Analytical determination of the temperature distribution and Nusselt numbers in rectangular ducts with constant axial heat flux

Analytical determination of the temperature distribution and Nusselt numbers in rectangular ducts with constant axial heat flux

International Journal of Heat and Mass Transfer 43 (2000) 3259±3261 www.elsevier.com/locate/ijhmt Errata Analytical determination of the temperatur...

67KB Sizes 3 Downloads 35 Views

International Journal of Heat and Mass Transfer 43 (2000) 3259±3261

www.elsevier.com/locate/ijhmt

Errata

Analytical determination of the temperature distribution and Nusselt numbers in rectangular ducts with constant axial heat ¯ux [International Journal of Heat and Mass Transfer 43 (2000) 741±755] p Gian Luca Morini The publishers regret that Tables 3±6 (pp. 745 and 746) of the above article were incorrectly published. The correct versions of those tables are printed below. Table 3 The coecients tn, m of Eq. (13): versions 1L, 1S, 2L, 2S Version 1L

tn, m mÿ1

ÿ

1 1 X 128b X dn …ÿ1† 2 p4 A…b† kˆ1, odd jˆ1, odd …4n 2 b 2 ‡ m 2 †…b 2 k 2 ‡ j 2 †…k 2 ÿ n 2 †…4j 2 ÿ m 2 †

for n = 0 or even, and m odd 1S

nÿ1

ÿ

1 1 X 128b X dm …ÿ1† 2 4 p A…b† kˆ1, odd jˆ1, odd …n 2 b 2 ‡ 4m 2 †…b 2 k 2 ‡ j 2 †…4k 2 ÿ n 2 †… j 2 ÿ m 2 †

for n odd and m = 0 or even 2L

ÿ

4b p3 A…b†

1 X kˆ1, odd m…n

2b 2

dn ‡ m 2 †…b 2 k 2 ‡ m 2 †…k 2 ÿ n 2 †

for n = 0 or even, and m odd 2S

ÿ

4b p3 A…b†

1 X

dm 2 b 2 ‡ m 2 †…b 2 n 2 ‡ j 2 †… j 2 ÿ m 2 † n…n jˆ1, odd

n odd and m = 0 or even di=1 if i$0, di=1/2 if i = 0

p

PII of original article: S0017-9310(99)00188-X

0017-9310/00/$ - see front matter 7 2000 Published by Elsevier Science Ltd. All rights reserved. PII: S 0 0 1 7 - 9 3 1 0 ( 0 0 ) 0 0 0 8 3 - 1

3260

Errata / Int. J. Heat Mass Transfer 43 (2000) 3259±3261

Table 4 The coecients tn, m of Eq. (13): versions 2C, 3L, 3S, 4 2C

nÿ1

ÿ

mÿ1

1 1 X 256b X …ÿ1† 2 …ÿ1† 2 p4 A…b† kˆ1, odd jˆ1, odd …n 2 b 2 ‡ m 2 †…b 2 k 2 ‡ j 2 †…4k 2 ÿ n 2 †…4j 2 ÿ m 2 †

for n and m odd 3L

ÿ

nÿ1

1 X

32b p3 A…b†

…ÿ1† 2 2 b ‡ 4m 2 †…b 2 k 2 ‡ m 2 †…4k 2 ÿ n 2 † m…n kˆ1, odd 2

for n and m odd 3S

mÿ1

ÿ

1 32b X …ÿ1† 2 p3 A…b† jˆ1, odd n…4n 2 b 2 ‡ m 2 †…b 2 n 2 ‡ j 2 †…4j 2 ÿ m 2 †

for n and m odd 4

ÿ

b p 2 A…b†mn…n 2 b 2 ‡ m 2 † 2

for n and m odd

Table 5 The bulk temperature for the H1 problem: versions 1L, 1S, 2L, 2S Version 1L

1S

2L

2S

Tb ÿ

1 1 1 1 1 1 X X X X X 1024b X dn p6 A2 …b† nˆ0, even mˆ1, odd lˆ1, odd pˆ1, odd kˆ1, odd jˆ1, odd …l 2 b2 ‡ p2 †…4b2 n2 ‡ m2 †…l 2 ÿ n2 †…4p2 ÿ m2 †…b2 k2 ‡ j2 †…k2 ÿ n2 †…4j2 ÿ m2 †

ÿ

1 1 1 1 1 1 X X X X X 1024b X dm 6 2 p A …b† nˆ1, odd mˆ0, even lˆ1, odd pˆ1, odd kˆ1, odd jˆ1, odd …l 2 b2 ‡ p2 †…b2 n2 ‡ 4m2 †…4l 2 ÿ n2 †… p2 ÿ m2 †…b2 k2 ‡ j2 †…4k2 ÿ n2 †… j2 ÿ m2 †

ÿ

ÿ

4b p4 A2 …b†

1 X

1 X

1 X

1 X

dn 2 …l 2 b2 ‡ m2 †…b2 n2 ‡ m2 †…l 2 ÿ n2 †…b2 k2 ‡ m2 †…k2 ÿ n2 † m nˆ0, even mˆ1, odd lˆ1, odd kˆ1, odd

1 1 1 1 X X X X 4b dm p4 A2 …b† nˆ1, odd mˆ0, even pˆ1, odd jˆ1, odd n2 …n2 b2 ‡ m2 †…b2 n2 ‡ p2 †… p2 ÿ m2 †…b2 n2 ‡ j2 †… j2 ÿ m2 †

di=1 if i$0, di=1/2 if i = 0

Errata / Int. J. Heat Mass Transfer 43 (2000) 3259±3261

3261

Table 6 The bulk temperature for the H1 problem: versions 2C, 3L, 3S, 4 Version 2C

3L

3S

4

Tb ÿ

ÿ

ÿ

ÿ

1 1 1 1 1 1 X X X X X 4096b X 1 p6 A2 …b† nˆ1, odd mˆ1, odd lˆ1, odd pˆ1, odd kˆ1, odd jˆ1, odd …l 2 b2 ‡ p2 †…b2 n2 ‡ m2 †…4l 2 ÿ n2 †…4p2 ÿ m2 †…b2 k2 ‡ j2 †…4k2 ÿ n2 †…4j2 ÿ m2 †

64b p4 A2 …b†

64b p4 A2 …b†

1 X

1 X

1 X

1 X

1 X

1 X

1 X

1 X

1 2 … j2 b2 ‡ m2 †…b2 n2 ‡ 4m2 †…4j2 ÿ n2 †…b2 k2 ‡ m2 †…4k2 ÿ n2 † m nˆ1, odd mˆ1, odd jˆ1, odd kˆ1, odd

1 2 …4n2 b2 ‡ m2 †…b2 n2 ‡ j2 †…4j2 ÿ m2 †…b2 n2 ‡ l 2 †…4l 2 ÿ m2 † n nˆ1, odd mˆ1, odd jˆ1, odd lˆ1, odd

1 1 X X b 1 4p2 A2 …b† nˆ1, odd mˆ1, odd n2 m2 …b2 n2 ‡ m2 †3