Chapter 6 (C(X),X)-Duality

Chapter 6 (C(X),X)-Duality

CHAPTER 6 (C(X) ,X) -DUALITY X , Y w i l l d e n o t e compact H a u s d o r f f s p a c e s . C(X) i s t h e s e t o f r e a l c o n t i n u o u ...

654KB Sizes 4 Downloads 228 Views

CHAPTER 6

(C(X) ,X) -DUALITY

X , Y w i l l d e n o t e compact H a u s d o r f f s p a c e s .

C(X) i s t h e s e t

o f r e a l c o n t i n u o u s f u n c t i o n s on X , a n d n ( X ) w i l l d e n o t e t h e f u n c t i o n o f c o n s t a n t v a l u e 1 on X .

Under t h e u s u a l p o i n t w i s e

d e f i n i t i o n s o f a d d i t i o n , s c a l a r m u l t i p l i c a t i o n , a n d o r d e r , C(X) i s a R i e s z s p a c e w i t h n(X) f o r a n o r d e r u n i t .

The MI-norm

d e t e r m i n e d by n(X) i s p r e c i s e l y t h e s t a n d a r d supremum n o r m , and u n d e r t h i s norm, C(X) i s c o m p l e t e . Thus C(X) i s a n M I - s p a c e .

I n more d e t a i l , f o r f , g E C ( X ) ,

f v g a n d fAg a r e g i v e n b y ( f V g ) ( x ) = m a x ( f ( x ) , g ( x ) ) a n d ( f A g ) ( x ) = m i n ( f ( x ) , g ( x ) ) f o r a l l xEX. f+(x)

=

( f ( x ) ) + , and f - ( x )

in particular, =

Ifl(x)

=

/f(x)I,

( f ( x ) ) - f o r a l l x€X.

Although X is n o t a v e c t o r s p a c e , i t i s u s e f u l (and s u g g e s t i v e ) t o t h i n k o f C(X) a s " d u a l " t o X.

This has been

done by v a r i o u s w r i t e r s , e s p e c i a l l y i n t h e c o n t e x t o f C a t e g o r y Theory ( c f .

[49],

523.2 or [4T).

We w i l l f o r m u l a t e t h e r e l a -

t i o n s b e t w e e n C(X) a n d X f r o m t h i s v i e w p o i n t .

Since X has a

n a t u r a l i m b e d d i n g i n t o t h e d u a l C'(X) o f C(X), C'(X) w i l l t h u s play the r o l e of "bidual"

t o X.

I n p a r t i c u l a r , we w i l l f e e l

free t o denote f ( x ) by ( f , x ) . X w i l l b e c a l l e d t h e K a k u t a n i - S t o n e s p a c e o f C(X).

165

Chapter 6

166

5 3 0 . The t o p o l o g y o f s i m p l e C o n v e r g e n c e o n C ( X )

X i s o f c o u r s e s e p a r a t i n g o n C ( X ) by v e r y d e f i n i t i o n : f # g means t h e r e e x i s t s xEX

such t h a t f ( x )

# g(x).

Dually,

C(X) i s s e p a r a t i n g on X , a n d i n d e e d , i n a v e r y s t r o n g s e n s e : (Urysohn) f o r e v e r y p a i r o f d i s j o i n t , c l o s e d , non-empty s u h s e t s Z1,Z2 o f X , ( i i ) f(x)

=

Remark. -___

t h e r e e x i s t s fEC(X) s a t i s f y i n g ( i ) 0 < f (n(X),

1 f o r a l l xEZ1,

(iii) f(x)

=

0 f o r a l l xEZZ.

I l e n c e f o r t h , we w i l l c a l l an f E C ( X ) w i t h t h e a b o v e

properties a Urysohn f u n c t i o n f o r t h e ( o r d e r e d ) p a i r (Z,,Z,). A s o n e would e x p e c t , we d e f i n e o ( C ( X ) , X )

a s t h e topology

on C ( x ) o f p o i n t w i s e c o n v e r g e n c e on X : a n e t { f } i n CL

C(X) c o n -

v e r g e s t o fEC(X) i n a ( C [ X ) , X ) i f f ( x ) = l i m f ( x ) f o r a l l xEX. CY.N

We w i l l c a l l i t by i t s common name: t h e t o p o l o g y o f s i m p l e convergence.

And we c a n d e f i n e o ( X , C ( X ) ) a s t h e t o p o l o g y o n X

o f p o i n t w i s e c o n v e r g e n c e o n C(X): a n e t { x } i n X c o n v e r g c s t o c1

xEX i n ~ ( y C, ( X ) )

if f ( x )

=

limolf(x,)

for a l l fEC(X).

Since

x

completely regular,o(X,C(X)) i s simply t h e o r i g i n a l topology on X .

We e x a m i n e o(C(X) , X ) . Norm c o n v e r g e n c e ( i n C ( X ) )

and s i m p l e c onvergence.

i m p l i e s b o t h o r d e r convergence

T h e r e i s no o t h e r i m p l i c a t i o n b e t w e e n

the t h r e e convergences: Let X = a m , t h e one-point (Alexandroff) c o m p a c t i f i c a t i o n o f N , and f o r e a c h n , l e t en b e t h e e l e m e n t o f C(X)

h a v i n g v a l u e 1 on n E N a n d v a l u e 0 e l s e w h e r e .

t h e s e q u e n c e {ne,}

Then

c o n v e r g e s t o 0 s i m p l y b u t n e i t h e r normwise n n o r i n t h e o r d e r , a n d t h e s e q u e n c e {c e . ) ( n = 1 , 2 , . * . ) o r d e r 1 1 c o n v e r g e s t o l(X) b u t d o e s n o t c o n v e r g e e i t h e r s i m p l y o r no r m w i s e .

is

16 7

(C(X) ,X)-Duality

For a monotonic n e t , however, w e have one a d d i t i o n a l implication:

( D i n i t h e o r e m ) F o r a m o n o t o n i c n e t { f } i n C(X) cr f E C (X), the following a r e equivalent : (30.1)

1'

{fci. 1 c o n v e r g e s t o f n o r m w i s e ;

2'

{fa} c o n v e r g e s t o f s i m p l y ;

We n e e d o n l y show 2'

Proof. -__

implies lo.

and

For c o n c r e t n e s s ,

assume { f } i s a d e s c e n d i n g n e t w i t h i n f f ( x ) = 0 f o r a l l xEX. a a Consider E > 0 . F o r e a c h xEX, c h o o s e a ( x ) s u c h t h a t (x) <

E.

Since f

cr (XI

i s c o n t i n u o u s , t h e r e e x i s t s an o p e n

n e i g h b o r h o o d W(x) o f x s u c h t h a t f

(XI

(Y) <

E

f o r a l l yiW(x).

Now X i s c o m p a c t , s o t h e r e e x i s t x l , - - ,*x n s u c h t h a t { W ( x l ) , . - . , W ( x n ) } c o v e r s X. Then a > a ( € ) implies fa(y) <

Choose a(€) 2 w ( x , ) , . * . , a ( x n ) . E

f o r a l l yEX.

QED

I n common w i t h norm c o n v e r g e n c e a n d o r d e r c o n v e r g e n c e , simple convergence h a s t h e f o l l o w i n g e a s i l y v e r i f i e d , p r o p e r t y

(30.2)

I f { f } a n d {p } c o n v e r g e s i m p l y t o f a n d g r e s p e c t i v e l y , c1

t h e n {fcrVg,),

a

{fclAgcl},

Ifc1 + g a l , a n d {Afcl}

o f IR) c o n v e r g e s i m p l y t o f v g , f A g , f

+

(A

any element

g , a n d Af r e s p e c t i v e l y .

Chapter 6

168

Otherwise s t a t e d , t h e l a t t i c e o p e r a t i o n s and v e c t o r s p a c e o p e r a t i o n s a r e continuous under simple convergence.

F o r a R i e s z s u b s p a c e F o f C(X) t o b e s i m p l y

(30.3) Corollary.

c l o s e d , i t s u f f i c e s t h a t F+ be s i m p l y c l o s e d .

i s simply c l o s e d .

Note a l s o t h a t C ( X ) +

The f o l l o w i n g i s t h e c r u c i a l p a r t o f M . H .

Stone's proof

of t h e Stone-Weierstrass theorem.

( 3 0 . 4 ) _____ Theorem.

(Stone).

F o r a s u b l a t t i c e A o f C(X), t h e

following are equivalent:

'1

A i s simply closed;

2'

A i s norm c l o s e d .

We n e e d o n l y show t h a t 2'

P roof.

i m p l i e s 1'.

Assume A i s

norm c l o s e d , a n d c o n s i d e r f i n t h e s i m p l e c l o s u r e o f A . E

> 0.

We show t h e r e e x i s t s gEA

such t h a t

i A

( i ) F o r e a c h xoEX, t h e r e e x i s t s g

\I g

- fll

Fix

5 3 ~ .

such t h a t

xO gXO

(XI

gx (x,) 0

2

f ( x ) - 3~

< f(xo)

+

f o r a l l xEX,

E *

In e f f e c t , s i n c e f i s i n t h e simple c l o s u r e of A, then f o r

169

(C(X) , X ) - D u a l i t y e a c h xEX, t h e r e e x i s t s g

€ A such t h a t J g

( g x .(XI

-

0

f(x)

<

-

E ;

(xo)

- f(xo)

xO

xO

< r-, -

and from t h e s e c o n d o f t h e s e i n e q u a i t i e s ,

t h e r e e x i s t s a n o p e n n e i g h b o r h o o d W x) o f x s u c h t h a t ( y ) 2 f ( y ) - 3~ f o r a l l y 6 W ( x ) . X b e i n g compact, t h e r e xox e x i s t { x l , . . - , x n } s u c h t h a t IW(x,), * . , W ( x n ) } c o v e r s X. Set g

Since x

was a r b i t r a r y i n ( i ) , w e now d r o p t h e s u b s c r i p t .

0

We t h u s h a v e { g x l x E X } c A s u c h t h a t f o r e v e r y x , gx 3 ~ l l ( X ) and gx(x) < f(x) +

c o v e r s X.

Set g

=

m

tliTlgx

i 3 ~ l l ( X ;) s o we a r e t h r o u g h .

+

3~ f o r a l l y E V ( x ) .

, x m } s u c h t h a t {V(x,)

.

f -

For e a c h x , choose a n e i g h b o r -

E.

hood V(x) o f x s u c h t h a t g x ( y ) < f(y) Again t h e r e e x i s t s { x , , . .

2

, . . * ,V(xm) 1

< f + Then g E A a n d f - 3 ~ n ( X )5 g -

QED

(30.5)

Corollary.

(i)

Norm c l o s e d R i e s z i d e a l s o f C ( X )

a r e simply closed.

( i i ) M I - s u b s p a c e s o f C(X) a r e s i m p l y c l o s e d .

531. The d u a l i t y b e t w e e n t h e norm c l o s e d R i e s z

i d e a l s of C(X)

and t h e c l o s e d ( o r open) s u b s e t s o f X

F o r e v e r y s u b s e t Q o f X , we s e t QL

=

{fEC(X)] f(x)

=

0 for all

a n d f o r e v e r y s u b s e t A o f C ( X ) , we s e t

~€41;

Chapter 6

170 Z(A) Z(A)

{x€X I f ( x )

=

=

0 f o r a l l fEA). (In l i n e with our d u a l i t y

i s c a l l e d t h e z e r o - s e t o f A.

a p p r o a c h , w e would p r e f e r t o d e n o t e Z ( A )

b y A&, b u t Z ( R ) i s

the established notation.) We h a v e i m m e d i a t e l y :

( 3 1 . 1 ) For e v e r y A c C ( X )

,

Z(A) i s a c l o s e d s u b s e t o f X .

In the opposite d i r e c t i o n , given

Q

c X,

it i s e a s i l y

v e r i f i e d t h a t QL i s a R i e s z i d e a l a n d s i m p l y c l o s e d , s o a f o r t i o r i norm c l o s e d .

( 3 1 . 2 ) For e v e r y

Thus:

Q c X,

Q'

Now i t i s c l e a r t h a t

i s a norm c l o s e d R i e s z i d e a l .

(0)' =

QL

M o r e o v e r , by t h e Urysohn t h e o r e m , t h i s property.

( 3 1 . 3 ) For e v e r y

Dually ,

0is

We t h u s h a v e :

Q c X, Z(QL)

=

(q

0.

the closure of

Q i n X).

the largest set with

171

(C(X) , X ) - D u a l i t y ( 3 1 . 4 ) For e v e r y s u b s e t A o f C(X),

i s t h e norm c l o s e d

(Z(A))'

Riesz i d e a l H g e n e r a t e d by A.

-__ Proof.

H c (Z(A))'

by ( 3 1 . 2 ) .

clusion consider f € ( Z ( A ) ) I , B

=

{ g E H 10 c: g 5 f } .

i s f i l t e r i n g upward. we show f ( x )

=

f(x) > 0.

a n d we c a n assume f > 0 .

H e n c e , b y t h e D i n i Theorem ( 3 0 . 1 1 , i f

I f f(x)

Then xeZ(A).

=

it w i l l follow t h a t

0 , w e are through.

c a n assume h ( x ) > f ( x ) . =

Suppose

I t f o l l o w s t h e r e e x i s t s hEII, w i t h

h(x) > 0 ( t h e r e e x i s t s kEAwith k(x) # 0 ; s e t h

t h a t g(x)

Set

B i s n o t empty ( i t c o n t a i n s 0 ) and i t

s u p g E B g ( x ) , f o r e v e r y xEX,

Consider x .

fEfl.

For t h e o p p o s i t e con-

Then g

=

=

l k l ) , and w e

hnf i s an element of B such

f(x).

QED In particular,

(31.5) For e v e r y Riesz i d e a l I o f C ( X ) ,

(Z(1))'

i s t h e norm

closure of I.

Summing u p ,

(31.6) There i s a one-one correspondence between t h e f a m i l y o f c l o s e d s u b s e t s 2 o f X a n d t h a t o f norm c l o s e d R i e s z i d e a l s II of C(X):

H <->

Z i f and o n l y i f Z = Z(H)

i f and o n l y i f H

=

ZL.

Chapter 6

172 Given H <-->

Z,

s e t W = X\Z:

Thus t h e r e i s a o n e - o n e

c o r r e s p o n d e n c e b e t w e e n t h e norm c l o s e d R i e s z i d e a l s o f C ( X ) and t h e open s e t s o f X .

T h i s corresp o n d en ce can be g iv en w i t h -

out reference t o the closed s e t s .

First a definition.

A func-

t i o n f on a l o c a l l y compact s p a c e T i s s a i d t o v a n i s h a t i n f i n i t y i f f o r every -~ compact.

E

> 0, the set {tET

1

If(t)

1

> E} i s

The f o l l o w i n g i s e a s i l y v e r i f i e d .

( 3 1 . 7 ) There i s a o n e - o n e c o r r e s p o n den ce between t h e f a m i l y o f

open s u b s e t s W of X and t h a t o f t h e norm c l o s e d R i e s z i d e a l s

H o f C(X): H <-->

fEH}

W i f and o n l y i f W

=

{ x G X \ f ( x ) # 0 f o r some

i f and o n l y i f H i s t h e s e t o f c o n t i n u o u s f u n c t i o n s on

W which v a n i s h a t i n f i n i t y .

H e n c e f o r t h Z w i l l a l w a y s d e n o t e a c l o s e d s e t of

Notation.

X , a n d W an open s e t .

F o r a s u b s e t A o f C ( X ) , W(A) w i l l b e

t h e s e t X\Z(A). The s e t o f c o n t i n u o u s f u n c t i o n s v a n i s h i n g a t i n f i n i t y on a l o c a l l y compact s p a c e T w i l l b e d e n o t e d by C w ( T ) .

Note

t h a t i t i s an M-space u n d e r t h e supremum norm, a n d i s an MEs p a c e i f and o n l y i f T i s c o m p a c t . U s i n g t h e above n o t a t i o n , we c a n s t a t e p a r t o f ( 3 1 . 7 ) a s

follows: I f X

= W IJ Z ,

W a n d Z c o m p l e m e n t a r y , t h e n ZL = Cw(W) .

A n o t h e r o b s e r v a t i o n on C w ( W ) . elements of C(X) of W.

Let Ho c o n s i s t o f t h e

e a c h h a v i n g f o r i t s s u p p o r t a comp.act s u b s e t

Then Ho i s a R i e s z i d e a l , i s c o n t a i n e d i n C w ( W ) ,

norm d e n s e i n t h e l a t t e r .

We n e e d o n l y v e r i f y t h e l a s t

and i s

(C(X) ,X) - D u a l i t y statement.

173

Tn e f f e c t , s i n c e W i s c o m p l e t e l y r e g u l a r , Ho i s s o , by ( 3 0 . 4 )

s i m p l y d e n s e i n C'(W),

( o r t h e Dini Theorem), i s

norm d e n s e i n i t .

We c h a r a c t e r i z e v a r i o u s t y p e s o f R i e s z i d e a l s o f C(X) by p r o p e r t i e s of X . by i n t Q

.

We w i l l d e n o t e t h e i n t e r i o r o f a s e t Q i n X

Recall that a r e g u l a r c l o s e d s e t i s one which i s

t h e c l o s u r e o f an o p e n s e t , a n d a r e g u l a r o p e n s e t i s o n e which i s t h e i n t e r i o r o f a c l o s e d s e t .

We h a v e s e e n ( 3 1 . 2 ) t h a t f o r Q c X , QL i s a norm c l o s e d Riesz i d e a l .

F o r a n o p e n s e t W i n X , WL

(31.8)

___ Proof. WL

F o r an o p e n s e t , w e c a n s a y m o r e :

Let 2

X\W.

=

i s a b a n d o f C(X)

T h e n , as i s e a s i l y v e r i f i e d ,

(ZL)d, hence i s a band

=

QE D

For a Riesz i d e a l H o f C(X),

(31.9) C o r o l l a r y 1.

o r d e r c l o s u r e tI

P roof. simplicity, and H can

=

.'2

=

( i n t Z(H))'.

We c a n a s s u m e H i s norm c l o s e d . denote Z(H)

Also f o r

s i m p l y by Z a n d W(H) b y W.

So W

=

X\Z

S i n c e C(X) i s A r c h i m e d e a n , w h a t we w a n t t o p r o v e

b e s t a t e d : Hdd

=

( i n t Z)'.

A s we remarked i n ( 3 1 . 8 ) ,

2

Chapter 6

174 Hd

=

W"

(x\W)*

But t h e n Hd =

,

(w)" ,

s o , by t h e same r e m a r k , H d d

=

j i n t z)'.

=

QED

For a R i e s z i d e a l f1 o f C(X), t h e

(31.10) Corollary 2.

following are equivalent: lo

t h e o r d e r c l o s u r e o f H i s C(X);

'2

Z(H) h a s empty i n t e r i o r ( s o , b e i n g c l o s e d , i s nowhere

rare,

dense -

i n t h e Bourbaki terminology);

WIN) i s d e n s e i n X .

3'

The f o l l o w i n g a r e a l s o c o r o l l a r i e s , b u t we l i s t them a s theorems.

( 3 1 . 1 1 ) ____ Theorem.

F o r a norm c l o s e d R i e s z i d e a l H o f C ( X ) ,

the

following are equivalent:

1'

H i s a band;

'2

Z(H) i s a r e g u l a r c l o s e d s e t ;

'3

W ( H ) i s a r e g u l a r open s e t .

P roof. Z(H)

=

i f Z(H) H

=

I f H i s a band, t h e n , by (31.9) and (31.3),

m, so

Z(H) i s a r e g u l a r c l o s e d s e t .

Conversely,

i s a r e g u l a r c l o s e d s e t , t h e n , by ( 3 1 . 4 ) and ( 3 1 . 9 ) ,

(Z(H))'

=

order closure H. QED

(C(X) ,X) -Duality

175

I f a s e t i n X i s b o t h open and c l o s e d , w e w i l l c a l l i t clopen.

F o r a norm c l o s e d R i e s z i d e a l lI o f C ( X ) ,

( 3 1 . 1 2 ) Theorem.

the

following are equivalent: 1'

H i s a p r o j e c t i o n band;

2'

Z(II) is clopen;

3'

W(t1)

-__ Proof..

i s clopen.

S u p p o s e H 3 Hd

=

C(X),

but Z(H)

some xEZ(H) i s i n t h e c l o s u r e o f W ( I I ) . t1 v a n i s h e s on

Conversely, i f X =

T t

v a n i s h e s on x , c o n t r a d i c t i n g ( l l ( X ) ) ( x ) Z1lJ

=

So

Then e v e r y e l e m e n t o f

x a n d e v e r y e l e m e n t o f Hd v a n i s h e s on x .

follows a l l of C(X)

C(X)

i s n o t open.

=

Z2, w i t h Z1,Z2 d i s j o i n t , t h e n c l e a r l y ,

( Z , P 3 (Z$. QED

Finally

,

( 3 1 . 1 3 ) Theorem.

For a R i e s z i d e a l H o f C ( X ) ,

are equivalent: 1' H i s a maximal R i e s z i d e a l ;

2'

Z(f1)

1.

consists of a single point.

the following

176

Chapter 6 -__ Proof.

Assume H i s m a x i m a l , a n d c h o o s e xEZ(f1).

a p r o p e r Riesz i d c a l o f C ( X )

w i t h 11.

{x}'

is

and c o n t a i n s [ I , hencc c o i n c i d e s

I t f o l l o w s from ( 3 1 . 3 ) t h a t Z ( l I )

=

{x}.

T h a t '2

i m p l i e s lo i s c l e a r . Qlill

Consider a c l o s e d s e t Z o f X. Cw(W), W

= X\Z.:

As we h a v e s e e n , ZL =

Tn a d d i t i o n , C(X)/ZL = C(Z) ( c f .

(33.6))

5 3 2 . The d u a l i t y b e t w e e n t h e M l l - s u b s p a c e s o f C ( X )

and t h e u p p e r s e m i c o n t i n u o u s d e c o m p o s i t i o n o f X

P a r a l l e l i n g 531, we c o l l e c t h e r e t h e o r e m s r e l a t i n g t h c M I - s u b s p a c e s o f C(X) t o t h e t o p o l o g y o f X. immediately a r i s e s .

A difficulty

E v e r y MIL-subspace F c o n t a i n s l l ( X ) ,

t h e a n n i h i l a t o r o f F i s always cmpty.

hence

A substitute for this

a n n i h i l a t o r i s t h e dccomposition of X i n t o t h e sets of cons t a n c y o f F.

(The a n n i h i l a t o r __ does e x i s t

-

in C'(X)!

And

i s closely r e l a t e d t o these s e t s of constancy.) By a d e c o m p o s i t i o n o f X , w e w i l l mean a f a m i l y x

=

{Za}

o f m u t u a l l y d i s j o i n t , c l o s e d , n o n - e m p t y s u b s e t s o f X whose

union i s X.

The d e c o m p o s i t i o n s o c c u r r i n g i n o u r s u b j e c t a r e

of a special kind.

A decompositionx

=

{Za} o f X i s c a l l e d

uppersemicontinuous i f f o r e v e r y c l o s e d s e t Z i n X , t h e union of a l l the Za's intersecting 2 i s also closed.

I t i s e a s i l y v e r i f i e d t h a t i f X s > Y i s a continuous mapping ( r e m e m b e r , X , Y a r e a l w a y s compact H a u s d o r f f ) , t h e n t h e

(C(X) , X ) - D u a l i t y decomposition

2

=

{s

-1

(y) / y € s ( X ) }

177

of X i s uppersemicontinuous.

Conversely, every uppersemicontinuous decomposition

X i s d e t e r m i n e d b y a c o n t i n u o u s mapping o f X :

2

=

{Za} o f

In e f f e c t , l e t

X A> L b e t h e mapping w h i c h a s s i g n s t o e a c h xEX t h e Z t a i n i n g i t , and d e n o t e h y J f i n e d b y t h i s mapping q .

(Z,J)

cona t h e i n d u c t i v e t o p o l o g y on 5 d e -

The r e s u l t i n g t o p o l o g i c a l s p a c e

is called the q u o t i e n t s p a c e o f X d e t e r m i n e d by

c a l l e d t h e q u o t i e n t map, a n d ? very d e f i n i t i o n o f ? ,

the quotient topology.

is

By t h e

q i s continuous.

( 3 2 . 1 ) The q u o t i e n t s p a c e

Proof.

t ,q

(x,y) i s

compact H a u s d o r f f .

N o t e f i r s t t h a t an e q u i v a l e n t f o r m u l a t i o n o f t h e

u p p e r s e m i c o n t i n u i t y o f 5 i s t h a t f o r e v e r y open s e t W o f X , union o f a l l t h e 2 ' s c o n t a i n e d i n W i s a l s o open. c1

a s u b s e t Q o f X whole i f it i s a union o f Z ' s . whole i f Q

=

q

-1( q ( Q ) ) .

c1

the

Let u s c a l l

Q is then

T h u s , by t h e d e f i n i t i o n o f t h e

i n d u c t i v e t o p o l o g y , i f a n o p e n s e t W i n X i s w h o l e , t h e n q(W)

i s open i n

(2,y).

I t f o l l o w s t h a t t o show

(2,y)

is Hausdorff,

i t s u f f i c e s t o show t h a t d i s t i n c t Z ' s h a v e d i s t i n c t w h o l e (Y

neighborhoods i n X.

So c o n s i d e r Z

j o i n t open neighborhoods Wl,W2

"1

#

and c h o o s e d i s -

Za2,

o f Zal,Za r e s p e c t i v e 1y . 2

V1 b e t h e u n i o n o f a l l t h e Z ' s c o n t a i n e d i n

a

union of a l l those contained i n W2.

Since

2

Le t

W1, a n d V2 t h e i s uppersemicon-

t i n u o u s , V1 a n d V2 a r e o p e n , s o w e a r e t h r o u g h .

That

(t,7)

i s compact f o l l o w s from t h e c o n t i n u i t y o f q . QED

178

Chapter 6 mapping X

Returning to a continuous

__ >

resulting uppersemicontinuous decomposition

of X, form the quotient space ( X , y j . ical mapping ( 2 , J j

-

Y and the

2 = I S -1 ( y ) 1 y E s (X)}

Then s induces the canon-

2: Y such that the following diagram

commutes.

Then

(32.2)

2 is a homomorphism of

(X,r)onto Y.

The verification is simple.

We can now proceed with o u r examination of the MIl-subspaces of C(X).

Given a subset A of C ( X ) ,

a set Z in X will

be called set of constancy of A if (i) e v e r y f E A i s constant on 2 , and (ii) 2 is maximal with respect to this property.

If

A consists of a single element f, then t h e s e t s of constancy

are the sets { f - l ( X ) I X E I R l .

(32.3)

Given a subset A of C ( X ) ,

the set of sets of constancy

of A is an uppersemicontinuous decomposition of X.

(C(X) ,X)-Duality

Proof. -__

179

The family of continuous mappings { f l f E A 1 of X

into R defines a single continuous mapping X -> S IR

A

so

has the product topology). {

Then s(X)

IRA (as always,

is compact Hausdorff,

s - l(y) I y E s ( X ) 1 s an uppersemicontinuous decomposition of X.

But the sets s-l[y) are precisely the sets of constancy of A. QED

For any decomposition continuous), let F ( 2 )

=

x

of X (not necessarily uppersemi-

{fCC(X)lf

is constant on every

ZCX} .

Then, a s can b e verified b y straightforward computation, F(X) is an MIL-space.

(32.4) Given a subset A of C ( X ) ,

sets of constancy.

Then F(x)

let

b e the collection of its

is precisely the Ma-subspace I:

of C ( X ) generated by A.

____ Proof.

A s we have noted above, F(2)

and therefore contains F.

is an MIL-subspace

Conversely, consider fEF(x);

show f is in the norm closure of F, hence lies in F. [30.4),

we

By

it is enough t o show that f is in the simple closure

of F.

Lemma.

For every Z l , . . + , Z n € X ,a l l distinct, F contains

_ _ I

a Urysohn function for (Zl, lJnZ.) ( c f . the beginning of 5 3 0 ) . 2 1

Chapter 6

180

T h e r e e x i s t s R E F s u c h t h a t g(Z,) g(Z,)

tains A).

#

g ( Z z ) ( s i n c e I: c o n -

and g ( Z 2 ) a r e e a c h a s i n g l e r e a l n u m b e r , s o

by a d d i n g a n a p p r o p r i a t e m u l t i p l e o f I ( X ) t o g , i f n e c e s s a r y ,

w e c a n assume g ( Z 2 )

=

0.

Then,, h y m u l t i p l y i n g g b y an a p p r o -

p r i a t e s c a l a r , w e c a n assume g ( Z 1)

=

1.

The e l e m e n t (gVo)AI(X)

o f F i s now a Urysohn f u n c t i o n f o r ( Z l , Z 2 ) ; d e n o t e i t b y E ~ . S i m i l a r l y , F c o n t a i n s a Urysohn f u n c t i o n g i f o r e a c h p a i r (ZIJZi)

(i

=

3,...,n).

A;gi

i s t h e n a Urysohn f u n c t i o n f o r

( Z l , lJ;Zi). I t f o l l o w s f r o m t h e Lemma t h a t f o r e v e r y f i n i t e s u b s e t { x l , * - - , x n }o f X , t h e r e e x i s t s g E F s u c h t h a t g ( x i ) i

=

l,...,n.

=

f(xi)

€or

Thus f i s i n t h e s i m p l e c l o s u r e o f F .

OED i t s sets of constancy a r e s i n g l e

I f A i s s e p a r a t i n g on X , points.

(32.5)

(32.4) then reduces t o

( W e i e r s t r a s s - S t o n e Theorem - l a t t i c e v e r s i o n ) .

A c C(X) i s s e p a r a t i n g on X ,

If

t h e n t h e M I - s u b s p a c e o f C(X)

g e n e r a t e d b y A i s C(X) i t s e l f .

( 3 2 . 4 ) s t a t e s t h a t i f we s t a r t w i t h an ME-subspace F o f C(X), t a k e t h e s e t 2 o f i t s s e t s o f c o n s t a n c y , t h e n t a k e F ( , ) , we a r r i v e b a c k a t F .

Dually,

(32.6) Every uppersemicontinuous decomposition

2

of X i s the

(C(X) ,X) - D u a l i t y

181

s e t o f s e t s o f c o n s t a n c y o f t h e MIL-subspace F ( X ) w h i c h i t

determines.

Proof.

We n e e d o n l y show t h e m a x i m a l i t y o f e a c h Z E

Specifically, consider

Zo€X

and x e Z o ; w e h a v e t o show t h e r e

e x i s t s fEF(z) such t h a t f ( x ) # f(Zo). space

(x,J)

determined b y x .

Denote b y Y t h e q u o t i e n t

Y i s compact H a u s d o r f f ( 3 2 . 1 ) ,

h e n c e t h e r e e x i s t s hEC(Y) s u c h t h a t h ( q x ) # h ( q ( Z o ) ) . f

=

hoq.

5.

Set

Then f i s a c o n t i n u o u s f u n c t i o n on X w h i c h i s c o n -

s t a n t on e v e r y Z € z , h e n c e i s i n

F(2)

- and s a t i s f i e s

f(x) # f(Zo).

QED Summing u p ,

( 3 2 . 7 ) T h e r e i s a o n e - o n e c o r r e s p o n d e n c e b e t w e e n t h e MIL-subs p a c e s F o f C(X) a n d t h e u p p e r s e m i c o n t i n u o u s d e c o m p o s i t i o n s of X.

F <-->;!

i f and o n l y i f

2

2

i s t h e s e t of sets of con-

s t a n c y o f F i f a n d o n l y i f F c o n s i s t s o f t h e e l e m e n t s o f C(X) c o n s t a n t on e v e r y Z E

2.

033. The MIL-homomorphisms o f C ( X )

For t h e following d i s c u s s i o n , it i s convenient t o use t h e notation

( f , x ) i n place of f(x)

(cf. the beginning of the

Chapter 6

182 Chapter).

Each xEX

d e f i n e s a f u n c t i o n on C(X) by f +>

(f,x),

and s i n c e C(X) i s s e p a r a t i n g on X , d i s t i n c t x ' s d e f i n e d i s t i n c t functions.

We c a n t h e r e f o r e i d e n t i f y e a c h x w i t h t h e f u n c t i o n

i t d e f i n e s , and h e n c e f o r t h w e w i l l do t h i s : x w i l l be c o n s i d e r e d a f u n c t i o n on C(X).

M o r e o v e r , by t h e v e r y d e f i n i t i o n

o f a d d i t i o n a n d s c a l a r m u l t i p l i c a t i o n i n C(X), x i s a c t u a l l y a linear functional.

Even m o r e , f r o m t h e d i s c u s s i o n o f t h e

b e g i n n i n g o f t h e C h a p t e r on t h e l a t t i c e o p e r a t i o n s i n C ( X ) , e v e r y xEX i s , i n f a c t , a n MI-homomorphism o f C(X) ( i n t o IR). And t h e y a r e t h e o n l y o n e s :

( 3 3 . 1 ) F o r a f u n c t i o n $ o n C(X), t h e f o l l o w i n g a r e e q u i v a l e n t

'1

$ i s a n MI-homomorphism o f C(X) i n t o R ;

2O

$EX.

P roof. -

I t r e m a i n s t o show t h a t ' 1

implies 2

0

.

We n o t e

f i r s t t h a t two MI-homomorphisms $1 , $ 2 o f C(X) i n t o 1R a r e i d e n t i c a l i f and o n l y i f (+1)-1(0) h o l d s f o r 4.

$-'lo) i s

=

Now assume 1'

($2)-1(0).

t h e n a R i e s z i d e a l H o f C(X), a n d

$ b e i n g a s i n g l e l i n e a r f u n c t i o n a l - i s a maximal o n e .

Z(H)

consists of a single point x (31.13).

Hence

But t h e n x -1( 0 )

=

H,

s o w e have $ = x . QED

C o n s i d e r a c o n t i n u o u s mapping X <-

S

Y.

For each fEC(X),

f o s i s a c o n t i n u o u s f u n c t i o n on Y, s o an e l e m e n t o f C(Y). t h u s h a v e a mapping f

I--->

f o s o f C(X) i n t o C ( Y ) .

We

We w i l l c a l l

(C(X) ,X) - D u a l i t y

183

t h i s mapping t h e t r a n s p o s e o f s , a n d d e n o t e i t b y s t . f o r a l l f E C ( X ) and yEY, ( s t f , y )

=

(f,sy).

I t i s t r i v i a l t o v e r i f y t h a t C(X)

S

t

> C(Y)

Thus,

Mn-

i s an

homomorphism.

We show t h a t , c o n v e r s e l y , f o r e a c h Mn-homomorph-

T i s m C(X) ->

C(Y), t h e r e e x i s t s a unique c o n t i n u o u s

X
( 3 3 . 2 ) Theorem.

X,Y,

=

(Stone).

mapping

T:

Given two c o m p a c t H a u s d o r f f s p a c e s

t h e r e i s a one-one correspondence between t h e c o n t i n u o u s

m a p p i n g s s o f Y i n t o X a n d t h e Ma-homomorphisms T o f C(X) i n t o C(Y).

T <->

s i f a n d o n l y i f (f,sy)

= (Tf,y)

for a l l ffC(X)

a n d yEY.

Proof.

-~

I t r e m a i n s t o show t h e e x i s t e n c e o f s , g i v e n T .

F o r e a c h yEY, yoT i s an M ~ - h o m o m o r p h i s m o f C(X) i n t o R , h e n c e , by (32.1),

an element o f X.

o f Y i n t o X; d e n o t e i t b y s .

f E C ( X ) a n d yEY.

We t h u s h a v e a m a p p i n g y k--> So ( f , s y )

=

(Tf,y) for all

i t i s immediate from t h i s i d e n t i t y t h a t f o r

e v e r y n e t { y a } i n Y a n d yoEY, i f ( g , y o ) = l i m a ( g , y a ) gEC(Y), t h e n ( f , s y o ) = l i m a ( f , s y a ) continuous.

That T

=

f o r a l l fEC(X).

i s a n MIL-subspace o f C(Y) ( 1 8 . 2 ) , a n d T - ’ ( O )

R i e s z i d e a l o f C(X).

for all Thus s i s

s t f o l l o w s f r o m t h e same i d e n t i t y .

As we know, f o r a n MIL-homomorphism C(X)

s(Y)

yoT

T

--A

C(Y), T(C(X))

i s a norm c l o s e d

And f o r a c o n t i n u o u s m a p p i n g X <---1 i s a c l o s e d s u b s e t o f X and { s (x) ( x € s ( Y ) } i s an

S

Y,

184

Chapter 6

uppersemicontinuous decomposition o f Y.

Y b e a c o n t i n u o u s mapping a n d T

( 3 3 . 3 ) L e t X
T-'(O) -1 {s

=

(s(Y))'and

(x) ( x E s ( Y ) l

s(Y)

=

=

st .

Then

Z(T-'(O));

i s t h e s e t of s e t s of constancy of

T ( C ( X ) ) , a n d T(C(X)) i s t h e s e t o f e l e m e n t s o f C(Y) c o n s t a n t -1 on e v e r y s (x),

Otherwise s t a t e d , T - l ( O ) and s(Y) c o r r e s p o n d t o e a c h o t h e r u n d e r ( 3 1 . 6 ) , and T(C(X)) and { s each o t h e r under (32.7).

-1

(x) I x € s ( Y ) }

correspond t o

The p r o o f o f ( 3 3 . 3 ) i s s t r a i g h t -

forward.

(33.4) Corollary. (i)

s i s a s u r j e c t i o n i f a n d o n l y i f T i s an i n j e c t i o n .

( i i ) s i s an i n j e c t i o n i f and o n l y i f T i s a s u r j e c t i o n .

We a p p l y t h e a b o v e t o t h e m a t e r i a l o f 5 § 3 1 , 3 2 .

Let F b e

an MIL-subspace o f C ( X ) a n d 2 i t s s e t o f s e t s o f c o n s t a n c y , and d e n o t e t h e q u o t i e n t s p a c e

( Z J ) by

Y.

Let Y


q u o t i e n t map.

Then an a d a p t a t i o n o f t h e a r g u m e n t f o r ( 3 2 . 6 ) , t p l u s ( 3 3 . 4 ) a b o v e , g i v e s u s t h a t C(Y) %> C ( X ) i s an MILi s o m o r p h i s m o n t o F.

do t h i s :

Thus F c a n b e i d e n t i f i e d w i t h C(Y).

We

(C(X) , X ) - D u a l i t y Let F b e an M I - s u b s p a c e o f C ( X ) ,

(33.5)

constancy o f F, Y q u o t i e n t map.

=

(2,y) t h e

185

2

t h e s e t of s e t s of

q u o t i e n t s p a c e , and Y

Then u n d e r t h e d e f i n i t i o n ( f , q y )

=


(f,y) for a l l

f E F and qyEY, w e h a v e F = C ( Y ) .

Now l e t Z b e a c l o s e d s u b s e t o f X a n d H Let X <-

S

Z b e t h e i n j e c t i o n map.

MI-homomorphism o n t o . ~

Then C ( X )

~

>c(z)

=

Z(H)).

i s an

can be i d e n t i f i e d w i t h C ( Z ) .

(33.6)

For e v e r y c l o s e d s u b s e t Z of X ,

C(X)/ZL

( f , z ) for a l l qf€C(X)/Z'

Remark. The mapping C ( X ) s t r i c t i o n map f k--> f l Z .

T i e t z e E x t e n s i o n Theorem.

L

onto C(Z).

Thus

We do t h i s :

C(X)/H

=

t

Factoring it:

t " we o b t a i n a n M a - i s o m o r p h i s m (s ) o f C ( X ) / H

definition (qf,z)

ZL ( s o Z

=

__ > C ( Z )

=

C(Z)

under the

and z E Z .

is c l e a r l y t h e r e -

(33.6) then a l s o follows from t h e