Applied Mathematics and Computation 101 (1999) 209±244
Chebyshev pseudospectral-®nite element method for the three-dimensional unsteady Navier±Stokes equation Jing-yu Hou, Ben-yu Guo
*
Shanghai University of Science and Technology, Shanghai 201800, China
Abstract A mixed Chebyshev pseudospectral-®nite element method is developed for solving the three-dimensional evolutionary Navier±Stokes equation. The generalized stability and the convergence of the scheme are proved strictly. The numerical results presented show the advantages of this mixed method. Ó 1999 Published by Elsevier Science Inc. All rights reserved. AMS Classi®cation: 65N30; 76D99 Keywords: Three-dimensional Navier±Stokes equation; Chebyshev pseudospectral-®nite element approximation
1. Introduction There are many studies on the numerical solutions of nonlinear partial dierential equations arising in ¯uid mechanics. Early studies mainly concerned the ®nite dierence method, e.g., see [1,2]. Also the ®nite element method has been used in computational ¯uid dynamics, see [3±6]. As we know, the accuracy of both the above methods is limited. But the precision of the spectral method increases as the smoothness of the genuine solution increases. So it has been applied successfully to numerical experiments of ¯uid ¯ow, see
*
Corresponding author. Present address: President Oce, Shanghai University, Jiading Campus, Jiading, Shanghai, China. 0096-3003/99/$ ± see front matter Ó 1999 Published by Elsevier Science Inc. All rights reserved. PII: S 0 0 9 6 - 3 0 0 3 ( 9 8 ) 0 0 0 4 1 - 1
210
J. Hou, B. Guo / Appl. Math. Comput. 101 (1999) 209±244
[7]. In particular, the pseudospectral method is easier to be performed and saves a lot of calculation time. Hence it becomes more and more popular in this ®eld. Recently, several mixed methods appeared for semi-periodic problems. For example, the Fourier spectral-®nite dierence method and the Fourier spectral-®nite element method, e.g., see [8±15]. On the other hand, for keeping the convergence of ``in®nite order'', some authors provided mixed Fourier± Chebyshev spectral and Fourier±Chebyshev pseudospectral methods, see [16± 18]. But most practical problems are non-periodic. Whereas the sections of domains might be rectangular in certain directions, such as the ¯uid ¯ow in a cylindrical container, for solving such problems, the Chebyshev spectral-®nite element approximation was proposed, see [19]. It is also preferable to use the Chebyshev pseudospectral-®nite element approximation, see [20,21]. In this paper, we develop a mixed Chebyshev pseudospectral-®nite element method for solving the three-dimensional unsteady Navier±Stokes equation. Comparing with the Chebyshev spectral-®nite element method, this approach can be easier performed easilier and saves some work. In particular, it is easy to deal with the nonlinear terms. The outline of this paper is as follows. We construct the scheme and present the numerical results in Sections 2 and 3, respectively. In Section 4, we list some lemmas. Finally we strictly prove the generalized stability and convergence of the scheme in Sections 5 and 6. The main idea and the technique for theoretical analysis in this paper are also applicable to other nonlinear problems.
2. The scheme Let Q be a convex polygon in R2 with the coordinate x
x1 ; x2 , and I fy=jyj < 1g, X f
x; y=x 2 Q; y 2 Ig. The boundary of X is denoted by @X, and the boundary of Q is denoted by C. The velocity vector and the pressure are denoted by U
U1 ; U2 ; U3 and P , respectively. m > 0 is the kinetic viscosity. U0
x; y and f
x; y; t are given functions. Let T > 0; @t @=@t, @1 @=@x1 , @2 @=@x2 , @3 @=@y. We consider the following problem: 8 2 > < @t U d
U ; U rP ÿ mr U f ; in X
0; T ;
1 r2 P U
U r f ; in X 0; T ; > : in X [ @X; U jt0 U0
x; y; where d
U ; V @1
V1 U @2
V2 U @3
V3 ; U ; U
U
3 X l;q1
@l Uq @q Ul ÿ @l Ul @q Uq :
J. Hou, B. Guo / Appl. Math. Comput. 101 (1999) 209±244
211
Indeed, Eq. (1) is one of the representations of the Navier±Stokes equation, see [1,2]. As indicated in [22], it is equivalent to the usual representation for the Navier±Stokes equation, provided that the second derivatives of the velocity exist. Suppose that the boundary is a non-slip wall and so U 0 on @X. There is no boundary condition for the pressure generally. But if we use the second formula of Eq. (1) to evaluate the value of the pressure P , we need a nonstandard boundary condition. Sometimes, we can assume approximately that
@P =@nj@X 0, as in [1]. In addition, for ®xing the value of pressure, we require that for all t 6 T , Z P
x; y; t dx dy 0: X
It is obvious that for each time t and U , the second formula of Eq. (1) is a Neuman problem for P . It can be veri®ed from the boundary condition of U that this Neuman problem is consistent. This model is often used in ¯uid dynamics. Since the derivation of the second formula of Eq. (1) implies the incompressible condition, this model helps us to avoid the dicult job of constructing the trial function space satisfying the incompressibility and Babuska±Brezi condition, in calculations. Now we are going to derive the scheme. Firstly let D be an interval (or a domain) in R
or R2 ; R3 . L2
D; H r
D and H0r
D
r > 0 denote the usual Hilbert spaces with the usual inner products and norms. We also de®ne L20
D
8 < :
u 2 L2
D
9 =
,Z D
2 ÿ1=2
Let x
y
1 ÿ y
and
Z
u; vx;I
u dD 0 : ;
uvx dy;
kuk2x;I
u; ux;I ;
I
L2x
I
fu
y=u is measurable on I and kukx;I < 1g:
Furthermore Z
u; vx
uvx dx dy;
2
kukx
u; ux ;
X
L2x
X fu
x; y=u is measurable on X and kukx < 1g: Let ax
u; v
ru; r
vxL2
X . Then the weak formulation of Eq. (1) is to ®nd U 2 X 3
X and P 2 Y
X for all 0 < t 6 T such that
212
J. Hou, B. Guo / Appl. Math. Comput. 101 (1999) 209±244
(
@t U d
U ; U rP ; vx max
U ; v
f ; vx ; ax
P ; w
U
U ÿ r f ; wx ; 8w 2 X~
X
8v 2 X 3
X;
2
where X~
X fu=u; @1 u; @2 u; @3 u 2 L2x
Xg; X
X X~
X \ fu=u 0 on @Xg; @u 2 ~ Y
X X
X \ L0
X \ u 0 for jyj 1 : @y We can verify the existence and uniqueness of the local solution of Eq. (2), under some conditions on f and U0 . Next we construct the trial function spaces. For the Chebyshev approximation, let N be any positive integer and PN
I denote the set of all algebraic polynomials of degree 6 N , de®ned on I. Let VN
I fu
y 2 PN
I=u
ÿ1 u
1 0g; du du
ÿ1
1 0 : WN
I u
y 2 PN
I dy dy For the ®nite element approximation, we decompose Q into M triangles Qm (1 6 m 6 M), Q [M m1 Qm . Assume that the triangulation is a regular family satisfying the inverse assumption, see [23]. Let hm be the diameter of Qm and qm be the supremum of the diameters of the circles inscribed in Qm . Then max1 6 m 6 M hm =qm 6 d, d being a positive constant independent of the decomposition of the domain Q. Moreover for any integer k P 1, let k S~h
Q fu
x=ujQm 2 Pk
Qm ; 1 6 m 6 Mg; k Shk
Q S~h
Q \ H01
Q:
Furthermore we take the spaces XNk ;h
X and YNk ;h
X as the trial function spaces for the velocity and the pressure respectively, de®ned as XNk ;h
X Shk
Q VN
I; k YNk ;h
X
S~h
Q \ H 1
Q WN
I \ L20
X:
Besides k k X~ N ;h
X
S~h
Q \ H 1
Q VN
I:
Now let fy
j ; x
j g be the nodes and weights of Gauss±Lobatto integration, i.e., ( ; 0 6 j 6 N; y
j cos jp N p x
0 x
N 2N ; x
j Np ; 1 6 j 6 N ÿ 1:
J. Hou, B. Guo / Appl. Math. Comput. 101 (1999) 209±244
213
It is well known that for any g 2 P2N ÿ1
I, Z g
yx
y dy
N X g
y
j x
j :
3
j0
I
The discrete inner products and norms are de®ned as follows,
u; vN ;x
N X u
y
j v
y
j x
j ; j0
Z
u; vN ;h;x
u; vN ;x dx;
2
kukN ;x
u; uN ;x ; 2
kukN ;h;x
u; uN ;h;x :
Q
! PN
I be the interpolation operator, i.e., Let Pc : C
I Pc u
y
j u
y
j ; 0 6 j 6 N ; k and Pkh : C
Q ! S~h
Q \ H 1
Q be the piecewise Lagrange interpolation of degree k over each Qm ; 1 6 m 6 M. Furthermore let PN ;h : L2x
X ! XNk ;h
X be the L2x
X-orthogonal projection. Let s be the step size of time t, and T _ ; Rs R_ s [ f0g; Rs t ls=1 6 l 6 s 1 ut
t
u
t s ÿ u
t: s For approximating the nonlinear terms d
U ; U and U
U in Eq. (2), we de®ne dc
u; v
3 X
@j Pc
vj u;
j1
Uc
u
3 X
Pc
@l uq @q ul ÿ Pc
@l ul @q uq :
l;q1
For approximating the term ax
U ; v; let aN ;h;x
u; v
2 X j1
@j u; @j vN ;h;x ÿ
@32 u; vN ;h;x :
Let k P 0, u and p denote the approximations to U and P , respectively. Then the Chebyshev pseudospectral-®nite element method for solving Eq. (2) is to 3 k ®nd u 2
XNkk ;h
X and p 2 YN ;h
X such that 8
ut dc
u; u rp; vN ;h;x maN ;h;x
u rsut ; v
f ; vN ;h;x ; > > > > < 8v 2
X kk
X3 ; t 2 R_ s ; N ;h
4 k > > aN ;h;x
p; w
Uc
u ÿ r f ; wN ;h;x ; 8w 2 X~ N ;h
X; t 2 Rs ; > > : u
0 PN ;h U0 ;
214
J. Hou, B. Guo / Appl. Math. Comput. 101 (1999) 209±244
where r is a parameter and 0 6 r 6 1. If r 0, then Eq. (4) is an explicit scheme for u. Otherwise, it is an implicit scheme and so we have to solve a linear system to evaluate the velocity at each time t 2 Rs . We can verify the existence and uniqueness of the local solution of Eq. (4) under certain conditions.
3. Numerical results In this section, we provide some numerical results of scheme (4). Let Q 0; 1 0; 1. We take the following test functions: 2
U1
x; y; t ÿA eBt x21 x2
x1 ÿ 1
x2 ÿ 1
2x2 ÿ 1
y 3 ÿ y; 2
U2
x; y; t ÿA eBt x1 x22
x1 ÿ 1
2x1 ÿ 1
x2 ÿ 1
y 3 ÿ y; 2
U3
x; y; t A eBt x1 x2
x1 ÿ 1
x2 ÿ 1
2x1 ÿ 1
2x2 ÿ 1
y 2 ÿ 1 ; P
x; y; t A eBt
2x31 ÿ 3x21 0:5
2x32 ÿ 3x22 0:5
y 3 ÿ 3y: We use Chebyshev pseudospectral-®nite element scheme (CPSFE) (4) with k 1. The domain Q is divided uniformly into rectangular subdomains with mesh size h 1=M in x1 and x2 directions. For comparison, we also consider the ®nite element scheme (FEM). In this case, the interval I is divided with the length h 2=N ; U
U1 ; U2 ; U3 is approximated by a quadratic ®nite element scheme and P by a linear ®nite element scheme. For describing the errors of numerical solutions, let I^x fxj =xj jh; 1 6 j 6 M ÿ 1g; for CPSFE and FEM; jp I^y yj =yj cos ; 1 6 j 6 N ÿ 1 ; for CPSFE; N 1 6 j 6 N ÿ 1g; I^y fyj =yj ÿ1 jh;
for FEM;
^ f
x; y=x 2 I^x I^x ; y 2 I^y g X and P3 E
U
t P E
P
t
P
q1
2 ^ jUq
x; y; t ÿ uq
x; y; tj
x;y2X P3 P 2 ^ jUq
x; y; tj q1
x;y2X
^
x;y2X
P
jP
x; y; t ÿ p
x; y; tj ^
x;y2X
jP
x; y; tj
2
2
!1=2 :
!1=2 ;
J. Hou, B. Guo / Appl. Math. Comput. 101 (1999) 209±244
215
Table 1 The errors of scheme (4) and FEM, m 0:001 t 0.5 1.0 1.5 2.0 2.5
Scheme (4), k 1
Scheme FEM
E
U
t
E
P
t
E
U
t
E
P
t
0:1717 10ÿ3 0:2770 10ÿ3 0:3936 10ÿ3 0:5247 10ÿ3 0:6736 10ÿ3
0:8900 10ÿ3 0:9163 10ÿ3 0:9426 10ÿ3 0:9690 10ÿ3 0:9954 10ÿ3
0:2113 10ÿ2 0:4125 10ÿ2 0:6147 10ÿ2 0:8203 10ÿ2 0:1028 10ÿ1
0:7190 10ÿ2 0:7549 10ÿ2 0:7919 10ÿ2 0:8301 10ÿ2 0:8692 10ÿ2
Table 2 The errors of scheme (4) and FEM, m 0:0001 t 0.5 1.0 1.5 2.0 2.5
Scheme(4), k 1
Scheme FEM
E
U
t
E
P
t
E
U
t
E
P
t
0:1687 10ÿ3 0:3325 10ÿ3 0:4967 10ÿ3 0:6622 10ÿ3 0:8293 10ÿ3
0:8899 10ÿ3 0:9167 10ÿ3 0:9435 10ÿ3 0:9704 10ÿ3 0:9973 10ÿ3
0:2123 10ÿ2 0:4273 10ÿ2 0:6424 10ÿ2 0:8583 10ÿ2 0:1076 10ÿ1
0:7190 10ÿ2 0:7564 10ÿ2 0:7935 10ÿ2 0:8319 10ÿ2 0:8717 10ÿ2
Table 3 The errors of scheme (4), M N 10; s 0:001; k 1; m 0:001 t 0.5 1.0 1.5 2.0 2.5
E
U
t
E
P
t ÿ4
0:6172 10 0:8564 10ÿ4 0:1121 10ÿ3 0:1419 10ÿ3 0:1757 10ÿ3
0:2213 10ÿ3 0:2271 10ÿ3 0:2330 10ÿ3 0:2389 10ÿ3 0:2448 10ÿ3
Table 4 The errors of scheme (4), M N 10; s 0:001; k 1; m 0:0001 t
E
U
t
E
P
t
0.5 1.0 1.5 2.0 2.5
0:6104 10ÿ4 0:9825 10ÿ4 0:1356 10ÿ3 0:1731 10ÿ3 0:2111 10ÿ3
0:2211 10ÿ3 0:2273 10ÿ3 0:2332 10ÿ3 0:2395 10ÿ3 0:2457 10ÿ3
In calculations, we take A 0:2; B 0:1, k 1; N 4, M N 10 and s 0:005; r 0. Tables 1 and 2 show the numerical results of schemes CPSFE and FEM. We ®nd that scheme CPSFE gives much better results than scheme FEM, even with relatively small N . Besides, we also take k 1; M N 10; s 0:001; r 0 and use scheme (4) with k 1. The corresponding results
216
J. Hou, B. Guo / Appl. Math. Comput. 101 (1999) 209±244
are shown in Tables 3 and 4, from which we know that when N is increased and s is decreased, much better results can be obtained. These numerical results also show the convergence of the scheme CPSFE.
4. Some lemmas In this section, we list some notations and lemmas which will be used later. Firstly, we introduce some Sobolev spaces with the weight function x
y. For any integer r P 0, set !1=2
r r X
d v 2
kvkr;x;I jvjm;x;I ; jvjr;x;I r ; dy x;I m0 Hxr
I fv=kvkr;x;I < 1g: For any real r > 0, the space Hxr
I is de®ned by the complex interpolation between the spaces Hxr
I and Hxr1
I. Furthermore C01
I fv=v is infinitely differentiable on I and has compact supportg: r
I denotes the closure of C01
I in Hxr
I. Besides L1
I is the space of H0;x essentially bounded functions with the norm k k1;I . Next, let B be a Banach space with the norm k kB and D be a bounded open domain in R2 with the boundary satisfying locally Lipschitz conditions. Let c c c
c1 ; c2 2 N2 ; jcj c1 c2 ; z
z1 ; z2 2 D and @ c u @ c1 c2 u=@z11 @z22 . De®ne
L2
D; B fu
z: D ! B=u is strongly measurable and kukL2
D;B < 1g; C
D; B fu
z: D ! B=u is strongly continuous and kukC
D;B < 1g where
0
kukL2
D;B @
Z
11=2 kuk2B dzA
;
kukC
D;B max ku
zkB : z2D
D
For any integer s P 0, de®ne H s
D; B fu
z=kukH s
D;B < 1g equipped with the semi-norm and norm jujH s
D;B
k@zs ukL2
D;B ;
kukH s
D;B
s X juj2H m
D;B
!1=2 :
m0
For real s > 0, we de®ne H s
D; B by the complex interpolation as before. Now, we introduce the non-isotropic space
J. Hou, B. Guo / Appl. Math. Comput. 101 (1999) 209±244
Hxr;s
X L2
Q; Hxr
I \ H s
Q; L2x
I;
217
r; s P 0
with the norm 2
2
2
kukHxr;s
X kukL2
Q;Hxr
I kukH s
Q;L2x
I : Also let Mxr;s
X Hxr;s
X \ H sÿ1
Q; Hx1
I;
r; s P 1;
5=3 Ar;s
Q; Hx1
I \ H s1
Q; Hxr
I \ H s
Q; Hxr1
I; x
X H
Yxr;s;d
X
Hxr;s
X
\H
1d
Q; Hxr=21=2d
I
\H
s=21d
r; s P 0;
Q; Hx1=2d
I;
r; s P 0; d > 0; r;s;d Y1;x
X Hxr1;s1
X \ H 1
Q; Hxr
I \ H s
Q; Hx1
I \ H 1d
Q; Hxr=23=2d
I \ H s=21d
Q; Hx3=2d
I \ H 2d
Q; Hxr=21=2d
I \ H s=22d
Q; Hx1=2d
I; r; s P 0; d > 0: r;s
X Their norms are de®ned in the way similar to k kHxr;s
X . Moreover let H0;x r;r 1 r;s r;r r be the closure of C0
X in Hx
X. If r s, then Hx
X Hx
X, H0;x
X r
X and denote their semi-norm and norm by j jr;x and k kr;x , respecH0;x tively, etc. In addition, we denote by L1
I; L1
X and W 1;1
X the usual Sobolev spaces with the norms k k1;I , k k1 and k k1;1 , etc. For the product 3 Hilbert spaces (e.g.,
L2x
X ), we still use the notations
:; :x , k kx and k kHxr;s
X , etc. For simplicity of statements, let s min
s; k 1 and denote throughout this paper by c; a positive constant independent of h; N ; s and any function, which may be dierent in dierent cases. For some lemmas, we require that there exist a suitably big positive constant c1 and a positive constant c2 such that
c1 hÿ4=3 6 N 6 c2 hÿ4=3 :
5
for all t 2 Rs , then Lemma 1. If u
x; y; t 2 L2
Q C
I 2
2
2
u
t; ut
tN ;h;x
ku
tkN ;h;x t ÿ skut
tkN ;h;x : This lemma can be proved in the same way as in the proof of Lemma 1 of [17]. Let PN denote the Chebyshev truncated operator. We have that (see [7]) ku ÿ PN ukLqx
I 6 crN ;q N ÿm kukWxm;q
X ;
m P 0; 1 6 q 6 1;
6
218
J. Hou, B. Guo / Appl. Math. Comput. 101 (1999) 209±244
with rN ;q
1 ln N
if q 1 or q 1;
1
otherwise:
Lemma 2 (Lemma 1 of [21]). If u 2 L2x
X and v 2 L2
Q PN
I, then p kvkx 6 kvkN ;h;x 6 2kvkx ; j
u; vN ;h;x ÿ
u; vx j 6 c
ku ÿ PN ÿ1 ukx ku ÿ Pc ukx kvkx : 1
X, we have Lemma 3 (Lemma 2 of [21]). For any u 2 H0;x 2
aN ;h;x
u; u P 14kuk1;x : k
Lemma 4 (Lemma 6 of [19]). For any u 2 S~h
Q PN
I with k P 1, we have p N kukx : kuk1 6 c h Moreover if u 2 H 1
Q; L2x
I, then kPN uk1 6 cN jln hj1=2 kukH 1
Q;L2x
I : k 1=2 Remark 1. For any u 2 Hx1
X \ X~ N ;h
X, kuk1 6 cN jln hj kukH 1
Q; L2x
I. r~;~ s Lemma 5 (Lemma 2 of [19]). Let r~ min
r; 1, ~s min
s; 1 and u 2 H0;x
X r;s \ Hx
X with r; s P 0, then
ku ÿ PN ;h ukx 6 c
N ÿr hskukHxr;s
X : Lemma 6 (Lemma 6 of [21]). If u 2 H b
Q; Hxr
I with b P 0; r > 1=2 and 0 6 a 6 r, then ku ÿ Pc ukH b
Q;Hxa
I 6 cN 2aÿr kukH b
Q;Hxr
I : In order to get better error estimation, we introduce the projection 1 1
X ! XNk ;h
X such that for any u 2 H0;x
X, PN ;h : H0;x ax
PN ;h u ÿ u; v 0;
8v 2 XNk ;h
X;
1 1
X ! XNk ;h
X such that for any u 2 H0;x
X and the projection PNc ;h : H0;x
aN ;h;x
PNc ;h u; v ax
u; v;
8v 2 XNk ;h
X:
Then we have the following lemma.
J. Hou, B. Guo / Appl. Math. Comput. 101 (1999) 209±244
219
1 Lemma 7. Let condition (5) hold and k P 1. If u 2 H0;x
X \ Mxr;s
X with r; s P 1, then
ku ÿ PN ;h uk1;x 6 c
N 1ÿr hsÿ1 kukMxr;s
X ; ku ÿ PNc ;h uk1;x 6 c
N 1ÿr hsÿ1 kukMxr;s
X : If in addition u 2 Mxr1=4;s
X, then ku ÿ PN ;h ukx 6 c
N ÿr hskukM r1=4;s
X ; x
ku ÿ
PNc ;h ukx
6 c
N
ÿr
s
h kukM r1=4;s
X : x
Proof. The ®rst and the third conclusions come from Lemma 4 of [19]. Next by an argument similar to the proof of Lemma 7 of [20], we get ku ÿ PNc ;h uk1;x 6 c
N 1ÿr hsÿ1 kukMxr;s
X : Finally, following the same lines as in the last part of the proof of Lemma 7 in [20], we get ku ÿ PNc ;h ukx 6 c
N ÿ1 h
N 3=4ÿr hsÿ1 kukM r1=4;s
X x
which completes the proof. Lemma 8 (Lemma 5 of [19]). If u 2 Hxr
I with r > 1=2, then kPN uk1;I 6 ckukr;x;I : We know from Theorem 3.1.5 of [23] that for any u 2 H s
Q with s > 1, ku ÿ Pkh ukl;1;Q 6 chsÿlÿ1 jujs;Q ;
l 0; 1:
7
1
X \ Mx3=2;5=3
X \ H b
Q; Hxa
I Lemma 9. Let condition (5) hold. If u 2 H0;x with a > 1=2; b > 1, then
kPNc ;h uk1 6 ckukM 3=2;5=3
X\H b
Q;H a
I : x
x
1
X \ Aa;b If in addition u 2 H0;x x
X with a > 1=2; b > 1; then
kPNc ;h uk1;1 6 ckukAa;b : x
X Proof. We have kPNc ;h uk1 6 kPNc ;h u ÿ Pkh PN uk1 kPkh PN uk1 : By (5) and (6), Lemmas 4 and 7 and Theorem 3.2.1 of [23], we have
220
J. Hou, B. Guo / Appl. Math. Comput. 101 (1999) 209±244
kPNc ;h u
ÿ
Pkh PN uk1
p N
kPNc ;h u ÿ ukx ku ÿ PN ukx ku ÿ Pkh ukx 6c h p N
N ÿ5=4 h5=3 kukM 3=2;5=3
X N ÿ5=4 kukL2
Q;H 5=4
I 6c x x h 5=3 h kukH 5=3
Q;L2x
I 6 ckukM 3=2;5=3
X : x
By Lemma 8 and (7), kPkh PN uk1 6 ckPN ukH b
Q;C
I 6 ckukH b
Q;Hxa
I : Thus the ®rst conclusion follows. Next, we prove the second one. We de®ne the operator Ph1 : H01
Q ! Shk
Q such that for any u 2 H01
Q, 2 X
@j
Ph1 u ÿ u; @j vL2
Q 0; j1
8v 2 Shk
Q:
Then we have (see [13]) ku ÿ Ph1 ukl;Q 6 chsÿl jujs;Q ;
s P 1; 0 6 l 6 1:
8
1 1
I ! VN
I such that for any u 2 H0;x
I, Also we de®ne the operator PN1 : H0;x
@3
PN1 u ÿ u; @3
vxL2
I 0;
8v 2 VN
I:
We have (see (9.5.17) of [7]) ku ÿ PN1 ukl;x;I 6 cN lÿr kukr;x;I ;
0 6 l 6 1; r P 1:
9
Now, we begin to estimate kPNc ;h uk1;1 . In fact, jPNc ;h uj1;1 6 jPNc ;h u ÿ PN ;h uj1;1 jPN ;h uj1;1 :
10
By Lemma 4, we have
p N c ÿ 6c
11 jP u ÿ PN ;h uj1;1 : h N ;h Let # be the identity operator. Then by Lemma 3 and the de®nitions of PNc ;h and PN ;h , and the fact that jPNc ;h u
PN ;h uj1;1
j
z; vN ;x ÿ
z; vx;I j jzN vN j; where zq
2 pcq
Z
1 ÿ1
z
yTq
yx
y dy;
8z; v 2 PN
I;
c0 2; cq 1
for q P 1;
J. Hou, B. Guo / Appl. Math. Comput. 101 (1999) 209±244
221
Tq
y being the Chebyshev polynomial of order q, we have that 2
kPNc ;h u ÿ PN ;h uk1;x 6 4aN ;h;x
PNc ;h u ÿ PN ;h u; PNc ;h u ÿ PN ;h u 4ax
PN ;h u; PNc ;h u ÿ PN ;h u ÿ 4aN ;h;x
PN ;h u; PNc ;h u ÿ PN ;h u 4
2 X
@j PN ;h u; @j
PNc ;h u ÿ PN ;h ux j1
ÿ
@j PN ;h u; @j
PNc ;h u ÿ PN ;h uN ;h;x : Therefore kPNc ;h u ÿ PN ;h uk1;x 6 c
2 X j1
k
# ÿ PN ÿ1 @j PN ;h ukx
2 X 6 c
k
# ÿ PN ÿ1
@j PN ;h u ÿ @j Ph1 PN1 ukx j1
k
# ÿ PN ÿ1 @j Ph1 PN1 ukx :
12
Furthermore 2 X k
# ÿ PN ÿ1
@j PN ;h u ÿ @j Ph1 PN1 ukx 6 cjPN ;h u ÿ Ph1 PN1 uj1;x :
13
j1
Let w PN ;h u ÿ Ph1 PN1 u. We have from Lemma 3 and the de®nition of PN ;h that kPN ;h u ÿ Ph1 PN1 uk21;x 6 4ax
PN ;h u ÿ Ph1 PN1 u; PN ;h u ÿ Ph1 PN1 u 4ax
u ÿ Ph1 PN1 u; PN ;h u ÿ Ph1 PN1 u 4
2 X
@j
u ÿ Ph1 PN1 u; @j wx j1
4
@3
u ÿ Ph1 PN1 u; @3
wxL2
X : Moreover 2 X j1
@j
u ÿ Ph1 PN1 u; @j wx
2 X j1
@j
u ÿ PN1 u; @j wx
@j
PN1 ÿ Ph1 PN1 u; @j wx
2 X j1
@j
u ÿ PN1 u; @j wx ;
@3
u ÿ Ph1 PN1 u; @3
wxL2
X
@3
u ÿ Ph1 u; @3
wxL2
X
@3
Ph1 u ÿ PN1 Ph1 u; @3
wxL2
X
@3
u ÿ Ph1 u; @3
wxL2
X :
222
Thus
J. Hou, B. Guo / Appl. Math. Comput. 101 (1999) 209±244
2 kPN ;h u ÿ Ph1 PN1 uk1;x 6 c ku ÿ PN1 ukH 1
Q;L2x
I ku ÿ Ph1 ukL2
Q;Hx1
I kwk1;x
and so
kPN ;h u ÿ Ph1 PN1 uk1;x 6 c
N ÿr hs kukH 1
Q;Hxr
I kukH s
Q;Hx1
I :
14
Similarly, 2 2 X X k
# ÿ PN ÿ1 @j Ph1 PN1 ukx 6 k
# ÿ PN ÿ1
@j Ph1 PN1 u ÿ @j PN1 ukx j1
j1
2 X j1
k
# ÿ PN ÿ1 @j PN1 ukx
and 2 X k
# ÿ PN ÿ1
@j Ph1 PN1 u ÿ @j PN1 ukx 6 ck
# ÿ PN ÿ1 PN1 ukH 1
Q;L2x
I j1
6 cN ÿr kukH 1
Q;Hxr
I ; 2 X k
# ÿ PN ÿ1 @j PN1 ukx 6 cN ÿr kukH 1
Q;Hxr
I :
So
j1
2 X k
# ÿ PN ÿ1 @j Ph1 PN1 ukx 6 cN ÿr kukH 1
Q;Hx1
I :
15
j1
Thus we have from (12)±(15) that
kPNc ;h u ÿ PN ;h uk1;x 6 c
N ÿr hs kukH 1
Q;Hxr
I kukH s
Q;Hx1
I
and (11) leads to
jPNc ;h u ÿ PN ;h uj1;1 6 c kukH 1
Q;H 5=4
I kukH 5=3
Q;Hx1
I : x
16
Now, we turn to estimate the term jPN ;h uj1;1 . We have that jPN ;h uj1;1 6 jPN ;h u ÿ Ph1 PN1 uj1;1 jPh1 PN1 uj1;1 p N jP u ÿ Ph1 PN1 uj1;x jPh1 PN1 uj1;1 : 6c h N ;h From (14), we get p N jPN ;h u ÿ Ph1 PN1 uj1;x 6 c kukH 1
Q;H 5=4
I kukH 5=3
Q;Hx1
I : x h
17
18
J. Hou, B. Guo / Appl. Math. Comput. 101 (1999) 209±244
223
We have also that jPh1 PN1 uj1;1 6
2 X j1
k@j Ph1 PN1 uk1 k@3 Ph1 PN1 uk1 :
19
For j 1; 2; k@j Ph1 PN1 uk1 6 k@j Ph1 PN1 u ÿ @j Ph1 PN uk1 k@j Ph1 PN u ÿ @j Pkh PN uk1 k@j Pkh PN uk1 ; p N 1 1 kPh
PN u ÿ PN ukH 1
Q;L2x
I k@j Ph1 PN1 u ÿ @j Ph1 PN uk1 6 c h p N 6c kPN1 u ÿ ukH 1
Q;L2x
I ku ÿ PN ukH 1
Q;L2x
I h 6 ckukH 1
Q;H 5=4
I ; x
k@j Ph1 PN u
ÿ
@j Pkh PN uk1
6 ch
ÿ1
k@j Ph1 PN u
ÿ @j Pkh PN ukL2
Q;C
I
6 chÿ1 kPh1 PN u ÿ PN ukH 1
Q;C
I kPkh PN u ÿ PN ukH 1
Q;C
I
6 ckPN ukH 2
Q;C
I 6 ckukH 2
Q;Hxa
I ; k@j Pkh PN uk1 6 k@j Pkh PN u ÿ @j PN uk1 kPN
@j uk1 6 ckPN ukH 2
Q;C
I ck@j ukC
Q;Hxa
I 6 ckukH 2
Q;Hxa
I ck@j ukH b
Q;Hxa
I 6 ckukH b1
Q;Hxa
I : So 2 X k@j Ph1 PN1 uk1 6 ckukH 1
Q;H 5=4
I\H b1
Q;H a
I : j1
x
x
20
On the other hand, k@3 PN1 Ph1 uk1 6 kPh1
@3 PN1 u ÿ Pkh
@3 PN1 uk1 kPkh
@3 PN1 u ÿ Pkh PN
@3 uk1 kPkh PN
@3 uk1 :
224
J. Hou, B. Guo / Appl. Math. Comput. 101 (1999) 209±244
Moreover kPh1
@3 PN1 u
ÿ
Pkh
@3 PN1 uk1
p N 1 6c kPh
@3 PN1 u ÿ Pkh
@3 PN1 ukx h p N 6c
kPh1
@3 PN1 u ÿ @3 PN1 ukx h kPkh
@3 PN1 u ÿ @3 PN1 ukx 6 ck@3 PN1 ukH 5=3
Q;L2x
I 6 ckPN1 ukH 5=3
Q;Hx1
I 6 ckukH 5=3
Q;Hx1
I ;
p kPkh
@3 PN1 u ÿ Pkh PN
@3 uk1 6 c N kPkh
@3 PN1 u ÿ PN
@3 ukC
Q;L2x
I p 6 c N k@3 PN1 u ÿ @3 ukH b
Q;L2x
I kPN
@3 u ÿ @3 ukH b
Q;L2x
I 6 ckukH b
Q;H 3=2
I
and
x
kPkh PN
@3 uk1 6 ckPN
@3 ukH b
Q;C
I 6 ckukH b
Q;Hxa1
I : Thus k@3 PN1 Ph1 uk1 6 ckukH 5=3
Q;Hx1
I\H b
Q;Hxa1
I :
21
We obtain from (19)±(21) that for a > 1=2 and b > 1, jPh1 PN1 uj1;1 6 ckukH 5=3
Q;Hx1
I\H b1
Q;Hxa
I\H b
Q;Hxa1
I :
22
Thus from (17), (18) and (22), jPN ;h uj1;1 6 ckukAa;b : x
X
23
Finally, the combination of estimates (10), (16) and (23) leads to the second conclusion. Lemma 10 (Lemma 15 of [21]). If u; v 2 Yxr;s;d
X with r; s P 0 and d > 0; then kuvkHxr;s
X 6 ckukYxr;s;d
X kvkYxr;s;d
X : k
Lemma 11. For all u 2
S~h
Q \ Hx1
Q PN
I; we have 2
2
juj1;x 6
2N 4 cd hÿ2 kukx : This lemma can be proved in the way similar to the proof of Lemma 7 in [17]. 1
X; then Lemma 12 (Lemma 3 of [21]). If u 2 L2x
X and v 2 H0;x
J. Hou, B. Guo / Appl. Math. Comput. 101 (1999) 209±244
225
j
u; @3
vxL2
X j 6 2kukx k@3 vkx : k
k
Lemma 13. Let u 2
S~h
Q \ H 1
Q WN
I and g 2
S~h
Q\H 1
Q PN
I satisfy the following equation aN ;h;x
u; v
g; vN ;h;x ;
k
8v 2 X~ N ;h
X:
24
If Eq. (5) holds, then juj1;x 6 ckgkx : Proof. We ®rst introduce some preliminary knowledge. Let g
1 ÿ y 2 1=2 . De®ne the spaces L2g
I and Hgr
I in the same way as L2x
I and Hxr
I, etc. From Lemma 3.1 of [24], we know that for any n 2 L2g
I and k > 0, there exists a unique function w 2 Hg2
I such that ( 2 Lw ÿ ddyw2 kw n in I;
25 dw
ÿ1 dw
1 0: dy dy Let H ÿs
I be the dual space of H s
I. From Eq. (25), we have 2
2
2
kwkH 1
I kkwkL2
I 6 cknkH ÿ1
I : On the other hand, if n 2 L2
I, then w 2 H 2
I. By multiplying Eq. (25) by w; ÿd2 w=dy 2 and integrating the results by parts, we obtain that 2
2
2
kwkH 2
I kkwkH 1
I 6 cknkL2
I : By the theory of interpolation of spaces, we have that if n 2 H ÿs
I with 0 < s < 1, then w 2 H 2ÿs
I and 2
2
2
kwkH 2ÿs
I kkwkH 1ÿs
I 6 cknkH ÿs
I :
26
Since for any real s P 0; Hgs
I 2 H sÿ1=4
I (Theorem 4.2 of [24]), we get kwk2H 7=4
I kkwk2H 3=4
I 6 cknk2H ÿ1=4
I 6 cknk2g;I :
27
Moreover for any real s P 1=4; H s
I 2 Hxsÿ1=4
I (Theorem 4.1 of [24]), and thus (27) leads to 2
2
2
2
kwk3=2;x;I kkwk1=2;x;I 6 cknkg;I ckLwkg;I :
28
Next, we consider the following eigenvalue problem, that is to ®nd / 2 k S~h
Q \ H 1
Q and k such that Z Z Z Z @/ @z @/ @z k dx k /z dx; 8z 2 S~h
Q \ H 1
Q: @x1 @x1 @x2 @x2 Q
Q
29
226
J. Hou, B. Guo / Appl. Math. Comput. 101 (1999) 209±244
Then there exists a normalized L2
Q-orthogonal eigenfunction system f/l
xg; l 1; 2; . . . ; Mh (see [25]). The corresponding eigenvalues are ranged as 0 k0 < k1 6 k2 6 6 kMh : Let /0
x 1. By Eq. (29), we have Z Z @/l @/q @/l @/q dx kl dlq ; @x1 @x1 @x2 @x2
l; q 0; 1; . . . ; Mh ;
Q
and so by the inverse inequality (see [23]), kl j/l j21;Q 6 chÿ2 k/l k2Q chÿ2 :
30
Now, we turn to prove the lemma. Since u 2 k g 2
S~h
Q \ H 1
Q PN
I, we put u
Mh X ul
y/l
x; l0
g
Mh X l0
k
S~h
Q
\ H 1
Q WN
I and
gl
y/l
x;
where ul
y 2 WN
I; gl
y 2 PN
I. From Eq. (24), we have ! ! Mh Mh 2 X X X @/l @ 2 ul ul ; @j v ÿ /
x; v @xj @y 2 l j1 l1 l1 x N ;h;x ! Mh X k gl
y/l
x; v ; 8u 2 X~
X: l1
N ;h
31
N ;h;x
Firstly, we consider the case with l 6 1. Take v
1 ÿ y 2 zl /l
x in Eq. (31) with zl 2 PN ÿ2
I. Then 2 d ul ; z
gl
y;
1 ÿ y 2 zl N ;x : kl
ul
y;
1 ÿ y 2 zl N ;x ÿ l dy 2 g;I Clearly Lul ÿd2 ul =dy 2 kul . Thus d 2 ul
Lul ; zl g;I ÿ 2 kl ul ; zl
gl ; zl g;I E1
zl E2
zl dy g;I
32
with E1
zl kl
ul ;
1 ÿ y 2 ul x;I ÿ kl
ul ;
1 ÿ y 2 zl N ;x ; E2
zl
gl ;
1 ÿ y 2 zl N ;x ÿ
gl ;
1 ÿ y 2 zl x;I : Let P~N be the L2x
I-orthogonal projection, and zl P~N ÿ2 Lul . Then we have zl Lul ÿ kl
ul ÿ P~N ÿ2 ul 2 PN ÿ2
I:
J. Hou, B. Guo / Appl. Math. Comput. 101 (1999) 209±244
227
Thus Eq. (32) reads 2 kLul kg;I ÿ kl
Lul ; ul ÿ P~N ÿ2 ul g;I
gl ; Lul g;I ÿ kl
gl ; ul ÿ P~N ÿ2 ul g;I E1
P~N ÿ2 Lul E2
P~N ÿ2 Lul :
33
Furthermore, since
1 ÿ y 2 zl 2 PN
I, we get from (9.3.5) of [7] that E1
P~N ÿ2 Lul jj 6 ckl k
1 ÿ y 2 zl kx;I kul ÿ P~N ÿ1 ul kx;I 6 ckl kzl kg;I kul ÿ P~N ÿ1 ul kx;I 6 ckl kul ÿ P~N ÿ1 ul kx;I
kLul kg;I kl kul ÿ P~N ÿ2 ul kg;I : jE2
P~N ÿ2 Lul j 6 ckgl kx;I k
1 ÿ y 2 zl ÿ P~N ÿ1
1 ÿ y 2 zl kx;I 6 ckgl kx;I k
1 ÿ y 2 zl kx;I 6 ckgl kx;I kzl kg;I 6 ckgl kx;I
kLul kg;I kl kul ÿ P~N ÿ2 ul kg;I : By substituting the above estimations into Eq. (33), we obtain 1 2 2 2 2 kLul kg;I 6 ckgl kx;I ck2l
kul ÿ P~N ÿ1 ul kx;I kul ÿ P~N ÿ2 ul kg;I : 2
34
We know from (28) that 2
2
2
kul k3=2;x;I kl kul k1=2;x;I 6 ckLul kg;I : Moreover, we have from (34) that 2
2
2
kul k3=2;x;I kl kul k1=2;x;I 6 ckgl kx;I ck2l N ÿ3 kul k3=2;x;I : According to (30), 1 ÿ ck2l N ÿ3 P 1 ÿ chÿ4 N ÿ3 . Furthermore thanks to condition (5), we have 1 ÿ chÿ4 N ÿ3 P a > 0 and so 2
2
2
kul k3=2;x;I kl kul k1=2;x;I 6 ckgl kx;I : Hence for l 6 0; 2
2
2
jul j1;x;I kl kul kx;I 6 ckgl kx;I :
35
Next we consider the case with l 0. By taking v ÿ
1 ÿ y 2 @y2 u0 /0
x in Eq. (31), we get 2
k@y2 u0 kg;I ÿ
g1 ;
1 ÿ y 2 @y2 u0 N ;x 6 ckg1 kN ;x k
1 ÿ y 2 @y2 u0 kN ;x 6 ckg1 kx;I k
1 ÿ y 2 @y2 u0 kx;I 6 ckg1 kx;I k@y2 u0 kg;I : Thus k@y2 u0 kg;I 6 ckg1 kx;I . Moreover, since u0 2 WN
I; we have from H older inequality that
228
J. Hou, B. Guo / Appl. Math. Comput. 101 (1999) 209±244
Z
2
ju0 j1;x;I
2
Z
I
6
0 x
y@
I
Z
Z
Z
x
y
@y u0 dy
x
y I
10
@s2 u0 2 g
s dsA@
y
ÿ1
Z
I
@s2 u0
s ds
2 dy
1
x
s dsA dy 6 ck@y2 u0 kg;I :
I
Therefore ju0 j21;x;I 6 ckg1 k2x;I :
36
Finally we get from Eqs. (35) and (36) that 2
juj1;x
Mh X 2 2 2
jul j1;x;I kl kul kx;I 6 ckgkx l0
which completes the proof. Lemma 14 (Lemma 4.16 of [2]). Suppose that (i) Z is a non-negative function de®ned on Rs ; (ii) D1 ; D2 ; D3 and q are non-negative constants; (iii) H
Z is a function such that if Z 6 D3 , then H
Z 6 0; (iv) for all t 2 Rs and t > 0, X
D1 Z
t0 D2 Z 2
t0 H
Z
t0 ; Z
t 6 q s t0 2Rs t0 6 tÿs
(v) Z
0 6 q and q e2D1 t1 6 min
D1 =D2 ; D3 for some t1 2 Rs . Then for all t 2 Rs and t 6 t1 , we have Z
t 6 q e2D1 t :
5. The generalized stability This section is dedicated to the generalized stability of scheme (4). Assume that u
0 and f
t have the errors u~
0 and f~
t which induce the errors of u
t and p
t, denoted by u~
t and p~
t, respectively. Then they satisfy the following equation u; u u~ dc
u; u~ r~ p; vN ;h;x maN ;h;x
~ u rs~ ut ; v
~ ut ; vN ;h;x
dc
~
f~; vN ;h;x ;
3
8v 2
XNkk ;h
X ;
p; w
Uc
~ u Uc
u; u~ ÿ r f~; wN ;h;x ; aN ;h;x
~
37 k 8w 2 X~ N ;h
X;
J. Hou, B. Guo / Appl. Math. Comput. 101 (1999) 209±244
229
where Uc
u; u~
3 X
Pc
@l u~q @q ul @l uq @q u~l ÿ Pc
@q u~q @l ul @l u~l @q uq :
l;q1
Let e > 0, and m be a positive constant which will be determined later. By taking v 2~ u
t ms~ ut
t in the ®rst formula of Eq. (37), we have from Lemmas 1±3 that m mrms2 2 2 2 2 k~ ut k1;x uk1;x ut kN ;h;x k~
k~ ukN ;h;x t s
m ÿ 1 ÿ ek~ 4 2 6 X 2mrsaN ;h;x
~ ut ; u~ mmsaN ;h;x
~ u; u~t Fj j1
sm2 kPc f~k2x 6 2k~ uk2x 2 2e
38
where F2
dc
u; u~; 2~ u ms~ ut N ;h;x ;
u; u; 2~ u ms~ ut N ;h;x ; F1
dc
~ F3 2
dc
~ u; u~; u~N ;h;x ; p; u~N ;h;x ; F5 2
r~
F4 ms
dc
~ u; u~; u~t N ;h;x ;
F6 ms
r~ p; u~t N ;h;x :
We know from (3) that 2mrsaN ;h;x
~ ut ; u~ A1 A2 A3 ; mmsaN ;h;x
~ u; u~t B1 B2 B3 ; where A1 2mrs
2 X j1
@j u~t ; @j u~N ;h;x ;
A2 2mrs
@y u~t ; @y u~x ; 2
A3 2mrs
@y u~t ; yx u~x ;
B1 mms
2 X
@j u~; @j u~t N ;h;x ; j1
B2 mms
@y u~; @y u~t x ; B3 mms
@y u~; yx2 u~t x :
It is easy to verify that 2 m X 2 2
k@x u~kN ;h;x t ÿ sk@x u~t kN ;h;x ; A1 B1 ms r 2 j1 m 2 2 A2 B2 ms r
k@y u~kN ;h;x t ÿ sk@y u~t kN ;h;x : 2
230
J. Hou, B. Guo / Appl. Math. Comput. 101 (1999) 209±244
By Lemma 1 of [26], we have jA3 j jB3 j 6 P3
Let juj21;N ;h;x
m m m 2 2 r k@y u~kx 4ms2 r k@y u~t kx : 4 2 2
j1
k@j uk2N ;h;x . Then (38) reads
m 2 2 2
k~ ukN ;h;x t s
m ÿ 1 ÿ ek~ ut kN ;h;x
4 ÿ m ÿ 2rj~ uj1;x 8 6 X m 2 mrms2 m 2 2 k~ ut k1;x ÿ 5ms2 r ms r Fj
j~ uj1;N ;h;x t j~ ut j1;N ;h;x 4 2 2 j1 sm2 2 2 kPc f~kx : 6 2k~ u kx 2
39 2e Now, we estimate jFj j. Firstly from (3) and Green's formula, F1
2 X
@j Pc
uj u~; 2~ u ms~ ut N ;h;x
@3 Pc
u3 u~; 2~ u ms~ ut x j1
ÿ
2 X
Pc
uj u~; 2@j u~ ms@j u~t N ;h;x ÿ
Pc
u3 u~; @3
2~ u ms~ ut xL2
X : j1
So by Lemmas 2 and 12, jF1 j 6
2 X kPc
uj u~kN ;h;x k2@j u~ ms@j u~t kN ;h;x 2kPc
u3 u~kx j2~ u ms~ ut j1;x j1
6 ckuk1 k~ ukx
2j~ uj1;x msj~ ut j1;x 6
em 2 emms2 c
m 1 j~ ut j21;x j~ uj1;x kuk21 k~ uk2x : 6 8 em
Similarly, jF2 j 6
em 2 emms2 c
m 1 j~ ut j21;x j~ uj1;x kuk21 k~ uk2x : 6 8 em
Next, we have F3 ÿ2
2 X
Pc
~ uj u~; @j u~N ;h;x ÿ 2
Pc
~ u3 u~; @3
~ uxL2
X : j1
J. Hou, B. Guo / Appl. Math. Comput. 101 (1999) 209±244
231
By Lemmas 4 and 12, 1=2
jF3 j 6 ck~ uk1 k~ ukx j~ uj1;x 6 cN j ln hj 6
2
k~ ukx j~ uj1;x
em 2 cN j ln hj 2 2 uj1;x : j~ uj k~ ukx j~ 8 1;x em
Similarly, jF4 j 6
emms2 cm 2 2 2 j~ ut j1;x uj1;x : N j ln h jk~ ukx j~ 6 em
We apply Lemma 13 to the second formula of Eq. (37) and obtain j~ pj1;x 6 c
kUc
~ ukx kUc
u; u~kx kPc
r f~kx : Moreover
X
3
ukx Pc
@l u~q @q u~l ÿ Pc
@l u~l @q u~q kUc
~
l;q1
x p N 2 6 cj~ uj1;1 j~ uj1;x 6 c j~ uj1;x ; h uj1;x : kUc
u; u~kx 6 cjuj1;1 j~
Thus
and
p N 2 uj1;x j~ uj1;x kPc
r f~kx j~ pj1;x 6 c
juj1;1 j~ h jF5 j 6 cj~ pj1;x k~ u kx
em 2 1 2 cN 2 2 2 2 u kx 6 j~ k~ ukx j~ uj1;x ckPc
r f~kx : uj c 1 juj1;1 k~ 8 1;x em emh2
By Lemma 11, pj1;x k~ ut k x jF6 j 6 msj~ 6 esk~ ut k2x
cm2 s 2 cm2 s juj1;1 j~ kPc
r f~k2x uj21;x e e
cms2 N 2 2
2N 4 cd hÿ2 k~ ukx j~ uj1;x : eh2
Let jjj jjj1;1 maxt2Rs ku
tk1;1 , etc. By substituting the above estimations into Eq. (39), we have
232
J. Hou, B. Guo / Appl. Math. Comput. 101 (1999) 209±244
m 15 ÿ m ÿ 2r ÿ 4e j~ uj21;x s
m ÿ 1 ÿ 8 4 rm m 2 em 2 ÿ 5
2r m ÿ ms r
j~ uj1;N ;h;x t ms2 j~ ut j1;x 2 4 2
k~ uk2N ;h;x t
2ek~ ut k2x
6 M1 k~ uk2x B
k~ ukx j~ uj21;x G1 where c 2 2
1 mjjjujjj1 jjjujjj1;1 ; em m cm2 s jjjujjj21;1 B
k~ ukx ÿ 32 e c cN 1 2 4 ÿ2
1 mN j ln hj 2 m s
2N cd h k~ uk2x ; em eh m m2 s cm2 s 2 ~ kPc f kx c 1 kPc
r f~k2x : G1 2 2e e M1 c
Using Lemma 11 again, we obtain h i em rm 2 2 ÿ ut kx
k~ ukN ;h;x t s m ÿ 1 ÿ 2e ÿ ms 5
2r m
2N 4 cd hÿ2 k~ 2 4 m 15 m 2 ÿ m ÿ 2r ÿ 4e j~ uj21;x ms r
j~ uj1;N ;h;x t 8 4 2 2
2
6 M1 k~ ukx B
k~ ukx j~ uj1;x G1 :
40
Let e be suitably small and l suitably large. Suppose that 1 : ms
2N 4 cd hÿ2 < ÿ l 5 2e ÿ r4
41
We take m
33 2e 10rms
2N 4 cd hÿ2 32
1 1ÿ l
2
ÿ1 :
Then the coecient of the term k~ ut kx in (40) is not less than s=32. Obviously m6
33 10r 2e ÿ 32 l 5 2e ÿ r4
! 1ÿ
1 l
ÿ1 :
J. Hou, B. Guo / Appl. Math. Comput. 101 (1999) 209±244
So if
l>
ÿ1 10r 7 79 ; ÿ 2r ÿ 4e ÿ 2r ÿ 6e 5 2e ÿ r4 2 32
233
42
2
then the coecient of the term j~ uj1;x in (40) is not less than m=32. Thus Eq. (40) reads s m 2 m 2 2 2 ut kx j~ uj1;x ms r
k~ ukN ;h;x t k~
j~ uj1;N ;h;x t 32 32 2
43 2 2 6 M1 k~ ukx B
k~ ukx j~ uj1;x G1 : Let
s X
sk~ ut
t0 k2x mj~ u
t0 j21;x ; 32 t0 2Rs t0
E
t k~ u
tk2x
t0 2Rs t0
By summing (43) for t 2 Rs , we have X 2 E
t 6 q
t s
M1 E
t0 B
E
t0 j~ u
t0 j1;x : t0 2Rs t0
Finally we use Lemma 14 to get the following conclusion. Theorem 1. Assume that (i) Conditions (41) and (42) hold; (ii) for certain suitably small positive constant c3 ; sjjjujjj1;1 < c3 m; (iii) there exist positive constants d1 and d2 depending only on jjjujjj1;1 and m such that for some t1 2 Rs , h2 : N Then for all t 2 Rs ; t 6 t1 we have q
t1 ed1 t1 6 d2
E
t 6 q
t ed1 t : Remark 2. Theorem 1 tells us that scheme (4) possesses generalized stability. The details of this kind of stability can be found in [2,27]. Clearly, the stability depends not only on the scheme, but also on the data errors. 6. The convergence In this section, we deal with the convergence of scheme (4). Let the operator 1 PN1 be the same as in Section 4. Also let P~h be the operator such that for any v 2 H 1
Q,
234
J. Hou, B. Guo / Appl. Math. Comput. 101 (1999) 209±244 2 Z Z X j1
1
@j
u ÿ P~h u@j Z dx 0;
k
8Z 2 S~h
Q \ H 1
Q;
44
Q
Z Z
1
u ÿ P~h u dx 0:
45
Q
It can be veri®ed that for any v 2 H s
Q with s P 1, 1
ku ÿ P~h ukH l
Q 6 chsÿl kukH S~
Q ; In fact, by the de®nition of 1 2 ju ÿ P~h ujH 1
Q
2 X j1 2 X j1
1 P~h ,
0 6 l 6 1; l 6 s:
we have that for any v 2
46 k S~h
Q
\ H 1
Q;
1 1
@j
u ÿ P~h u; @j
u ÿ P~h uL2
Q
1
@j
u ÿ P~h u; @j
u ÿ vL2
Q 1
6 ju ÿ P~h ujH 1
Q ju ÿ vjH 1
Q :
So
1 ju ÿ P~h ujH 1
Q 6
k
inf
v2S~h
Q\H 1
Q
ju ÿ vjH 1
Q
6 ku ÿ Pkh ukH 1
Q 6 chsÿ1 kukH s
Q : Due to Eq. (45), we have from Poincare inequality that 1
ku ÿ P~h ukH 1
Q 6 chsÿ1 kukH s
Q : P2 For l 0, let ax
w; z j1
@j w; @j zL2
Q . Let /g be the solution of problem 8 ax
/ ; v
g; vL2
Q ; 8v 2 H 1
Q; > > > : Q
It is obvious that 8 2 X > > > < ÿ @j2 /g g;
in Q;
48 > > @/ > : g 0; on C: @n We know from Lax±Milgram lemma that there is a unique solution of Eq. (48). Furthermore by multiplying Eq. (47) by @j /g ; @j2 /g and integrating the results by parts, we have j/g jH s
Q 6 ckgkL2
Q ; s 1; 2. Then the second formula of Eq. (47) and Poincare inequality lead to k/g kH 2
Q 6 ckgkL2
Q . Next, by taking 1 v u ÿ P~h u in Eq. (47), we obtain j1
J. Hou, B. Guo / Appl. Math. Comput. 101 (1999) 209±244
235
1 1 ax
/g ; u ÿ P~h u
g; u ÿ P~h uL2
Q : 1 From the de®nition of P~h , we have 1 ax
/h ; u ÿ P~h u 0;
k 8/h 2 S~h
Q \ H 1
Q;
and thus 1 1 ax
/g ÿ /h ; u ÿ P~h u
g; u ÿ P~h uL2
Q :
49
As we know, 1 k~ u ÿ P~h u~kL2
Q sup
1 j
u ÿ P~h u; gL2
Q j
kgkL2
Q
g2L2
Q
:
By Eq. (49) 1 1 j
u ÿ P~h u; gL2
Q j jax
/g ÿ /h ; u ÿ P~h uj 1
6 ju ÿ P~h ujH 1
Q j/g ÿ /h jH 1
Q 1
6 ju ÿ P~h ujH 1
Q
k
inf
/h 2S~h
Q\H 1
Q
j/g ÿ /h jH 1
Q
1 6 ju ÿ P~h ujH 1
Q j/g ÿ Pkh /g jH 1
Q 1 6 chju ÿ P~h ujH 1
Q j/g jH 2
Q
6 chskvkH s~
Q kgkL2
Q : Thus 1
ku ÿ P~h ukL2
Q 6 chskukH s~
Q : Then conclusion (46) follows from the interpolation of spaces. In order to get better error estimation, we ®rst compare the numerical result k
u; p to U PNc ;h U and P 2
S~h
Q \ H 1
Q PN
I, de®ned as Z y @P 1 1
x; s ds: P~h PN1 ÿ1 P P~h P
x; ÿ1 @s ÿ1 Let U~ u ÿ U and P~ p ÿ P . Then by Eqs. (2) and (4), we have 8
U~ t dc
U~ ; U U~ dc
U ; U~ rP~; vN ;h;x maN ;h;x
U~ rsU~ t ; v > > > > > 5 > P 3 > > Aj
v; 8v 2
XNkk > ;h
X ; < j1 8 > P k > > ~; w
Uc
U~ U
U ; U~ ; w
P Aj
w; 8w 2 X~ N ;h
X; a > N ;h;x c N ;h;x > > j6 > > > : ~ c U
0 PN ;h U0 ÿ PN ;h U0 ;
236
J. Hou, B. Guo / Appl. Math. Comput. 101 (1999) 209±244
where A1
v
@t U ; vx ÿ
Ut ; vN ;h;x ; A2
v
d
U ; U ; vx ÿ
dc
U ; U ; vN ;h;x ; A3
v ÿmrsaN ;h;x
Ut ; v;
A4
v
rP ; vx ÿ
rP ; vN ;h;x ; A5
v
f ; vN ;h;x ÿ
f ; vx ; A6
w ax
P ; w ÿ aN ;h;x
P ; w; A7
w ÿ
U
U ; wx
Uc
U ; wN ;h;x ; A8
w
r f ; wx ÿ
r f ; wN ;h;x : We now turn to estimate jAj
vj; 1 6 j 6 5. Let s be the same as before and ~s min
k k 1; s. Take v 2U~ in Aj
v; 1 6 j 6 5. We obtain from Lemmas 2 and 7 that for r; s P 1, jA1
U~ j j
@t U ; U~ x ÿ
Ut ; U~ N ;h;x j 6 j
@t U ÿ Ut ; U~ x j j
Ut ÿ Ut ; U~ x j j
Ut ; U~ x ÿ
Ut ; U~ N ;h;x j 6 kU~ kx c
N ÿ2r h2~s kU kC1
0;T ;M r1=4;~s
X cskU kH 2
t;ts;L2x
X : 2
2
2
x
Next we have A2
U~ B1 B2 B3 B4 with B1
d
U ; U ; U~ x ÿ
dc
U ; U ; U~ x ; B2
dc
U ; U ; U~ ÿ
dc
U ; U ; U~ x
N ;h;x ;
B3
dc
U ; U ; U~ N ;h;x ÿ
dc
U ; U ; U~ N ;h;x ; B4
dc
U ; U ; U~ N ;h;x ÿ
dc
U ; U ; U~ N ;h;x : From Lemmas 6 and 10, we have that for r > 1=2 and d > 0, jB1 j
3 X j1
6
2 X j1
j
@j
# ÿ Pc
Uj U ; U~ x j
j
# ÿ Pc
Uj U ; @j U~ x j j
# ÿ Pc
U3 U ; @3
U~ xL2
X j
6 cN ÿr
3 X kUj U kL2
Q;Hxs
I jU~ j1;x j1
6 cN kU kY r;0;d
X jU~ j1;x : ÿr
2
x
J. Hou, B. Guo / Appl. Math. Comput. 101 (1999) 209±244
237
By (3), Lemmas 2, 6 and 10, jB2 j
2 X j1
2 X j1
6c
j
@j Pc
Uj U ; U~ x ÿ
@j Pc
Uj U ; U~ N ;h;x j j
Pc
Uj U ; @j U~ x ÿ
Pc
Uj U ; @j U~ N ;h;x j
2 X j1
k
# ÿ PN ÿ1 Pc
Uj U kx jU~ j1;x
6 cN ÿr
2 X kUj U kL2
Q;Hxr
I jU~ j1;x j1
6 cN kU k2Y r;0;d
X jU~ j1;x : ÿr
x
By Lemmas 6 and 7, jB3 j 6
2 X j1
j
Pc
Uj U ÿ Pc
Uj U ; @j U~ N ;h;x j
j
Pc
U3 U ÿ Pc
U3 U ; @3
U~ xL2
X j 6 ckU k1 jU~ j1;x
3 X j1
kPc
Uj ÿ Uj U kx
6 c
N ÿr hs~kU k1 kU kM r1=4;~s
X jU~ j1;x : x
Similarly jB4 j 6 c
N ÿr hs~kU k1 kU kM r1=4;~s
X jU~ j1;x : x
Thus 2 jA2
U~ j 6 c
N ÿr hs~
kU kYxr;0;d
X
kU k1 kU k1 kU kM r1=4;~s
X jU~ j1;x : x
It is easy to prove that jA3
U~ j mrsjaN ;h;x
Ut ; U~ j ! X 2 ~ ~ mrs @j Ut ; @j U
@3 Ut ; @3
U xL2
X j1 N ;h;x 6 cmrs
kUt ÿ Ut k1;x kUt k1;x jU~ j1;x 6 cmrskU k 1 jU~ j : 1 C
0;T ;Hx
X
1;x
We have A4 D1 D2 with D1
rP ; U~ x ÿ
rP ; U~ x ;
D2
rP ; U~ x ÿ
rP ; U~ N ;h;x :
238
J. Hou, B. Guo / Appl. Math. Comput. 101 (1999) 209±244
We have from trace theorem and the de®nition of P that for j 1; 2, 1 1 j@j
P ÿ P ; U~ j x j 6 c
k
# ÿ P~h P
x; ÿ1kx k
# ÿ P~h PN1 ÿ1 @3 P kx jU~ j1;x
6 c
hskP
x; ÿ1kH s
Q;L2x
I
N ÿr hskP kH s
Q;Hx1
I\H 1
Q;Hxr1
I jU~ j1;x
6 c
N ÿr hskP kH s
Q;Hx1
I\H 1
Q;Hxr1
I jU~ j1;x : On the other hand, 1
j@3
P ÿ P ; U~ 3 x j 6 k
# ÿ P~h PN1 ÿ1 @3 P kx kU~ kx 1 1 6
k
# ÿ P~h @3 P kx kP~h
# ÿ PN1 ÿ1 @3 P kx kU~ kx 6 c
hskP kH s
Q;H 1
I N ÿr kP kH 1
Q;H r1
I kU~ kx : x
x
The above statements bound the value of jD1 j. Similarly, by (3), X 2 ~ ~ jD2 j
@j P ; U j x ÿ
@j P ; U j N ;h;x j1 6 ck
# ÿ PN ÿ1 P kx jU~ j1;x 6 c
k
# ÿ PN ÿ1 P kx kP ÿ P kx jU~ j1;x 6 c
N ÿr hskP k s 1 jU~ j r1 1 H
Q;Hx
I\H
Q;Hx
I
1;x :
So jA4
U~ j 6 c
N ÿr hskP kH s
Q;Hx1
I\H 1
Q;Hxr1
I
kU~ kx jU~ j1;x : Clearly jA5
U~ j j
f ; U~ N ;h;x ÿ
f ; U~ x j 6 c
k
# ÿ Pc f kx k
# ÿ PN ÿ1 f kx kU~ kx 6 cN ÿr kf kL2
Q;H r
I kU~ kx : x
It is a little dicult to bound jA6
wj. We ®rst have A6
w ax
P ; w ÿ aN ;h;x
P ; w ÿ
2 X
@j2 P ; wx
@j P ; @j wN ;h;x ÿ
@32
P ÿ P ; wx : j1
On the other hand, for j 1; 2,
@j2 P ; wx
@j2 P
x; ÿ1; wx
Z
y ÿ1
@3P ds; w @s@x2j
; x
J. Hou, B. Guo / Appl. Math. Comput. 101 (1999) 209±244
239
1
@j P ; @j wN ;h;x
@j P~h P
x; ÿ1; @j wN ;h;x Z y @P 1 ds; @j w @j P~h PN1 ÿ1 @s ÿ1 N ;h;x Z y @2P 1
@j P
x; ÿ1; @j wN ;h;x PN ÿ1 ds; @j w @s@xj ÿ1 N ;h;x ! Z y 3 @ P ÿ
@j2 P
x; ÿ1; wN ;h;x ÿ PN1 ÿ1 ds; w : @s@x2j ÿ1 N ;h;x
Thus A6
w can be rewritten as A6
w E1 E2 E3 , where E1
2 X
0
Z
@
j1
E2
2 X j1
!
y
@3P PN1 ÿ1 ds; w @s@x2j ÿ1
Z ÿ
N ;h;x
y ÿ1
@3P ds; w @s@x2j
! 1 A; x
@j2 P
x; ÿ1; wN ;h;x ÿ
@j2 P
x; ÿ1; wx ;
E3 ÿ
@32
P ÿ P ; wx : We now estimate jE1 j. Clearly E1
1 E1;j
2
E2;j
1 j1
E1;j
2
E2;j where
! @3P ÿ # ds; w ; @s@x2j ÿ1 x ! ! Z y Z y 3 @ P @3P 1 1 PN ÿ1 ds; w ÿ PN ÿ1 ds; w : @s@x2j @s@x2j ÿ1 ÿ1 Z
P2
y
PN1 ÿ1
N ;h;x
x
Furthermore
1
jE1;j j 6 ck
# ÿ PN1 ÿ1
@3P k kwkx @s@x2j x
6 cN ÿr kP kH 2
Q;Hxr1
I kwkx ; Z y @3P
2 jE2;j j 6 ck
# ÿ PN1 ÿ1 PN1 ÿ1 dskx kwkx @s@x2j ÿ1
Z y
Z y 3
@3P @ P 1 1
6c
PN ÿ1 ÿ # ds
# ÿ PN ÿ1 ds
2 2 @s@xj ÿ1 ÿ1 @s@xj x x !
Z y 3
@ P
# ÿ PN1 ÿ1 ds
PN ÿ1
kwkx 2 @s@x ÿ1 j x
240
J. Hou, B. Guo / Appl. Math. Comput. 101 (1999) 209±244
0
Z
ÿr @ 6 cN kP kH 2
Q;Hxr1
I
y ÿ1
1
@3P ds kP kH 2
Q;Hxr1
I Akwkx @s@x2j L2
Q;H r
I x
ÿr
6 cN kP kH 2
Q;Hxr1
I kwkx : Thus jE1 j 6 ckP kH 2
Q;Hxr1
I kwkx : We now estimate jE2 j. By the trace theorem, jE2 j 6 c
2 X j1
k
# ÿ Pc @j2 P
x; ÿ1kx k
# ÿ PN ÿ1 @j2 P
x; ÿ1kx kwkx
6 cN ÿr
2 X k@j2 P
x; ÿ1kL2
Q;Hxr
I kwkx j1
ÿr
6 cN kP kH 2
Q;Hxr1
I kwkx : Finally by (46), 1
jE3 j 6 k@3
# ÿ P~h PN1 ÿ1 @3 P kx kwkx 1 1 6
k
# ÿ P~h @32 P kx kP~h
@3
# ÿ PN1 ÿ1 @3 P kx kwkx 1
6 c
k
# ÿ P~h @32 P kx hk
# ÿ PN1 ÿ1 @3 P kH 1
Q;Hx1
I k
# ÿ PN1 ÿ1 @3 P kL2
Q;Hx1
I kwkx 6 c
hsk@32 P kH s
Q;L2x
I hN 3=4ÿr k@3 P kH 1
Q;H r1=4
I x
N ÿr k@3 P kL2
Q;Hxr1
I kwkx 6 c
N ÿr hskP kH s
Q;H 2
I\H 1
Q;H r5=4
I\L2
Q;H r2
I kwkx : x
x
x
Thus jA6
wj 6 c
N ÿr hskP kH s
Q;H 2
I\H 2
Q;H r1
I\H 1
Q;H r5=4
I\L2
Q;H r2
I kwkx : x
We have A7
w K1 K2 K3 with K1
Uc
U ; wN ;h;x ÿ
Uc
U ; wN ;h;x ; K2
Uc
U ; wN ;h;x ÿ
Uc
U ; wx ; K3
Uc
U ; wx ÿ
U
U ; wx :
x
x
x
J. Hou, B. Guo / Appl. Math. Comput. 101 (1999) 209±244
241
Furthermore
X 3
P
@ U @ U ÿ Pc
@l Uq @q Ul jK1 j c
l;q1 c l q q l
kwkx ÿ
Pc
@l Ul @q Uq Pc
@l Ul @q Uq
N ;h;x
6c
3 X
kPc
@l Uq @q
Ul ÿ Ul Pc
@l
Uq ÿ Uq @q Ul kN ;h;x
l;q1
!
3 X
kPc
@l Ul @q
Uq l;q1
ÿ Uq
Pc
@l
Ul
ÿ Ul @q Uq kN ;h;x kwkx
6 c
N ÿr hs~ÿ1
kU k1;1 kU k1;1 kU kMxr1;~s
X kwkx : Also we have jK2 j 6 ck
# ÿ PN ÿ1 Uc
U kx kwkx 6 c
kUc
U ÿ U
U kx k
# ÿ PN ÿ1 U
U kx kwkx : Moreover kUc
U ÿ U
U kx 6
3 X ÿ l;q1
6 cN ÿr
k
# ÿ Pc
@l Uq @q Ul kx k
# ÿ Pc
@l Ul @q Uq kx
3 X k@l Uq @q Ul kL2
Q;Hxr
I k@l Ul @q Uq kL2
Q;Hxr
I
l;q1
2
6 cN ÿr kU kY r;0;d
X ; 1;x
2
k
# ÿ PN ÿ1 U
U kx 6 cN ÿr kU kY r;0;d
X : 1;x
Thus 2
jK2 j 6 cN ÿr kU kY r;0;d
X kwkx : 1;x
We get the bound for jK3 j which is the same as the bound for jK2 j. So 2
jA7
wj 6 c
N ÿr hs~ÿ1
kU k1;1 kU k1;1 kU kMxr1;s
X kU kY r;0;d
X kwkx : 1;x
Evidently jA8
wj 6 cN ÿr kf kL2
Q;Hxr1
I\H 1
Q;Hxr
I kwkx :
242
J. Hou, B. Guo / Appl. Math. Comput. 101 (1999) 209±244
Now, we take v msU~ t in Aj
v; 1 6 j 6 5. Then we get that cm2 s ÿ2r 2 2 msjA1
U~ t j 6 eskU~ t kx
N h2s kU kC1
0;T ;M r1=4;~s
X x e 2 2 cm s kU k2H 2
t;ts;L2x
X ; msjA2
U~ t j 6 cms
N ÿr hs
kU k2Y r;0;d
X x e
kU k1 kU k1 kU kM r1=4;~s
X jU~ t j1;w ; x
msjA3
U~ t j 6 cmmrs2 kU kC1
0;T ;Hx1
I jU~ t j1;x ;
msjA4
U~ t j 6 cms
N ÿr hskP kH s
Q;Hx1
I\H 1
Q;Hxr1
I
kU~ t kx jU~ t j1;x ; msjA5
U~ t j 6 cmsN ÿr kf kL2
Q;Hxr
I kU~ t kx :
Moreover Lemmas 5, 7 and 11 lead to kU~
0kx 6 c
N ÿ2r h2~s kU0 kM r1=4;~s
X ; 2
2
x
sjU~
0j21;x 6 cs
2N 4 cd hÿ2 kU~ 0 k2x 6 cs
2N 4 cd hÿ2
N ÿ2r h2~s kU0 k2M r1=4;~s
X : x
for a > 1=2 and b > 1. Furthermore if condition Besides, kU k1;1 6 ckU kAa;b x
X (41) holds, then for r > 5=4 and s > 8=3, 2 h 2 ÿ2r 2 s 2
~ sÿ1 : s N h h o N Finally, by an argument similar to the proof of Theorem 1, we obtain the following conclusion. Theorem 2. Let U and u be the solutions of Eqs. (2) and (4), respectively. Assume that (i) k P 1; condition (5) and condition (i) of Theorem 1 hold; (ii) for r > 5=4; s > 8=3 and a > 1=2 and b > 1; r;0;d U 2 C
0; T ; Mxr1;~s
X \ W 1;1
X \ Aa;b x
X \ Y1;x
X
\ C 1
0; T ; Mxr1=4;~s
X \ H 2
0; T ; L2x
X; (iii) for r > 5=4 and s > 5=3, P 2 C
0; T ; H s
Q; Hx2
I \ H 2
Q; Hxr1
I \ H 1
Q; Hxr2
I; f 2 C
0; T ; L2
Q; Hxr1
I \ H 1
Q; Hxr
I: Then there exists a positive constant d3 depending only on m and the norms of U and P in the spaces mentioned above such that for all t 6 T , kU
t ÿ u
tkx 6 d3
s N ÿr hs hs~ÿ1 :
J. Hou, B. Guo / Appl. Math. Comput. 101 (1999) 209±244
243
References [1] P.J. Roach, Computational Fluid Dynamics, 2nd edition, Hermosa Publishers, Albuguerque, 1976. [2] Guo Ben-yu, Dierence Methods for Partial Dierential Equations, Science Press, Beijing, 1988. [3] J.T. Oden, O.C. Zienkiewicz, R.H. Gallagher, C. Taylor, Finite Element Methods in Flow Problems, Wiley, New York, 1974. [4] R. Temann, Navier±Stokes Equations, North-Holland, Amsterdam, 1977. [5] P.A. Raviart, Approximation numerique des phenomenes de diusion convection, in: Methods d'elements Finis en Mechanics des Fluids, Cours a L'ecole d'ete d'analyses numerique, 1979. [6] V. Girault, P.A. Raviart, Finite element approximation of the Navier±Stokes equations, Lecture Notes in Mathematics, vol. 794, Springer, Berlin, 1979. [7] C. Canuto, M.Y. Hussaini, A. Quarteroni, T. Zang, Spectral Method in Fluid Dynamics, Springer, Berlin, 1988. [8] P. Moin, J. Kim, Numerical investigation of turbulent channel ¯ow, J. Fluid Mech. 118 (1992) 341±377. [9] Guo Ben-yu, Spectral-dierence method for Baroclinic primitive equation and its error estimation, Scientia Sinica 30A (1987) 697±713. [10] Guo Ben-yu, Xiong Yue-shan, A spectral dierence method for two-dimensional viscous ¯ow, J. Comp. Phys. 84 (1989) 259±278. [11] C. Canuto, Y. Maday, A. Quarteroni, Combined ®nite element and spectral approximation of the Navier±Stokes equations, Numer. Math. 44 (1984) 201±217. [12] Guo Ben-yu, Ma He-ping, A pseudospectral-®nite element method for solving twodimensional vorticity equations, SIAM J. Numer. Anal. 28 (1991) 113±132. [13] Ma He-ping, Guo Ben-yu, Combined ®nite element and pseudospectral method for threedimensional vorticity equations, J. Hydrodynamics, Ser. B 3 (1990) 75±87. [14] Guo Ben-yu, Ma He-ping, Combined ®nite element and pseudospectral method for the twodimensional evalutionary Navier-Stokes equations, SIAM J. Numer. Anal. 30 (1993) 1066± 1083. [15] Ma He-ping, Guo Ben-yu, Combined ®nite element and pseudospectral method for the threedimensional Navier±Stokes equations, Chinese Ann. Math. Ser. B 13 (1992) 350±367. [16] Guo Ben-yu, Ma He-ping, Cao Wei-ming, Huang Hui, The Fourier±Chebyshev spectral method for solving two-dimensional unsteady vorticity equations, J. Comput. Phys. 101 (1992) 207±217. [17] Guo Ben-yu, Li Jian, Fourier±Chebyshev spectral method for the three-dimensional NavierStokes equations Jpn. J. Appl. Math. 14 (1997) 329±356. [18] Guo Ben-yu, Li Jian, Fourier±Chebyshev pseudospectral method for the two-dimensional Navier-Stokes equations, RARIO Math. Model. and Numer. Anal. 29 (1995) 303±337. [19] Guo Ben-yu, He Song-nian, Chebyshev spectral-®nite element method for three-dimensional vorticity equation (to appear in Acta Mathematical Applicatae Sinica). [20] Guo Ben-yu, Ma He-ping, Hou Jing-yu, Chebyshev pseudospectral-hybrid ®nite element method for two-dimensional vorticity equations, RARIO Math. Model. Numer. Anal. 30 (1996) 873±905. [21] Guo Ben-yu, Hou Jing-yu, Chebyshev pseudospectral-hybrid ®nite element method for threedimensional vorticity equation, Numerical Mathematics, English series 5 (1996) 161±196. [22] P.M. Gresho, R.L. Sani, On pressure boundary conditions for the incompressible Navier± Stokes equations, Int. J. Numer. Methods Fluids 7 (1987) 1111±1145. [23] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
244
J. Hou, B. Guo / Appl. Math. Comput. 101 (1999) 209±244
[24] C. Canuto, A. Quarteroni, Variational method in the theoretical analysis of spectral approximations, in: R.G. Voigt, D. Gottlieb, M.Y. Hussaini (Eds.), Spectral Method for Partial Dierential Equations, SIAM-CBMS, Philadelphia, PA, 1984, pp. 55±78. [25] R. Courant, D. Hilbert, Methods of Mathematical Physics, vol.I, Interscience, New York, 1953. [26] Ma He-ping, Guo Ben-yu, The Chebyshev spectral method for Burgers-like equations, J. Comput. Math. 6 (1988) 48±53. [27] Guo Ben-yu, Generalized stability of discretization and its applications to numerical solutions of nonlinear partial dierential equations, BMN MU 32 (1992) 530±541.