Biliary complications following orthotopic liver transplantation: a 10-year audit

Biliary complications following orthotopic liver transplantation: a 10-year audit

HPB DOI:10.1111/j.1477-2574.2011.00300.x ORIGINAL ARTICLE Biliary complications following orthotopic liver transplantation: a 10-year audit Nalaka ...

281KB Sizes 0 Downloads 158 Views

HPB

DOI:10.1111/j.1477-2574.2011.00300.x

ORIGINAL ARTICLE

Biliary complications following orthotopic liver transplantation: a 10-year audit Nalaka Gunawansa1, John L. McCall2, Andrew Holden3, Lindsay Plank4 & Stephen R. Munn4,5 1 National Hospital of Sri Lanka and New Zealand Liver Transplant Unit, National Hospital of Sri Lanka, Colombo, Sri Lanka, 2Department of Surgery, Faculty of Medicine, University of Otago, Dunedin, New Zealand, 3Department of Radiology, Auckland City Hospital, Auckland, New Zealand, 4Department of Surgery, Faculty of Medicine, University of Auckland, Auckland, New Zealand and 5Department of Surgery, Auckland District Health Board, Auckland, New Zealand

Abstract

hpb_300

391..399

Background: Biliary complications following liver transplantation result in major morbidity. We undertook a 10-year audit of the incidence, management and outcomes of post-transplant biliary complications at the New Zealand Liver Transplant Unit. Methods: Prospectively collected data on 348 consecutive liver transplants performed between February 1998 and October 2008 were reviewed. The minimum follow-up was 6 months. Results: A total of 309 adult and 39 paediatric transplants were performed over the study period. Of these, 296 (85%) were whole liver grafts and 52 (15%) were partial liver grafts (24 split-liver, eight reduced-size and 20 live-donor grafts). There were 80 biliary complications, which included 63 (18%) strictures and 17 (5%) bile leaks. Partial graft, a paediatric recipient and a Roux-en-Y biliary anastomosis were independent predictors of biliary strictures. Twenty-five (40%) strictures were successfully managed non-operatively and 38 (60%) required surgery (31 biliary reconstructions, three segmental resections and four retransplants). Seven (41%) bile leaks required surgical revision and 10 (59%) were managed non-operatively. There was no mortality related directly to biliary complications. Conclusions: Biliary complications affected one in five transplant recipients. Paediatric status, partial graft and Roux-en-Y anastomosis were independently associated with the occurrence of biliary strictures. Over half of the affected patients required surgical revision, but no mortality resulted from biliary complications.

Keywords liver, transplant, outcomes Received 23 September 2010; accepted 24 January 2011

Correspondence Nalaka Gunawansa, National Hospital of Sri Lanka and New Zealand Liver Transplant Unit, National Hospital of Sri Lanka, Colombo 0110, Sri Lanka. Tel: + 94 773 737644. Fax: + 94 112 698 443. E-mail: [email protected]

Introduction Biliary complications following orthotopic liver transplantation (OLT) remain a common problem despite advances in organ procurement, preservation and surgical technique. Reported incidences of post-transplant biliary complications are around 10–25%1–3 and such complications result in significant patient This paper was presented at the 2009 Annual Meeting of the Transplant Society of Australia and New Zealand, 17–19 June 2009, Canberra, Australia.

HPB 2011, 13, 391–399

morbidity and occasional graft loss. The incidence of biliary complications has also been influenced by the increased use of partial liver (PL) grafts, which include reduced-size grafts, split-liver grafts and live-donor grafts. The New Zealand Liver Transplant Unit (NZLTU) was initiated in February 1998 with adult recipients, using only whole liver (WL) grafts. The first paediatric recipient was transplanted in 2002, since when paediatric transplants have represented an average of six to eight of the 36–40 OLTs carried out per annum. Until May 2009, all WL grafts are sourced from donors after brain death and do not include any organs donated after cardiac death.

© 2011 International Hepato-Pancreato-Biliary Association

HPB

392

The first PL transplant was performed in 2002, as was the first transplant from a live donor. There has since been a steady increase in the use of PL grafts in both paediatric and adult recipients. The protocol for allograft preservation has also changed twice during this 10-year period. The purpose of this study was to review the first 10 years of OLT at the NZLTU to identify the incidence, associated risk factors, management and outcomes of post-OLT biliary complications.

Materials and methods A prospective database of all patients undergoing transplantation at the NZLTU has been maintained. The current study is based on an analysis of these prospectively collected data, supplemented by inpatient and outpatient clinical records and subsidiary databases of radiological and endoscopic interventions performed in OLT recipients. A biliary stricture was defined as any narrowing in the bile ducts identified on post-transplant imaging that was associated with graft dysfunction and required intervention by radiological, endoscopic or surgical means. The indications for imaging were graft dysfunction detected by elevated serum transaminases, clinical evidence of sepsis or features of biliary stasis on allograft biopsy. Routine cholangiography was not performed. Imaging of the biliary tree was performed using either magnetic resonance cholangiopancreatography (MRCP) or endoscopic retrograde cholangiopancreatography (ERCP). Percutaneous transhepatic cholangiography (PTC) was performed if ERCP either failed or was not possible as a result of a Roux-en-Y (ReY) biliary anastomosis. Three different organ preservation techniques were used during the 10-year study period. From February 1998 to June 2002, University of Wisconsin perfusion fluid (UWS) was infused in situ under gravitational pressure. From July 2002 to August 2007, an additional 500 mL of UWS was infused under arterial pressure perfusion (APP) on the back-table (UWS + APP). From September 2007 to October 2008, a low-viscosity perfusion fluid, histidine tryptophan ketaglutarate (HTK), was infused in situ under gravitational pressure without the addition of back-table APP. The preferred technique for bile duct reconstruction was ductto-duct choledocho-choledochostomy (D–D) below the donor cystic duct, using interrupted sutures. A stent or T-tube was not used. In most paediatric recipients, in retransplants and in recipients with primary sclerosing cholangitis (PSC), an ReY was performed using the same anastomotic technique. Post-transplant immunosuppression was standardized with prednisone and tacrolimus combination in the majority of patients, while those with pre-OLT renal dysfunction were managed with prednisone and i.v. dacluzimab or basiliximab induction along with mycophenalate mofetil and delayed introduction of low-dose tacrolimus. Patient and donor variables included in the analysis were: recipient age (paediatric <14 years, adult ⱖ14 years); donor age (<50 years, ⱖ50 years); type of graft (WL, PL); cold ischaemia

HPB 2011, 13, 391–399

time (CIT; <10 h, ⱖ10 h); warm ischaemia time (WIT; <45 min, ⱖ45 min); graft preservation solution and technique (UWS, UWS + APP, HTK); type of biliary anastomosis (D–D, ReY), and associated presence or absence of hepatic artery stenosis (HAS) or thrombosis (HAT). Initially, biliary strictures were managed with endoscopic or radiological dilatation and stenting. Endoscopic therapy was always used as the preferred mode of non-operative treatment, with balloon cholangioplasty and stenting. Covered stents and, more recently, multiple stenting were used for anastomotic strictures (AS), whereas uncovered stents were used in nonanastomotic strictures (NAS) involving the intrahepatic biliary tree. Percutaneous radiological therapy using standard pigtail stents was reserved for those with an ReY, failure of endoscopic therapy or for isolated intrahepatic NAS. A combination of endoscopic and radiological techniques was used for inserting internal–external stents in complex strictures. Choledochoscopy was not used routinely in the management of these strictures. Repeat imaging, dilatation and stenting were undertaken at intervals of approximately 6 weeks or earlier if there was clinical or biochemical evidence of stent blockage. This process was continued until the stricture had either resolved completely or the treatment was deemed to have failed (generally after 4–6 months of non-operative therapy), at which point surgical revision of the biliary anastomosis was offered. In the presence of severe NAS limited to one area of the allograft, segmental liver resection was performed when non-operative approaches were unsuccessful. Retransplantation was considered when all non-operative and operative treatment options had been exhausted. The data were entered into an electronic database and statistical analysis carried out using sas Version 9.1 (SAS Institute, Inc., Cary, NC, USA). Descriptive statistics have been used to characterize the study population. Variables such as WIT and CIT have been categorized and used as categorical variables in order to facilitate a comparison between our findings and results reported in the literature. Univariate and multivariate logistic regression analyses were performed to identify factors associated with the presence of biliary strictures. For these analyses, recipient age, donor age and ischaemic times were dichotomized.

Results During the study period, 348 consecutive OLTs were performed in 338 recipients. A total of 38 (11%) recipients died during followup, including three inpatients (inpatient mortality 0.8%). The causes of the three inpatient deaths were massive stroke (postOLT day 16), pneumonia-induced septicaemia (post-OLT day 5) and HAT (post-OLT day 4). Of the remaining 35 deaths, none were a direct result of biliary complications and follow-up was complete until the time of death. Follow-up of all remaining 310 recipients was complete to February 2009; the median length of follow-up was 69 months (range: 6–132 months).

© 2011 International Hepato-Pancreato-Biliary Association

HPB

Recipients included 309 (89%) adult and 39 (11%) paediatric patients. Of the transplant recipients, 296 (85%) recipients, including seven paediatric patients, received WL grafts and the remaining 52 (15%) received PL grafts. The PL grafts comprised 24 split-liver grafts, eight reduced-size grafts and 20 live-donor grafts. Demographic details of the recipient population, donor population and transplant procedures are shown in Table 1. There were 80 biliary complications in 70 recipients (overall biliary complication rate 20%). These included 17 (5%) bile leaks and 63 (18%) biliary strictures (ten patients had both leak and stricture). Breakdowns and outcomes of the bile leaks and biliary strictures are shown in Figs 1 and 2, respectively. Bile leaks were diagnosed at a median of 17 days (range: 1–31 days) posttransplant. Eight of the 11 (73%) anastomotic leaks progressed to strictures despite treatment and were managed according to the protocol for biliary strictures. Two such AS following bile leaks progressed despite endoscopic stenting and were managed by biliary reconstruction. The remaining six strictures were successfully managed by endoscopic stenting. Of the 63 patients who developed bile duct strictures, 46 (73%) had AS, nine (14%) had NAS and eight (13%) had mixed strictures (AS + NAS). The median time to presentation was 121 days (range: 5–1296 days) after OLT. On univariate analysis the factors significantly associated with biliary strictures were PL graft, HTK preservation solution, ReY biliary anastomosis and HAS or HAT. On multivariate analysis, the only factors independently associated with biliary stricture were PL graft, ReY anastomosis and paediatric status (Table 2). A subgroup analysis was carried out for all adult recipients of WL grafts (n = 289) to further minimize any bias created by strong predictors such as paediatric status and PL graft. This demonstrated HTK preservation solution and an ReY biliary anastomosis to be independent risk factors for the occurrence of biliary strictures (Table 3). Twenty-five (40%) patients with biliary strictures were successfully managed by endoscopic or radiological dilatation and stenting. Thirteen of these were managed by endoscopy and stenting alone, with a median of three (range: 1–8) endoscopic stent insertion/exchange procedures. The median time to stricture resolution was 61 days (range: 36–118 days). The remaining 12 patients underwent radiology-guided percutaneous stent insertion or combined ERCP and percutaneous treatment. In one patient, the stricture was associated with late HAS and required concomitant hepatic artery stenting. The median time to complete resolution with percutaneous stenting was 109 days (range: 74–236 days), during which a median of four (range: 2–9) interventions were carried out. Thirty-eight (60%) patients in whom strictures did not respond to non-surgical treatment underwent surgical revision. Of these, 31 underwent biliary reconstruction with an ReY hepaticojejunostomy. The overall success rate of post-stricture ReY biliary reconstruction was 87% (27/31). The four patients who developed recurrent strictures after biliary reconstruction were

HPB 2011, 13, 391–399

393

treated with PTC dilatation and stenting (n = 2), surgical re-revision (n = 1) and retransplantation (n = 1). Four patients with severe ischaemic cholangiopathy secondary to HAS or HAT were not suitable for reconstruction. Three were successfully retransplanted, but the fourth exhibited an unrelated malignancy

Table 1 Demographic information

Variable/characteristics

n

%

Patient characteristics Age (median = 43 years; range: 5 months to 69 years) Paediatric, <14 years

39

11

309

89

Male

190

55

Female

158

45

Fulminant

26

7

Primary sclerosing cholangitis

24

7

Primary biliary cirrhosis

13

4

Hepatitis B

67

19

Hepatitis C

76

22

Cryptogenic

31

9

Alcohol-related

29

8

8

2

Budd–Chiari syndrome

11

3

Biliary atresia/Alagille syndrome

27

8

Retransplants

10

3

6

2

20

6

Age <50 years

235

68

Age ⱖ50 years

113

32

Male

184

53

Female

164

47

<45 min

239

69

ⱖ45 min

109

31

<10 h

226

65

ⱖ10 h

112

35

296

85

24

7

Adult, ⱖ14 years Gender

Aetiology of liver disease

Autoimmune

Hepatic artery thrombosis/primary non-function Other Donor characteristics Age (median = 40 years; range: 5–79 years)

Gender

Transplant characteristics Warm ischaemia (median = 8 min; range: 28–69 min)

Cold ischaemia (median = 439 min; range: 106–916 min)

Graft size Whole liver Split-liver graft Reduced-size graft Live-donor graft

8

2

20

6

© 2011 International Hepato-Pancreato-Biliary Association

HPB

394

Bile leaks (n = 17)

Anastomotic leaks (n = 11)

Cut surface leaks (n = 4)

Cystic duct stump leaks (n = 2)

ERCP + stenting

ERCP + stenting (n = 6)

Surgical repair (n = 5)

(n = 6)

Surgical repair (n = 2)

Percutaneous drainage (n = 2)

(n = 4)

Progression to AS (n = 10)

Treated as AS Figure 1 Outcome of post-transplant bile leaks. ERCP, endoscopic retrograde cholangiopancreatography; AS, anastomotic stricture

and was not considered for retransplantation. Three patients with segmental NAS were managed with segmental liver resections.

Discussion This study represents a complete audit of biliary complications in 348 consecutive OLTs performed at the NZLTU over a 10-year period. The overall rate of biliary complications was 20% and rates of occurrence of strictures and bile leaks were 18% and 5%, respectively. Most patients with anastomotic bile leaks went on to develop subsequent AS (Fig. 3). Overall, 40% of the strictures were successfully managed by non-operative interventions and 60% eventually required surgical correction. Four patients underwent retransplantation, but no mortality directly related to biliary complications occurred. The reported incidence of post-transplant biliary strictures varies widely among different study groups depending on the extent of follow-up and the nature of the study population. In deceased-donor transplants, the reported incidence is 5–15%,2,4 whereas in living-donor transplants it may be as high as 32%.5–7 The incidence in the present study, which included all transplant types, falls within this range. Similarly, the incidence of bile l eaks is within the reported range of 2–15%.2,8,9

HPB 2011, 13, 391–399

Many factors have been reported to be associated with the occurrence of post-transplant biliary strictures. These include paediatric status,10 recurrent PSC,11 advanced donor age,12,13 donation after cardiac death,14,15 prolonged WIT and CIT,16,17 ABO incompatibility,18,19 type of biliary reconstruction,20,21 HAS or HAT,22,23 postoperative bile leak,24,25 severe rejection,26 and cytomegalovirus (CMV) infection.27 Interestingly, donor age, WIT and CIT were not found to be independently associated with biliary strictures in our study. The allograft bile ducts are perfused exclusively from the hepatic arterial blood supply. Therefore, any compromise in the hepatic artery will result in bile duct ischaemia, leading to stricture formation. Six of 16 (38%) recipients of transplants that were complicated by HAS or HAT in our series went on to develop bile duct strictures. Although HAS/HAT was not found to be an independent risk factor for biliary strictures in the statistical analysis, three of the four patients who required retransplantation had concomitant arterial problems. The higher incidence of biliary problems among recipients of PL grafts is related to the small calibre of the ducts and the potential for the compromise of the periductal vascular supply during the preparation of such grafts.28,29 Leaks from small unrecognized tributaries or the cut surface may also contribute. An ReY biliary

© 2011 International Hepato-Pancreato-Biliary Association

HPB

395

Biliary strictures (n = 63) (46 AS, 8 AS+NAS, 9 NAS)

Successful resolution (n = 25) (15 AS, 7 AS+NAS, 3 NAS)

ERCP/PTC balloon dilatation /stenting (n = 62) Open surgical access tube insertion (n = 1)

Recurrent stricture (n = 38) (31 AS, 6 NAS, 1 AS+NAS) Segmental liver resection (n = 3) (NAS) Surgical biliary reconstruction (n = 31) (AS) Considered for re-transplant (n = 4) (3 NAS, 1 AS+NAS)

Successful resolution (n = 27) Recurrent stricture (n = 4)

Successfully re-transplanted (n = 3) (NAS)

Successfully re-transplanted (n = 1)

Palliative care (n = 1) (AS+NAS)

Second surgical reconstruction (n = 1)

Second round of PTC dilatation and stenting (n = 2) Figure 2 Outcome of post-transplant biliary strictures. AS, anastomotic stricture; NAS, non-anastomotic stricture; ERCP, endoscopic retrograde cholangiopancreatography; PTC, percutaneous transhepatic cholangiography

anastomosis was found to be an independent risk factor for stricture formation, even when paediatric recipients and PL grafts were excluded (Table 2). Bacterial colonization of the biliary tree originating from the choledochojejunal anastomosis may account for the increased risk associated with an ReY. The ischaemic-type biliary lesion (ITBL) (Fig. 4) refers to cholangiopathy that occurs in the absence of a recognized cause, such as HAS/HAT, recurrent PSC or chronic ductopaenic rejection.30,31 Reported incidences of ITBL vary widely among transplant centres and range from as little as 1.4% to as much as 26.0%.13,32–34 This inconsistency probably reflects a lack of consensus on the

HPB 2011, 13, 391–399

definition of ITBL as the term is sometimes used to describe all NAS. Although the aetiology of ITBL is multifactorial, one of the mechanisms strongly implicated is ischaemic injury to the biliary tree during organ procurement and preservation.16,35 In this study, we attempted to identify any possible association of organ preservation method with the incidence of ITBL. The biliary epithelium is supplied solely from the hepatic artery via small end-arteries and is therefore vulnerable to incomplete perfusion during flushing with preservation fluid. University of Wisconsin perfusion fluid has high viscosity at the low temperatures used for organ preservation, and is theoreti-

© 2011 International Hepato-Pancreato-Biliary Association

HPB

396

Table 2 Univariate and multivariate analysis for the presence of biliary strictures in all transplant recipients (n = 348)

Variables

Total transplants, n

Biliary strictures, n (%)

Recipient age <14 years

39

9 (23)

ⱖ14 years

309

54 (17.5)

ⱖ50 years

113

22 (19.5)

<50 years

235

41 (17.4)

Donor age

Graft

Univariate analysis

Multivariate analysis

OR (95% CI)

P-value

OR (95% CI)

P-value

0.79 (0.37–1.85)

0.57

5.10 (1.40–18.56)

0.014

1.08 (0.61–1.91)

0.79

1.24 (0.68–2.29)

0.48

2.59 (1.34–5.01)

0.0046

3.10 (1.11–8.69)

0.031

1.11 (0.63–1.93)

0.73

1.34 (0.72–2.50)

0.36

1.49 (0.81–2.02)

0.39

1.71 (0.96–2.37)

0.15

Partial liver

52

16 (30.8)

Whole liver

296

47 (15.9)

ⱖ10 h

122

23 (18.9)

<10 h

226

40 (17.7)

ⱖ45 min

109

21 (19.3)

<45 min

239

42 (17.6)

UWS

128

17 (13.3)

UWS + APP

174

33 (19.0)

1.53 (0.82–2.94)

0.19

1.65 (0.82–3.33)

0.17

46

13 (28.2)

3.16 (1.42–7.03)

0.0048

2.34 (0.93–5.88)

0.07

2.66 (1.48–4.79)

0.0011

3.28 (1.54–6.99)

0.002

75

23 (30.7)

273

40 (14.7) 3.50 (1.17–10.46)

0.025

2.76 (0.84–9.11)

0.095

Cold ischaemia time

Warm ischaemia time

Preservation

HTK Biliary anastomosis Roux-en-Y D–D Hepatic artery disease HAS/HAT+

16

06 (37.5)

HAS/HAT-

332

57 (17.2)

OR, odds ratio; 95% CI, 95% confidence interval; UWS, University of Wisconsin perfusion fluid; APP, arterial pressure perfusion; HTK, histidine tryptophan ketaglutarate infusion; D–D, duct-to-duct choledocho-choledochostomy; HAS, hepatic artery stenosis; HAT, hepatic artery thrombosis

cally disadvantageous in this regard. Others have reported that hepatic APP with UWS reduces the risk for ITBL.13 An alternative strategy is to use low-viscosity perfusion solutions such as HTK.32 We used both of these methods during the study period and, interestingly, found that HTK was associated with an increased rate of biliary strictures among adult recipients with WL grafts. We conducted separate comparisons for AS and NAS, but found no clear association of perfusion technique or solution with purely NAS. When the patient with concomitant HAS and NAS was excluded, only eight cases of ITBL were identified in total; these included three of 128 (2%) patients in whom UWS standard perfusion had been performed, five of 174 (3%) patients who received UWS + APP, and no HTK patients. Hence, the small number of ITBLs encountered may limit our ability to draw any conclusions regarding the effect of preservation technique on ITBL. Nevertheless, a recent large study using registry data found that HTK was associated with worse graft and patient survival in liver transplantation, including live donor transplan-

HPB 2011, 13, 391–399

tation.36 Based on these findings, as well as our own experience, we have changed our practice again and returned to using UWS as the preferred preservation solution. One of the limitations of the present study is the retrospective nature of its data analysis despite our access to a comprehensive prospective database. In addition, as discussed earlier, changes in graft type and perfusion technique occurred over the study period. Further, the aetiology of the liver disease leading to OLT was not considered in the analysis. Additional donor characteristics (other than age), such as extended criteria donation, were not considered separately because of the difficulties of retrieving such data in a retrospective manner. The small sample size of ITBL and HAT cases probably limits our ability to make definite recommendations based on this study. However, as the NZLTU is the only liver transplant unit in New Zealand, our study population was all-inclusive and longterm follow-up data were available for all patients. We also included all biliary problems regardless of other factors such as vascular pathology. The findings are therefore

© 2011 International Hepato-Pancreato-Biliary Association

HPB

397

Table 3 Univariate and multivariate analysis for the presence of biliary strictures in whole graft adult recipients (n = 289)

Variables

Univariate analysis Odds ratio

95% CI

Multivariate analysis P-value

Odds ratio

95% CI

P-value

Donor age ⱖ50 years, <50 years

0.95

0.50–1.82

0.89

0.94

0.48–1.85

0.87

1.14

0.60–2.15

0.69

1.35

0.68–2.71

0.40

1.55

0.87–2.12

0.30

1.67

0.88–2.30

0.11

UWS vs. APP

1.23

0.62–2.43

0.56

1.58

0.75–3.33

0.23

UWS vs. HTK

2.70

1.06–6.86

0.04

2.86

1.04–7.89

0.04

3.89

1.79–8.47

0.0006

3.89

1.73–8.74

0.001

3.04

0.853–10.821

0.086

2.88

0.75–11.09

0.12

Cold ischaemia time ⱖ10 h, <10 h Warm ischaemia time ⱖ45 min, <45 min Preservation

Biliary anastomosis ReY, D–D Hepatic artery disease HAS/HAT+ HAS/HAT95% CI, 95% confidence interval; UWS, University of Wisconsin perfusion fluid; APP, arterial pressure perfusion; HTK, histidine tryptophan ketaglutarate infusion; ReY, Roux-en-Y; D–D, duct-to-duct choledocho-choledochostomy; HAS, hepatic artery stenosis; HAT, hepatic artery thrombosis

Figure 3 Anastomotic biliary stricture (WL transplant presenting at post-operative day 37)

inclusive and representative of a real-world experience and are not subject to incomplete follow-up or selection bias. In conclusion, post-transplant biliary complications remain a major cause of morbidity following OLT, affecting one in five patients. Initial endoscopic or percutaneous management

HPB 2011, 13, 391–399

Figure 4 Non-anastomotic biliary strictures complicating an anastomotic stricture (WL transplant presenting at post-operative day 51)

was successful in 40% of patients, whereas surgical treatment was required in 60%. Retransplantation was rarely required in the absence of concomitant arterial pathology and no mortality occurred as a direct result of biliary complications.

© 2011 International Hepato-Pancreato-Biliary Association

HPB

398

15. Foley DP, Fernandez LA, Leverson G, Chin LT, Krieger N, Cooper JT et al.

Acknowledgements The authors would like to acknowledge P. Johnston (transplant surgeon), Associate Professor E. Gane and Dr D. Orr (hepatologists), Drs D. Duncan and

(2005) Donation after cardiac death: the University of Wisconsin experience with liver transplantation. Ann Surg 242:724–731.

C. Kennedy (interventional radiologists), and Drs S. Chin, H. Evans and

16. Sanchez-Urdazpal L, Gores GJ, Ward EM, Maus TP, Wahlstrom HE,

S. Mouat (paediatric hepatologists), all of whom contributed to the clinical

Moore SB et al. (1992) Ischaemic-type biliary complications after ortho-

management of the patients referred to in this study.

topic liver transplantation. Hepatology 16:49–53. 17. Sanchez-Urdazpal L, Gores GJ, Ward EM, Maus TP, Buckel EG, Steers JL et al. (1993) Diagnostic features and clinical outcome of ischaemic-

Conflicts of interest

type biliary complications after liver transplantation. Hepatology 17:605–

None declared.

609. 18. Lo CM, Shaked A, Busuttil RW. (1994) Risk factors for liver transplanta-

References 1. Starzl TE, Putnam CW, Hansbrough JF, Porter KA, Reid HA. (1977) Biliary

tion across the ABO barrier. Transplantation 58:543–547.

complications after liver transplantation: with special reference to the

19. Sanchez-Urdazpal L, Batts KP, Gores GJ, Moore SB, Sterioff S, Wiesner

biliary cast syndrome and techniques of secondary duct repair. Surgery

RH et al. (1993) Increased bile duct complications in liver transplantation across the ABO barrier. Ann Surg 218:152–158.

81:212–221. 2. Greif F, Bronsther OL, van Thiel DH, Casavilla A, Iwatsuki S, Tzakis A

20. Ringe B, Oldhafer K, Bunzendahl H, Bechstein WO, Kotzerke J,

et al. (1994) The incidence, timing, and management of biliary tract com-

Pichlmayr R. (1989) Analysis of biliary complications following orthotopic

plications after orthotopic liver transplantation. Ann Surg 219:40–45.

liver transplantation. Transplant Proc 21:2472–2476.

3. Thethy S, Thomson B, Pleass H, Wigmore SJ, Madhavan K, Akyol M et al.

21. Lopez RR, Benner KG, Ivancev K, Keeffe EB, Deveney CW, Pinson CW.

(2004) Management of biliary tract complications after orthotopic liver

(1992) Management of biliary complications after liver transplantation. Am J Surg 163:519–524.

transplantation. Clin Transplant 18:647–653. 4. Park JS, Kim MH, Lee SK, Seo DW, Lee SS, Han J et al. (2003) Efficacy

22. Colonna JO II, Shaked A, Gomes AS, Colquhoun SD, Jurim O, McDiarmid

of endoscopic and percutaneous treatments for biliary complications

SV et al. (1992) Biliary strictures complicating liver transplantation. Inci-

after cadaveric and living donor liver transplantation. Gastrointest Endosc

dence, pathogenesis, management, and outcome. Ann Surg 216:344– 350; discussion 50–52.

57:78–85. 5. Gondolesi GE, Varotti G, Florman SS, Munoz L, Fishbein TM, Emre SH

23. Zajko AB, Campbell WL, Logsdon GA, Bron KM, Tzakis A, Esquirel CO

et al. (2004) Biliary complications in 96 consecutive right lobe living donor

et al. (1987) Cholangiographic findings in hepatic artery occlusion after liver transplantation. AJR Am J Roentgenol 149:485–489.

transplant recipients. Transplantation 77:1842–1848. 6. Todo S, Furukawa H, Kamiyama T. (2005) How to prevent and manage biliary complications in living donor liver transplantation? J Hepatol

24. Ostroff JW. (2001) Post-transplant biliary problems. Gastrointest Endosc Clin N Am 11:163–183. 25. Verdonk RC, Buis CI, Porte RJ, van der Jagt EJ, Limburg AJ, van den

43:22–27. 7. Broering DC, Kim JS, Mueller T, Fischer L, Ganschow R, Bicak T et al. (2004) One hundred thirty-two consecutive paediatric liver transplants without hospital mortality: lessons learned and outlook for the future. Ann

Berg AP et al. (2006) Anastomotic biliary strictures after liver transplantation: causes and consequences. Liver Transpl 12:726–735. 26. Moench C, Uhrig A, Lohse AW, Otto G. (2004) CC chemokine receptor 5delta32 polymorphism – a risk factor for ischaemic-type biliary lesions

Surg 240:1002–1012; discussion 12. 8. Verran DJ, Asfar SK, Ghent CN, Grant DR, Wall WJ. (1997) Biliary reconstruction without T-tubes or stents in liver transplantation: report of 502

following orthotopic liver transplantation. Liver Transpl 10:434–439. 27. Halme L, Hockerstedt K, Lautenschlager I. (2003) Cytomegalovirus infection and development of biliary complications after liver transplantation.

consecutive cases. Liver Transpl Surg 3:365–373. 9. Osorio RW, Freise CE, Stock PG, Lake JR, Laberge JM, Gordon RL et al. (1993) Non-operative management of biliary leaks after orthotopic liver

Transplantation 75:1853–1858. 28. Heffron TG, Pillen T, Welch D, Smallwood GA, Redd D, Romero R. (2003) Biliary complications after paediatric liver transplantation revisited. Trans-

transplantation. Transplantation 55:1074–1077. 10. Egawa H, Inomata Y, Uemoto S, Asonuma K, Kiuchi T, Fujita S et al. (2001) Biliary anastomotic complications in 400 living related liver trans-

plant Proc 35:1461–1462. 29. Soejima Y, Taketomi A, Yoshizumi T, Uchiyama H, Harada N, Ijichi H et al. (2006) Biliary strictures in living donor liver transplantation: incidence,

plantations. World J Surg 25:1300–1307. 11. Ward EM, Kiely MJ, Maus TP, Wiesner RH, Krom RA. (1990) Hilar biliary strictures after liver transplantation: cholangiography and percutaneous

management, and technical evolution. Liver Transpl 12:979–986. 30. Buis CI, Hoekstra H, Verdonk RC, Porte RJ. (2006) Causes and consequences of ischaemic-type biliary lesions after liver transplantation.

treatment. Radiology 177:259–263. 12. Rossi AF, Grosso C, Zanasi G, Gambitta P, Bini M, De Carlis L et al.

J Hepatobiliary Pancreat Surg 13:517–524.

(1998) Longterm efficacy of endoscopic stenting in patients with stricture

31. Heidenhain C, Pratschke J, Puhl G, Neumann U, Pascher A, Veltzke-

of the biliary anastomosis after orthotopic liver transplantation. Endos-

Schlieker W et al. (2009) Incidence of and risk factors for ischaemic-type

copy 30:360–366.

biliary lesions following orthotopic liver transplantation. Transpl Int 23:14–

13. Moench C, Moench K, Lohse AW, Thies J, Otto G. (2003) Prevention of ischaemic-type biliary lesions by arterial back-table pressure perfusion.

tryptophan-ketoglutarate (HTK) preserved liver grafts. Int J Artif Organs

Liver Transpl 9:285–289. 14. Suarez F, Otero A, Solla M, Arnal F, Lorenzo MJ, Marini M et al. (2008) Biliary

complications

after

liver

transplantation

from

Maastricht

category-2 non-heart-beating donors. Transplantation 85:9–14.

HPB 2011, 13, 391–399

22. 32. Moench C, Otto G. (2006) Ischaemic type biliary lesions in histidine29:329–334. 33. Langrehr JM, Schneller A, Neuhaus R, Vogl T, Hintze R, Neuhaus P. (1998) [Aetiologic factors and incidence of ischaemic type biliary lesions

© 2011 International Hepato-Pancreato-Biliary Association

HPB

399

(ITBL) after liver transplantation.] Langenbecks Arch Chir Suppl

non-anastomotic biliary strictures after liver transplantation. Am J Trans-

Kongressbd 115:1560–1562.

plant 3:885–890.

34. Dong JH, Zhang LD, Wang SG, Bie P, Yang ZY. (2006) [Prophylaxis

36. Stewart ZA, Cameron AM, Singer AL, Montgomery RA, Segev DL. (2009)

and management of ischaemic-type biliary lesion after orthotopic liver

Histidine-tryptophan-ketoglutarate (HTK) is associated with reduced

transplantation.] Zhonghua Yi Xue Za Zhi 86:1236–1239.

graft survival in deceased donor livers, especially those donated after

35. Guichelaar MM, Benson JT, Malinchoc M, Krom RA, Wiesner RH, Charlton

MR.

(2003)

HPB 2011, 13, 391–399

Risk

factors

for

and

clinical

course

cardiac death. Am J Transplant 9:286–293.

of

© 2011 International Hepato-Pancreato-Biliary Association