0045-6535/80/0201-0111~02.00/0
Chemosphere Vol. 9, PP Iii - 118 ~Pergamon Press Ltd. 1980. Printed in Great Britain
AND
C H L O R I N A T E D PHENOLS IN S E D I M E N T S S U S P E N D E D M A T T E R OF THE W E S E R E S T U A R Y
G. Eder and K. W e b e r i n s t i t u t fHr M e e r e s f o r s c h u n g A m H a n d e l s h a f e n 12, D 2850 B r e m e r h a v e n Federal R e p u b l i c of G e r m a n y
Chlorinated German
phenols
Bight
ly c o n s t a n t flected
in b o t t o m
living
chlorophenol
cause
chronic
sediments
a better
particulate estuarine
Although,
a source even
of the
is r e q u i r e d
levels
of the W e s e r
occurrence
Sediments
were
collected was
approximately
acute
stress
is
toxic
levels I)
factors
might
of the e s t u a r y
discharge
of d i s s o l v e d
has declined.
chlorophenols
their p o s s i b l e
of c h l o r o p h e n o l s
with
danger
to the
Teflon are
shown
in table
After
particulates
fied water,
a grab
sampler
and s u s p e n d e d
to p r e v i o u s
data
on their
for s u p p l y i n g
into
the o r g a n i c
was
stirred
layer was
for
15 min.
sucked
by 2,5
(v:v), After
IIi
r.p.m.,
Sampling
in a l u m i n i u m
sediment
off w i t h
Sus-
10 OO0
the turbid water.
5:1
shipboard.
from the w a t e r
or total
a 100 ml c e n t r i f u g e
40 ml of n - h e x a n e - i s o p r o p a n o l
and the m i x t u r e
9593,
were w r a p p e d
20 g of m o i s t
were weighed
Typ
from
w h i c h was d r a w n w i t h a
and s e p a r a t e d
(Heraeus
2. Samples
thawing
(van Veen)
river water,
the surface
centrifuge
tubing was used
on board.
for 5 min,
in s e d i m e n t s
and related
and m e t h o d s
from turbid
I m below
min).
added
below
other
to assess
are p r e s e n t e d
with
obtained
of a c o n t i n u o u s - f l o w
matter,
with
the o r i g i n a l
interactions in order
and p a t t e r n estuary
means
frozen
but was not re-
as far as p e n t a c h l o r o p h e n o l
in the water.
pended matter
and time
and the
e s t u a r y 3). A fair-
in water,
of long term p o l l u t i o n after
Materials
bucket
estuary
ecosystem.
In this p a p e r matter
of the W e s e r
to occur
in c o m b i n a t i o n
processes
knowledge
animals shown
of the W e s e r
on the biota.
may provide
matter
was
in w a t e r
in the w a t e r were well
burden
due to r e m o b i l i z a t i o n Thus,
animals.
effects
found
living
pattern
the c o n c e n t r a t i o n s
the total
Loaded
and
recently
concentration
in b o t t o m
concerned,
still
1,2)
were
and
foil
i/
locations and deep
suspended
tube.
10 ml of puri-
5 ml of 6M H2SO 4 were
centrifuging
a capillary.
at 5000 r.p.m.
The p r o c e d u r e
was
112
No. 2
repeated with
16 ml of n - h e x a n e and the c o m b i n e d organic layers were twice ex-
tracted w i t h 5 ml of O . 1 N
NaOH.
A f t e r w a s h i n g the aqueous solution w i t h
n - h e x a n e and b u f f e r i n g w i t h s o d i u m borate, by e x t r a c t i v e
the phenol acetates were o b t a i n e d
a c e t y l a t i o n into n - h e x a n e with acetic a n h y d r i d e / p y r i d i n e .
small a d d i t i t i o n a l
A
amount of c h l o r i n a t e d phenols was o b t a i n e d by s t e a m - d i s t i l -
lation of the e x t r a c t e d sediment.
Steam-distillation,
c h r o m a t o g r a p h y w e r e d e s c r i b e d in a p r e v i o u s p a p e r
acetylation,
and gas
(4). The e x t r a c t i o n effi-
ciency was tested w i t h a 100 g s e d i m e n t sample a p p l y i n g two a d d i t i o n a l ext r a c t i o n steps w i t h equal volumes of solvent mixture. tion c o e f f i c i e n t to be c o n c e n t r a t i o n - i n d e p e n d a n t , table c h l o r o p h e n o l s was calculated. distillation
F r o m table
the total amount of extrac-
I it appears that steam-
is g e n e r a l l y more e f f i c i e n t than e x h a u s t i v e extraction.
C h l o r o p h e n o l a c e t a t e s were g e n e r a l l y
i d e n t i f i e d and q u a n t i f i e d by gas chro-
m a t o g r a p h y w i t h e l e c t r o n capture detection. was c h e c k e d by mass spectrometry. was e s s e n t i a l l y
The r e l i a b i l i t y of the results
The q u a n t i f i c a t i o n m e t h o d used in GC-MS
the same as in GC-ECD,
"detector e l i m i n a t e d
but the high s e l e c t i v i t y of the MS-
i n t e r f e r e n c e s and s i m p l i f i e d the s e p a r a t i o n task for the
d i f f e r e n t c h l o r i n a t e d phenols. (1,2).
A s s u m i n g the d i s t r i b u -
GC-MS c o n d i t i o n s were d e s c r i b e d p r e v i o u s l y
Isomers that could not be d e t e c t e d in three samples by mass spectro-
m e t r y were omitted.
3,4,5-trichloro-
and 2 , 3 , 4 , 5 - t e t r a c h l o r o p h e n o l were
q u a n t i f i e d by m a s s s p e c t r o m e t r y alone. TABLE:
I: YIELDS OF E X T R A C T I O N AND STEAM D I S T I L L A T I O N The total m a s s ratio of e x t r a c t a b l e c h l o r o p h e n o l s was c a l c u l a t e d a s s u m i n g c o n s t a n t phase e q u i l i b r i u m for the 3rd and 4th extraction.
Chlorophenols
A m o u n t isolated Extr.
I+2
Extr.
3
(ng/g of m o i s t sediment)
Extr.
4
Total calc.
Total of extr. and steam dist. observed
2,4 3,5
-DCP
1.82
0.22
O.10
2.23
2.31
2,4,5
-TrCP
0.72
0.15
0.06
0.96
0.93
2,4,6
-TrCP
O.13
0.014
0
O.14
0.28
2'3'4'~-TeCP 2,3,5,
I 49 "
0.15
0.046
I 71
2.O8
1.26
0.44
18.24
19.56
PCP
16.3
Adsorption/desor~tion S e d i m e n t and w a t e r
(pH = 7-I) were c o l l e c t e d t o g e t h e r on Aug.
B r e m e r h a v e n river bank centrifugation.
21,
1978 at
(UW-km 66) at low tide and i m m e d i a t e l y s e p a r a t e d by
A f t e r decanting,
each of 2,6 -di-,
laboratory experiment
2,5-di-,
50 ml of the w a t e r were spiked w i t h 250 ng
2,4,6-tri-,
2,4,5-tri,
2,3,4,6-tetra-,
2,3,4,5-
No .2
113
tetra- and p e n t a c h l o r o p h e n o l . w a t e r was slowly shaken with perature
For a d s o r p t i o n of c h l o r o p h e n o l s
(14,5 ° C) in a 1OO ml s t o p p e r e d E r l e m e y e r
s e d i m e n t and w a t e r w e r e separated. to the loaded sediment, Adsorbed chlorophenols
the spiked
10 g of the c o l l e c t e d s e d i m e n t at c o n s t a n t temflask. A f t e r 21 hours
50 ml of u n s p i k e d W e s e r w a t e r was added
shaken for another 21 hours and s e p a r a t e d again. from the w a t e r and d e s o r b e d c h l o r o p h e n o l s
from the
s e d i m e n t were a n a l y z e d by i n v e s t i g a t i o n of both 50 ml water volumes. All e x p e r i m e n t s w e r e run in d u p l i c a t e s and averaged. Results and d i s c u s s i o n Levels of c h l o r o p h e n o l s locations
in sediments and s u s p e n d e d m a t t e r from d i f f e r e n t
in the W e s e r e s t u a r y are listed in table 2. One sample of suspended
m a t t e r was taken in the Elbe e s t u a r y to c o n f i r m our s u s p i c i o n that c h l o r o p h e n o l levels in the w a t e r of the German Bight I) are i n f l u e n c e d by the Elbe river. These data are included for comparison. Pentachlorophenol
(PCP) g e n e r a l l y predominates.
The a b s o l u t e c h l o r o p h e n o l
levels v a r i e d w i d e l y so that m i n o r c o m p o n e n t s w e r e o c c a s i o n a l l y b e l o w the d e t e c t i o n limit.
2,3,4,6- and/or 2 , 3 , 5 , 6 - t e t r a c h l o r o p h e n o l s
(TeCP), w h i c h
w e r e not a n a l y t i c a l l y separated,
could always be found t o g e t h e r with PCP.
The high level of d i c h l o r o p h e n o l
(DCP)
in one sediment sample
be due to the p r e s e n c e of tubes of L a n i c e conchilega, r e v e a l e d an unusual h a l o g e n m e t a b o l i s m 5)
(No. 10) may
a polychaete,
that
Data on this s e d i m e n t are e x c l u d e d
from the f o l l o w i n g discussion. At first sight,
chlorophenol
levels in sediments appear quite arbitrary,
no r e l a t i o n w i t h site or time of s a m p l i n g can be detected. however,
There exists,
a p o s i t i v e c o r r e l a t i o n between the c h l o r o p h e n o l content and the
w a t e r - h o l d i n g c a p a c i t y of the sediments.
If c h l o r o p h e n o l mass
p l o t t e d versus p e r c e n t m o i s t u r e on a b i l o g a r i t h m i c scale, lines are o b t a i n e d sality.
and
(fig.
I)~ This r e l a t i o n s h i p
fractions are
roughly straight
is not based on strong cau-
C l a y m i n e r a l s and humic substances are the m a i n a d s o r b e n t s
ganic p o l l u t a n t s
in sediments;
b o t h take up water,
h o l d i n g c a p a c i t y of up to 90 % 6 )
for or-
and humus has a water-
In the m o i s t state the a d s o r b i n g c a p a c i t y
of pure clay is m o d e r a t e and g e n e r a l l y r e s t r i c t e d to p o l a r compounds.
Humic
s u b s t a n c e s have a high a d s o r b i n g p o w e r for a v a r i e t y of chemicals.
They are
known to bind h y d r o p h o b i c
as well 7)
substances
Studies on PCP a d s o r p t i o n have shown, q u a n t i t i e s of the p o l l u t a n t
like c h l o r i n a t e d h y d r o c a r b o n s
that h u m u s - r i c h soils take up higher
than m i n e r a l
soils 8). The lower c h l o r i n a t e d
p h e n o l s can be e x p e c t e d to behave similarly. To compare c h l o r o p h e n o l
levels and p a t t e r n s
p e n d e d m a t t e r and in water, calculated
in sediments with those in sus-
the a r i t h m e t i c m e a n of the mass fractions was
for each c o m p o u n d u s i n g a n a l y t i c a l data on the three s e d i m e n t
3/77
Sampling
78 e
533 e
-TrCP
-TrCP
-TeCP
-TeCP
PCP
2,4,6
3,4,5
2,3,4,5
2,3,4,6 2,3,5,6
-
-
18 e
-
-TrCP
2,4,5
56 e
-DCP
2,4 2,5
compound
1.78
11.3
26
UW-km a
% moisture
1
date
River
c)
Elbe
95 e
34e
1.75
10.7
3/77
76 e 534 e
-
-
-
4oe
408 e
1.99
20370 g
2110 g
1486 f
434 f
264 g
804 g
2092 f
1.25
6
19.1
3/77
53
259 e
51 e
81 e
mass
1.91
2357 e
350 e
iO1 e
295 e
897 e
fraction
1.69
sediments
35.0
average
1.78
18.7
5/77
65
8
16420 e
2230 g
2450 f
415 f
511 e
2070 e
iO10 f
73 e 412 e
-
-
-
-
138 e
from
1230 g
299 g
155 f
82 f
I12 g
629 g
391 f
15 e
15 e
134 e
-
-
-
1382 e
II
13800 f
450 f
950 f
330 f
180 f
2000 f
130 f
180
10/77
60
67.2~1.3 d
10/78
101
10/77
101
matter
14
3860 f
220 f
190 f
60 f
60 f
300 f
190 f
330
4260 f
iiO f
3OO f
50 f
60 f
330 f
300 f
50
190 f
890 f
50 f
120 f
17OO f
480 f
116
6800 f 14800 f
n.m.
n.m.
n.m.
n.m.
n.m.
n.m.
30
10/78
c
15
by GC/ECD,
concentration of suspended m a t t e r (wet w e i g h t in e s t u a r i n e w a t e r (mg/l))
10/78
13
e) q u a n t i f i e d
otherwise,
Suspended
12
samples,
indicated
limit
30
weight)
1.94
22.9
5/77
102
iO
detection
(pg/g wet
1.60
39.6
5/78
66 b
9
if n o t
5 separate
fairway
- = below
in p a r t i c u l a t e s
1.37
(g/ml)
60.4
5/77
57
7
in t h e
determined
= not measured,
d)
5/77
54
Sediments
5
n.m.
Cuxhaven,
collected
ESTUARY
were
WESER
samples
THE
averaged,
near
Bridge;
OF
of m o i s t
76.0
3/77
45
4
density
17.7
3/77
44
3
and GC/MS
estuary
Great
PARTICULATES
g) G C / E C D
34
2
IN
from Bremen
Bank,
by GC/MS,
Number
f) q u a n t i f i e d
b) B r e m e r h a v e n
= km d o w n s t r e a m
2 : CHLOROPHENOLS
a) U W - k w
TABLE
e
4~
No.2
115
Fig.
1:
Fig.
L e v e l s of c h l o r o p h e n o l s vs. % m o i s t u r e in sediments
2: E x p e r i m e n t a l d i s t r i b u t i o n of c h l o r o p h e n o l s b e t w e e n w a t e r and s e d i m e n t
100 a) % c h l o r o p h e n o l a d s o r b e d from e q u a l l y loaded w a t e r
Pg/g z~
80
/
i
I
~t
i
119
m
/ /
10000
6O
i:i:!:iii!i!i:!:
e,i
i!i!ii!i!iiiiii
~."
~
/ /
/ /
•40
'"'
:
iiiii!ii!i .......
::~
! v.v.v,',:':':':':':':': ipK iiiiiiiiiiiil,.,v,'.v.v . . . . . . . .>:.:.:.>:.:~ .................. .:i:i:i:i:i:i,:i:iSi:i:i:i .............. .'-'-'-'.'.'."
/
/ /
7
20
@
:.:-:.-::,.
.............................. .','.'.'.-,v,
i
16.0i
:. . . . . . .': . . . . .
::::::::::::::: v.v,v,~ ....... .:,:.:,:.:.:,:, :;:i:i:i:;:!:i~ ..:.:.:.:..:~ ..v.,...v,~.:.:..,.,... .v.,....z,~<,>>>>>: v . v . v . v :i:i:i:i:i:::i~ ':':':':':':': ~';':
/
i:i:i:i:i:i:i:i :i:i:i:i:i::::l :':':':':':': ~ ......
/ /"
[]
Chlorophenol
.'
..')
~ I"/
...'/l
/
O
,~,k
:
A
/"
z~
.3:
,.,.'.','..,': b,', .:,v.<
i:i:i:i:i:!:!:i: i:iii:i:i:!i!!~:':':':':+: ......... """
/ 1000
v.-.v.v."
7 . 0 i 5.
b)
//
I/~ /.~°
100-
% chlorophenol desorbed from loaded s e d i m e n t
i'
/o
,
/,.."/
/ 100" ',. /
/
..: /
/
/o : / / ,', ...." ii
,/' ..,~, /
0
./
80-
..I /o
~
"O
60-
..,: -II / [] / / @ , /
~_
..:" /~/ ~': / I i/./'" l/
~
t~
o
...... ......... ............. .......
• o • A
2.4-(2.5-) DCP 2.4.5-TrCP 2.4.6-TrCP 2.3.4.6-TeCP PCP
40-
~- 20
~3
~
•-
I-./
t,~
~..
.......
10
Moisture
(%)
100
Y////Z
......... ~/////, <<<<<~,........ ..... ~/,,~
0
10
,/i///z
....... ;S~%~; """"
Chlorophenol
116
No.2
samples
in w h i c h
and w a t e r Patterns
and levels
semblance, culates
river must
load
be denied,
matter
The o b s e r v e d chemi c a l
because
be e x p e c t e d
levels
and p a t t e r n s
The
in surface
for s e d i m e n t s
into the w a t e r phase
simplest water
though
column
Even
some m u t u a l
levels
The question,
to contain more
if s u s p e n d e d by the
of s u s p e n d e d
of high
than
re-
in parti-
transport
amount
in areas
matter 3).
turbidity,
10 % of the total
may be due to physical,
case
form
is adsorption.
stable
with
suspensions,
the aqueous
transient
transfer
due to tidal m o v e m e n t
chemical,
Provided
chlorophenols
phase.
This
further
adsorbed
on
is not n e c e s s a r i l y
of p a r t i c u a l t e s may
and bio-
that p a r t i c u l a t e s
from sediment
the a t t a i n m e n t
of
equilibrium.
Particulate/water values
distribution
for c h l o r o p h e n o l s
experiment
was
intended
in fig.
2. B e c a u s e
initial
chlorophenol
distribution experiment,
are
of the
ratios
ratios
shown
limited
adsorption
some
were
enter
solid phase
constants
taken
from L a n d o l t - B ~ r n s t e i n 9) were
because
for 2,6-DCP order:
2(3(4;
2,3(2,4. strong
more
recent
is most
consequently,
acid with
the d i s t r i b u t i o n
c oncl u d e
ratio
the order
for PCP
anion-exchange
Production,
transformation,
actions
also
formation
of 2,4-DCP
2,4,5-T
appearance
affect and
in a n a e r o b i c of PCP
The
available
PCP
for two chlo-
Dissociation
should
pK a
pK a value
have pK a values be:
in the
2,6<2,5
is a c o m p a r a t i v e l y
to recent
sources,
nevertheless,
than
that
for 2 , 3 , 4 , 6 - T e C P
with
other
are r e s p o n s i b l e
laboratory
that
In a g r e e m e n t
in the
i n v e s t i g a t o r s 8) we
for the h i g h e r
adsorption
water.
and d e g r a d a t i o n
chlorophenol 2,4,5-TrCP
and lower
shown
used to c a l c u l a t e
for d i c h l o r o p h e n o l s
processes
sediment
But
proving
molecules.
~enerally
our results.
is higher
by the
are noticeable.
incomplete.
are
(5 Dg/l) , the high
Monochlorophenols
of 4.8 a c c o r d i n g
of PCP at the pH of the e s t u a r i n e
may
are
too high.
as in nature.
phase
as u n d i s s o c i a t e d
be in accord w i t h
a pK a value
as well
that
sources
probably
This w o u l d
laboratory
generally
Results
(21 h) and the higher
of the pK a values
rophenols
values
time
and pK a
adsorption-desorption
not r e p r o d u c e d
features
common
the o r d e r
the averages,
processes.
in the aqueous
in the estuary
follows
from
3. A simple
the natural
equilibration
concentration found
calculated
in table
to s i m u l a t e
nevertheless,
exceptions
and
bear
in c h l o r o p h e n o l
the r e l a t i v e
is too small.
them should be in e q u i l i b r i u m true
in water. part
matter
Chlorophenol
(table
column.
actions.
appearing
however,
cannot
in the w a t e r
than
Data on s u s p e n d e d
in the same way
and s u s p e n d e d
an e s s e n t i a l
water
abundant.
averaged
of the water.
higher
take
in e s t u a r i n e
suspended
were
from those
are a p p r e c i a b l y might
were m o s t
estuary
in sediments,
distinct
particulates
matter
chlorophenols
of the W e s e r
levels
due to c h e m i c a l and p a t t e r n s
respectively
was
observed
chlorinated
phenols
and b i o c h e m i c a l
in the estuary.
from the h e r b i c i d e s
in our
The
2,4-D
l a b o r a t o r y IO) . The
on m i c r o b i a l
transformation
PATTERNS
6.0
2,4,6-TrCP
2,3,52'3'4:~-TeCP 12670
1546
5.4 5.5
5.3
1360
7.0
2,3,4,5-TeCP
PCP
310
3,4,5-TRCP
300
1170
7.4
2,4,5-TrCP
(68.4)
(8.3)
7.3)
I .7)
I. 6 )
6.3)
6.3)
1170
7310
260
480
150
100
880
210
(77.9)
(2.8
(5.1
(1.6
(1 .1
(9.4)
(2.2)
Matter
(Pattern
Suspended
in pg/g
water
No.
233.0
41.O
2.0
5.8
4.2
1.8
(81.O)
(14.2)
(0.7)
(2.0)
(I .5)
54
38
680
52
279
650
matter
No.
OF THE W E S E R
31
6.3
240
17
210
117
Suspended Matter Water
suspended
AND W A T E R
Sediment Water
and
MATTER,
7, 9,
(0.6)
Water
in Z%)
2).
4,
SUSPENDED
(ref.
on s e d i m e n t s
RATIOS.
IN SEDIMENT,
on e s t u a r i n e
from d a t a
Levels
7,7 7.4
Mean
from data
calculated
2'~-DCP,~
2) and
were
Sediment
(table
means
DISTRIBUTION
OF C H L O R O P H E N O L S
pK a
11,12,13
AND
AND PARTICULATE/WATER
Arithmetic
ESTUARY
3: MEAN LEVELS
Chlorophenol
TABLE
bJ
o
118
No.2
of lindane soil PCP aerobic within
and c h l o r o b e n z e n e s
is d e g r a d e d sediment
34 days
was
also
For
lack of
In aerobic
2,3,4,6-TeCP
and
chlorophenol
14C-labeled
PCP
mixture
in a n a e r o b i c
as 14CO 2 at 17 ° C w i t h i n
of PCP 15'16)
and
2,4,6-TrCP 16)
under
and a n a e r o b i c
2 , 3 , 6 - T r C P 13) . In anwas d e g r a d e d sediment
yielded
7 m o n t h s 14) . Total
simulated
natural
photo-
conditions
reported.
and their c hemi c a l almost
r e p o r t e d 11'12) and
40 - 60 % of an added
at 13,5 ° C 14)
24 % of the r a d i o a c t i v i t y degradation
was
to 2,3,5,6-
information
predecessors,
on the a b s o l u t e
and r e l a t i v e
introduced
the river,
and b i o c h e m i c a l
certain
disappear
that
within
into
processes
if e m m i s s i o n
cannot
were
amounts
the q u a n t i t a t i v e
be estimated.
stopped,
of c h l o r o p h e n o l s
It seems,
effects
of
however,
chlorophenols w o u l d c o m p l e t e l y
some years. Acknowledgements
The
authors
and Mr.
are g r a t e f u l
W. Pieles
by the D e u t s c h e
to Mr.
W. Drebing,
for e x c e l l e n t
technical
Forschungsgemeinschaft
Miss
R. Fr~hlking,
assistence.
Mrs.
The w o r k was
and the B u n d e s m i n i s t e r
A. Hansen, supported
fur F o r s c h u n g
und T e c h n o l o g i e . References I. W. E r n s t
and K. Weber,
VerSff. I n s t . M e e r e s f o r s c h . B r e m e r h . 1 9 7 8 , 1 7 , 4 5 .
2. K. Weber
and W. Ernst,
Chemosphere
1978,7,873.
3. W. E r n s t
and K. Weber,
Chemosphere
1978,7,867.
4. G. Eder,
VerSff. I n s t . M e e r e s f o r s c h . B r e m e r h . 1 9 7 9 , 1 7 , 2 2 5 .
5. K. W e b e r
and W. Ernst,
Naturwissenschaften
6. F.M. Swain, In O r g a n i c O x f o r d 1963.
Geochemistry
7. R.H. Pierce, Jr., 1974,38,1061.
Olney
8. J. Choi
C.E.
and S. Aomine,
Soil
and G.T. Sci.Plant
9. L a n d o l t - B S r n s t e i n , Zahlenwerte Springer, B e r l i n 1960. 10. G. Eder, R. Engst,
12.
K. B a l l s c h m i t e r ,
R°M.
Murthy,
14. G. Eder,
1978,65,262. Breger,
Felbeck,
Macholz Ch. D.D.
Unglert
Geochim. C o s m o c h i m . A c t a
Nutr.,1974,20,371.
und Funktionen,
and M. Kujawa,
Kaufmann
ed.)pp.93-94,Pergamon,
Jr.,
6.Aufl.
VerOff. Inst. M e e r e s f o r s c h . Bremerh. 1980,
11.
13. N.B.K. B14,1.
(I.A.
and G.F.
Fries,
7.Teil,p.878
in press.
Chemosphere
and P. Heizmann,
II.Band
1977,6,401.
Angew. C h e m . 1 9 7 7 , 8 9 , 6 8 0 . J.Environ. S c i . H e a l t h
1979,
unpublished.
15. A.S. W o n g and D.G. Crosby, In P e n t a c h l o r o e h e n o l P l e n u m Press, N e w York 1978. 16. D. Kotzias,
W. Klein,
F. Lotz,
(Receivedin Germany 31 Jantmry 1980)
S. Nitz
(K. R a n g a
and F. Korte,
Rao,
ed.)pp.19-25,
Chemosphere
1979,8,301.