Accepted Manuscript An optimal analysis for Darcy-Forchheimer 3D flow of Carreau nanofluid with convectively heated surface Tasawar Hayat, Arsalan Aziz, Taseer Muhammad, Ahmed Alsaedi PII: DOI: Reference:
S2211-3797(17)32211-8 https://doi.org/10.1016/j.rinp.2018.03.009 RINP 1320
To appear in:
Results in Physics
Received Date: Revised Date: Accepted Date:
8 November 2017 20 February 2018 4 March 2018
Please cite this article as: Hayat, T., Aziz, A., Muhammad, T., Alsaedi, A., An optimal analysis for DarcyForchheimer 3D flow of Carreau nanofluid with convectively heated surface, Results in Physics (2018), doi: https:// doi.org/10.1016/j.rinp.2018.03.009
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
! " ! # $$%%% &'
( )(* + ,
- ./ # " 0 12345 - #
, / 6 " - ' 322% &'
/ 7 8 9:; < ) *
: # # # # < =/ # # = > >< ? @ # < / / # < A # ' / / < , B < - / C ( # <
8 D
D ( D D D A <
2
(
#
'
>
#
/ C
#
#
@
>
= > C
> C
B + 7 '
B
C
#
6# / #
!
"
#
= #
/
& #
#
=
#$
%
- #
' C
#
( #
+ #
/ / / # / / < / # # # / ' @/ # / / / / 1
# / < : # @ @/ # / B / < E / # ' < / < # # # E < / # > # < ' #
# / : :< ' / + # # # / < @ # # -' < & @ # : / / B < / @ : / # # # / # -: < - < // @ : A = #
'/ # < / / @ # @ # =' < < < # @< #
< < " <
= ' < + < # / @ / / < ( : / / < '/ : ' / / < + / '/ : # > @ # C '/ : E C < ( / / '/ : < '/ : / ) @ )&' () ' %*' * )( * # )%* * )()# %*# * ) # # / ** /
# ' < ( @ ' # # C / F < ( : / / C # / // / /F / / < ! #
< @ C '/ :< ! # # =/ < / / < ! / / // / = < -/ # @ # < < ' / @ / : # / / # : / <
( / # <
7 @ > #/ / : < ( @ # > # # / < // / ( < '
< / ( / / ) + * '/ ) + * / < - @
# ' < #G / # < @ )*
#
# < - @ < =/ E < = < / / : )A* $
< ! / # '
< / C ( # / <
H )*
: # # # / # < @ # ) /< *< ! = > < 6 @ / # @ < H # / / < / # / # # C , <
/< & # < : #
)2*
- . -$
)1*
/ / @ 3
)*
)$*
B
@ B
/ / #
$"( .
)3*
/ ' # < : 7:< 7:< / @ /
)I*
@ / + + # / 0 # '/
< B + 7 ' B 8
)J*
@ B / #
)4*
.
" / # @ / / :
# @ 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
I
)5*
1 1
)2%*
)22*
1 1 1 1 1 1 1 . 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1
)21* )2*
/ 8
1 1 1 , 1 1 1
.
)2$* )23*
(
2 ' # :< @ #
2
C
/ C 2 > : > = > > C # < ( # ' < - /
.
)2I*
: B 7:<
! " ! " # # %
# #
)2J* )24* )25* )1%*
# # )12* .
)11*
6# / # ! "
# = # #
J
3 " & # # = % - # < # / 8
#
! " # % .
)1*
C ' ( #
# .
)1$*
! @ - # @ 2 + # <
6 / : )A*< @ @
- - - -
- - - -
- -
#
#
- . -
)13* )1I*
# #
4 4 4 4 4 4
4 4 4 4
)1J*
4 5 # < # # 8
6 6 6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4
)14* )15* )%* )2*
# #
1 1 1 6 6
16 16 16 1 1 1 1 " ! 16 16 16 16 1 1 1 6 6
16 16 16 1 1 1 1 " ! 16 16 16 16 1 1 6 6 6 6 16 16 1 1 1 # # 16 16 16 6 6 6 1 % 1 # 1 . 6 16 16 # 16
)1*
)*
)$*
)3*
)I*
#/ @ < &/ 6 6 6 6
)J*
6 6 6 6
)4*
6 6 6 6
)5*
6. 6 6 6
)$%*
/ 6 6 6 6 6 6 6 6 6 B 6 6 6 6 < @ / / @ 8 1 6
6 6 6 6 7 1
5
)$2*
1 6 6 6 6 6 7 1
1 6 6 6 6 6 7 1
1 6 6 6 6 6 . 7 1
)$1* )$*
)$$*
/ 7:< / #
. / 7:<
/
6 6
6
)$3*
6
)$I*
6
)$J*
6.
)$4*
6 6
6 6
6 6
7 # B 8 6 8 6 6
)$5*
6 8 6 6
)3%*
6 8 6 6
)32*
6 8 6 6
)31*
)3*
# # $
6
2%
!
"
)3$*
)33*
6
6
! "
#
#
6 6 %
)3I*
# #
7 7 0 .
)3J* )34*
)35*
/ 7:<
8
6 4 4 6
4
)I%*
6 6 4 4
4
)I2*
6 6 4
4
6 6 4
4
)I1*
)I*
4 5 / # / #
1 6 4 4 4 4 4 4 4 16 6 1 6 1
4 4 4 4 16
16 16 # 1 6 4 . 4 16 # 16
)I$* )I3* )II*
( @
/ /
22
< / # / / :
# H . 9
9
)IJ*
)I4*
9
9
/ H
)I5*
.
)J%*
9 9 9 9 9
)J2*
9 :
: . . / # @ , .
. , .
, . / :
9 . < /<
/
/ < # / :
/ /
7 . ! / :
/ <
/< / :
> @< 21
! ! / :
/ @
< 7
9
9
9
9
.
.
.
.
.
.
.
.
.
.
.
.
.
"
.
. .
. .
.
. . . .
. .
.
.
.
#
/ # / 6# / # # " ! = # = # - # % # & # B < /<
! # < B / / !< & @ < # '< /< # / # "< ! # # " / # '< H 6# / #
>
# /< < ! # ' / < /< > # < ! # # B ' # / < < /< = # < - / # / = # < ' # / = # < /< > # & # < ! # ' < 2
& > > & # 3 "< / 3 " ' >
' < /< @ # B < H / # / B '< > # B < / :' < ' < /< B > # !< B / !< /<
# / / # "< 7> 6# / #
#
/< < = / # # ' / # < /<
B > # < B / < /< % < &
- # # = > < / - # % ' = > < ' = > B < /< = # # < ' B # / / = # < & = / ' /< / = / #< /< # > < = / # B ' < & / < / # // : < /< >
" < !
# " < /<
! . / #
!< /< 2$
"
< > !
/
" # < /<
< /< #
/ # # !<
# # # / /< < @ # # # # <
/< & !<
/< & "<
23
/< & <
/< & <
/< & <
2I
/< & <
/< & # <
/< & !<
2J
/<
& "<
/< & <
/<
& <
24
/< & %<
/< & # <
/< & # <
25
/< &
" <
/< &
! <
/< &
1%
" <
/< &
! <
/< & # # # <
$
%
)*
:
# # < / < # # 8 H / ! # " # <
= B 6# / # <
12
B <
H / = # / B < & #
B
# / #
#
B # = # <
= B ' / - # %<
& ' K2L < H &# : H M G M & )243I*< K1L &< 6 #// # ? M < < !/< $3 )25%2* 2J41 2J44< KL < ' / / 7 !< )25$I*< K$L << -' ! @ 0< ! -< 15 )1%%I* 2J2$1< K3L < & < / > F' # !< < 5 )1%21* 5252J< KIL << -: < / @ : # # + & < I )1%2I* 44$45%< KJL -<< - << ## < < @ A = # 0< < H:< 11$ )1%2I* 1J$1J4< 11
K4L -<< =' (<< B +< ( << !< & #
/ '/ J )1%2I* 4< K5L < < -< -<0< H # @ !< 0< ( < 1I )1%2I* 1331I5< K2%L < < < < A 8 0< < H:< 1 )1%2J* 1J414J< K22L 0<< " A< AGG .< MG ( / / = ' !< 0< -< 222 )1%2J* 32231$< K21L < < < < @ / / & A 21 )1%2J* %2J$54< K2L -<"<-< 7/ -7 "- )2553* 552%3 7 12F< K2$L 0< =/ -7 0< 214 )1%%I* 1$%13%< K23L < < !< & -< / -< A# -/ / < !< 0< 3$ )1%22* 3344N335$< K2IL < ' / 7@ < 7/< -< 4$ )1%21* 24124J< K2JL < / <+< - +< - -<(< . < = .< 7< -/ ( # #' / < < < 15 )1%2$* 23N2J%< K24L < < < =< ! / B / & A 2% )1%23* %2$31< 1
K25L < ' -< ### << + ( ( @ !< 0< ( < 13 )1%23* $11$J< K1%L < < < <-< / 0< /< /< < 43 )1%23* 111115< K12L =<0< , =< !<-< -' .<< 7 / # / / / B !< 0< 7/< -< < 25 )1%2I* 212< K11L < < < < A / / !< 0< 2%% )1%2I* 3II3J1< K1L <+< 7 > # @ / / 0< < H:< 11% )1%2I* J24J13< K1$L < < < < < A / / / < & < 1J )1%2I* 25511%%$< K13L < -' < < -< # ( 7 / B !< 0< 2%4 )1%2J* 133413I3< K1IL < < -<< - < @ #G # 0< & < 33 )1%2J* 5I5JI< K1JL < < < < @ # 0< & < 33 )1%2J* 2$53232%< K14L < +< -GG < < +< 7 A : # + & < J )1%2J* 333I2< 1$
K15L < -' < < < # # H = !< 0< < -< 23 )1%24* 313$%< K%L < < < < ( / F# # / ' + & < 4 )1%24* J43J51< K2L &<0<
+ / : ' < -< + < 22I )25J1* 5521J< K1L < < 6: -<< - < -
# & 0< & < 4I )1%2I* 2J< KL < - ,<&< ' (< - > /
= @< 7/< 0 < 33 )1%2I* 2232223J< K$L .
7 / 2% )1%2J* $4I$55< K3L < . < ! 6<< . <-< /
/ + & < J )1%2J* 1I511J%$< KIL <+< 7 .
/ + & < 4 )1%24* 2243225< KJL A<< ' < = / # !< 0< - 3% )1%22* 21I21< K4L < < < < 0> #G / F# & A 21 )1%2J* %2J1324< K5L
K$%L < < < < @ #G / 0< < H:< 115 )1%2J* 3$23$J< K$2L -<0< H / > : < ( -< ( < - < 23 )1%2%* 1%%1%2I< K$1L < / 0< B < - - / > : / ( < < & >< 7:< 1I )1%2%* $$4$J5< K$L < < ,<
-/ @ / / F# 0< 1%2 )1%2* JI$41J< K$$L +< 7 < < ? - > A / !< 0< 42 )1%23* $$5$3I< K$3L O< H H< ?/ / # ' !& < 3 )1%23* 2%J113< K$IL < < -<< - < < - + !< 0< + 7/< 2$ )1%2I* J552< K$JL < ' / > / % )1%2I* 2I2I3%< K$4L < ?< < < 7> / / / # ' 0< < H:< 112 )1%2I* 2212221J< K$5L < < # < < #
A = / E 'E 0< < H:< 1$ )1%2J* 52J< K3%L < < < < N 6 / < < & < I4 )1%2J* 4JN5$< 1I
Three-dimensional boundary layer flow of Carreau nanofluid is modeled.
Flow is bounded by a bidirectional stretching surface.
Flow saturating porous medium obeys Darcy-Forchheimer relation.
Nanofluid model consists of Brownian diffusion and thermophoresis.
Thermal convective and zero nanoparticles mass flux conditions are implemented.
Series solutions are obtained through optimal homotopy analysis method (OHAM).