134
SHORT COMMUNICATIONS
glucose and acetylglucosamine could be linked in some manner to a second polymer, a glycerol phosphate polymer (i.e. a teichoic acid) resembling that of Lactobacilhts casei 9 (but without esterified D-alanine residues). Further work will be needed to decide between these possibilities. We are indebted to Dr. H. J. FROMM for a sample of ribitol dehydrogenase of
A. aerogenes. Bacteriological Service, University of Liege, Li@e (Belgium) and Pharmacology Department, Washington University, St. Louis, Mo. (U.S.A.)
j . M. (~-HUYSEN
1 j. M. GHUYSEN, Biochim. Biophys. Acta, 5 ° (1901) 4z3 . 2 j. M. GHUYSEN, M. LEYH-BOUILL~ AND L. DIERICKX, Biochim. Biophys. Acta, 63 (I962) 28(). a j. M. GHUYSEN, M. LEYH-BOUILLE AND 1~. DIERICKX, Biochim. Biophys..4cta, ()3 (1962) 297. a M. R. J. SALTON AND G. MILHAUD, Biochim. Biophys. Acta, 35 (1959) 254. 5 j. M. GHUYSEN ANn J. L. STROMINGER, in the press. s j. T. PARK AND M. J. JOHNSON, J . Biol. Chem., 18i (I949) ~49. 7 H. J. FROMM, Biochim. Biophys. Acta, 57 (1962) 369. 8 S. ESTRADA-PARRA, P. A. REBERS AND M. HEIDELBERGER, Biochemistry, () ([962) [~ 75. 9 M. V. XELEMAN AND J. BADDILEY, Biochem. J., 8o (1961) 246.
Received June 2oth, 1963 Biochim. Biophys. Acla, 83 (1964) 132 134
~c 83oo2
Application of mass spectrometry to methylated monosaccharides identification The standard procedure for the structural analysis of carbohydrate biopolymers, ba~ed on methylation, still remains tedious and wasteful, due to the lack of appropriate methods for the identification of methylated monosaccharides. This is despite the fact that the methylation procedure 1,2, and the methods for the separation of methylated sugars which are produced by hydrolysis 3~, have been considerably improved during the last few years. We have recently investigated the pathways of fragmentation of a-methyl2,3,4,6-tetra-0-methyl-D-glucoside (I) after electron impactL The structures of the majority of the fragments produced were established on the basis of the mass spectra of a-methyl[2-0-Me-2Ha]-2,3,4,6-tetra-0-methyl-D-glucoside (II), a-methyl[2,3-di-0Me_2Ha]-2,3,4,6-tetra-O-methyl-D-glucoside (III), ~-methylE4,6-di-O-Me-2H3~-2,3,4,6 tetra-0-methyl-D-glucoside (IV) and ~-methyl[6-O-Me-2H3]-2,3,4,6-tetra-O-methy 1D-glucoside (V). The data obtained make it possible to predict the positions of the major peaks in the mass spectra of all the other possible methyl [Me-2Hal-tetra 0-methyl- and [di-Me-2H~-tetra-O-methyl-glu cosides*. The spectra predicted, together with the spectral data measured for I-V are shown in Table I. These data reveal that each of the compounds exhibits a unique mass spectrum, which can thus establish, unequivocally, the position of the -C2H3 group. * Obviously the f r a g m e n t a t i o n p a t t e r n of :~-nlethyt[tri-O-Me-2Ha]-tetra-O-methyl-D-g luc°sides m u s t be essentially similar to t h a t of methylEO-Me-~Hs!-tetra-O-methyl-n-g lucosides-
Biochim. Biophys..4cla, 83 (1964) 134-136
L
*"
oo t,a
x
¢o
4~,~
~"
173 162
152
145 131
III
149
145 131
III
48 (5 ° )
45
45 (5 °)
88
88
IOI (90)
IO 4 (IO)
179
176
176
173 159
IOI
19o (84) 187 (I6)
19 °
187
221
149 148
152 148 134
149 148
134 (6o) 131 (4 ° ) 114 (50) I I I (50) lO 4 (3 o) IOI (7 o) 91 (95) 88 (5) 48 (15) 45 (85)
lO4 (7 o) IOI (3 o)
91 (16) 88 (84)
48 (5)
45 (95)
II 4 (tO) I I I (90)
159 (5 ° ) 162 (5 o)
159 (5 ° ) 162 (5 o)
45 (7 ° )
48 (30)
91 (84) 88 (16)
lO4 (90) I0I (IO)
I I 4 (4 o) I I I (60)
134
179 176
176 162
173
19 ° (9 ° ) 187 (IO)
221 2o8
2
19o (25) 187 (75)
221 208
3
179
208
221
205
4
219
6
205
(D
45 (60)
48 (4 o)
94 (79) 91 (21)
lO 7 (3 o) IO 4 (60) IOI (I0)
114 (50) I I I (50)
137
152 151
162
176
182
193 (16) 19o (84)
224 211
2,3
45 (7 ° )
48 (30)
91
45 (20)
48 (8o)
9I (84) 88 (I6)
lO 4
II 4 (60) I I I (4 o)
lO 7 (60) lO 4 (4 o)
134
137 (60)
152 148
165 (5 ° ) 162 (5 o)
176
179
193 (9 ° ) 19o (IO)
224 2o8
2,6
45 (85)
48 (15)
88 (5)
94 (16) 91 (79)
lO4 (95) I0I (5)
134 (4 ° ) 114 (4 o) I I I (60)
137 (60)
152 151
165 (5 ° ) 162 (50)
176
182
193 (io) 19 ° (9 ° )
224 211
3,4
45 (4 ° )
48 (60)
91 (95) 88 (5)
lO4 (35) IOI (65)
114 (I0) I I I (90)
134
155 148
165 (5 ° ) 162 (5 o)
173
179
193 (25) 19o (75)
a24 2o8
3, 6
( I ) A N D DEUTERATED ANALOGUES
134 (4 ° ) 114 (90) I I I (IO)
149 151
165 (5 ° ) 162 (5 o)
179
I82
193 (75) 19 ° (25)
224 211
2,4
Position o f - C 2 H n groups
MASS SPECTRA (m/e VALUES)OF METHYL-2,3,4,6-TETRA-O-METHYL-~,D-GLUCOSIDE
TABLE I
45 (5 ° )
48 (5 o)
91 (16) 88 (84)
lO 7 (I0) lO 4 (60) I0I (30)
I I I (50)
114 (5 0)
131 (4 ° )
134 (60)
I5"> 148
165
176
179
193 (84) I9 o (16)
224 2o8
4, 6
)....t
o
o ,-4
I3t)
SHORT COMMUNICATIONS
Hence, a c o m p l e t e l y new a p p r o a c h to the identification of aldohexoses is provided. The m e t h y l a t e d m o n o s a c c h a r i d e is c o n v e r t e d to the c o r r e s p o n d i n g m e t h y l glycoside a n d s u b s e q u e n t l y d e u t e r o m e t h y l a t e d w i t h C ' H a I . The c o n s t a n t s of the substance o b t a i n e d will indicate the p a r e n t monosaccharide, whereas comparison of its mass s p e c t r u m with the d a t a p r e s e n t e d in Table I will enable assigning the positions of -C~Ha groups, i.e., positions of u n p r o t e c t e d h y d r o x y l s in the m e t h y l a t e d monosaccharide p r o d u c e d during h y d r o l y s i s of the polymer. The p r o p o s e d m e t h o d has the a d v a n t a g e over existing m e t h o d s in t h a t it makes possible the s t a n d a r d i z a t i o n of p r o c e d u r e for all type.~ of m o n o s a c c h a r i d e s as well as the a d v a n t a g e of requiring no a u t h e n t i c samples besides r e a d i l y available p e r m e t h y l monosaccharides. This m e t h o d of m e a s u r e m e n t of the mass s p e c t r u m needs only minor q u a n t i t i e s of c o m p o u n d , a n d in c o m b i n a t i o n with gas -liquid, or t h i n - l a y e r ~ c h r o m a t o g r a p h y , it should simplify c o n s i d e r a b l y the s t r u c t u r a l analysis of c a r b o h y d r a t e polymers. The a p p r o a c h m u s t r e m a i n valid on going to m e t h y l ethers of a n y t y p e of monos a c c h a r i d e - aldopentoses, 6-deoxyaldohexoses, ketoses, deoxv- a n d d e o x y a m i n o sugars, etc. The e s t a b ! i s h m e n t of the necessary e x p e r i m e n t a l d a t a fl)r these f u r t h e r a p p l i c a t i o n s is now in progress. Institute f o r Chemistry of N a t u r a l Products, A c a d e m y of Sciences, .lloscow (U.S.S.R.)
N . K . Kocm,:rKov O. ,~. CHIZHOV
t 1~. I(UHN, t-1. TRISCHMANNAND [. 1.6w, ..lngew. Chem., t, 7 (1955) 32. z 1¢.. tQUHN, H. ]3AI.;RAND A. SEI,'.LIGI,;I~,,.=lll~Z. Chem., ()l t (i958) 23(2. a G. N. 1,2OWKAI~aNY,Advan. Carbohydrate Chem., 9 (1954) 3o4. ~lW. \V. BINKLEY, Advan. Carbohydrate Chem., 1o (I955) 55. 5 C. T. BISHOp AND F. 1'. CooPeR, Ca~..[. Chem., 38 (I9()O) 38S. 6 I t . \V. KIRCHER, Anal. Chem., 32 (1960) 1103. v N. K. I(OCHETKOV, (). ,~. (~HIZHOV, N. S. \~7ULFSON AND |~. ~I. ZOLOTARI:\:,
Tetrahedro~z, in
the
press. s K. ]-IEYNSAND 11. F. (;Ri"TZMACHI~;R,:tHqeW. Chenz., 74 (I9()2) 387. Received N o v e m b e r 4th, I9() 3 Biochim. Biophys..4 cta, 83 (i c)t)4) ~34-130