a r e p r e s e n t e d . Some r e c e n t r e s u l t s on c o n t r o l l a b i l i t y and o b s e r v a b i l i t y of s e n s i t i v i t y models a r e p r e s e n t e d . INTRODUCTION Trajectory s e n s i t i v i t y functions, t h a t is, p a r t i a l d e r i v a t i v e s of s t a t e v a r i a b l e s w i t h r e s p e c t t o system parameters, a r e widely used i n c o n t r o l system a n a l y s i s and d e s i g n . Three comprehensive s u r v e y s , by Kokotovic and Rutman [ I ] , by Ngo [ 2 ] , and by S o b r a l [ 3 ] , a s w e l l a s t h e r e c e n t monograph e d i t e d by Cruz [ 4 ] , r e f e r e n c e many of t h e s e u s e s . Various schemes have been proposed f o r g e n e r a t i n g t r a j e c t o r y s e n s i t i v i t y f u n c t i o n s . One important scheme i s t h e s e n s i t i v i t y model method. I n t h i s method the s e n s i t i v i t y f u n c t i o n s a r e d e f i n e d i m p l i c i t l y by t h e s e n s i t i v i t y e q u a t i o n s , o r p e r t u r b a t i o n e q u a t i o n s . These e q u a t i o n s may be obtained by d i f f e r e n t i a t i n g t h e o r i g i n a l system e q u a t i o n s with r e s p e c t t o t h e system parameters, provided a p p r o p r i a t e d i f f e r e n t i a b i l i t y c o n d i t i o n s a r e s a t i s f i e d [ 5 , 6 ] . A dynamic system d e s c r i b e d by t h e s e s e n s i t i v i t y e q u a t i o n s i s c a l l e d a s e n s i t i v i t y model. Use of t h e s e models avoids t h e need f o r forming f i n i t e d i f f e r e n c e s , a n u m e r i c a l l y hazardous endeavor. Moreover, t h e models s t r u c t u r a l l y resemble t h e o r i g i n a l system, and can be obtained o f t e n by simple manipulations of t h e o r i g i n a l system block diagram. However, i f t h i s approach i s used d i r e c t l y f o r s i m u l a t i o n by i d e n t i f y i n g each p a r t i a l d e r i v a t i v e a s a s t a t e v a r i a b l e o f t h e s e n s i t i v i t y model, p models, where p i s t h e number of parameters w i l l be needed, i n a d d i t i o n t o t h e o r i g i n a l system o r system model. Each of t h e s e models i s of o r d e r n. Thus a composite dynamic system of o r d e r (p+l)n w i l l be r e q u i r e d . This paper surveys techniques a v a i l a b l e f o r reducing t h i s o r d e r by c o n s i d e r i n g the v a r i a t i o n a l equations a s input-output rather than s t a t e e q u a t i o n s . Such r e d u c t i o n s r e s u l t i n important savings i n time and equipment needed f o r computer s i m u l a t i o n of t h e models. Formal
techniques f o r o b t a i n i n g minimal r e a l i z a t i o n s from i n p u t - o u t p u t d e s c r i p t i o n s , such a s [ 7 ] , could be used. However, t h e s e techniques r e q u i r e e x t e n s i v e computation, e s p e c i a l l y i n comparison t o t h e techniques t o be d i s c u s s e d h e r e . Repeated computation of minimal r e a l i z a t i o n s f o r d i f f e r e n t parameter v a l u e s , a s i n i t e r a t i v e o p t i m i z a t i o n schemes, f o r example, should be avoided. Thus t h e schemes t o be surveyed h e r e , while n o t of minimal o r d e r i n g e n e r a l , provide a simple method of g a i n i n g s u b s t a n t i a l r e d u c t i o n s from d i r e c t s i m u l a t i o n of t h e v a r i a t i o n s 1 e q u a t i o n s , b u t w i t h o u t t h e computational complexity of o b t a i n i n g a minimal r e a l i z a t i o n . Bihovski was t h e f i r s t t o s t r e s s t h e advantages of s e n s i t i v i t y models f o r g e n e r a t i n g s e n s i t i v i t y f u n c t i o n s f o r networks [ 8 ] . The pioneering a p p l i c a t i o n s of s e n s i t i v i t y models t o c o n t r o l problems i s due t o Kokotovic [ 9 ] . I n p a r t i c u l a r , Kokotovic [ 8 ] , Rutman [ l o ] , and o t h e r s [ l l ] have developed t h e s e n s i t i v i t y p o i n t s method. I n t h i s approach t h e o u t p u t s e n s i t i v i t y f u n c t i o n s f o r c e r t a i n s p e c i f i c system s t r u c t u r e s can be obtained a t c e r t a i n e a s i l y located " s e n s i t i v i t y p o i n t s " on a s i n g l e s e n s i t i v i t y model t h a t i s e s s e n t i a l l y a r e p l i c a of t h e system model. Thus o n l y one model i s needed, n o t p models a s with d i r e c t d i f f e r e n t i a t i o n of t h e system e q u a t i o n s . A p a r t i c u l a r l y impressive a p p l i c a t i o n of s e n s i t i v i t y p o i n t s i n system d e s i g n i s i n [ 1 2 ] . Recent developments i n t h e s e n s i t i v i t y p o i n t s approach i n c l u d e pseudosensi t i v i t y [13,14] and t h e " t h r e e - p o i n t s method" [ l o ]
.
Much c u r r e n t work on reduced o r d e r s e n s i t i v i t y models u t i l i z e s t h e s t a t e d e s c r i p t i o n of systems I n t h e following two s e c t i o n s , t h e s t a t u s of reduced o r d e r s e n s i t i v i t y model techniques f o r l i n e a r time i n v a r i a n t continuous time systems i s reviewed, with emphasis on s t r u c t u r a l p r o p e r t i e s of s e n s i t i v i t y models. REDUCED ORDER STATE MODELS I t i s r e a d i l y shown t h a t t h e phase canonic system representation has s p e c i a l s e n s i t i v i t y point p r o p e r t i e s [ I S ] . Moreover, i t i s w e l l known t h a t any s i n g l e i n p u t c o n t r o l l a b l e l i n e a r time i n v a r i a n t system can be put i n t o t h i s phase
canonic form. E x p l o i t i n g t h e s e n o t i o n s , Wilkie and Perkins [16] showed t h a t , f o r a s i n g l e i n p u t system, a l l s e n s i t i v i t y f u n c t i o n s of a l l s t a t e v a r i a b l e s w i t h r e s p e c t t o any number of system parameters could be g e n e r a t e d from a s i n g l e s e n s i t i v i t y model o f o r d e r n , t o g e t h e r w i t h a system model o r t h e a c t u a l o r i g i n a l system itself. A g e n e r a l i z a t i o n of t h i s approach was developed by Wilkie and P e r k i n s f o r m u l t i - i n p u t normal systems [ 1 7 ] , i n c l u d i n g systems having nonzero i n i t i a l c o n d i t i o n s . This approach r e q u i r e s (2m-1) models of o r d e r n f o r a system having m i n p u t s . More r e c e n t l y , Neuman and Sood, employing frequency domain (Laplace) system r e p r e s e n t a t i o n s , have s t u d i e d both s i n g l e and m u l t i - i n p u t systems [ 1 8 ] . Among o t h e r r e s u l t s , t h e y have o b t a i n e d a scheme r e q u i r i n g a t most m models of o r d e r n f o r a n mi n p u t n t h o r d e r l i n e a r time i n v a r i a n t c o n t r o l l a b l e ( n o t n e c e s s a r i l y normal) system. A s i m i l a r r e s u l t was developed a t about t h e same time by Denery [19]. Denery e x p l i c i t l y i n c l u d e s i n i t i a l c o n d i t i o n s . Moreover, t h e o r i g i n a l m u l t i - i n p u t system need o n l y be c y c l i c , n o t n e c e s s a r i l y c o n t r o l l a b l e . Denery's r e s u l t s f o l l o w from two i n t e r e s t i n g lemmas:
i) ii) iii)
(A,b) i s a c o n t r o l l a b l e p a i r bu, xo = 0 i = A x gu, zo = 0 ,
jc = Ax
+ +
t h e n x and z a r e r e l a t e d by a l i n e a r transformat i o n , z ( t ) = Mx(t). Lemma 2 : i) ii) iii)
If (A,b) i s a c o n t r o l l a b l e p a i r = Ax, xo = b i = Aw, wo = g ,
i
t h e n x and w a r e r e l a t e d by a l i n e a r transformation, w(t) = Fx(t). The t r a n s f o r m a t i o n s M and F a r e e a s i l y o b t a i n e d from t h e c o n t r o l l a b i l i t y m a t r i x f o r t h e p a i r (A,b). See Denery f o r d e t a i l s [ 1 9 ] . A p p l i c a t i o n of t h e s e lemmas t o t h e m u l t i - i n p u t v e r s i o n of ( 2 ) l e a d s immediately t o : Theorem [Deneryl. A l l t r a j e c t o r y s e n s i t i v i t y f u n c t i o n s w i t h r e s p e c t t o a l l parameters of a m-input c y c l i c system of o r d e r n can be g e n e r a t e d by a t most (m+2) s e n s i t i v i t y models of o r d e r n . These r e s u l t s g i v e a n upper bound on t h e o r d e r of s e n s i t i v i t y models needed. However, t h e models so produced a r e n o t y e t of minimal o r d e r , i n g e n e r a l . Extension of t h e s e i d e a s t o o t h e r c l a s s e s of systems may be found i n [20,21]. SOME STRUCTURAL PROPERTIES OF SENSITIVITY MODELS I f a s e n s i t i v i t y model i s n o t of minimal o r d e r , i t w i l l n o t be both c o n t r o l l a b l e and observable. S e v e r a l i n v e s t i g a t o r s have s t u d i e d t h e
c o n t r o l l a b i l i t y and o b s e r v a b i l i t y of v a r i o u s s e n s i t i v i t y model s t r u c t u r e s . For example, i n [22] t h e s i n g l e - i n p u t reduced o r d e r model of [16] i s examined. I t i s shown t h a t t h e composite system c o n s i s t i n g of t h e o r i g i n a l system t o g e t h e r w i t h t h e s e n s i t i v i t y model i s always completely s t a t e c o n t r o l l a b l e , independent of t h e number of parameters a p p e a r i n g , provided t h e o r i g i n a l system i s completely s t a t e c o n t r o l l a b l e . The same c o n c l u s i o n was o b t a i n e d independently by Guardabassi , L o c a t e l l i , and R i n a l d i [23] . The o b s e r v a b i l i t y of t h e composite system depends on how t h e parameters e n t e r t h e system d e s c r i p t i o n . I f t h e parameters appear i n b o n l y , and n o t i n A , t h e n no dynamic s e n s i t i v i t y models a r e r e q u i r e d a t a l l . The t r a j e c t o r y s e n s i t i v i t y f u n c t i o n s can be o b t a i n e d from t h e o r i g i n a l system model a l o n e . Thus t h e composite system i s n o t minimal, and t h u s cannot be o b s e r v a b l e . F i n a l l y , i t i s shown i n [22] t h a t f o r t h e important c a s e when t h e parameters a r e s t a t e feedback g a i n s , t h e composite system i s completely o b s e r v a b l e , and thus i s a minimal o r d e r system f o r g e n e r a t i n g t h e s e n s i t i v i t y functions. Neuman and Sood have a l s o s t u d i e d s t r u c t u r a l p r o p e r t i e s of s e n s i t i v i t y models, and have o b t a i n e d s e v e r a l i n t e r e s t i n g r e s u l t s [24]. For example, they have o b t a i n e d upper and lower bounds on t h e minimum s e n s i t i v i t y model o r d e r . These bounds depend on t h e system o r d e r , t h e number o f i n p u t s , and t h e number of e s s e n t i a l parameters. I n a s e r i e s of papers Guardabassi, L o c a t e l l i , and R i n a l d i have explored v a r i o u s q u e s t i o n s concerning t h e s t r u c t u r e of s e n s i t i v i t y models. For example, s e e [25]. They have devoted s p e c i a l a t t e n t i o n t o t h e i n v e s t i g a t i o n of t h e s e n s i t i v i t y of t e r m i n a l c o n d i t i o n s t o parameter v a r i a t i o n s . A r e c e n t s t u d y of t h i s s o r t u s i n g s e n s i t i v i t y models i s [26]. The concept of p a r t i a l c o n t r o l l a b i l i t y i s i n t r o d u c e d t o formulate a n e c e s s a r y and s u f f i c i e n t c o n d i t i o n f o r t h e t e r m i n a l s t a t e of a l i n e a r time i n v a r i a n t system t o be i n s e n s i t i v e , t o f i r s t o r d e r , w i t h r e s p e c t t o system parameter v a r i a t i o n s . A f u r t h e r development along t h e s e l i n e s , r e l a t i n g t o d e s i g n of s t a t e feedback s t r u c t u r e s t o o b t a i n terminal i n s e n s i t i v i t y , i s reported i n [27]. CONCLUSIONS Some r e s u l t s concerning reduced o r d e r s e n s i t i v i t y S e n s i t i v i t y p o i n t s methods models a r e reviewed. a r e d i s c u s s e d b r i e f l y . Recently developed t e c h n i q u e s f o r o b t a i n i n g reduced o r d e r s e n s i t i v i t y models from system s t a t e e q u a t i o n s a r e d e s c r i b e d . I n p a r t i c u l a r , a r e s u l t due t o Denery i s given. F i n a l l y , c u r r e n t work on s t r u c t u r a l p r o p e r t i e s of s e n s i t i v i t y models ( c o n t r o l l a b i l i t y , observab i l i t y ) i s d e s c r i b e d . These s t r u c t u r a l p r o p e r t i e s a r e r e l a t e d t o t h e o r d e r of t h e models, a s a nonminimal o r d e r model cannot be both c o n t r o l l a b l e and o b s e r v a b l e .
ACKNOWLEDGMENT This work was supported in part by the Joint Services Electronics Program (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DAAB07-67-C-0199,and in part by the U. S. Air Force under Grant AFOSR-68-1579D REFERENCES 1.
2.
P. Kokotwic and R. Rutman, "Sensitivity of Automatic Control Systems (Survey)," Avtomatika i Telemekhanika, Vol. 26, No. 4, transla1965. Moscow (in Russian). Ennlish tion in Automation and Remote Control, pp. 727-749, Sept. 1965. N. T. Ngo, "Sensitivity of Automatic Control Systems (Review) ," Automation and Remote Control, pp. 735-762, May 1971 (translated from Avtomatika i Telemekhanika, No. 5, pp. 53-82, in Russian).
3.
M. Sobral, Jr., "Sensitivity in Optimal ," Proc. IEEE, 0ct: 1968, Control Vol. 56, No. 10, pp. 1644-1652.
4.
J. B. Cruz, Jr., editor, Feedback Systems, McGraw-Hill Book Co., New York, 1972.
5.
L. S. Pontryagin, Ordinary Differential Equations, Addison-Wesley Publishing Co., Inc , Reading, Mass. , 1962.
ist terns
.
6.
.
8.
9.
12. V. Ciric, S. de Julio, and M. Vuskwic, "Analisi della Sensibilita di Un Sistema di Controllo Per Laminatoio Su Una Calcolatrice Analogica ,It (in Italian), L'Elettrotecnica, Vol. LII, No. 12, 1965. 13. M. I. Vuskwic, S. P. Bingulac, and M. Djorovic, "Parameter Optimization of Linear Dynamic Systems Using Pseudosensitivity Functions," Proc. IFAC Symp. on Syst. Eng. Avproach to Computer Control, Kyoto, Japan, 1970. 14. M. I. Vuskovic, S. P. Bingulac, and M. Djorwic, "Application of the Pseudosensitivity Functions in Linear Dynamic System Identification," Preprints of the 2nd IFAC Symposium on Identification and Process Parameter Estimation, Prague, Czechoslovakia, June 1970. 15. D. F . Wilkie, "Use of the Companion Transformation in Parameter Optimization and Adaptive Control," Report R-386, Coordinated Science Laboratory, Univ. of Illinois, Urbana, July 1968. 16. D. F. Wilkie and W. R. Perkins, "Essential Parameters in Sensitivity Analysis," Automatica (The Journal of the International Federation of Automatic Control), March 1969, pp. 191-197.
T. E. Stem, Theory of Nonlinear Networks and Systems, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965, pp. 228-239.
17. D. F Wilkie and W. R. Perkins, "Generation of . Sensitivity Functions for Linear Systems Using Low Order Models," IEEE Trans. on Automatic Control, April 1969, pp. 123-130.
B. L. Ho and R. E. Kalman, "Effective Construction of Linear State-Variable Models from Input/Outplt Data," Proc. Third Annual Allerton Conf. on Circuit and System Theory, Univ. of Illinois, pp. 449-459, Oct. 1965.
18. C. P. Neuman and A. K. Sood, "Sensitivity Functions for Multi-input Linear TimeInvariant Systems," Int. J. Control, Vol. 13, No. 6, 1971, pp. 1137-1150.
M. L. Bihwski, "Sensitivity and Dynamic Accuracy of Control Systems," Engineering Cybernetics, 1964, No. 6, 121-134. An earlier reference is M. L. Bihwski, "Fundamentals of Dynamic Accuracy of Electrical and Mechanical Circuits,It in Russian, 1zd.-vo AN SSSR, 1958. P. Kokotovic, "Method of Sensitivity Points in the Analysis and Optimization of Linear Control Systems," Automatika i Telemekhanika, No. 12, Dec. 1964, pp. 1512-1518, Moscow (in Russian). English translation in Automation and Remote Control.
10. R. S . Rutman, "The Method of Three Points in Sensitivity Theory," Engineering Cybernetics, No. 4, 1968, pp. 131-141. 11. P. Kokotovic, J. Medanic, M. Vuskovic, and S. Bingulac, "Sensitivity Method in the Experimental Design of Adaptive Control Congress of IFAC, Systems,It proceedings ~hirdLondon, June 1966, pp. 45B1-45B12.
19. D. G. Denery, "Simplification in the Computation of the Sensitivity Functions for Constant Coefficient Linear Systems,It IEEE Trans. on Automatic Control, Vol. AC-16; No. 4, ~ugust 1971, 348-350. 20. C. P. Neuman and A. K. Sood, "Sensitivity Models of Canonical Form Delay-Differential Systems," IEEE Trans. on Automatic Control, Vol. AC-16, No. 4, pp. 365-366, Aug. 1971. 21. R. K. Varshney, "Reduced-Order Sensitivity Models of Linear Systems with Applications," Report R-545, Coordinated Science Lab., Univ. of Illinois, Urbana, UILU-ENG 72-2204. 22. W. R. Perkins and D. F. Wilkie, "Controllability and Observability of Sensitivity ~odels Proc. 4th ~nnualPrinceton conference on Information Sciences and Systems, March 1970. 23. G. Guardabassi, A. Locatelli, and S Rinaldi, "On the Optimality of the Wilkie-Perkins LowOrder Sensitivity Model," IEEE Trans. on
Automatic Control, Vol. AC-15, No. 3, pp. 382-384, June 1970. 24. C. P. Neuman and A. K. Sood, "Sensitivity Functions for Multi-input Linear TimeInvariant Systems - 11. Minimal-Order Models,'' Int. J. Control, Vol. 15, No. 3, 1972, pp. 451-463. 25. G. Guardabassi, A. Locatelli, and S. Rinaldi, "Structural Uncontrollability of Sensitivity Systems ,'I Automatica, Vol. 5, No. 3, May 1969, pp. 297-301. 26. U. Bertele and G. Guardabassi, "Can the Terminal Condition of Time-Invariant Linear Control Systems Be Made Immune Against Small Parameter Variations? ," IEEE Trans. on Automatic Control, Vol. AC-16, No. 5, pp. 460462, Oct. 1971. 27, G. Fronza and G. Guardabassi, "A Note on Terminal Insensitivity," IEEE Trans. on Automatic Control, Vol. AC-17, No. 4, pp. 559560, Aug. 1972.