CHAPTER 1 4 THE LEAN ELEMENTS
565. Elementary p r o p e r t i e s
An e l e m e n t f o f C t ' ( X ) w i l l be c a l l e d
lean
i f a ( If
1)
=
0.
If1 i s t h e n a l s o l e a n a n d , i n f a c t , s o i s e v e r y e l e m e n t of t h e
R i e s z i d e a l g e n e r a t e d by f .
Thus a n a l t e r n a t e d e f i n i t i o n i s
t h a t f i s l e a n i f t h e R i e s z i d e a l which i t g e n e r a t e s i n t e r s e c t s C(X) only i n 0.
There i s a n abundance o f l e a n e l e m e n t s .
We show t h a t € o r
u ( f ) - f and f - a ( € ) a r e l e a n .
every f EC"(X),
l e a n e l e m e n t i s o f t h i s form.
Note
Moreover, e v e r y
t h a t the following proposi-
t i o n c o r r e s p o n d s t o s t a n d a r d t o p o l o g i c a l ones on s e t s w i t h empty i n t e r i o r [ 31,581
.
( 6 5 . 1 ) For f € C l ' ( X ) ,
f > 0 , the following a r e equivalent:
1'
f is lean;
2'
f
=
u ( g ) - g f o r some ~ E c ~ * ( x ) ;
3'
f
=
h - R(h) f o r some h € C " ( X ) ;
4O
f < 6(f).
336
The Lean E l e m e n t s Proof. ___ u(f)
S u p p o s e 1' h o l d s .
p(f)
=
S(f).
u(f) < s(f)
=
u(f)
-
a(f)
=
0.
so f
=
f - k(f).
i n 3'.
Thus 4' -
T h a t 3'
Finally, i f f
t ( u ( g ) - g) 0
plies 1
5
Then k ( f ) = 0 , s o f < u(f) =
holds.
S u p p o s e 4'
e(f) < u ( f ) , so u ( f )
Thus 1' h o l d s .
=
1'
i m p l i e s 3':
i m p l i e s 2'
u(g)
-
337
holds.
Then
u(f) - Elf), so
=
i n effect, k(f)
=
0,
f o l l o w s by s e t t i n g g
=
-11
g , t h e n by ( 4 9 . 2 ) ,
u ( g ) - u ( g ) = 0 , whence k ( f )
=
0 < k(f) =
Thus 2'
0.
im-
. QED
I f f i s l e a n , t h e n s o are f + and f - .
The c o n v e r s e i s f a l s e .
For o n e e x a m p le, l e t X be a r e a l i n t e r v a l and g a n d h t h e c h a r a c t e r i s t i c elements o f t h e sets o f r a t i o n a l p o i n t s and i r rational points respectively h are lean.
( r em em be r, g , h E I J ( X )
Suppose k(g) > 0 ; t h e n e(g),
(555)).
g and
i s a lowersemicon-
t i n u o u s f u n c t i o n o n X w hi ch i s > 0 a n d v a n i s h e s o n t h e i r r a t i o n a l points, an impossibility. Then f +
=
g and f -
=
Similarly for k(h).
11, b o t h l e a n , w h i l e If
I
=
Set f
=
g - h.
R ( X ) , which i s n o t
lean. F o r a n e x a m p l e removed f r o m f u n c t i o n i m a g e r y , l e t X b e d e n s e - i n - i t s e l f and f f - = l.(X)d, f
=
l(X)u
- n(X)d.
Then f +
=
n(X),
and
b o t h l e a n ( c f . t h e comment f o l l o w i n g ( 4 0 . 5 ) ) , w h i l e
n(x).
=
Remark.
N ot e t h a t i n t h e s e two e x a m p l e s , 6 ( f )
T h u s, i n c o n t r a s t w i t h ( 6 5 . 1 ) ,
(65.2)
=
2.n(X).
6 ( f ) is, i n general, not lean.
If f i s l e a n , t h e n k ( f ) < 0 < u(f).
C h a p t e r 14
338
Proof.
f f and f - a r e l e a n , h e n c e , by ( 4 9 . 1 1 ) ,
u(f+) - a(f-)
=
u(f+) > 0 , and L ( f )
=
a(f')
u(f)
=
- u(f-) = -u(f-)
.(
0.
QED We n o t e t h e u s e f u l c o r o l l a r y t h a t i f a u s c e l e m e n t u i s l e a n , > 0 , and i f an Esc e l e m e n t R i s l e a n , t h e n R < 0. then u -
(Note
that (59.5) i s a corollary of t h i s . ) Note a l s o t h a t t h e c o n c l u s i o n o f ( 6 5 . 2 ) i s n o t a s u f f i c i e n t c o n d i t i o n f o r f t o be l e a n , a s t h e examples p r e c e d i n g ( 6 5 . 2 ) show. These examples a l s o show t h a t t h e s e t o f l e a n e l e m e n t s i s not c l o s e d under a d d i t i o n o r t h e l a t t i c e o p e r a t i o n s i s n e i t h e r a l i n e a r subspace nor a s u b l a t t i c e of
V,A.
C'l(X).
So i t
I t con-
t a i n s w i t h e a c h e l e m e n t t h e R i e s z i d e a l g e n e r a t e d by t h a t c l e ment.
I t i s t h u s a union of Riesz i d e a l s , a c t u a l l y t h e union
o f a l l t h e R i e s z i d e a l s i n t e r s e c t i n g C(X) o n l y i n 0 .
I t is
t h u s a s o l i d s e t , and c o u l d be d e f i n e d a s t h e l a r g e s t s o l i d s e t i n t e r s e c t i n g C(X) o n l y i n 0 . An o b v i o u s , b u t u s e f u l , consequence o f t h e s o l i d n e s s i s t h a t i f f i s l e a n , t h e n f o r e v e r y band I o f Cl'(X), f I i s a l s o lean. Another p r o p e r t y :
( 6 5 . 3 ) The s e t o f l e a n e l e m e n t s i s norm c l o s e d .
T h i s f o l l o w s from t h e e a s i l y v e r i f i e d f a c t t h a t i f a s o l i d
s e t i n t e r s e c t s C(X) o n l y i n 0 , t h e n s o does i t s norm c l o s u r e .
The Lean Elements
339
The examples preceding (65.2) actually show that the sum of two lean elements f,g need not be lean even if f A g
=
How-
0.
ever, under "stronger" disjointness of f and g, their sum
%
lean.
> 0 are lean and u ( f ) A g (65.4) If f,g -
Proof.
By (49.1), k(f
+
g)
-
u(f)
(using Exercise 4 in Chapter 1) R(f u(f)Af
R(f
+
+
g)
u(f)Ag =
=
f.
Thus 0
<
k(f
+
0, then f
=
+
t(g)
u(f).
=
g) < u(f)A(f
+ g) < L(f)
g i s lean.
+
Hence g)
+
<
0, whence
=
0.
QED
(65.5) Corollary 1.
Suppose f,g
0 are lean.
< R and fAR Rsc element R such that g -
Proof.
By (49.7), u(f)AR
=
=
If there is an
0, then f
0 , so u(f)Ag
=
+
g is lean.
0 and (65.4)
applies.
Let I be a u-band or an R-band.
(65.6) Corollary 2 . f EC"(X),
i f fI and f
Proof.
I
For every
are lean, then f is lean.
For concreteness, let I be a u-band, and we can
Chapter 1 4
340 a s su me I f 1
II
II
USC,
a n d If
=
Ifl
1
and If1
1
=
I
If
I
dl,
s o , by t h e
a r e l e a n . We show u ( I f 1 ) A l f d I I i t w i l l f o l l o w from ( 6 5 . 4 ) t h a t I f 1 i s l e a n . I f I I .Y(X),,
which i s
If
If
so, a fortiori, u(lflI)Alfl
I
=
0;
= 0.
QED
I n t u i t i v e l y , a l e a n e l e m e n t s h o u l d be " n e g l i g i b l e " .
We
n e x t e x p l o r e t h e c o n s e q u e n c e s o f two e l e m e n t s o f C1l(X) d i f f e r i n g by a l e a n e l e m e n t .
Proof. is lean.
0 5 ( L ( f ) - u ( g ) ) + 5 ( f - g)',
hence (L(f) - u ( g ) ) +
S i n c e i t i s a n ~ s ecl e m e n t , i t f o l l o w s ( a ( f ) - u ( g ) ) + = 0.
QED A f o r t i o r i , i f f - g is lean, then L(f) < u(g).
This gives
us :
( 6 5 . 8 ) C o r o l l a r y 1.
2,(P
f
I f h i s l e a n , t h e n f o r e v e r y gE C"(X ),
h) 5 u ( g > .
(65.9) Corollary 2 .
If h i s l e a n , then f o r every usc element u,
a(u
i h)
<
u,
The Lean Elements
and for every Rsc element u(R
t
341
k,
h) > k.
In particular, for every gEC(X), R(g
?
h)<- g < u(g
(65.10) Corollary 3.
II s
+
*
11).
If h is lean, then for every gEC(X), hll L
I1 gII -
This last follows from the preceding and (49.14).
We will be interested in knowing when a given f EC"(X) differs from a usc element or an ksc element by a lean element. Now for every f, f ially lean.
<
u(f),
so (f - u(f))+
We can expect that if u(f)
0, hence is triv-
=
is replaced by a
smaller usc element u , then (f - u ) + will no longer be lean How much smaller must u be?
We have a simple answer.
(65.11) Theorem, F o r every f EC"(X),
(f
-
uk(f))+
is lean, and
uk(f) is the smallest usc element for which this is true.
Proof.
o
<
(f
-
ua(f))+
<
(f
-
.t(f))+
=
Since
f - a(f).
this last is lean (65.1), it follows (f - uk(f))+
is lean.
Now
suppose u is a usc element such that (f - u ) + is lean; we show u > u&(f).
It is enough to show that u 2 R(f).
k((f
-
u)')
=
0,
34 2
SO
Chapter 1 4 I,(f
-
U)
< 0 (49.11), -
SO
a(f) - u < 0 (49.2).
Thus u > ?(f).
QED Remark.
D u a l l y , u s i n g t h e f a c t t h a t u ( f ) - f i s l e a n , we
have: (ku(f)
-
f)'
i s l e a n , and L(f) i s t h e l a r g e s t fsc element
f o r wh ich t h i s i s t r u e .
A l l t h e s t a t e m e n t s i n P a r t VI h a v e
similar dual s t a t e m e n t s . ( 6 5 . 1 1 ) h a s a c o r r e s p o n d i n g t h e o r e m i n t o p o l o g y : G i ven a s e t A i n a t o p o l o g i c a l s p a c e T , l e t I: t h e i n t e r i o r of A.
=
Int,t h e c l o s u r e o f
Then A \ F h a s empty i n t e r i o r , a n d I: i s t h e
s m a l l e s t c l o s e d s e t f o r w hi ch t h i s i s t r u e . i n t h e n e x t 5 , we exam i ne t h i s f u r t h e r .
For t h e d i s c u s s i o n
Let u s say t h a t A has
empty i n t e r i o r a t a p o i n t t o f T i f t h e r e e x i s t s a n e i g h b o r h o o d
W o f t s u c h t h a t A n W h a s empty i n t e r i o r .
Then t h e s e t F
a b o v e i s p r e c i s e l y t h e s e t o f p o i n t s o f T a t w h i c h A d o e s n__ ot h a v e empty i n t e r i o r . (A
n
Thus A h a s a u n i q u e d e c o m p o s i t i o n A
=
i n t o t h e s e t o f i t s p o i n t s a t which i t does n o t
F ) IJ ( A \ F )
h a v e empty i n t e r i o r a n d a s e t w i t h empty i n t e r i o r .
(65.11)
g i v e s u s a c o r r e s p o n d i n g decomposition o f e a c h f EC"(X) : f = fAuk(f)
+
(f
-
uk(f))+.
For a n e l e m e n t o f & ( I L ( X ) ) ,
d e c o m p o s i t i o n i s i n t o two e l e m e n t s o f E ( l l ( X ) ) r e p l a c e d by
V,
and
+
the
can be
making t h e a n a l o g u e c l e a r e r .
566. A ' l l o c a l i z a t i o n " t h e o r e m
The f o l l o w i n g " l o c a l i z a t i o n " and e a s i l y v e r i f i e d ( c f .
theorem i n topology i s obvious
[31], S8,VII):
I f a s e t A h a s empty
34 3
The Lean E l e m e n t s i n t e r i o r a t e v e r y p o i n t , t h e n A h a s empty i n t e r i o r .
The
( ( 6 6 . 3 ) bel ow ) r e q u i r e s more
correspond-ing theorem f o r C"(X) work t o p r o v e .
( 6 6 . 1 ) L e m m a 1.
I f fAg i s l e a n , t h e n s o a r e f + A g , f - A g ,
lf/Ag,
IflAIgl, and f - .
Proof.
5
-IfAg/
fAg < f+Ag < I fl A g
<
IflAlgl 5 /fAgl.
S i n c e t h e s e t o f l e a n e l e m e n t s i s s o l i d , i t f o l l o w s f+A g,
/flAg,
f - = 1 - f - 1 , s o , by w hat w e h a v e j u s t
and IflAlgj a r e l e a n .
shown, t o p r o v e t h a t f - A g i s l e a n , i t s u f f i c e s t o show t h a t (-f-)Ag i s lean.
(-f-)Ag
=
i s l e a n s i n c e fAg i s l e a n .
o
so
<
f-
=
(fA0)Ag
=
(fAg)AO
=
- ( f A g ) - , w hi ch
Finally, f > fAg, s o - f < -(fAg),
(-f)+ < (-(fAg))+
=
(fAg)-;
s i n c e (fAg)- i s l e a n ,
it follows f - i s lean. QED
No te t h a t f A g l e a n d o e s n o t i m p l y t h a t f + i s l e a n : l e t f
=
n(X)
and g
that f is lean. the
=
0.
I t f o l l o w s t h a t fAg l e a n d o e s n o t i m p l y
The f o l l o w i n g Lemma p r e s e n t s a c a s e i n w h i c h
implication does hold.
Lemma (66.2) - 2 . G i ven a n Rsc e l e m e n t k , l e t I b e t h e band w h i c h it generates.
Then f o r f E I , i f f A k i s l e a n , f i s l e a n .
Chapter 1 4
344
Proof. (49.4)
Case I , R > 0 : By ( 6 6 . 1 ) ,
f a ( 1fI)AR = R(lflAR)
=
0.
IfIAR i s l e a n , h e n c e
Since t h e o n l y element o f I
d i s j o i n t from R i s 0 , i t f o l l o w s R ( l f 1 ) = 0 . < 0: Case 11, R -
Thus f i s l e a n .
By t a k i n g n e g a t i v e s , t h i s c a s e c a n be
writ t e n : Given a u s c e l e m e n t u > 0 , l e t I be t h e band which i t
(*)
generates.
Then f o r g € 1 , i f gvu i s l e a n , g i s l e a n .
We w i l l p r o v e t h i s a t t h e end of 567. We p r o c e e d t o p r o v e ( 6 6 . 2 ) f o r t h e c a s e o f a g e n e r a l k s c L e t H be t h e band g e n e r a t e d by R'.
element R .
Then H i s a n
R-band, s o by ( 6 5 . 6 ) , i t i s enough t o show t h a t f H ahd f lean. fHAR+
=
H
are
fHARH = (fA!L)H, which i s l e a n by t h e comment p r e -
ceding (65.3).
S i n c e '.9
i s a n Rsc e l e m e n t , Case I above g i v e s
us t h a t f H i s lean. f dA(-R-) = f dAR = (fAR) d , w h i c h , a g a i n , i s l e a n by H H H H t h e comment p r e c e d i n g ( 6 5 . 3 ) . Now - R - = 9,110, h e n c e i s a n Rsc e l e m e n t , and s i n c e R ed by - k - ,
i s c l e a r l y c o n t a i n e d i n t h e band g e n e r a t H Case I 1 above g i v e s u s t h a t R is lean. H QED
We a r e now i n a p o s i t i o n t o e s t a b l i s h o u r l o c a l i z a t i o n theorem.
( 6 6 . 3 ) Theorem. Then f o r f E C " ( X ) ,
Let
{aa]
be a c o l l e c t i o n o f Rsc e l e m e n t s .
fARalean f o r a l l a i m p l i e s t h a t V a ( f A R a )
is
The Lean E l e m e n t s
34 5
lean.
We p r o v e t h e f o l l o w i n g t h e o r e m , which i s e a s i l y shown t o be e q u i v a l e n t t o t h e above.
L e t { L a } b e a c o l l e c t i o n o f Rsc e l e m e n t s a n d R = v,Lu.
If
FARcx i s l e a n f o r a l l a , t h e n f A k i s l e a n .
Proof.
< k ; s o we For s i m p l i c i t y , we c a n assume t h a t f -
have t o show t h a t f i s l e a n . Case I , L > 0 and f i s i n t h e band g e n e r a t e d by Lemma 2 , i t i s enough t o show t h a t If \ A l l i s l e a n .
:
By
il = V a i l a
v t r ( R w ) + , and by Lemma 1 , I f \ A ( L a ) + i s l e a n f o r e v e r y a. f o l l o w s L ( l f [ ) A ( e w ) += 0 f o r a l l a ( 4 9 . 4 ) , whence L( whence ( a g a i n by ( 4 9 . 4 ) )
=
It
f()AL
=
0,
IfjAR i s l e a n .
Case 11, L < 0 : Choose a n a r b i t r a r y cto.
fARa 0
5 f <- R <- O ,
hence, t a k i n g n e g a t i v e s , 0 < -f < -(fARa ) , which i s l e a n . 0
Now remove t h e r e s t r i c t i o n of p o s i t i v e n e s s o r n e g a t i v e n e s s on R .
L e t I b e t h e band g e n e r a t e d by R + .
By ( 6 5 . 6 ) , we n e e d
are lean. I We r e d u c e t h e c a s e o f f I t o Case I a b o v e . R + = v w ( R a ) + and
o n l y show t h a t f I and f
I -< R I = R + , s o i t s u f f i c e s t o show t h a t f I A ( R a ) + i s l e a n f o r a l l a. (Ra)+ 5 R + , so (Ra)+ = ((La)+),, so fIA(La)+ = f
fIA((ka)+)I
=
( f A ( L a ) + ) , , which i s l e a n by ( 6 6 . 1 ) a n d t h e
comment p r e c e d i n g ( 6 5 . 3 )
.
We r e d u c e t h e c a s e o f f
I
t o Case I 1 a b o v e .
-1
= LAO
=
34 6
Chapter 1 4
Va(LaAO) = V c l ( - ( ~ c l ) -and ) ~ fId 5
=
- f
, so
i t s u f f i c e s to
A(-(Lcl)-) i s l e a n f o r a l l a. f I d = c - f - ) d I I ( f + E I ) , s o we have t o show t h a t ( - f - ) d A ( - ( t 1 - 1 i s l e a n . I
show t h a t f
f i r s t that (-f-)A(-(ila)-) =
(fAo)A(LaAo)
Note
= (fAka)Ao = - ( f A k , t ) - ,
S i n c e - f - 5 ( - f - ) d , we have ( - f - ) A ( - ( k a ) - ) < I ( - f - ) d ~ ( - ( k a ) - ) 0 , h e n c e , by t h e p r e c e d i n g s t a t e m e n t , I ( - f - ) d ~ ( - ( ~ c l ) i-s) l e a n . I QED
which i s l e a n .
We l e a v e t h e v e r i f i c a t i o n o f t h e f o l l o w i n g t o t h e r e a d e r .
C o r o l l a r y 1. (66.4) -
Let {I,} be a c o l l e c t i o n o f il-bands and I
be t h e band w i t h ll(X)I
=
V ~ I ( X )( ~ s o I i s a l s o an il-band).
If
c1
fI
i s l e a n f o r a l l a, t h e n f I i s l e a n . c1
(66.5) Corollary 2 .
For e a c h f EC"(X), t h e r e e x i s t s a l a r g e s t
R-band I f o r which f I i s l e a n .
Analogous t o ( 6 6 . 3 ) , we h a v e :
( 6 6 . 6 ) Theorem..
u =
A
c1
ua'
Let Iua} be a c o l l e c t i o n o f u s c e l e m e n t s and
Then f o r f E C " ( X ) ,
t h a t (f - u ) + i s lean.
( f - ua)+ l e a n f o r a l l a i m p l i e s
The Lean E l e m e n t s Remark.
A t f i r s t glance,
347
( 6 6 . 6 ) a n d ( 6 6 . 3 ) seem t o b e t h e
same t h e o r e m , a n d i t i s t r u e t h a t t h e y r e d u c e t o t h e same t h e o -
rem i n t o p o l o g y . Proof o f
-
k(f),
u)')
5
fAu
~ +
t h e y do n o t c o i n c i d e .
By ( 6 5 . 7 ) , 9 ( f a ) 5 ua f o r a l l a.
(66.6).
follows L(f) < ~
E((f
However, i n C " ( X ) ,
=
(f
uu, h e( n c e~ 2 ( f ) 5 f A u . -
whence 2 ( ( f - u ) '
u)+ =
=
Then n ( f )
f , whence t ( f )
+
k((f
It
+ -
u)')
5
0.
QED Remark.
Note t h a t a l s o ( 6 6 . 5 ) a n d ( 6 5 . 1 1 ) r e d u c e t o t h e
same t h e o r e m i n t o p o l o g y .