Chapter 2.3 Functions and Operations

Chapter 2.3 Functions and Operations

CHAPTER 2.3 F u n c t i o n s and O p e r a t i o n s 2.3.1 FUNCT I O N A L R E L A T I O N S The r e l a t i o n R i s a Bunotiotr i f (y,x) E ...

796KB Sizes 0 Downloads 80 Views

CHAPTER

2.3

F u n c t i o n s and O p e r a t i o n s

2.3.1

FUNCT I O N A L R E L A T I O N S

The r e l a t i o n R i s a Bunotiotr i f

(y,x) E R

and ( z , x ) E R , i m p l y

Thus, f u n c t i o n s R can be c h a r a c t e r i z e d by R 0 R - l

q = z .

ZID.

The f o l l o w i n g theorem, whose p r o o f i s l e f t t o t h e r e a d e r , g i v e s severI n t h i s book, R o R - l c I D a l equivalent possible d e f i n i t i o n s o f functions. i s used t o say t h a t R i s a f u n c t i o n . We a l s o assume i n t h i s Chapter t h a t R, S, T a r e r e l a t i o n s .

THEOREM,

2.3.1.1

(i) R0R-l cID(ii)

R O R - ~ 510-

R O R - ~

(v) R

OR-^

LIDc -D I

(vi) RoR-'cID-

( ~ v Ro) n R

=

0.

WSWT(SnT)oR = (SoR) n ( T O R ) .

( i i i ) R o R - lcID(iv)

( R o R - 1) n D v = 0 .

-

W S W T ( S ~ T ) =~ R ( s ~ R 2 ), (TOR).

wx

WY

R - ~ * ( xn Y ) = ( R - ~ * x )n ( R - ~ * Y ) .

V X W Y (R* X)

f-

Y = R*(XnR-'*Y).

I t i s c l e a r t h a t o f o u r c o n s t a n t r e l a t i o n s , I D and 0 a r e f u n c t i o n s , w h i l e V x V , E L , I N , and Dv a r e n o t .

The i n t e r s e c t i o n o f f u n c t i o n s i s a f u n c t i q n , b u t t h e u n i o n i s n o t , i n general, a function. Under some r e s t r i c t i o n s , i t i s : 2.3.1.2

THEOREM SCHEMA,

LeL

T

51

be a ,tm and @ a l;otvnu&;

then

ROLAND0 C H U A Q U I

52

The r e l a t i v e complement o f a f u n c t i o n i s never a f u n c t i o n . A subclass o f a f u n c t i o n i s a l s o a f u n c t i o n and t h e composition o f f u n c t i o n s i s a f u n c t i o n . The o t h e r r e l a t i o n a l o p e r a t i o n , t h e converse o r i n v e r s e , w i l l be discussed l a t e r . The f o l l o w i n g theorem, easy t o prove, summarizes these f a c t s .

2.3.1.4

DEFINITION,

R'x =

R*{x}

*

R ' x i s Lhc value o d x by R.

R*{x}

PROOF OF ( i ) . Suppose t h a t R i s a f u n c t i o n and = { q } f o r some y. Thus n R {XI = y.

x

E

D R . Then

L e t F be a unary o p e r a t i o n . The r e s t r i c t i o n o f F t o t h e c l a s s o f w i t h F(x) E V c a n be represented by t h e f u n c t i o n F

x

I t i s c l e a r t h a t F i s a f u n c t i o n , w i t h domain D F = {x : F ( x ) E V 1 , and F ' x = F(x) f o r x E D F . Thus F and F have t h e same v a l u e s f o r x w i t h

F(x) E

v.

However, t h e r e p r e s e n t a t i o n o f o p e r a t i o n s by r e l a t i o n s g i v e n i n 2 . 2 . 2 i s more general, because i t does n o t r e s t r i c t t h e domain t o those X w i t h

53

AXIOMATIC S E T T H E O R Y

But, when p o s s i b l e , t h e p r e s e n t r e p r e s e n t a t i o n by f u n c t i o n s i s E V. more convenient.

F(x)

The f o l l o w i n g d e f i n i t i o n f o r m a l i z e s t h e i n t r o d u c t i o n o f such f u n c t i o n s .

2.3.1.6

D E F I N I T I O N SCHEMA, ( 7

X

=

Let

T

:q5) = ( ( 7 , x ) :

be a t e r m and q5 a formula. Then

GI.

For i n s t a n c e , we have when F i s a unary o p e r a t i o n , { ( F ( x ) , x ) : F(x) E V )

.

(F(x): F(x)E V ) =

X

We can i n t r o d u c e f u n c t i o n s f o r a l l t h e o p e r a t i o n s a l r e a d y d e f i n e d . For example, f o r t h e image o p e r a t i o n ,

R* = ( R * x : x E

v)

.

I n t h i s case and o t h e r s , t h e same symbol w i l l be used f o r t h e operat i o n and t h e corresponding f u n c t i o n . With the value n o t a t i o n defined i n 2.3.1.4 can be g i v e n by, F*A = { F ' x : x E A } , and F-l*A have e a s i l y ,

tl x ( x

t h e image o f a f u n c t i o n F, = { x : F'xEA}. Also, we

2.3.1.7 THEOREM, R0R-l c CZD-I D A S0S-l E DR+ R ' x = S I X ) ) .

I n t h e r e s t o f t h i s s e c t i o n , t h e l e t t e r s F, G, H, s t r i c t e d t o functions.

2.3.1.8 (i) (ii)

= B n D F -1

F* F-'*B

.

F* F - ~ * B c -B . A n B =

o

-+

=

(F*A) n B .

(F-~*A) n (F-~*B) = 0 .

(v)

F-l*(AnB)

= (F-'*A)

n (F-l*B).

(vi)

F-l*(A%B)

= (F-'*A)

%

(vii) (viii) (ix)

6, g,

t--f

DR = D S A

and h. a r e r e -

THEOREM (PROPERTIES OF IMAGES OF FUNCTIONS)

(iii) F*(AnF-l*B) (iv)

(R = S

8

5 F*A

v B 3A

-+

3 C'(C'

B n D F-'

B n D F - ~ =F*

( X I F-~*A = F-~*B

%

-A

C

=

(F-'*&).

A B = F*C).

F*A.

~-l* % B .

+

A nDF = B nDF

.

I

ROLAND0 CHUAQUI

54

These p r o p e r t i e s o f images o f f u n c t i o n a r e n o t c h a r a c t e r i s t i c o f f u n c t i o n i n t h e sense t h a t t h e r e a r e o t h e r r e l a t i o n s w h i c h s a t i s f y them. B u t ; we have t h a t ( v i i i ) , ( i x ) , and ( x ) a r e e q u i v a l e n t and so a r e ( x i ) and ( x i i ) . PROOF,

2.2.1.10.

and ( i ) c a n be p r o v e d d i r e c t l y and t h e r e s t o b t a i n e d f r o m (i) We have, F 0 F - l

PROOF OF ( i ) .

I D I D ( F o F-') (ID IDF-')*B

=

I D I D F -I.

-ID.

By 2 . 3 . 1 . 3

C

T h e r e f o r e F*

F-'*E

( i i ) F o F-l =

o F-l)*

= (F

=

= B n DF-'.

PROOFOF ( i i ) :

By (i).

PROOF OF (iii). By 2 . 2 . 1 . 1 0

( v i i i ) , we h a v e (F*A) n B C - F*(AnF-'*B).

On t h e o t h e r hand, b y 2 . 2 . 1 . 1 0 ( i v ) , F*(AnF-'*E) U s i n g , now, ( i i ) we o b t a i n , F * ( A n F - l * B ) C - (F*A)

c ( F * A ) n ( F * F"*B).

17-8.

n B = 0. By ( i i i ) PROOF O F ( i v ) . Assume A n t 3 = 0. By ( i i ) (F* F-'*A) F*(f-l*AnF-'*B) = (F* F-'*A) n 8 = 0. T h e r e f o r e , F-l*A n F-l*B n D F = 0 . F-l*B C - D F . Thus, F-l*A n F-l*B = 0. B u t F-'*A

PROOFOF ( v ) .

By ( i v ) , we have ( F - 1 * ( A n 8 ) ) n ( F - 1 * ( 8 n J A ) )

= ( F - l * ( A n B ) n (F-'*(A%E))

( v ) , we o b t a i n , F-l*A

= (F-l*(A%B))

=

0 =

From 2 . 2 . 1 . 1 0

n (F-l*(B\A)).

(F-'*(AnB)) U (F-l*(A-E)) a n d F-'*B = T h e r e f o r e (Fql*A) n (F-'*E)=((( F - l * ( A n E ) ) U = (F-l*(AnB)) u (F-l*(B%A)). (F-'*(A

=

* 8 ) ) )) n (( (F-l*(A

PROOF OF ( v i ) .

n8 ) )

U

(F-'*( E % A ) ) ) = F-l*(A n B )

By 2 . 2 . 1 . 1 0

( v ) , F-l*A

t h e n , b y ( v ) , F-l*A = ( F - l * ( A % B ) ) U ( ( F - l * A )

(F-'*(A*B)) PROOF

n (F-l*B)

OF ( v i i ) .

= (F*A) n 8 = B.

= 0.

Therefore,

Suppose

Therefore, t a k e

E

= (F-l*(A%E))U(F-'*(ArlB));

(F-l*S)).

(F-l*A) \(F-'*E)

5 F*A. c'

Also, b y ( i v ) =

.

-DF-' c

= F*

,

F-'*(A%B).

Then, b y ( i i i ) , F * ( A n F - l * B )

= A n F-l*B

PROOF OF ( v i i i ) . We have, B n D F - ' i n g ( v i i ) , we o b t a i n ( v i i i ) .

.

=

V. Hence, a p p l y -

55

AXIOMATIC SET THEORY

PROOF OF ( i x ) .

Using 2.2.1.10

By ( v i i i ) , we have B n DF-'

( B n D F - ' ) = B n DF-'. But, by 2.2.1.10 ( F - ' * % 8 ) u (F-'* x D 0 F - l ) = F - l * % B . (xi,

=

F*A

f o r some A .

F* % F-'* % ( v ) , F - l * % ( 8 n OF-') = = F*A,

( x i ) , we o b t a i n , F*%F-'*%F*A

i.e.

( x i ) and f x i i ) a r e ' l e f t t o t h e r e a d e r .

We a l s o have d i s t r i b u t i v i t y o f i n v e r s e image o f f u n c t i o n s w i t h generalized intersection.

2.3.1.9

THEOREM SCHEMA, L& r be a t m and 6 a 6o/un&.

On t h e o t h e r hand, i f x $ implies that

f o r a l l such r . IT

x

6

F-'*r

E

nx

, i.e. y

Therefore

FIX

E

DEFINITION

BA i s t h e & a n

06

F'x

=

:$I,

t h e n f o r a l l Xo...

f o r some y

nx

0.. .x n-1

:$I. 2.3.1.10

r

0"' Xn-1

{r

:$I,

Then,

E 7,

i.e.

Xn-l,

and hence F'xE r

x c ~ - l *n

'0'

*

'Xn-1

I

6uncLionn w L t h domain 8 and m n g e included i n A.

Since i n G we almost never can prove t h a t f u n c t i o n which i s a s e t w i t h domain 8, 'A 8

BA

f

0, i.e.

t h a t t h e r e is a

w i l l n o t be much used i n P a r t 2.

On t h e o t h e r hand A ( ? ) i s t h e no;tion t h a t says t h a t f 12 a 6unOtiun w a h domain 8 m d tange i n c h d e d in A. W i t h t h i s n o t i o n , we can express t h a t ? i s a f u n c t i o n by D F V ( F ) . T h i s w i l l o f t e n be used.

2.3.1.11 DEFINITION SCHEMA (GENERALIZED CARTESIAN PRODUCT). Let be a term and $ a formula. Then n ( 7 :q,) = Ed : 6 & x V A

~ ; O ~ - ' C J D A DI x~: = $1 A

Vx($

+

6kE

r)).

X

ROLAND0 CHUAQUI

56

2.3.1.12

For instance, we have

F, by F ( 0 ) = A xEA A

"6 = nX (6'~:x

DEFINITION,

gEBl.

nX

( A : xEB) =

E

06).

G

A.

I f we d e f i n e t h e o p e r a t i o n

XIx (F(x) : X E 2 ) = (I( x,O) , ( y , 1 ) I : I ( x,O) , ( g , l ) l i s a p o s s i b l e d e f i n i t i o n o f t h e o r -

and F ( 1 ) = 8, then The s e t

2

dered p a i r o f x and g. I t i s t h e f u n c t i o n 1; E {x,gl, w i t h 6'0= x a n d 4'1 = y . I f we ' i d e n t i f y ' t h i s 6 w i t h t h e ordered p a i r ( X , L J ) , t h e n t h e Ilx (F(x): x E 2 ) i s ' i d e n t i f i e d ' w i t h A x B .

I n some c o n t e x t , ( x , g ) i s b e t t e r as ordered p a i r than {C x,O), ( y , l ) } ; i n o t h e r s t h e o p p o s i t e i s t h e case. The same i s t r u e f o r t h e t w o operat i o n s of C a r t e s i a n Droduct. T h i s m u l t i p l i c i t y o f d i f f e r e n t p o s s i b l e d e f i n i t i o n s f o r t h e same conc e p t i s an i n e l e g a n t c h a r a c t e r i s t i c o f a l l s e t t h e o r i e s and i t seems unavoidable. We say t h a t F i s a biunLquc

2.3.1.13

(ii)

one-one i j u n c t i o n i f F and F - l a r e func-

i f D F ~ ~ - Al D ( F~- l) D F (F-').

t i o n s , i.e.

(i)

ofi

-

DEFINITIONa

!A(F)

! A = (1;:

.

A ~ ( A~ A) ~ ( ~ - l ) A

A(ij)l,

! A ( F ) says t h a t F i s a pe,trnLLtCLtion o f A , i.e. F i s a b i u n i q u e funct i o n from A o n t o A. !A i s t h e c l a s s o f a l l permutations o f A.

PROBLEMS

Prove 2.3.1.1

1. 2. 3.

Characterize a l l r e l a t i o n s R t h a t s a t i s f y R = R o R - l o R

4.

Show t h a t F i s a b i u n i q u e f u n c t i o n i f and o n l y i f D F * = V A DF-'"

Prove 2.3.1.3

= PDF-'

A (F*

I

.

P D F i s a biunique function).

-

5.

Prove 2.3.1.8

6.

F i n d a r e l a t i o n R which i s n o t a f u n c t i o n b u t s a t i s f i e s

7.

Characterize t h e r e l a t i o n s

(x)

(xii).

W B 3 A ( B n D R - ~= R*A).

R

that satisfy

R* R'l*

R*A

=

R*A

.

=

A X I O M A T I C SET THEORY 2.3.2

57

MONOTONE O P E R A T I O N S ,

z

A unary o p e r a t i o n F i s Y,Z-monutone i f i t s a t i s f i e s : Y LA c B C Y c F [ A ) C_ F ( B ) 5 2 . We say t h a t F i s rnoncdone i f i t i s 0, V-KonoTone. S i m i l a r l y , f o r f u n c t i o n s we have: 2.3.2.1

F ' x C- F ' y ) .

DEFINITION,

Mo ( F )

- DbF

(F) Avxt'q(x,y

E

DFA

x

--f

5q

-+

The f o l l o w i n g theorem g i v e s c o n d i t i o n s e q u i v a l e n t t o monotony. - 1. 2.3.2.2 THEOREM SCHEMA, L e R F be a unmy opehCLtion and Y c Then t h e doflowing CvnditioMn CVLQ e.qLvaRen2:

( i ) W A WB(Y c - A c- 8 c- Z

( i v ) W A WB(Y ( v ) W A WB(Y

c - A, B c- Z

- A, C

B C -Z

+

--t

+

Y c - F(A) c - F ( B ) c- Z ) .

Y c - F(A) u F ( B ) C_F(AUB)C - Z).

-

Y C - F ( A n B ) C F(A) n F ( B )

5 Z).

Suppose t h a t V AW B ( Y C A C B C Z Y C F(A) C F ( B ) 2 Z ) . PROOF, Therefore, f o r e v e r y X t h a t s a t i s f i e s - @ A-Y C-X c Z , we have-Y z F ( X ) 5 F( u(X : 4 A Y 5 X c Z}) c Y c - X C- Z } ) C_F(X)& Z . - Z and Y & F ( n{X : @ +

n

Thus,

( i ) i m p l i e s ( i i ) and ( i i i ) .

I t i s c l e a r t h a t ( i i ) i m p l i e s ( i v ) and i t i s enough t o show t h a t ( i v ) o r ( v ) i m p l y i m p l i e s ( i ) . Suppose Y S A 5 8 C Z. Then, Thus, Z ? F ( B ) 2 F(A) 2 2 F(A) u F ( B ) 3 Y .

-

( i i i ) i m p l i e s ( v ) . Therefore, ( i ) .I s h a l l prove t h a t ( i v ) by ( i v ) , Z > F ( B ) = F(AUB) Y.

The i m p l i c a t i o n o f ( v ) t o ( i ) i s proved s i m i l a r l y . I n a s i m i l a r way, t h e f o l l o w i n g can be proved.

.

58

ROLAND0 CHUAQUI

(iv)

t!xtlq F(x) u F ( q ) gF(xuq),

(v)

W x w q F ( x n q ) 5F(x) " F ( Y ) .

We now begin t h e s t u d y o f f i x e d p o i n t s o f monotone o p e r a t i o n s . T h i s study i s based on T a r s k i 1955. The theorems proved here w i l l be useful i n several chapters o f t h e book. We say t h a t a c l a s s X i s a hixed p a i d of a unary o p e r a t i o n F, i f We have t h a t Y, Z-monotone o p e r a t i o n s always have f i x e d p o i n t s . F(X) = X. F i r s t , t h e theorem f o r 0, 2-monotone o p e r a t i o n s . THEOREM SCHEMA, L e t F be a unmq opehation.

2.3.2.4

W A W B ( A-c B c Z +

F ( A )CF(B)LZ)+

n {X : X c - Z A F(X) = X ] A U =

LJ

Then

~C~U(F(C)=CAF(U)=DAC=

{ X :X C - Z A F(X) = A } ) .

F can be considered as a monotone o p e r a t i o n from subclasses o f Z t o subclasses o f Z .C i s t h e l e a s t f i x e d p o i n t and Q i s t h e g r e a t e s t f i x e d p o i n t . Thus, t h e c o n c l u s i o n can a l s o be w r i t t e n , WA W B ( A - c B-c Z + F ( A ) & F ( B ) 5 Z ) + F ( n { X : X-C Z A F ( X )= X } ) =

= n

{x : x

A F(X) =

c -

z

A F ( x ) = X I A F( u { x : x c -

z

A F(x)=

XI.

PROOF, Assume F(A) c F(B) C Z). L e t that C Z. Suppose, By t h e assumption, we we g e t t h a t F(C) 5 X,

c

X I )= u { x : x c -z

A

t h a t F i s a unary o p e r a t i o n such t h a t , V A W B ( A c-B C-Z + C = n { X : F ( X ) 2 X C Z l . Since F ( Z ) 5 Z, we have now t h a t X i s such t h a t F ( X ) 5 X 5 Z. Then C C X have F(C) L F ( X ) . S i n c e we assumed t h a t F(X)-z X , f o r a l l X w i t h F(X) 5 X E Z. T h e r e f o r e F(C) 5 C.

.

On t h e o t h e r hand, from F(C) c C

5 Z,

by t h e monotony o f F , we deduce

F (F(C))E F ( C )5 Z. Thus F ( C ) i s o n e o f t h e c l a s s e s whose i n t e r s e c t i o n i s - F(C),and, hence, F(C) = C. C. Therefore, C c

c

=

Also, C = n { X : F ( X ) c c Z} c -X - n { X :F(X) = X n { x : F ( X )= x c z).

5 Z } C- C.

Therefore

.

I n o r d e r t o p r o v e t h e r e s t o f t h e theorem, t a k e U = LJ { X :X c Z A X c F ( X ) } . The p r o o f t h a t U = F ( U ) and D = u { X : X = F ( X ) 5 2 1 i s s i m i l a r t o t h e above.

2.3.2.5

THEOREM SCHEMA,

L e t F be a unmq opetration. Then

Y C - F ( A ) C F ( B ) 5 Z) F ( n{x :Y c x = F ( x ) c z } ) = n { x : Y c- X = F(X) 5 Z } A -

Y c c A c - Z A vAWB(Y - 8 c- Z

F ( u { X :Y

-X C

=

F(X) C Z})

+

= U {X :Y

+

5X

= F(X)

5 Z}.

AXIOMATIC S E T T H E O R Y

59

The proof i s s i m i l a r t o t h a t of 2.3.2.4.

PROOF,

By 2.3.2.2,

we have

F ( n {X : @ A Y c X = F(X) c C X = F(X) - Z } ) -c n { F ( X ) : @ A Y -

.

5Zl

=

n {X:@ A Y c - X = F(X) 5 Z ) . S i m i l a r l y f o r unions.

n

{x : u

PROOF,

{ V :Q A Y c - V = F(V)

By 2.3.2.6

and

5 Z}

C_X = F ( X

CZ)

.

2.3.2.5.

* 2 . 3 . 2 . 8 E X A M P L E , In a topological space X, l e t F ( A ) be t h e c l a s s o f accumulation points of A f o r A C X . Let Z be a closed subset of X. T h u s , we have A C 8 C Z + F ( A ) CF(i3) Z. Therefore, by 2.3.2.4, t h e r e i s a l a r g e s t D such t h a t D = F ( D ) . Then D i s p e r f e c t and Z % D i s s c a t t e r e d (Theorem o f Cantor-Bendixon. ) From t h e theorems proved, we now deduce theorems f o r two unary operations. 2.3.2.9

THEOREM SCHEMA,

W XW Y ( ( X c -

Let F and G be u w y ope&onb.

Yc A -,F ( X ) C F(Y))

A (X

5Y 5 8

+

G(X)

G(Y)))

3 A 1 3 B1(A1 Z G ( 8 ) A B1 c F ( A ) A F(d%A1)= B1 A G(B%B1) =

Then, *

All.

60

ROLAND0

CHUAQUI

PROOF, Assume t h a t F and C a r e a u n a r y o p e r a t i o n s such t h a t W X W Y F(X) C F(Y))A X 5 Y 2 B G(X) c G(Y))). D e f i n e t h e operat i o n H,-by

((X

5Y c A

-

+

+

Then 8 Suppose X 2 Y c F ( A ) . and, hence A % G ( B % X ) 5 A%LG(B%Y)

A p p l y i n g 2.3.2.4

1 B%X

5 A.

2 &%Y, t h u s , G(B%X) > G ( B Therefore,

Y)

t o H a n d A, we o b t a i n a B1 such t h a t H(B1) = B1.

We

have, B1 = H(B1) = F ( A % G ( B % B 1 ) ) c F ( A ) . Let

.

A1 = G ( B % B 1 ) .

8 1 = H(B1) = F ( A % A 1 ) . 2.3.2.10

S i n c e 8 % B , C 8 , we have A1 z G ( 8 ) .

Finally,

1 -

THEOREM SCHEMA,

Le.L F a n d G be unarry 0perrcc;tiunn.

Then

W X W Y ( ( X-c Y c-A - + F ( X ) cF(Y))A(XcY5B+G(X) cG(Y)))A F(A) c 8 A G(B) L A A nA = 0 = 1 2

B 1 nB 2

+

3 A1 3 A 2

3B1

3B2 (A = A U A A 1 2

A F ( A 2 ) = B1 A G ( B 2 ) = A1)

.

B

=

B1UB2 A

L e t F and G be monotone o p e r a t i o n s f o r s u b c l a s s e s o f A and PROOF, r e s p e c t i v e l y and suppose F ( A ) 2 B and G ( B ) 5 A. By 2.3.2.5, there a r e A1, B1 such t h a t A1 E G ( B ) , B1 c F ( A ) , F ( A % A 1 ) = B1, and G ( B % B l ) =A1.

B,

L e t A2 = A % A 1 and

B2

=

8%Bl.

We have, A1 L G ( B )

5A

t h u s A1 C A and B1 5 B. T h e r e f o r e A = A1 u A2 and B = rn c l e a r t h a t A1 n A2 = 0 = 8 n 8 1 2'

and B1 s F ( A )

B 1 LJ

B2.

5

It i s also

PROBLEMS

1.

Prove:

DFDF(F)A CLO(R)ADF=DR A

WaWb(aRb+F'aRF'b) R 3 c 3 d ( F ' c = c A F ' d = d A c = A E x : F ' x = x} A d = V { x : F ' x = x } ) .

R

8;

+

61

A X I O M A T I C S E T THEORY

2.

Prove:

CLO(R)AW6Wg(6,gES-+6ED6D6 A D 6 = D g = D R A 6 o g = g o d ) - + n

*3.

A p p l y 2.3.2.9

2.3.3

t o r e a l numbers, r e p l a c i n g

-

by s u b s t r a c t i o n .

ADDITIVE AND MULTIPLICATIVE OPERATIONS,

An o p e r a t i o n F i s compLdAQeii a d d t t i v e , i f f o r a l l t e r m s i and f o r m u l a s t h e g e n e r a l i z e d u n i o n i s c o m p l e t e l y a d d i t i v e . Also, b y 2.2.1.12 ( i i ) R* i s c o m p l e t e l y a d d i t i v e and, by 2.2.1.12 ( i v ) , i f f o r a c l a s s A we d e f i n e t h e o p e r a t i o n A b y A ( X ) = X*A , so i s t h i s A .

adAn a p p a r e n t l y weaker n o t i o n i s t h a t o f c l a s s a d d i t i v e . F i s C&b d i t i v e , i f f o r a l l c l a s s e s A, F U A = u C F ( y ) : Y E A } . I t terms o u t t h a t t h e s e two n o t i o n s a r e e q u i v a l e n t :

( i i i ) W A F(A) = u I F ( I y I ) :

YEA}

.

(iv) IRWAF(A) =R*A. I ( i ) C l e a r l y i m p l i e s ( i i ) , and ( i i ) i m p l i e s ( i i i ) , because CCyl : y E A l

PROOF

A =

U

.

The i m p l i c a t i o n o f ( i i i ) t o ( i v ) i s proved, as f o l l o w s : F(A) = u {F(Iy})

: Y E A ) f o r a l l A.

R

=

Suppose

D e f i n e R, by

[F({x})

: xEV].

By 2.2.2.1 and Def. 2.2.2.2, R*CxI = F ( I x 1 ) f o r a l l x E V . Therefore, by 2.2.1.12 ( i v ) , R*A = u {R*{xI : X E A I = u { F ( C x I ) : x E A 1 = F ( A ) .

ROLAND0 CHUAQUI

62

F(UCr

The i m p l i c a t i o n from ( i v ) t o ( i ) i s o b t a i n e d from 2.2.1.12 : $ I ) = R*(U{P : $1) = UER* 7 : $j = UCF(r) : $1.

( i v ) , i.e.

A n o t i o n weaker than complete a d d i t i v i t y i s s e t a d d i t i v i t y . An ope r a t i o n F i s neA a d d i t i v e i f f o r a l l s e t s x we have F(u x) = uCF(y) : EX}. T h i s i s d e f i n i t e l y weaker as i s shown b y t h e o p e r a t i o n F d e f i n e d by,

[uA,

if

A E V ,

This F i s set a d d i t i v e but n o t completely a d d i t i v e . i t i s p o s s i b l e t o prove. 2.3.3.1, 2.3.3.2 THEOREM SCHEMA, i n c o n d i t i a a a.te e q u i v d e n i .

LeA F be a n opemuXon.

(i)

w

x F ( u x ) = u I F ( y ) : y ~ x 1,

(ii)

w

xF(x)

(iii)

=

Similarly

as

Then ,the d0Uvw-

u W((g1):y~xl,

3 R W x F ( x ) = R*x

.

A s l i g h t g e n e r a l i z a t i o n of these theorems i s t h e f o l l o w i n g : 2.3.3.3

THEOREM SCHEMA,

ing c o n d i t i o n b me equivaLent.

L e A F be an opmaaXon.

( i ) F a t e v m y t m r and ~vhmvnuRa9

PROOF,

Take

G ( A ) = F(A)

%

Then t h e dvUow-

,

F ( 0 ) and a p p l y t h e p r e v i o u s theorems..

An o p e r a t i o n F i s c a l l e d compLetdy &pLica.LLue r a n d e v e r y f o r m u l a 4 we have

i f f o r every t e r m

AXIOMATIC S E T T H E O R Y

f o r every s e t x , F ( n . x ) = n { F ( y ) : y E x ) . m u l t i p l i c a t i v e operations. 2.3.3.4 THEOREM SCHEMA, ing condLtiorzcs me e q u i w d e n t

63

We have s i m i l a r theorems for

L e t F be a n a p e h a t i o n .

Then t h e 6 a U a w -

( i ) Fvk e v e h y tm r and 6vzmvnLLea @,

( i i ) WA(A

f

0

+

F(nA)

=

n IF(y) : YEA})

,

( i i i ) 3R3CWAF(A) = C % R * $ A . &ned

.tax

The t h e e c v n d i t i a a &emmain equivalent id t h e ned-OukZion AA eRiminated dhvm (i)and (L], and C = V p u t in &a c o n d i t i o a m e equivaLent kepeacing A by x.

t a nonempty

(AX). Tha

The proof i s l e f t t o the reader. The theorems we have s t a t e d show t h a t completely a d d i t i v e operations can be represented by c l a s s e s ; i.e. by r e l a t i o n s . An a r b i t r a r y operation, on t h e other hand, can be represented by a r e l a t i o n , only r e s t r i c t e d t o

sets.

An operation F i s AiniteLy a d d i t i v e , i f F ( A u 8 ) = F(A) U F ( B ) , f o r a l l A , B ; ~ i n i t d yn e t a d d i t i v e i f t h i s condition i s t r u e with x, y rei f F(An8) = F(A) n F ( B ) placing A , 8. F i s &kLteLy ( n e t ) muLt.Lp&cat.ive, ( F ( x n y ) = F(x) n F ( y ) ) f o r a l l A , B ( f o r a l l x, y ) . I t i s c l e a r by 2.1.3.5 ( i ) ( o r ( i i ) ) t h a t completely a d d i t i v e ( o r m u l t i p l i c a t i v e ) operations a r e f i n i t e l y a d d i t i v e ( o r m u l t i p l i c a t i v e ) . S i m i l a r l y , by 2.1.1.15, s e t a d d i t i v i t y ( o r m u l t i p l i c a t i v i t y ) implies f i n i t e s e t a d d i t i v i t y ( o r multiplicativity).

PROOF, The implication from ( i i ) t o ( i ) i s obtained from 2.3.1.8 ( v ) and 2.2.1.12 ( i i ) .

In order t o prove t h e converse implication, assume t h a t F i s complete-

By 2 . 3 . 3 . 1 , t h e r e i s an R n ( V x V ), and suppose t h a t y G x and

l y a d d i t i v e and f i n i t e l y s e t m u l t i p l i c a t i v e .

Take

such t h a t R*A = F ( A ) .

G-l =

R

.

z G x . Then x E ( G - ' * C y 1 ) n (G-'*{z>) = F ( C y 1 ) n F ( C z ) ) = F ( C q I n ( Z 1 ) + 0. But; s i n c e F i s c o m p l e t e l y a d d i t i v e , F ( 0 ) = 0. T h e r e f o r e , C g ) n C z 1 f 0 , and hence y = z. Thus, we have p r o v e d t h a t G i s a f u n c t i o n .

A v a r i a n t o f 2 . 2 . 3 . 5 w h i c h i s easy t o p r o o f i s : L e R F be a n opehation.

THEOREM SCHEMA,

2.3.3.6

ing atre equivalent.

(i)W A ( A f 0 + F ( u A ) = u{F(q) : q f A } ) g v z (F(qnz) = F(q) n F(z))

T h u e btatemevdh atre & o

A

,

3 G ~ c ( ~ ~ v A( GA )F ( A ) = ( G - ' * A )

(ii)

Then Lhe 6oMow-

equivaLevLt w d h

u

c)

x hephcing

A thhoughoLLt.

The n e x t theorem g i v e s a c h a r a c t e r i z a t i o n o f o p e r a t i o n s t h a t a r e f i n i t e l y a d d i t i v e and m u l t i p l i c a t i v e . 2.3.3.7

L e t F be a n openation.

THEOREM SCHEMA,

Then

W A V B (F(AuB) = F ( A ) uF(B) AF(AnB) = F ( A ) n F ( B ) ) A

F(0) = 0-

T k i n hXaXement

WAWBF(A%B) = F ( A ) %F(8). heYnain6

D ~ u ewhen x,g atre buhbaXuZed t h t a u g k t doh A,B.

The p r o o f i s l e f t t o t h e r e a d e r . O p e r a t i o n s w h i c h a r e c o m p l e t e l y a d d i t i v e and f i n i t e l y s e t m u l t i p l i c a t i v e , are a l s o completely m u l t i p l i c a t i v e . S i m i l a r l y , complete m u l t i p l i c a t i v i t y and f i n i t e a d d i t i v i t y i m p l y c o m p l e t e a d d i t i v i t y . 2.3.3.8

L e t F be a n opehation.

THEOREM SCHEMA,

ing c o n d i t i o n 6 atre e q u i v d e n t : (i) (ii)

W A ( A f 0 -+ F ( u A ) = u { F ( y ) : g E A 1 A F ( n A ) = n { F ( y ) : Y E A ) ) W A(A # 0

+

F(uA)=

u

F(Y) "F(z)

(iii)

Then t h e doUow-

W A(A # 0

+

{ F ( y ) : y € A } ) A W y Wz F ( g n z ) = 3

F ( n A ) = n { F ( g ) : Y E A ) ) A W A WB

F(AUB) = F(A)

U

F(B)

.

T h u e thhee c a n d i t i o n h hemain equivaLerCt when x and z m e h u b h U u Z e d

doh A and 8.

65

AXIOMATIC SET THEORY

I t i s c l e a r t h a t ( i ) i m p l i e s ( i i ) and ( i i i ) . and 2.3.1.10.

PROOF,

( i )by 2.3.3.6

( i i ) implies

I n o r d e r t o prove t h e r e m a i n i n g i m p l i c a t i o n , assume ( i i i ) and suppose F ( A % 8 ) = F ( A ) % F ( B ) f o r a l l A , 8. A l s o , f i r s t t h a t F ( 0 ) = 0. By 2.3.3.7, f i n i t e s e t a d d i t i v i t y i m p l i e s , by 2.3.2.3, monotony, and t h i s , a g a i n by 2.3.2.3, implies W F ( y ) : Y E A } C F ( U A ) . Now ,

F(uA)

u W y )

-.

YEA} = n {F(uA) %F(y) : YEA} Y =

n {F(UA Y

=

Fin { U A % y : y E A } }

.

But, i f u E U A , t h e n u E y E A f o r a c e r t a i n y . Thus, n { u A % y : Y E A } = 0 . Y Therefore, s i n c e we assumed F ( 0 ) = 0

F ( u A ) ~u Thus,

,

y) : YEA}

Y

Y

Hence, u

4

u A%y.

,

{ F ( y ) : Y E A } = F ( 0 ) = 0.

F ( u A ) L u {F(y): Y E A ) , and complete a d d i t i v i t y i s proved.

Now we prove (iii)i m p l i e s ( i ) w i t h o u t t h e assumption F(0) =. 0. L e t t h e o p e r a t i o n G be d e f i n e d f o r a l l A , by G ( A ) = F ( A ) % F ( O ) . We have, G ( 0 ) = 0. Also, i f A Z 0,

G ( n A ) = F ( n A ) %F(O) = n{F(y) : Y E A } %F(O) = n

{F(y)%F(O): Y E A }

,

= n {C(y) : YEA]

S i m i l a r l y we can show, G ( A u 8 ) = G ( A ) U G(8). Applying, t h e case proved above, we have f o r A f 0, G ( u A ) = U CG(y) : Y E A } ; i.e. F ( u A ) F ( 0 ) = u { F ( y ) % F ( O ) : Y E A } . Since f i n i t e a d d i t i v i t y i m p l i e s , monotony, we have f o r a l l 8, F ( 0 ) 5 F ( 8 ) . Hence,

F(uA) = (F(uA)%F(O)) u F(0) = = u

U

{F(y) % F ( O ) : Y E A }

U

.

F(O)

{ ( F ( y ) s F ( 0 ) ) u F ( 0 ) : Y E A ] = u EF(y) : Y E A } .

The requirement t h a t F s a t i s f y t h e c o n d i t i o n s f o r a l l c l a s s e s or a l l s e t s i s e s s e n t i a l i n these theorems. For i n s t a n c e , t h e r e a r e o p e r a t i o n s which a r e c o m p l e t e l y m u l t i p l i c a t i v e and f i n i t e l y a d d i t i v e ( t h e t o p o l o g i c a l c l o s u r e ) i n some c o l l e c t i o n , b u t a r e n o t c o m p l e t e l y a d d i t i v e i n t h e same collection. W i t h t h e axiom o f c h o i c e i t i s p o s s i b l e t o f i n d a f i n i t e l y a d d i t i v e and m u l t i p l i c a t i v e o p e r a t i o n t h a t i s n o t c o m p l e t e l y a d d i t i v e . Without A x C , t h i s problem seems t o be open.

66

ROLAND0 CHUAQUI

PROBLEMS

1.

P r o v e 2.3.3.4

2.

P r o v e 2.3.3.7