Cancer Genetics and Cytogenetics 135 (2002) 63–90
Compilation of published comparative genomic hybridization studies Stéphanie Struskia, Martine Doco-Fenzyb, Pascale Cornillet-Lefebvrea,* a
Laboratoire d’Hématologie, Hôpital Robert Debré—CHU Reims, 51092 Reims cedex, France b Laboratory of Cytogenetics, Maison Blanche Hospital, 51100 Reims, France Received 27 August 2001; received in revised form 5 October 2001; accepted 8 October 2001
Abstract
The power of comparative genomic hybridization (CGH) has been clearly proven since the first paper appeared in 1992 as a tool to characterize chromosomal imbalances in neoplasias. This review summarizes the chromosomal imbalances detected by CGH in solid tumors and in hemopathies. In May of 2001, we took a census of 430 articles providing information on 11,984 cases of human solid tumors or hematologic malignancies. Comparative generic hybridization has detected a number of recurrent regions of amplification or deletion that allows for identification of new chromosomal loci (oncogenes, tumor suppressor genes, or other genes) involved in the development, progression, and clonal evolution of tumors. When CGH data from different studies are combined, a pattern of nonrandom genetic aberrations appears. As expected, some of these gains and losses are common to different types of pathologies, while others are more tumor-specific. © 2002 Elsevier Science Inc. All rights reserved.
1. Comparative genomic hybridization (CGH) and solid tumors The CGH contributed to the chromosomal characterization of solid tumors often limited by the obtaining of tumor metaphases (low proliferative potential or selective proliferation of normal cells) and by the complexity of karyotype. Nevertheless, one of the obvious advantages of the CGH is the possibility to work with formalin-fixed, paraffin-embedded archived materials allowing retrospective screening of chromosomal alterations of tumor specimens. Described for the first time by Kallioniemi in 1992 [1], the number of studies concerning solid tumors is impressive as shown in Table 1 [2–431]. The majority of these studies described gains and losses associated with a precise type of tumor (Fig. 1). They have been compiled first by Knuutila [432,433], Zitzelsberger [434] or more recently on different web sites. Other studies associated a genetic profile with a tumor evolution (primitive tumor vs. malignant stage or metastatic stage) [13], with a histological type (carcinoma versus adenoma for example) [66], with a given population (as in Chinese, Japanese or American people) [106] or with the presence of an infection (hepatitis for example) [103].
* Corresponding author. Tel.: 33-3-26-78-77-89; fax: 33-3-26-7881-71. E-mail address:
[email protected] (P. Cornillet-Lefebvre).
2. CGH and hematological malignancies Although hematological neoplasias were less studied than solid tumors, CGH contributed to the knowledge of chromosomal alterations in leukemias and lymphomas. Moreover, contrary to the previous cytogenetic data, CGH has proved that gene amplifications were common in lymphomas [381,389]. The indications of CGH in hemopathies are: normal karyotype (proliferation of normal cells to the detriment of tumor cells during the cell culture), failure of karyotype (low-proliferative potential as multiple myelomas), uninterpretable metaphases because of poor quality (i.e., ALL) and complex karyotypes (i.e., lymphomas).
3. Future prospects In analyzing of the results of CGH, several limitations must be taken into account. Comparative genomic hybridization is handicapped in identifying balanced chromosomal abnormalities such as translocations or inversions. Pericentromeric, telomeric and heterochromatic regions cannot be evaluated, and 1p32pter, 16p, 19 and 22 could lead to a false-positive interpretation. Chromosomal imbalances must be present in about 50% of cells to be detected. Thus, CGH requires that tumor specimens are relatively free of surrounding normal tissues. Finally, thresholds of detection are 2 Mb for amplification and 10–20 Mb for deletion [435]. The limitations of CGH for the genetic characterization
0165-4608/02/$ – see front matter © 2002 Elsevier Science Inc. All rights reserved. PII: S0165-4608(01)00 6 2 4 - 0
64 S. Struski et al. / Cancer Genetics and Cytogenetics 135 (2002) 63–90 Table 1 Review of the literature: chromosomal gains and losses detected by CGH in solid tumors and hemopathies Tumor type
Number of analyzed tumors
Gains
Losses
Reference
Solid tumors Respiratory tract Lung cancers
10 NSCLC, 10 cell lines
1q, 2p, 3q, 5p, 7pq, 8pq, 12p, 19q, 20p 1q, 3q, 5p, 7p, 8q, 12p 1q, 5p, 6p, 7p, 8pq, 12pq, 21q 1pq, 2p, 5p, 8q, Xq 3q, 5p, 8q, Xq
3p, 5q, 8p, 9p, 13q, 15q, 17p, 18q
[2]
1q, 3q, 7p, 8q, 9q, 17q, 20q 1q, 2p, 3q, 5p, 6pq, 7pq, 8q, 11q, 15q, 19q, 20q 1pq, 2p, 3q, 5p, 6p, 7p, 8q, 12, 15q, 17q,19pq, 20pq, 22q, X 1pq, 3q, 5p, 6p, 8q, 12, 17q, 18q, 19pq, 20pq, X 1q, 3q, 5p, 8q, 11q, 12p, 16p, 17q, 19q
25 adenocarcinomas, 19 carcinomas 30 primary carcinomas 18 SCLC 10 SCLC (7 primary tumors, 3 metastases) 9 NSCLC, 2 cell lines 8 primary NSCLC 11 NSCLC
11 neuroendocrine carcinomas 25 adenocarcinomas, 25 carcinomas 22 SCLC 150 carcinomas: SCLC NSCLC carcinomas adenocarcinomas primary versus metastatic 50 (with or without metastases) associated with metastases 13 SCLC 10 primary, 16 metastatic 22 primary sarcomas and their metastases 17 typical carcinoid tumors 6 atypical carcinoid tumors 3 SCLC 3 large-cell neuroendocrine carcinoma Malignant mesotheliomas
Head and neck carcinomas
23 primary 10 23 and 4 cell lines
3p, 4, 5q, 8p, 10, 13q
[7]
5q, 6q, 9, 13q, 18q, 19p
[8]
2q, 3p, 4pq, 5q, 8p, 9p, 10p, 11pq, 13q, 17p, 21q
[9]
2pq, 3p, 4pq, 5q, 8p, 9p, 10p, 11pq, 13q, 16q, 17p 1p, 2q, 3pq, 4q, 5q, 6q, 8p, 9pq, 10p, 13q, 18q, 19, 21q 3p, 4q, 5q, 10q, 13q, 15q, 16q, 17p
[10] [11]
[17]
5p, 17p, 20 5p, 17p, 20
11q 10q, 11q, 13q 3p, 4q, 5q, 13q, 15q 3p, 4q, 5q, 10q, 13q, 15q 1p, 6q, 9p, 13q, 14q, 15q, 22q 4q, 6q, 9p, 13, 14q, 22q 1p, 4q, 6q, 9p, 13q, 14q
[18]
1p, 8p, 14q, 22q 9p 3p, 22q
[20] [21] [22]
3p, 4pq, 5q, 6q, 8p, 9p, 11pq, 13q, 18q 1p, 3p, 4, 5q, 6q, 8p, 9p 11q, 13q, 17p, 18q, 21q
[23]
1q 5p, 7pq, 8p, 11q, 12p, 15q 5p, 6p, 8q, 15q, 17q, 20
19 29 metastatic 50 primary
[5] [6]
1q, 3q, 5p, 8q, 11q, 12p, 17q, 19, 20q, 22q 1q, 8q, 9q, 14q, 15q 3q, 5p, 8q, 17q 3q, 5p 1q
3q 1q
27 34
30 primary
3p, 10q, 13q, 16p, 17p, 22q 3p, 4p, 5q, 8p, 13q, 17p
3p, 4q, 5q, 10q, 13q, 17p 1p, 3p, 4q, 5q, 6q, 8p, 9p, 13q, 18q, 21q 2q 9q 10q 1p, 2q, 3p, 4pq, 5q, 6q, 8p, 9p, 10q, 11p, 13q, 18q, 21q 3p, 4p, 6q, 8p, 10q, 21q 3p, 5q, 10q, 13q, 17p 3p, 4q, 5q, 10q, 13q, 17p 9p, 10p, 11q, 13q
5p
14 primary
[3] [4]
[12] 3q, 5p 5p, 11q
24
11 (including 6 cell lines) 14 19
6q, 8p, 17p, 18q, X
1q, 2q, 3q, 6pq, 7p, 8q, 18q 1p, 3q, 8q, 9q, 11q, 16p, 17q, 19pq, 20q, 22 1p, 3q, 8q, 11q, 17q, 19pq, 22q 5p, 6p, 7p 19q, 20q 1p, 3q, 8q, 11q, 16p, 17q, 19, 20q, 22q 1p, 3q, 5p, 8q, 9q, 11q, 16p, 17q, 19p, 20q, 22q 2q, 3q, 4q, 7q, 8q, 13q 1p, 5p, 7p, 8q, 9q, 10q, 11q, 12pq, 14q, 15q, 16pq, 17q,19, 20q, 22q
[13]
[14] [15] [16]
[19] [4]
[24] [25]
7q, 10q, 11pq, 15q, 20p 1p, 3p, 4, 5q, 6q, 8p, 9p, 11, 13q, 18q, 21q 3p, 4pq, 5q, 6q, 9p, 11q, 13q, 18q 1p, 3p, 5q, 11p, 16p, 19, 22, Y 3p, 5q, 9p
[26]
[27] [28] [29]
(continued)
Table 1 (continued) Tumor type
S. Struski et al. / Cancer Genetics and Cytogenetics 135 (2002) 63–90 Number of analyzed tumors
Gains
Losses
Reference
18 6 4
3q, 8q, 12p 1q, 3q, 5p, 7p, 8q, 9pq 3q, 5pq, 7pq, 8q, 11pq, 13q, 20p 3q, 5p 3q, 7p, 8q, 11q, 13q, 14q, 15q, 20q 3q, 8q, 11pq, 13q 3q, 5p, 8q, 20pq 3q, 5p, 8q 3q, 8q, 11q 1q, 3q, 5p, 7, 8q, 10p, 11q, 12p, 13q, 17, 20p 8q, 16p 3q, 8q, 11q, 14q, 15q, 17pq, 20pq, 22q 1p, 2p, 3q, 5p, 7p, 8q, 10q, 15q, 19q, 20pq, 21q 1q, 3q, 5p, 10q, 11q, 15q, 17q, 20p, 21q, 22q 1pq, 2q, 3q, 5p, 6q, 7p, 8q, 9q, 10q, 11q, 12pq, 14q, 15q, 16pq, 17, 19, 20q 1q, 11q, 12pq, 17q,
3p 3p, Xp 18q
[30] [31] [32]
3p, 5q, 7q, 8p, 18q
[33] [34]
77 carcinomas, 4 cell lines 17 cell lines 18 primary carcinomas 14 cell lines 11 carcinomas 21 13 primary 12 premalignant lesions 14 carcinomas 10 10 metastatic 20 carcinomas, 4 cell lines
Nasopharyngeal carcinomas
5q, 9p, 14q
[41]
[40]
3p, 4q, 5q, 18q, 19p
3p, 9p, 11q, 13q, 14q
[43]
3p, 11q, 14q, 16q
[44]
3p, 9p, 11q, 14q
[45]
57
1q, 2q, 3q, 5q, 6q, 7q, 8q, 12pq, 18q 1q, 2q, 3q, 6pq, 7q, 8q, 11q, 12, 15q, 17q, 20q 1q, 3q, 4pq, 8p, 12q, 18q
1p, 3p, 11q, 14q, 16pq, 19p
20 primary
1q, 8, 12, 19, 20
2
2p, 3q, 4q, 5p, 6q, 7q, 8q, 12pq 3q, 8q, 9q
1p, 3p, 9pq, 11q, 13q, 14q, 16q 19q, 20q, 22q
[46] [47]
51 (25 primary, 26 recurrent)
38 primary 29 10 carcinomas 15 primary esophageal and gastroesophageal adenocarcinomas 17 carcinomas 29 primary, 12 cell lines 3 cell lines grow without fetal calf serum 3 cell lines grow with fetal calf serum 36 carcinomas 5 30 adenocarcinomas
Gastric cancers
[35] [36] [37] [38] [39]
[42]
10
Laryngeal carcinomas Digestive tract Esophageal cancers
1p, 9p, 10q, 18q, 19q 4q, 18q 17p, 18q, 19pq 3p, 9p, 18q 1p, 2q, 3p, 4pq, 5q, 7q, 11pq, 13q, 17p, 19pq, 22 3p, 4q, 5q, 8p, 9p, 13q 2q, 3p, 4q, 5q, 9p, 13q
3p, 5q, 6q
30
Pharyngeal carcinomas
65
19 dysplasias (high and low grade) 6 intestinal metaplasias 4 cell lines 43 primary 25 cell lines
1q, 2q, 3q, 5p, 6, 7pq, 8q, 13q, Xq 1q, 3q, 7pq, 8q, 11q, 20q 7p, 8pq, 17q, 18p, 20q 3q, 5p, 8q, 9q, 11q, 12q, 16p, 17, 19, 20q, 22 3q, 5p, 8q, 11q, 14q, 20q, Xq 3q, 5p, 7p, 8q, 11q, 20q 3q, 5p, 7p, 8q, 11pq, 17p, 20q, Xq 3q, 5p, 7p, 8q, 11pq, 12p, 17p, 20pq, Xq 2pq, 3q, 5p, 7q, 8q, 11q, 12p, 20pq 5p, 7q, 8q, 9q, 10p, 12p, 13q, 17q, 20p, X 2p, 6p, 7pq, 8pq, 10q, 15q, 17q, 20q 2p, 8q, 10q, 15q, 20q 6p, 8q, 10q 1, 2, 3, 5p, 8, 16, 17, 20 3p, 8q, 12q, 13q, 20pq 7pq, 8q, 11pq, 13q, 20pq, Xpq
[48]
3p, 4, 18q
[49]
1p, 4p, 8p, 18q, 19pq, 22q, Xp 3p, 4pq, 5q, 9p, 11pq, 13q, 18q, 21q, Y 4pq, 5q, 18q
[50]
1p, 2q, 3p, 4, 5q, 6q, 9p, 11q,12q, 13q, 14q, 18q, Xq 9p
[53]
3p, 4, 9p, 18q 4q, 9p, 18q
[51] [52]
[54]
[55]
3p, 4q, 5q, 9p, 18q 3p, 4q, 5q, 9p, 11q, 13q, 18q 3p, 4, 7q, 9p, 15q, 16q, 18q, Y 4q, 5q, 7q, 9p, 14q, 18q, Y 5q, 9p, 10q, 18q, Y 9p, 13q, Y 1p, Y 1p, 16, 17, 19 4q, 9p, 18q, 22q
[56] [57] [58]
[59] [60] [61] (continued)
66 Table 1 (continued) Tumor type
S. Struski et al. / Cancer Genetics and Cytogenetics 135 (2002) 63–90 Number of analyzed tumors
Gains
Losses
Reference
62 primary carcinomas 15 adenomas
3q, 8q, 13q, 20q 3q, 8q, 13q, 20p
[62] [63]
15 carcinomas
2q, 3q, 5p, 6q, 7pq, 8pq, 13q, 20p 2p, 3q, 6q, 7pq, 9pq, 13q, 15q 8q, 17q, 20q 7, 8, 13, 17q, 20q 8q, 17q, 20q 2q, 7pq, 8pq, 13q, 17q, 18q, 20pq 1q, 8q, 17pq, 20q 1q, 2p, 7q, 8p, 10q, 11q, 16p, 17q, 20q 1p, 6p, 7q, 8pq, 11q, 12p, 16p, 17q, 19q, 20pq, Xpq 8q, 13q
1p, 17p, 19p 1p, 11q, 12q, 15, 16p, 17p, 20q 1p, 2q, 4pq, 9pq, 11q, 12q 14, 15, 16p, 17pq, 18q 1p, 6p, 17p, Y 4q, 18q 5q 4q, 18q 17p
[65] [66] [67]
4q 4q, 5q, 9p, 21q
[68] [69]
1p, 3p, 5q, 6q, 9p, 16q, 17p, 18q, 19 2q, 9p, 12q, 14q, 15q, 16pq, 17pq, 19pq, 22q 1p, 3p, 4q, 5q, 16q, 19p
[70]
14q 9q, 13q, 14q, 22q 14, 22q 1p, 14q, 15, 22 3p, 4pq, 5q, 9p, 14q, 16q, 17p, 18q, 21q, Y
[73] [74] [21] [75] [76]
6q, 7q, 8p, 10p, 12pq, 17p, 18q, 22q 4q, 5q, 6q, 9p, 18q 4, 8p, 18, 22
[77]
8p, 17p, 18q 5q, 8p, 17p, 18q 1p, 3p, 4, 5q, 6q, 8p, 9p, 10, 15q, 17p, 18q 1p, 8p, 18q 1p, 8p, 14, 15, 18pq 4q, 8p, 18q 18q, 22q 17p, 18pq, 22q 17p, 18pq, 22q
[80]
33 primary 35 (22 intestinal type, 13 diffuse type) 16 adenomas 22 carcinomas 37 carcinomas 13 carcinomas 23 adenocarcinomas 58 primary 46 53 Gastrointestinal tumors
Gastroesophageal junction
32 14 28 13 benign 28 adenocarcinomas
Biliary tract cancers
14 carcinomas
Colorectal cancers
18 12 primary and 14 metastatic adenocarcinomas 42 32 ulcerative colitis 45 carcinomas 11 carcinomas 27 metastatic, 6 primary 9 adenomas, 14 carcinomas 9 primary 19 primary 16 primary with liver metastasis 10 primary 10 metastatic
Ulcerative colitis Anal carcinomas Hepatocellular carcinomas
14 low-grade adenomas 12 low-grade adenomas 16 colon carcinomas 12 carcinomas 5 14 23 52 primary 31 50 primary 3 41 40 50 infected with hepatitis B 34
6q, 7p, 8q, 11q, 13q, 17q, 20q 3q, 5p, 8q 4pq, 18p, 19p, 22q 5p, 8q, 17q, 19q 5q 1q, 3q, 5p, 6p, 7p, 8q, 12q, 13q, 15q, 17q, 18p,19q, 20pq, Xpq 2q, 6p, 7p, 8q, 11q, 12p, 13q, 17q, 19q, 20q, Xp 3q, 5p, 7p, 8q, 12p, 17q 6p, 7p, 8q, 13q, 16q, 17q, 20q 8q, 13q, 20q 8q, 13q, 20q 5p, 6p, 7, 8q, 13q, 17q, 19, 20q, X 8q, 13q, 20q 7p, 8q, 13q, 20q 7p, 8q, 13q, 20q 11p, 12q, 16p, 20pq 8q, 13q, 20pq 6q, 7q, 8q, 9p, 13q, 20pq 7q, 19q, 20q 7q, 8q, 13q, 19q, 20q 7 7, 20 1, 7p, 8q, 13, 20 7, 13, 20q 8q, 19p 3q, 17, 19 1q, 5p, 7q, 8q, 11q, Xq 1q, 6p, 8q, 11q, 17q, 20q 1q, 8q, 20q 1q, 8q 1q, 8q, 11q 1q, 6p, 8q, 17q 1q, 6p, 8q, 11q, 12p, 14q, 17q, 19q 1q, 6p, 8q, 17q
[64]
[71] [72]
[78] [79]
[81] [82] [83] [84] [85] [86] [87]
4p, 8p, 9q, 11q, 15q, 17pq, 18q, 21q, 22q [88] 4, 8p, 18q 9p, 17, 18 5q, 18q 5q, 18q 4p, 11q, 13q, 18q 4q, 8p, 16pq, 17p 4q, 8p, 9p, 13q, 16pq 1p, 4q, 8p, 16q, 17p, 19p, 22q 4q, 8p, 9p, 16p, 17p 4q, 8p, 10q, 13q, 16q, 17p 4q, 8p, 13q, 16q, 17p 1p, 4q, 6q, 8p, 13q, 16q, 17p 1p, 6q, 8p, 13q, 14q
[89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] (continued)
Table 1 (continued) Tumor type
S. Struski et al. / Cancer Genetics and Cytogenetics 135 (2002) 63–90 Number of analyzed tumors
Gains
Losses
Reference
10 (primary and their matched metastatic lesions) 35 infected with hepatitis C
1q, 5p
4q, 8p, 17p, 19p
[101]
1q, 6p, 7q, 8q, 11q, 14q, 17q 1q, 6p, 8q, 11q, 17q
1p, 4q, 5q, 6q, 8p, 13q, 16q, 17p 1p, 4q, 6q, 8p, 9p, 11q, 12q, 13q 4q, 6q, 8p, 10q, 16p, 17p
[102]
4q, 8p, 13q, 16q 4q, 8p, 10q, 13q, 16q, 17p 4q, 8p, 13q 1p, 4q, 7q, 8p, 9, 13q, 16q, 17p, 18q 4q, 9q, 13q, 17p 8p 1p, 4pq, 8p, 9pq, 13q, 14q, 16pq, 17p, 18q 9p, 13q 4, 11
[105] [97] [106]
41 infected with hepatitis B or C 6 67 41 30: hepatitis B, Hong Kong 20: hepatitis B, Shangai 16: hepatitis C, Japan 17: negative, USA 26 Hepatoblastomas
Endocrine Glands Adrenocortical tumors
18 10 16 25, 8 adenomas, 14 primary carcinomas, 1 metastasis 23 pheochromocytomas and 11 abdominal paragangliomas 9
11
Pancreatic tumors
22 12 carcinomas 23 adenomas 6 hyperplasias 12 cell lines, 6 adenocarcinomas 11 cell lines 13 biopsies 33 adenocarcinomas 27 44
Thyroid tumors
Parathyroid tumors
67
25 6 pancreatic acinar cell carcinomas 33 tumors and 2 cell lines 8 follicular adenomas, 13 follicular carcinomas 24 carcinomas 29 follicular adenomas 13 follicular carcinomas 20 follicular carcinomas 13 anaplastic 8 anaplastic cell lines 3 well-differentiated cell lines 21 papillary 7 adenomas, 4 carcinomas 9 anaplastic carcinomas 10 adenomas, 10 carcinomas
1q, 4p, 5q, 6p, 7pq, 8q, 17q 1q, 8q, 17q, 20q 1q, 8q, 11q 1q, 7q, 8q, 20q 1q, 2q, 3q, 5p, 6p, 7pq, 8q, 17q, 19q, 20q, Xq 1q, 7q, 11q, 17q, 19q 1q, 6p, 7p, 8q, 20q 1q, 5p, 6q, 8q,12q, 17q, 20q, Xq 1q, 2q, 20q 1q, 2, 17, 20 1, 2, 7, 8, 17
[103] [104]
[107] [108] [109] [110]
1pq, 3pq, 5, 7p, 8, 9q, 11q, 12q, 13q, 14q, 16p, 17q, 19pq, 20, 22q 11q, 16p, 17q, 19pq
9p
[111]
1p, 2q, 3pq, 4q, 11pq
[112]
1q, 5pq, 6pq, 8pq, 9q, 10p, 11q, 12q, 13q, 14q, 15q, 16, 18q, 19, 20q 1p, 9q, 11q, 12q, 17q, 19, 20q, 22q 4, 5 5q, 9q, 12q, 20q 9q, 17pq 17 20q
2q, 3, 4, 9p, 11, 13q, 18, 20p, Xq
[113]
2, 3, 4, 18q, X
[114]
2, 11q, 17p 1p, 2q, 3pq, 6q, 9p, 11q
[115] [116]
3p, 4q, 6q, 8p, 9p, 18q, 21q, Y 3p, 9p, 13q, 15q, 18q, 21q
[117]
3q, 6p, 7q, 8q, 11q, 12p, 14q, 17q, 19q, 20pq 5pq, 7p, 8q, 11pq, 12p, 18q 3q, 5p, 8q, 12p, 19q, 20q 1p, 6q, 7q, 12p, 16p, 17q, 20q, 22q 5q, 7pq, 9q, 12q, 14q, 17pq, 20q, Xp 7q, 14, 19, 20q 1q, 12p, Xq 1pq, 2p, 5q, 9q, 14q, 19q 16p, 17 7pq, 17 11q, 19pq, 22q 5, 7, 9, 12, 14, 17, 18, X 5, 7, 12, 14, X 1q, 17q 7p, 8q, 9q 20q 20q 4, 5q, 6q, 9q, 13q 5, 7, 12, 17, 19, 20 3q, 5p, 7pq, 8p, 9q, 11pq, 17q, 18p, 20q, 21, Xpq 5
[118]
6q, 17p, 18pq 8p, 10q, 13q, 18q 9p
[119] [120]
3pq, 6pq, 10q, 11pq, Xq, Y
[121]
11pq 16pq
[122] [123] [124] [125]
6q 9q 3q, 13q 1p, 22 1p, 13q, 22 16p, 18q 18q 1p, 9q, 17, 19, 22 2 1p, 2q, 3p, 4q, 8q, 9p, Y 11, 17, 22 1p, 17
[126] [127] [128] [129] [130] [131] [132] [133] (continued)
Table 1 68 (continued) Tumor type
Pituitary tumors
S. Struski et al. / Cancer Genetics and Cytogenetics 135 (2002) 63–90 Number of analyzed tumors
Gains
Losses
Reference
26 sporadic adenomas 10 cases previously given irradiation 8 familial cases 29 carcinomas 53 adenomas 23
7, 19p
1p, 11, 15q 11q
[134]
1p, 4q, 6q, 9p, 13q 1pq, 6q, 9p, 11pq, 13q, 15q 18
[135] [136] [137]
13q 13q, 18 1p, 2, 10, 11, 13, 18, 21
[138] [139] [140]
10, 11, 13 9q, 11q, 13q, 18q 9q, 16q, 22
[141] [142] [143]
3p, 4q, 6q, 8p, 9p
[144] [145]
3p 3p, 8p, 14q, Y
[146] [147]
Y 3p 1p, 4q, 6q, 9p, 13q, Xpq, Y 3p, 9, 10q 14 1, 3p, 6, 9, 10, 12, 14, 18 3p, 9p, 13q 1, 2, 3p, 6, 8p, 9, 10, 13q, 17 1, 14 2q, 3p, 4q, 6q, 9p
[148]
12 adenomas 10 adenomas 40 primary, 13 recurrent adenomas
Pineal tumors Urinary tract Renal cancers
Wilms tumors
Bladder cancers
75 15 6 4 clear cell sarcomas 32 clear cell renal cell carcinoma metastases 18 25 primary and metastatic renal clear cell carcinomas 4 papillary lesions 2 carcinomas 25 papillary carcinomas 18 (primary secondary lesions) 15 43 metastatic 41 clear cell carcinomas 15 13 oncocytomas 9 clear cell carcinomas 2 papillary carcinomas 19 chromophobe carcinomas 8 80 67 including 46 relapse 46 including 6 nephroblastomatosis 69 carcinomas: schistosoma-associated, nonschistosoma-associated, transitional cell carcinomas 22 primary, 24 metastases 26 16
6 invasive 28 28 invasive 54 carcinomas 56 carcinomas 46 67 carcinomas 32 10 SCC
19p 1q, 9q, 16p, 19p, Xq 16p, 19p 1q, 4q, 5q, 8p, 9p, 13q, 16q, 17, 18pq, X 5, 9, 17pq, 19, 22q 1q, 3, 5, 6p, 7, 8, 9, 12, 13, 14, X 7, 9, 12, 19, X 8q, 12p 4q, 5pq, 12q 1q, 11q 11q, 17q, Xq 3, 7, 8, 16, 17 1q, 5q, 7p, 8q, 16p, 17q, 19, 22q 7, 16, 17 7pq, 12q, 16q, 17pq, 20q 7, 17 5 5, 17 5q, 7 5q, 7, 16p
5q, 9q, 17 7, 17
1q, 3pq, 7q, 8, 12 1q, 12, 8 1q, 8, 10q, 12q, 18 1q, 5p, 8q, 11q, 20q 1q, 5p, 8q, 20q 1q, 8q, 11q, 17q, 20q 6p, 8q, 10q, 17q 1p, 1q, 3q, 8q, 13q 1pq, 3pq, 4q, 5p, 6pq, 7p, 8q, 11q, 12q, 13q, 17q, 18q, 20pq 8q, 20q 1q 1q, 3pq, 5p, 6p, 8pq, 10p, 11q, 12q, 13q, 17, Xpq 1q, 3p, 5p, 6p, 8q, 17q, 20q 1q, 3, 5p, 6p, 8q, 10p, 12q, 17q, 20q 1q, 5q, 7q, 8q, 10pq, 12q, 17 1q, 2p, 3q, 5p, 6p, 8q, 12, 17q 1q, 2q, 12q, 17q, 20p 1p, 3q, 5p, 6p, 8q, 12q, 20q
1, 2, 6, 10, 13, 17, 21 3q, 4q, 9p, 20p 1p, 4pq, 5p, 7p, 15q, 16q, 18q, 21q, 22q 1p, 11p, 16q, 22q, X 1p, 4q, 7p, 9p, 11p 3p, 5q, 9p 3p, 9p 4q, 6q, 9p 8p, 10q, Y 3p, 8p, 9, 11pq, 12q, 17p 2q, 4q, 5q, 8p, 9pq, 11p
[149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161]
[162] [163] [164]
2, 17p 9pq, Y 2q, 8p, 11pq, Y
[165] [166]
2q, 4p, 5q, 6q, 8p, 9pq, 10q, 11pq, 13q, 18q, Y 2q, 8p, 9, 10q, 11pq, Y
[167]
2q, 4q, 5q, 8p, 9pq, 10q, 11pq, 17p, 18q 2q, 4q, 5q, 8p, 9pq, 10q, 11pq 5q, 8p, 9pq, 17p 4q, 5q, 10q, 13q
[169]
[168]
[170] [171] [172] (continued)
Table 1 (continued) Tumor type
S. Struski et al. / Cancer Genetics and Cytogenetics 135 (2002) 63–90 Number of analyzed tumors
Gains
Losses
Reference
3 sarcomatoid carcinomas
1pq, 2pq, 3pq, 4pq, 5pq, 6pq, 7pq, 8q, 9q, 10q, 11pq, 12q, 13, 14, 18q, Xpq 3p, 5p, 10p, 12q, 17q, 18p, 22q 1q, 17q, 20q
16p, 19p, 22
[48]
5q, 9, 11
[173]
2q, 11p, 9pq, 18q, Y
[174]
1p, 4, 14, 15, 18, 19q 9p, 10 9q, 10, X
[175] [176] [177] [178]
14 carcinomas including 7 invasive 113 Nervous system Cerebral tumors
23 oligodendrogliomas 5 gliosarcomas 7 astroblastomas 3 astrocytomas 16 glioblastomas 11 glioblastomas, 8 anaplastic astrocytomas 20 glioblastomas radiation-resistant 10 glioblastomas radiation-sensitive 17 low-grade oligodendrogliomas 12 high-grade oligodendrogliomas 39 gliomas
10 glioblastomas 20 primary gliomas, 10 recurrent gliomas 9 cell lines 15 oligodendrogliomas 5 glioblastomas 16 astrocytomas 97 glioblastomas (72 primary, 25 recurrent) 9 malignant gliomas 14 glioblastomas, 19 astrocytomas 11 gliomas (7 families) 21 gliomas (17 families) 42 metastases 23 ependymomas 7 astrocytomas with good prognosis (grade II) 4 astrocytomas with poor prognosis (grade II) 13 grade III–IV astrocytomas 9 grade III–IV cell lines 26 ependymomas 24 glioblastomas 2 astrocytomas, 7 glioblastomas
Medulloblastomas
69
18 primary astrocytomas 10 grade II astrocytomas 5 grade III astrocytomas and 5 glioblastomas 5 astrocytic gliomas 20 glioblastomas 23 primary 10 37 6 27 primary 53 primary
7 19, 20q 7q 7, 12q 7pq, 8q, 17q 7 (in 70%), 19 7 (in 30%), 19 7 1q, 3q, 4q, 5p, 7, 8q, 10p, 11, 12q, 19, X 4q, 5q, 7, 12q, 13q 7 7 3q, 5p, 7, 8q, Xp 7pq, 11pq, 17p, 19pq, Xp 1, 3, 6, 7, 8, 21 7q 1q, 7p 7p 1q, 7pq, 8q, 11q, 20q, Xq 3q, 5q, 7pq, 12pq, 17q 1p, 7, 19, 20q 1q, 7p, 8q, 17q, 20q 1q, 9 1p, 7q, X 1p, 8q, 11q, 12q, 15q, 19, X 1p, 3q, 7q, 8q, 9q, 10p, 11q, 17q, 19, 20q, X 7, 17, 19, 20 1q, 9q, 17, 20q, 22q 7, 12q, 19 1q, 4q, 7pq, 12p, 19, 20, 22q 7q, 8q, 12p 8q, 12p, 19p 1q, 6p,12p, 13q, 20q
7, 11q, 12q, 19, 20 1q, 7, 17q 1, 2p, 3, 7, 8q, 9p, 17 3p, 17q 2pq, 7pq, 17q 5p, 7, 11q, 17q 17q
9p, 10, 13 4q, 9p, 10pq, 13q, 22q 9p, 10, 13q 10, 13q 1p, 19q 1p, 10, 19q 1p, 4q, 6q, 8, 9p, 10, 11p, 12q, 13, 14, 15, 16, 17p, 19q, 22 22 9p, 10, 13, Y 6, 9p, 10, 13, 14, Y 4, 10, 13, 14, Y 1p, 9p, 10pq, 14q, 16p, 19q 5p, 10, 13, 15, 16 1p, 19q, 22q 10q
9p, 10pq 9p, 10pq, 13q 4q, 9q, 10, 13q, 15, 16p, 18, 21, 22 4q, 6q, 9p, 10 4q, 5q, 9p, 10q, 17p, 18q 6q, 22q, X
[179] [180] [181] [182]
[183] [184]
[185] [186] [187] [188] [189] [190] [191] [192] [193] [194] [195]
1, 2q, 3, 4q, 5p, 9p, 10q, 12q, 13q, 14q, 18q 9p, 10q, 13q 1q, 2q, 3, 4, 5q, 6q, 9p, 10, 11q, 12q, 13q,14q, 18q, Xq 2q, 4q, 6q, 10, 13q 9p, 10, 13 9p, 10, 17p, 22q 1p, 4q, X 5p, Xp 4q, 9p, 10q, 11p, 13q 1, 4, 9, 19, X 6q, 9p, 10, 13, 22q 3, 8, 9, 10q, 11, 17p, X 4, 12, 19 9q, 17p, 22 8p, 10q, 11, 16q, 17p 14q, 19q
[196] [197] [198] [199] [200]
[201] [202] [203] [204] [205] [206] [207] (continued)
Table 1 70 (continued) Tumor type Neuroblastomas
Meningiomas
Malignant peripheral Nerve sheath tumors
Neuroendocrine tumors
Eyes Uveal melanomas
Retinoblastomas Skin Cutaneous melanomas
Merkel cell carcinomas
S. Struski et al. / Cancer Genetics and Cytogenetics 135 (2002) 63–90 Number of analyzed tumors
Gains
Losses
Reference
18 primary 6 familial tumors 24 primary and metastatic 35 17 3 with progression 8 / long-term survivors 14 / short-term survivors 16 with stage IV 20 primary 29 83 36 11 primary and 7 cell lines 27 25 10 13 typical 3 anaplastic, 4 atypical 19 benign, 21 atypical 19 anaplastic
4p, 5pq, 7q, 8q, 9p, 17q
17p 1p, 3p, 10pq, 11q, 16q, 20q 3p, 11q 1p, 9q, 11q, 14q, 15q 3, 4, 11, 14 1p
[208] [209] [210] [211] [212]
2p, 7, 12q, 13q, 17 2, 6, 7, 12, 13, 17, 18 8q, 17q 1, 7, 17, 19 12q, 17q 1q, 2p, 17q 2p, 17 2p, 4q, 6, 7, 17, 18 1q, 2p, 17q 17pq 2p, 12q, 17q 2, 7, 17
20q
10 10 benign 19 malignant 23 20 20 12 foregut 14 midgut
1q, 9q, 12q, 15q, 17q, 20q 1q, 2pq, 7q, 8, 9q, 11q, 12q, 13q, 15q, 16pq, 17pq, 20pq, 21q 17q no imbalances 5p, 7p, 8q, 12q, 17q 5p, 6p, 7pq, 8q, 13q, 17q 5, 7, 14, 17q, 19q 5, 7, 14 4, 5, 19, 20q 4, 5, 17q, 19
35 (primary and metastases) 7 10 1 and 2 cell lines 11 30 26 24 32 primary 17 Spitz nevi 3 3 34
[213] 1p, 9p, 11q, 15q, 18q 1p, 11q 1p 1p, 11, 14, X 1p, 3p, 4p, 9p, 11q, 14q 1p, 3p, 4p, 9p, 11q, 14q 1p 11 1p, 3p 1p, 22q 22 1p, 2p, 6q, 10, 14q, 22 22q 1p, 6q, 10, 14q, 18q, 22q 1p, 4pq, 6pq, 9p, 10, 11p, 14q, 18pq, 22q, X 13q
[214] [215] [216] [217] [218] [219] [220] [221] [222] [223] [224]
[225] [226]
1p, 9p, 13q 14q 1p, 9p, 11q, 16p, 17p,18p 1p, 9p, 11q, 16p, 17p 1p, 2q, 3p, 4q, 6q, 17p 9p, 18
[227] [228] [229] [230]
1q, 6p, 8q, 16p 6p, 8q 6p, 7q, 8q, 9p, 13q 6p, 7, 8q, 17q 6p, 8q 6p, 8pq 1q, 2p, 6p, 17q, 19 1q, 2p, 6p
1p, 3, 6q, 8p, 13q, 18 3, 6q 3 6q, 16q 3, 6q, 9p 3, 6q, 8p 13q, 16q 16
[231] [232] [233] [234] [235] [236] [237] [238]
1q, 2, 4q, 5p, 6p, 7, 8, 11q, 17, 20 11p 1p, 5pq, 7, 8, 11q, 12q, 13 1, 6, 18q, 20 1, 3q, 5p, 6, 7, 8q, 19, 20, 21, X
6q, 8p, 9, 10
[239]
12q, 20q
13q
[244]
1q, 6p, 7q, 8q, 10q, 14q, 15q, 16, 17, 19, 20q, 21q, 22q 1q, 3p, 6p, 7q, 8q, 10q, 12q, 14q, 15q, 16, 17, 19, 20q, 21q, 22q 1q, 7q, 8q, 16, 17, 19, 20q, 21q, 22q
4q, 9p, 11q, 13q
[245]
1p, 9q, 16, 17, 20q, 22q 3p, 5q, 8p, 10, 11q, 13q, 17p
[240] [241] [242] [243]
Breast tumors 20 microdissected cell groups from 2 ductal invasive carcinomas 7 ductal invasive carcinomas
1 invasive ductal cancer
3 metastases 38 ductal invasive carcimomas: 8 well-differentiated 12 intermediately-differentiated 18 poorly-differentiated
4q, 9p, 11q, 13q
2q, 3q, 4q, 5q, 6q, 11q, 12q, 13q, 16q [246]
1q 11q, 17q
16q 11q, 16q (continued)
Table 1 (continued) Tumor type
S. Struski et al. / Cancer Genetics and Cytogenetics 135 (2002) 63–90
71
Number of analyzed tumors
Gains
Losses
Reference
77 invasive 6 lobular carcinoma in situ 10 primary
6q, 8p, 13q, 16q, 17p 16q 14q, 16q, 17p, 21q, 22q
[247] [248] [249]
22q
[250]
11 cell lines 40
1q, 3q, 8q, 11q, 17q, 20q 1q 1q, 8q, 16p, 17q, 19q, 20q 1q, 8q, 14q, 16p, 17q, 20q 1q, 3q, 7pq, 8q 1q, 8q, 11q, 16p, 17q, 20q
8p, 18q, Xpq 8p, 11q, 13q, 18q
[251] [252]
19 lobular
1q, 3q, 5p, 8q, 11q, 20pq
[253]
29 ductal
1q, 3q, 5p, 11q, 17q, 20pq 1q, 3q, 4q, 5q, 8q, 11q, 17q, 20q, Xq 1q, 3q, 4q, 8q, 13, 20q 1q, 8q, 20q 1q, 8q, 10p, 17q, 19q, 20pq 1q, 8q, 17q, 20q 6q (primary) Xq (metastases) 1q, 6q, 8q, Xq 1q, 3q, 8, 10p, 17q, 20q 1q, 3q, 8q 1q, 5q, 8q 1q, 5pq, 8q 1q, 7q 1q, 6q, 8q, 17q
1p, 11q, 13, 16q, 17pq, 19p, 22 1p, 11q, 13, 17p, 19p 1p, 4q, 8p, 17p, 19p, 22q
[254]
8p, 11p, 12q, 13q, 16q, 20q 3p, 13q, 18q 13q, 14q, 16q, 17p, 22q
[255] [256] [257]
61
53 carcinomas 48 including 25 recurrent 33 carcinomas 9 dcis 33 primary carcinomas and 5 cell lines 29 primary carcinomas and their metastases 5 ductal invasive carcinomas 5 33 carcinomas 44 ductal 8 lobular 18 phyllodes tumors 31 carcinomas lobular in situ including 7 invasive carcinomas 14 atypical lobular hyperplasias 8 primary invasive carcinomas 23 high-grade ductal invasive carcinoma 17 primary 3 primary carcinomas 19 infiltrating lobular carcinomas 46 infiltrating ductal carcinomas versus 19 carcinomas 11 (primary and metastatic)
16pq, 17p, 22q 3p, 6q 6q, 9p, 13q
1q, 8q, 17q
6q, 8p, 9q, 13q, 16q, 17p, Xp
5pq, 10q, 13q, 18q 1q, 6q, 8q, 17q 1q, 8q, 11q, 16p, 17q, 19
25 invasive lobular
1q, 4, 5q, 8q, 11q, 16p, 17q, 19 1q, 6p, 8pq, 10p, 11q, 12pq, 13q, 16p, 17q 1q, 8q, 16p 1q, 8q, 16p, 17q, 20q 1q, 8q, 11q, 16p, 19, 20q, X 1q, 11q, 16p, 19
40 grade I carcinomas 50 grade II carcinomas 39 invasive ductal carcinomas 15 21 BRCA1 mutation carriers 15 BRCA2 mutation carriers 55 primary carcinomas 26 male breast cancers 78 ductal invasive carcinomas: poorly differentiated well differentiated
17p, 22 8p 17p 1p, 8p, 16p, 17p, 19p, 22q 1p, 8p, 16pq, 17p, 19p, 22q 3pq, 6q 6q, 11q, 16pq, 17p, 22q
6q 1q, 8q, 20q 1q, 6p, 11q, 12q, 16p, 17, 20q 1q, 8q, 9p, 10q, 11q, 15q, 16p, 17q 8p, 17q, 19q, 20q 1q, 15q, 17q 8q, 20q
23 fibroadenomas 29 invasive 80 invasive ductal
20 adenocarcinomas
[258] [259] [260] [261] [262] [263] [264] [265]
[266] [267] [268]
6q, 13q, 16q, 17p, Xq 16q
8p, 13q, 16q, 17p, 19q 1p, 4pq, 6q, 11q, 13q, 16q, 17p, 18q, 21q 1p, 4pq, 6q, 11q, 12p, 13q, 16q, 17p, 18q, 19, 21q, 22 17p, 20, 22
17q, 20q 1q, 5p, 8q, 11q, 16p, 17q, 19pq, 20q 1q, 8q, 17q, 20q
16q 1p, 8p, 11q, 13q, 18q 1p, 4q, 5q, 6q, 9p, 11q, 13q, 16q, 21q 2q, 4, 6q, 9p, 13, 18 2q, 4pq, 5q, 12q 6q, 13q 6q, 8p, 9p, 11q, 13q, 16q, 17p, 18q, Xq 6q, 8p, 13q
8q, 17q 1q
17p 16q
[269] [270]
[271] [272] [273] [274]
[275] [276] [277] [278] [279] [280] [281] [282]
(continued)
Table 1 72 (continued) Tumor type
Female genital organs Ovarian cancers
S. Struski et al. / Cancer Genetics and Cytogenetics 135 (2002) 63–90 Number of analyzed tumors
Gains
Losses
Reference
18 initial dcis lesions versus dcis recurrences
17q
8p, 17p
[283]
49 including 47 malignant
1pq, 2q, 3q, 6p, 8q, 12p, 19q, 20q 3q, 8q, 20q 1q, 3q, 7p, 8q, 18p, 19p, 20q 19q 1q, 3q, 5p, 7q, 8q, 9p, 12p, 17q, 19q, 20pq 8q, 17q, 20q, 21q 1q, 2p, 3q, 6p, 7q, 8q, 10q, 11q, 17q 2q, 3q, 6p, 7q, 8q, 11q
4, 13q, 16q, 18q, X
[284]
16q, 17pq 4q, 11p, 12p, 13q, 18q
[285] [286]
Xp 4q, 5q, 9q, 16q, 17pq, 22q
[287] [288]
19p 8p, 9p, 13q
[289] [290]
8p
[291]
1q, 3q, 6p, 8q
8p, Xq
1q, 3q, 7q, 8q, 12p 5, 7, 8q, 13q, 14q, 15q, 20 1q, 3q, 7q, 8q, 12p, 20q 1p, 2q, 4, 5
8p, 17p
56 106 primary 29 chemoresistant 27 carcinomas 12 adenocarcinomas 24 carcinomas 16 BRCA1 mutation-positive inherited carcinomas 4 BRCA2 mutation-positive inherited carcinomas 20 adenocarcinomas 10 borderline
Cancers of the cervix uteri
24 carcinomas 6 dysplasias 62 carcinomas 18 endometriotic tissues 10 dysplasias (4 mild, 6 moderate) 13 severe dysplasias 10 invasive carcinomas 30 advanced-stage carcinomas 12 primary carcinomas 47 endometrial hyperplasia 17 dysplasias/carcinomas 29 advanced-stage carcinomas 27 primary carcinomas
Carcinomas of the vulva Ovarian germ cell Tumors Fallopian tube carcinomas
24 uterine serous carcinomas 24 uterine endometrioid carcinomas 14 endometrial carcinomas 51 endometrial carcinomas 15 endometrial cancers 10 primary invasive 21 12 20 primary
Male genital organs Testicular germ cell
11 15 primary 4 yolk sac 16 seminomas 17 17 chemotherapy-resistant 8 seminomas 10 nonseminomas 8 seminomas, 14 nonseminomas, 2 combined tumors
6q, 7q, 17q no recurrent aberrations 3q (1 case) 3q 1q, 3q, 5p, 6p, 8, 9p, 11q, 12p, 14q, 17q, 19q, 20 1pq, 3q, 5p, 14q, 16pq, 17q, 19, 20q, 22q 4q 3q 1q, 3q, 5p, 8q, 15q, Xq 1q, 3q, 5p, 8q, 16q, 20q, Xq 1q, 3q, 5p, 6p, 8q 1q, 2q, 8q 1q, 8q, 10pq, 13q 1q, 8q, 19p 1q, 8q 3q, 8p 1q, 4q, 8, 12p, 21 1q, 2q, 3q, 5p, 6p, 7q, 8q, 12p, 14q 1q, 3q, 5p, 7q, 8q, 12p, 20q 2p, 4q, 6p, 8, 12p, 14, 7, 8, 12p, X 3p, 9q, 12p, 17, 19q, 20q, 22 1q, 6pq, 7, 8, 9q, 12, 14q, 15q, 21q, 22q 12p 1q, 2p, 7q, 9q, 15q, 20q 1q, 2, 3, 6, 7p, 8, 12pq, 14, 15, 20, 21, X 1q, 2, 3q, 6, 7p, 8, 12pq, 14, 15, 16, 17, 20, 21, X 1q, 2pq, 5q, 6q, 7, 8, 12p, 13q, Xq
[292] 5q, 8p, 13q, 16q, Xq 6q, 13q 3p, 4pq, 5q, 6q, 9p, 11p, 13q, 18q, Xq 1p, 5p, 6q, 7p, 9q, 16, 22q
[293] [294] [295]
2q, 3p, 4, 8p, 13q
[298]
2q, 3p, 4, 5q, 6q, 11q, 13q
[299]
1p, 16p, 20q
[300] [301]
[296] [297]
3p, 4p, 6q, 11q, 13q 3p
[302]
4q, 15q, 18q
[303]
4q 3p, 4p, 5q 13 1p, 6q, 8p, 16q, 17p, 18q, 22q, Xq 4q, 5q, 8p, 18q
[304] [305] [306] [307] [308] [309] [310]
13 13q 4q, 6q, 8q
[311] [312] [313]
4, 5, 11, 13q, 16pq, 18q
[314] [315]
4, 5, 9, 11, 13, 17, 18
[316]
4, 5, 9, 10, 11, 12q, 13, 18 1p, 4, 5, 9q, 11q, 16p, 18p, 19, 22
[317] (continued)
Table 1 (continued) Tumor type Prostate cancers
S. Struski et al. / Cancer Genetics and Cytogenetics 135 (2002) 63–90 Number of analyzed tumors
Gains
Losses
Reference
18 31 including 20 metastatic
8q 1q, 2p, 3q, 8q, 11p
[318] [319]
32 primary 27
5q, 8q 1q, 8q, 10q, 17q, Xpq
10 including 3 metastatic 6 37 carcinomas
7q, 8q, 9q, 16p, 20, 22 Xq 7q, 8q, 18q, Xq
21 primary 16 adenocarcinomas
3p, 6p, 7q, 10q, 11q, 16q 6q, 8p, 9p, 13q, 16q, 18q 16q
[327] [328] [329]
16 carcinomas, 5 metastases
7q, 19pq 3q, 4, 5, 6q, 7q, 8q, 9p, 12q, 13q, Xq 4q, 6q, 8q, 21q, X 7, 8q, X 1p, 2p, 3q, 7, 8q, 11q, 16p, 17, 19 7, 8q, 9q, 12q, 15q, 16
8p, 13q, 16pq, 17pq, 20q, Y 2q, 5q, 6q, 8p, 10q, 13q, 15q, 16q, 17p 5q, 8p, 13q, 16q 2q, 4q, 5q, 6q, 8p, 13q, 16q, 18q 16q, 18q 6q 1p, 8p, 10q, 13q, 16q, 19, 22 6q, 8p, 13q
[330]
12 intraepithelial neoplasias
7, 8q, Xq
2q, 4q, 5q, 6q, 8p, 13q, 18q, Xq 4q, 5q, 8p, 13q, 18q
20 high-grade 14 (3 primary,1 metastatic, 7 xenografts, 3 metastatic xenografts) 2 (primary and metastases) 16 7 parosteal 11 10 31 primary high-grade 29 50
1p, 3q, 6p, 8q, 12pq 1q, 6p, 8q, 17p
3p, 10q, 11p, 13
[331] [332]
20 31 primary, 9 recurrent 4 invasive
Bone and soft tissues Osteosarcomas
Chondrosarcomas
Ewing sarcomas
Malignant fibrous Histiocytomas
Soft tissue sarcomas
Liposarcomas
Leiomyosarcomas
Synovial sarcomas
73
20 17 28 primary 20 58 (43 primary, 13 recurrent, 2 metastases) 30 (13 primary, 17 recurrent)
19 34 54a 12 angiomyolipomas 30 epithelioid sarcomas 69b 14 6 well-differentiated 14 8 12 benign lipomas 29 12 uterine leiomyomas, 8 uterine 14 14 uterine leiomyomas, 8 uterine 14 leiomyomas 69 67
17p, 19q 1p, 4q, 5p, 7q, 8q 2pq, 11p, 12q, 14, 15q 3q, 8q, 12q, 17p, Xpq 6p, 12pq 1q, 8q, 14q, Xp 1q, 12q, 14q, 17p, 20pq 5q, 6p, 7, 8q, 12q, 14q, 20pq 1q, 8, 12 1q, 8q 1q, 6p, 7q, 8, 12 3, 4q, 5p, 6, 7, 12q, 14q, 15q, 18p 1p, 5p, 7pq, 9q, 13q 1pq, 3q, 5p, 13q, 15q, 17pq, 18p, 19pq, 20q, 22q, Xp 4q, 8pq, 9q, 12p, 15q 1q, 17q, 20q 1q, 12q 1q, 6p, 9q, 11q 7p, 8q, 13 1q, 12q 12q 1q, 8q, 12q, 19q, 20q 1q, 12q no changes 1q, 5p, 6q, 8q, 16p, 17p 1p, 9q, 12q, 19 1q, 8, 12q, 17, 19p, X 5p, 8q, 17pq, Xp 14, 19 1pq 3, 4, 5, 8, 17 2, 8, 12q 1q, 2p, 8pq, 12q, 17q, 21q
[320] [321] [322] [323] [324] [325] [326]
6q 6q, 9p 6q, 18q, Xq
[333] [334] [335] [336] [337] [338] [339] [340]
16q 2q, 4q, 8p, 9p, 12p, 19p
[341] [21] [342] [343]
13q
[344]
1q, 2pq, 3p, 4q, 9p, 10pq, 11pq, 12p, 13q, 16q
[345]
7p 5q, 13 2q, 6q, 8p, 10p
9p, 10q, 11q, 13q 2q, 5q, 11q 1p, 3p, 4q, 9p, 13q 2pq, 11q, 13, 14
9p, 13q
[346] [347] [348] [349] [350] [351] [21] [352] [353] [354]
10q, 13q 1p, 7q 1p, 10q, 13q, 14q, 22q 2pq, 10q, 13q 1, 4
[355] [356] [357] [358]
16p 3p, 13q 3pq, 10q, 13q
[75] [359] [360] (continued)
74 Table 1 (continued) Tumor type Rhabdomyosarcomas
Alveolar soft part sarcoma Solitary fibrous tumors
Dermatofibrosarcoma Protuberans Desmoid tumors Radiation-associated Sarcomas Trophoblastic tumors Choriocarcinomas Hematological neoplasias Chronic lymphoproliferative disorders
Lymphomas T-cell B-cell
Small lymphocytic Lymphoma Mantle Cell Lymphoma
Follicular Lymphoma Marginal zone B-cell Lymphoma/MALT
Primary mediastin Lymphoma
Diffuse large cell
S. Struski et al. / Cancer Genetics and Cytogenetics 135 (2002) 63–90 Number of analyzed tumors
Gains
Losses
Reference
12 embryonal 34 alveolar 10 embryonal 11 alveolar 10 embryonal, 34 alveolar 2 alveolar 13 12 15 11 hemangiopericytomas 3 7 28 10c
2, 7, 8, 11, 12, 13q, 20 2p, 12q, 13q 2, 5, 6, 7, 8, 11, 12 2p, 12q 2, 7, 8, 12, 13, 17, 18, 19 1q, 2p, 8q, 12q, 13q, 17 1p, 13q 1q, 8q, 12q, 16p 8, 15q 5q, 7, 8, 12, 18 no changes 17, 22 17q, 22q 1q, 9p, 20 5p, 7q, 15q
1p, 6, 9q, 14q, 17 9q, 16q, 17 19
[361] [362] [363]
10, 14, 15, 16
[364]
4q, 13q, 21q 13, 20q
[365] [366] [367] [368]
5q, 6q, 13q 13
[369] [370] [371] [372]
12
7q
8p
[373]
28 CLL 88 CLL 25 CLL 12 hairy cell leukemia 15 typical, 28 atypical
8q, 12 12 12 5 3, 4, 5, 6, 12, 13, 18
6q, 11q, 13q, 17p 11q, 13q, 17p 11q, 13q 7q 17p
[374] [375] [376] [377] [378]
12 T-cell leukemia/lymphoma 1 stage IV 108 (42 chronic B-cell leukemias, 5 mantle cell lymphomas, 61 agressive B-cell lymphomas)
2p, 7q, 14q 6p, 7q, 10p, Xp 2p, 18q, Xq
4q
[379] [380] [381]
7 45 27 with t(11;14) 27 34 28 centrofollicular lymphomas 3 MALT 25 MZBCL 29 MZBCL
12 3q, 7p, 8q, 9q, 12q, 18q 3q, 8q, 12q, 18q 3q, 8q, 15q 2, 6p, 7, 8q, 18q, X 1p, 6p, 7, 8, 12, 18, X 7q, 11q 1q, 3, 8q, 18, X 3q, 4q, 5pq, 9q, 12q, 17q, 20q
43 26 5 31 8 primary central nervous system lymphomas 1 28 32
9p, Xq 2p, 9p, 12q, Xq 9p 1q, 2p, 3q, 8q, 11, 12 12, 18q, X
26 20 22 19 Hodgkin disease
Multiple myelomas/Plasma cell leukemias
19 lymphocyte predominance HD 12 9 24 plasmocytomas
2p 18q 1q, 3, 6p, 7, 10p, 11, 12, 17p, 18, X 18q 1q, 2p, 8q, 9q, 12q, 13q, 16p, 18q, 22q 1q, 7q, 11, 12q, 18q 1q, 9q, 11q,12pq, 16p, 17q, 18q, 22q 1, 2q, 3, 4q, 5q, 6, 8q, 11q, 12q, X 2p, 4pq, 9p, 12q 1p, 7q 1q, 5p, 6p, 7p, 8q, 9q, 11q, 15, 19p
1p, 6q, 9p, 10p, 11q, 13, 17p 1p, 6q, 8p, 9p, 11q, 13q 1p, 6q, 9p, 11q, 13q 6q, 17p 6q 9, 17 7q, 17p
[382] [383] [384] [385] [386] [387] [388] [389] [390]
6q, 17p 6q
[391] [392] [393] [394] [395]
1p, 6q, 8p, X
[396] [21] [397]
13
[398] [399] 6pq, 17p, 18p, 20 6q
[400] [401]
17
[402]
16q 1p, 6q, 8p, 13q, 14q, X
[403] [404] [405] (continued)
S. Struski et al. / Cancer Genetics and Cytogenetics 135 (2002) 63–90
75
Table 1 (continued) Tumor type
Acute myeloid leukemias
Acute lymphoid leukemias
Natural killer cell Lymphoma/leukemia Myeloproliferative disorders
Myelodysplastic syndromes
Number of analyzed tumors
Gains
Losses
Reference
2 MM, 5 plasma cell leukemias, 1 gastric plasmacytoma, 13 cell lines 25 MM, 4 monoclonal gammopathy, 1 Waldenstrom 25 MM 5 plasma cell leukemias
1q, 3p, 3q, 7, 8q, 11q
6q, 13q, 14q, 17p
[406]
9q, 11q, 12q, 15q, 17q, 19, 22q 1q, 3q, 9q, 11q, 15q 1q
6q, 13, 16q
[407]
13q (28%), 16 (12%) 2q, 6p, 13q (80%), 16 (80%) 7q
[408]
AML M5 AML M2 AML M4 AML M2 AML M2 10 AML M2 25 21 2 AML secondary to MDS 3 AML secondary to MDS 1 AML secondary to CLL 1 AML secondary to essential thrombocythemia 1 AML secondary to thrombopenia 1 AML secondary to malignant histiocytosis 1 AML secondary to breast cancer 19 11 20 AML M3 AML 9 3 AML secondary to MDS 3 secondary AML 65 13 72 71 (50 B, 21 T) 14 10 11 CML blast crisis 38 CML 6 CML RAEB 10 7 RAEB-T 3 2 RAEB 45
6 17q 13 8 4, 6, 18, 21 9p, 11q 8q 1, 8, 18 13 3q, 7q, 13q 4q, 21
17p 7q 5q, 7 5q, 7q, 12p 5q, 7, 9q, 18, 20q 5q 6q, 17pq, 18p 7pq 5q, 6q, 7q
8, 20 5pq
11q
6pq, 8, 13 6, 8 8q 8, 17q 8q 8q, 11q 8q, 11q 5q, 12p, 20q 4p, 9q, 10q, 19, 21, 22 12p 4, 6, 10, 14, 17, 18, 21, X 4, 8, 10, 14, 17, 18, 21, X 1q, 10, 17, 18, 21, X 4, 6, 10, 14, 17, 18, 21, X 4, 6, 8, 10, 14, 17, 18, 21, X, Y 1p, 6p, 11q, 12q, 17q, 19p, 20q, Xp 8q 17q, 20 8
5q, 6p, 7pq 7, X 5q, 7q, 17p 5q, 7q
1, 16, 17
Xq 21
[409]
5q, 7q 3p, 5q, 7q, 12q, 13, 17p 5q
[410] [411] [412] [413] [414]
[415] [416] [417] [418] [419] [420]
9p, 12p 6q(T), 9p, 12p 9p
[421] [422] [423] [424] [425] [426] [427]
6q, 13q, 11q, 17p, X
[428]
17p 7 5q 5q, 7, 13 5q, 7, 20q 5q 5q, Xp
[429] [430] [421] [409] [410] [413] [420] [421]
5, 7, Y
[431]
6q, 7p, 9p, 12p, 13q, X
Abbreviations: AML, acute myelogenous leukemia; CLL, chronic lymphocytic leukemia; CML, chronic myelogenous leukemia; dcis, ductal carcinoma in situ; MDS, myelodysplastic syndrome; MM, multiple myeloma; NSCLC, nonsmall cell lung carcinoma; RAEB, refractory anemia with excess blasts; RAEB-T, refractory anemia with excess blasts in transformation; SCC, small cell carcinomas; SCLC, small cell lung carcinoma. a Fibrosarcoma (1), leiomyosarcomas (12), liposarcomas (22), malignant fibrous histiocytoma (16), and malignant schwannomas (3). b Malignant fibrous histiocytomas (20), liposarcomas (23), leiomyosarcomas (6), synovial sarcomas (4), primitive neuroectodermal tumors (4), and various other subtypes (12). c Malignant fibrohistiocytomas (2), leiomyosarcomas (2), pleiomorphic sarcomas (2), osteosarcoma (1), fibrosarcoma (1), myxofibrosarcoma (1), and spindle cell sarcoma (1). The studies published between 1993 and May 2001 are presented. For each publication, the number of studied cases and the comparative genomic hybridization results (gains and losses) are mentioned. These results are classified according to the type of tumor. We eliminated publications having studied only one case or only one precise chromosomal region or commercial cell lines.
76
S. Struski et al. / Cancer Genetics and Cytogenetics 135 (2002) 63–90
Fig. 1. Frequency of chromosomal gains and losses. This table was established from the review of the literature (Table 1). The number of publications and total number of studied cases are indicated in parentheses. Imbalances are classed by frequency: presence in 70–100% of cases (black square), 40–69% of cases (gray square), and less than 40% of cases (crosshatched square). The gains or losses observed only once were eliminated. Another limiting criterion was that at least 100 tumors had to be studied in each considered group.
of cancer are mainly in the use of metaphase chromosomes as hybridization targets; therefore, its resolution is at the chromosomal banding level. Thus, array technology adapted to CGH (array-CGH) will allow the resolution to increase from a cytogenetic level to a molecular level [436–438]. The establishment of a pattern of genetic abnormalities for each tumor type should allow precise different histological classifications and the prediction of which chemotherapeutic drugs will be most effective in the treatment of a given type of cancer.
References [1] Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, Pinkel D. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 1992;258: 818–21. [2] Balsara BR, Sonoda G, du Manoir S, Siegfried JM, Gabrielson E, Testa JR. Comparative genomic hybridization analysis detects frequent, often high-level, overrepresentation of DNA sequences at 3q, 5p, 7p, and 8q in human non-small cell lung carcinomas. Cancer Res 1997;57:2116–20. [3] Bjorkqvist AM, Husgafvel-Pursiainen K, Anttila S, Karjalainen A,
S. Struski et al. / Cancer Genetics and Cytogenetics 135 (2002) 63–90
77
Fig. 1. Continued.
[4]
[5]
[6]
[7]
Tammilehto L, Mattson K, Vainio H, Knuutila S. DNA gains in 3q occur frequently in squamous cell carcinoma of the lung, but not in adenocarcinoma. Genes Chromosom Cancer 1998;22:79–82. Bjorkqvist AM, Tammilehto L, Nordling S, Nurminen M, Anttila S, Mattson K, Knuutila S. Comparison of DNA copy number changes in malignant mesothelioma, adenocarcinoma and large-cell anaplastic carcinoma of the lung. Br J Cancer 1998;77:260–9. Levin NA, Brzoska P, Gupta N, Minna JD, Gray JW, Christman MF. Identification of frequent novel genetic alterations in small cell lung carcinoma. Cancer Res 1994;54:5086–91. Levin NA, Brzoska PM, Warnock ML, Gray JW, Christman MF. Identification of novel regions of altered DNA copy number in small cell lung tumors. Genes Chromosom Cancer 1995;13:175–85. Lu YJ, Dong XY, Shipley J, Zhang RG, Cheng SJ. Chromosome 3 imbalances are the most frequent aberration found in non-small cell lung carcinoma. Lung Cancer 1999;23:61–6.
[8] Luk C, Tsao M, Bayani J, Shepherd F, Squire JA. Molecular cytogenetic analysis of non-small cell lung carcinoma by spectral karyotyping and comparative genomic hybridization. Cancer Genet Cytogenet 2001;125:87–99. [9] Michelland S, Gazzeri S, Brambilla E, Robert-Nicoud M. Comparison of chromosomal imbalances in neuroendocrine and non-smallcell lung carcinomas. Cancer Genet Cytogenet 1999;114:22–30. [10] Petersen I, Bujard M, Petersen S, Wolf G, Goeze A, Schwendel A, Langreck H, Gellert K, Reichel M, Just K, du Manoir S, Cremer T, Dietel M, Ried T. Patterns of chromosomal imbalances in adenocarcinoma and squamous cell carcinoma of the lung. Cancer Res 1997;57:2331–5. [11] Petersen I, Langreck H, Wolf G, Schwendel A, Psille R, Vogt P, Reichel MB, Ried T, Dietel M. Small-cell lung cancer is characterized by a high incidence of deletions on chromosomes 3p, 4q, 5q, 10q, 13q and 17p. Br J Cancer 1997;75:79–86. [12] Petersen I, Petersen S, Bockmuhl U, Schwendel A, Wolf G, Dietel M.
78
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
S. Struski et al. / Cancer Genetics and Cytogenetics 135 (2002) 63–90 [Comparative genomic hybridization of bronchial carcinomas and their metastases]. Verh Dtsch Ges Pathol 1997;81:297–305. Petersen S, Aninat-Meyer M, Schluns K, Gellert K, Dietel M, Petersen I. Chromosomal alterations in the clonal evolution to the metastatic stage of squamous cell carcinomas of the lung. Br J Cancer 2000;82:65–73. Ried T, Petersen I, Holtgreve-Grez H, Speicher MR, Schrock E, du Manoir S, Cremer T. Mapping of multiple DNA gains and losses in primary small cell lung carcinomas by comparative genomic hybridization. Cancer Res 1994;54:1801–6. Schwendel A, Langreck H, Reichel M, Schrock E, Ried T, Dietel M, Petersen I. Primary small-cell lung carcinomas and their metastases are characterized by a recurrent pattern of genetic alterations. Int J Cancer 1997;74:86–93. Tarkkanen M, Huuhtanen R, Virolainen M, Wiklund T, Asko-Seljavaara S, Tukiainen E, Lepantalo M, Elomaa I, Knuutila S. Comparison of genetic changes in primary sarcomas and their pulmonary metastases. Genes Chromosom Cancer 1999;25:323–31. Walch AK, Zitzelsberger HF, Aubele MM, Mattis AE, Bauchinger M, Candidus S, Prauer HW, Werner M, Hofler H. Typical and atypical carcinoid tumors of the lung are characterized by 11q deletions as detected by comparative genomic hybridization. Am J Pathol 1998;153:1089–98. Balsara BR, Bell DW, Sonoda G, De Rienzo A, du Manoir S, Jhanwar SC, Testa JR. Comparative genomic hybridization and loss of heterozygosity analyses identify a common region of deletion at 15q11.115 in human malignant mesothelioma. Cancer Res 1999;59:450–4. Bjorkqvist AM, Tammilehto L, Anttila S, Mattson K, Knuutila S. Recurrent DNA copy number changes in 1q, 4q, 6q, 9p, 13q, 14q and 22q detected by comparative genomic hybridization in malignant mesothelioma. Br J Cancer 1997;75:523–7. Kivipensas P, Bjorkqvist AM, Karhu R, Pelin K, Linnainmaa K, Tammilehto L, Mattson K, Kallioniemi QP, Knuutila S. Gains and losses of DNA sequences in malignant mesothelioma by comparative genomic hybridization. Cancer Genet Cytogenet 1996;89:7–13. Knuutila S, Armengol G, Bjorkqvist AM, el-Rifai W, Larramendy ML, Monni O, Szymanska J. Comparative genomic hybridization study on pooled DNAs from tumors of one clinical-pathological entity. Cancer Genet Cytogenet 1998;100:25–30. Bergamo NA, Rogatto SR, Poli-Frederico RC, Reis PP, Kowalski LP, Zielenska M, Squire JA. Comparative genomic hybridization analysis detects frequent over-representation of DNA sequences at 3q, 7p, and 8q in head and neck carcinomas. Cancer Genet Cytogenet 2000;119:48–55. Bockmuhl U, Petersen I, Schwendel A, Dietel M. [Genetic screening of head-neck carcinomas using comparative genomic hybridization]. Laryngorhinootologie 1996;75:408–14. Bockmuhl U, Schwendel A, Dietel M, Petersen I. Distinct patterns of chromosomal alterations in high- and low-grade head and neck squamous cell carcinomas. Cancer Res 1996;56:5325–9. Bockmuhl U, Petersen S, Schmidt S, Wolf G, Jahnke V, Dietel M, Petersen I. Patterns of chromosomal alterations in metastasizing and nonmetastasizing primary head and neck carcinomas. Cancer Res 1997;57:5213–6. Bockmuhl U, Wolf G, Schmidt S, Schwendel A, Jahnke V, Dietel M, Petersen I. Genomic alterations associated with malignancy in head and neck cancer. Head Neck 1998;20:145–51. Bockmuhl U, Schmidt S, Petersen S, Petersen I. [Deletion of chromosome 10q—a marker for metastasis of head-neck carcinomas]? Laryngorhinootologie 2000;79:81–5. Brzoska PM, Levin NA, Fu KK, Kaplan MJ, Singer MI, Gray JW, Christman MF. Frequent novel DNA copy number increase in squamous cell head and neck tumors. Cancer Res 1995;55:3055–9. Gebhart E, Liehr T, Wolff E, Ries J, Fiedler W, Steininger H, Koscielny S, Girod S. Pattern of genomic imbalances in oral squamous cell carcinomas with and without an increased copy number of 11q13. Int J Oncol 1998;12:1151–5. Hashimoto Y, Oga A, Okami K, Imate Y, Yamashita Y, Sasaki K. Relationship between cytogenetic aberrations by CGH coupled with tis-
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
sue microdissection and DNA ploidy by laser scanning cytometry in head and neck squamous cell carcinoma. Cytometry 2000;40:161–6. Hermsen MA, Joenje H, Arwert F, Braakhuis BJ, Baak JP, Westerveld A, Slater R. Assessment of chromosomal gains and losses in oral squamous cell carcinoma by comparative genomic hybridisation. Oral Oncol 1997;33:414–8. Komiyama T, Matsumura K, Tsuchida N. Comparison of DNA copy numbers in original oral squamous cell carcinomas and corresponding cell lines by comparative genomic hybridization. Jpn J Cancer Res 1997;88:476–83. Liehr T, Ries J, Wolff E, Fiedler W, Dahse R, Ernst G, Steininger H, Koscielny S, Girod S, Gebhart E. Gain of DNA copy number on chromosomes 3q26-qter and 5p14-pter is a frequent finding in head and neck squamous cell carcinomas. Int J Mol Med 1998;2:173–9. Matsumura K. [Detection of DNA amplifications and deletions in oral squamous cell carcinoma cell lines by comparative genomic hybridization]. Kokubyo Gakkai Zasshi 1995;62:513–31. Miyahara Y. [Correlation of DNA copy number changes to malignancy in oral squamous cell carcinomas by comparative genomic hibridization]. Kokubyo Gakkai Zasshi 2000;67:193–200. Okafuji M, Ita M, Hayatsu Y, Shinozaki F, Oga A, Sasaki K. Identification of genetic aberrations in cell lines from oral squamous cell carcinomas by comparative genomic hybridization. J Oral Pathol Med 1999;28:241–5. Okafuji M, Ita M, Oga A, Hayatsu Y, Matsuo A, Shinzato Y, Shinozaki F, Sasaki K. The relationship of genetic aberrations detected by comparative genomic hybridization to DNA ploidy and tumor size in human oral squamous cell carcinomas. J Oral Pathol Med 2000;29:226–31. Redon R, Muller D, Caulee K, Wanherdrick K, Abecassis J, Du Manoir S. A simple specific pattern of chromosomal aberrations at early stages of head and neck squamous cell carcinomas: PIK3CA but not p63 gene as a likely target of 3q26-qter gains. Cancer Res 2001;61:4122–29. Speicher MR, Howe C, Crotty P, du Manoir S, Costa J, Ward DC. Comparative genomic hybridization detects novel deletions and amplifications in head and neck squamous cell carcinomas. Cancer Res 1995;55:1010–13. Weber RG, Scheer M, Born IA, Joos S, Cobbers JM, Hofele C, Reifenberger G, Zoller JE, Lichter P. Recurrent chromosomal imbalances detected in biopsy material from oral premalignant and malignant lesions by combined tissue microdissection, universal DNA amplification, and comparative genomic hybridization. Am J Pathol 1998;153:295–303. Welkoborsky HJ, Bernauer HS, Riazimand HS, Jacob R, Mann WJ, Hinni ML. Patterns of chromosomal aberrations in metastasizing and nonmetastasizing squamous cell carcinomas of the oropharynx and hypopharynx. Ann Otol Rhinol Laryngol 2000;109:401–10. Wolff E, Girod S, Liehr T, Vorderwulbecke U, Ries J, Steininger H, Gebhart E. Oral squamous cell carcinomas are characterized by a rather uniform pattern of genomic imbalances detected by comparative genomic hybridisation. Oral Oncol 1998;34:186–90. Chen YJ, Ko JY, Chen PJ, Shu CH, Hsu MT, Tsai SF, Lin CH. Chromosomal aberrations in nasopharyngeal carcinoma analyzed by comparative genomic hybridization. Genes Chromosom Cancer 1999;25:169–75. Chien G, Yuen PW, Kwong D, Kwong YL. Comparative genomic hybridization analysis of nasopharygeal carcinoma: consistent patterns of genetic aberrations and clinicopathological correlations. Cancer Genet Cytogenet 2001;126:63–7. Fan CS, Wong N, Leung SF, To KF, Lo KW, Lee SW, Mok TS, Johnson PJ, Huang DP. Frequent c-myc and Int-2 overrepresentations in nasopharyngeal carcinoma. Hum Pathol 2000;31:169–78. Fang Y, Guan X, Guo Y, Sham J, Deng M, Liang Q, Li H, Zhang H, Zhou H, Trent J. Analysis of genetic alterations in primary nasopharyngeal carcinoma by comparative genomic hybridization. Genes Chromosom Cancer 2001;30:254–60.
S. Struski et al. / Cancer Genetics and Cytogenetics 135 (2002) 63–90 [47] Hui AB, Lo KW, Leung SF, Teo P, Fung MK, To KF, Wong N, Choi PH, Lee JC, Huang DP. Detection of recurrent chromosomal gains and losses in primary nasopharyngeal carcinoma by comparative genomic hybridisation. Int J Cancer 1999;82:498–503. [48] Torenbeek R, Hermsen MA, Meijer GA, Baak JP, Meijer CJ. Analysis by comparative genomic hybridization of epithelial and spindle cell components in sarcomatoid carcinoma and carcinosarcoma: histogenetic aspects. J Pathol 1999;189:338–43. [49] Kujawski M, Aalto Y, Jaskula-Sztul R, Szyfter W, Szmeja Z, Szyfter K, Knuutila S. DNA copy number losses are more frequent in primary larynx tumors with lymph node metastases than in tumors without metastases. Cancer Genet Cytogenet 1999;114:31–4. [50] Du Plessis L, Dietzsch E, Van Gele M, Van Roy N, Van Helden P, Parker MI, Mugwanya DK, De Groot M, Marx MP, Kotze MJ, Speleman F. Mapping of novel regions of DNA gain and loss by comparative genomic hybridization in esophageal carcinoma in the Black and Colored populations of South Africa. Cancer Res 1999;59:1877–83. [51] Mayama T, Fukushige S, Shineha R, Nishihira T, Satomi S, Horii A. Frequent loss of copy number on the long arm of chromosome 21 in human esophageal squamous cell carcinoma. Int J Oncol 2000;17:245–52. [52] Moskaluk CA, Hu J, Perlman EJ. Comparative genomic hybridization of esophageal and gastroesophageal adenocarcinomas shows consensus areas of DNA gain and loss. Genes Chromosom Cancer 1998;22:305–11. [53] Pack SD, Karkera JD, Zhuang Z, Pak ED, Balan KV, Hwu P, Park WS, Pham T, Ault DO, Glaser M, Liotta L, Detera-Wadleigh SD, Wadleigh RG. Molecular cytogenetic fingerprinting of esophageal squamous cell carcinoma by comparative genomic hybridization reveals a consistent pattern of chromosomal alterations. Genes Chromosom Cancer 1999;25:160–8. [54] Shinomiya T, Mori T, Ariyama Y, Sakabe T, Fukuda Y, Murakami Y, Nakamura Y, Inazawa J. Comparative genomic hybridization of squamous cell carcinoma of the esophagus: the possible involvement of the DPI gene in the 13q34 amplicon. Genes Chromosom Cancer 1999;24: 337–44. [55] Tada K, Oka M, Hayashi H, Tangoku A, Oga A, Sasaki K. Cytogenetic analysis of esophageal squamous cell carcinoma cell lines by comparative genomic hybridization: relationship of cytogenetic aberrations to in vitro cell growth. Cancer Genet Cytogenet 2000;117:108–12. [56] Tada K, Oka M, Tangoku A, Hayashi H, Oga A, Sasaki K. Gains of 8q23-qter and 20q and loss of 11q22-qter in esophageal squamous cell carcinoma associated with lymph node metastasis. Cancer 2000; 88:268–73. [57] Van Dekken H, Vissers CJ, Tilanus HW, Tanke HJ, Rosenberg C. Clonal analysis of a case of multifocal oesophageal (Barrett’s) adenocarcinoma by comparative genomic hybridization. J Pathol 1999; 188:263–6. [58] Walch AK, Zitzelsberger HF, Bruch J, Keller G, Angermeier D, Aubele MM, Mueller J, Stein H, Braselmann H, Siewert JR, Hofler H, Werner M. Chromosomal imbalances in Barrett’s adenocarcinoma and the metaplasia-dysplasia-carcinoma sequence. Am J Pathol 2000;156:555–66. [59] Xiao F, Wang X, Wang M, Guan X, Wu M. [Molecular cytogenetic study on four human esophageal cancer cell lines]. Chung Hua I Hsueh I Chuan Hsueh Tsa Chih 1998;15:75–7. [60] Fu S, Wang B, Guan X, Xia J, Lu S, Zhang G, Li P. [Comparative genomic hybridization analysis of primary gastric carcinomas]. Chung Hua I Hsueh I Chuan Hsueh Tsa Chih 1999;16:353–5. [61] Fukuda Y, Kurihara N, Imoto I, Yasui K, Yoshida M, Yanagihara K, Park JG, Nakamura Y, Inazawa J. CD44 is a potential target of amplification within the 11p13 amplicon detected in gastric cancer cell lines. Genes Chromosom Cancer 2000;29:315–24. [62] Guan XY, Fu SB, Xia JC, Fang Y, Sham JS, Du BD, Zhou H, Lu S, Wang BQ, Lin YZ, Liang Q, Li XM, Du B, Ning XM, Du JR, Li P, Trent JM. Recurrent chromosome changes in 62 primary gastric carcinomas detected by comparative genomic hybridization. Cancer Genet Cytogenet 2000;123:27–34.
79
[63] Kim YH, Kim NG, Lim JG, Park C, Kim H. Chromosomal alterations in paired gastric adenomas and carcinomas. Am J Pathol 2001;158:655–62. [64] Koizumi Y, Tanaka Si, Mou R, Koganei H, Kokawa A, Kitamura R, Yamauchi H, Ookubo K, Saito T, Tominaga S, Matsumura K, Shimada H, Tsuchida N, Sekihara H. Changes in DNA copy number in primary gastric carcinomas by comparative genomic hybridization. Clin Cancer Res 1997;3:1067–76. [65] Kokkola A, Monni O, Puolakkainen P, Larramendy ML, Victorzon M, Nordling S, Haapiainen R, Kivilaakso E, Knuutila S. 17q12-21 amplicon, a novel recurrent genetic change in intestinal type of gastric carcinoma: a comparative genomic hybridization study. Genes Chromosom Cancer 1997;20:38–43. [66] Kokkola A, Monni O, Puolakkainen P, Nordling S, Haapiainen R, Kivilaakso E, Knuutila S. Presence of high-level DNA copy number gains in gastric carcinoma and severely dysplastic adenomas but not in moderately dysplastic adenomas. Cancer Genet Cytogenet 1998;107:32–6. [67] Koo SH, Kwon KC, Shin SY, Jeon YM, Park JW, Kim SH, Noh SM. Genetic alterations of gastric cancer. Comparative genomic hybridization and fluorescence in situ hybridization studies. Cancer Genet Cytogenet 2000;117:97–103. [68] Larramendy ML, el-Rifai W, Kokkola A, Puolakkainen P, Monni O, Salovaara R, Aarnio M, Knuutila S. Comparative genomic hybridization reveals differences in DNA copy number changes between sporadic gastric carcinomas and gastric carcinomas from patients with hereditary nonpolyposis colorectal cancer. Cancer Genet Cytogenet 1998;106:62–5. [69] Nessling M, Solinas-Toldo S, Wilgenbus KK, Borchard F, Lichter P. Mapping of chromosomal imbalances in gastric adenocarcinoma revealed amplified protooncogenes MYCN, MET, WNT2, and ERBB2. Genes Chromosom Cancer 1998;23:307–16. [70] Sakakura C, Mori T, Sakabe T, Ariyama Y, Shinomiya T, Date K, Hagiwara A, Yamaguchi T, Takahashi T, Nakamura Y, Abe T, Inazawa J. Gains, losses, and amplifications of genomic materials in primary gastric cancers analyzed by comparative genomic hybridization. Genes Chromosom Cancer 1999;24:299–305. [71] Van Grieken NC, Weiss MM, Meijer GA, Hermsen MA, Scholte GH, Lindeman J, Craanen ME, Bloemena E, Meuwissen SG, Baak JP, Kuipers EJ. Helicobacter pylori-related and -non-related gastric cancers do not differ with respect to chromosomal aberrations. J Pathol 2000;192:301–6. [72] Wu MS, Chang MC, Huang SP, Tseng CC, Sheu JC, Lin YW, Shun CT, Lin MT, Lin JT. Correlation of histologic subtypes and replication error phenotype with comparative genomic hybridization in gastric cancer. Genes Chromosom Cancer 2001;30:80–6. [73] El-Rifai W, Sarlomo-Rikala M, Miettinen M, Knuutila S, Andersson LC. DNA copy number losses in chromosome 1996;14:an early change in gastrointestinal stromal tumors. Cancer Res 1996; 56:3230–3. [74] Kim NG, Kim JJ, Ahn JY, Seong CM, Noh SH, Kim CB, Min JS, Kim H. Putative chromosomal deletions on 9p, 9q and 22q occur preferentially in malignant gastrointestinal stromal tumors. Int J Cancer 2000;85:633–8. [75] Sarlomo-Rikala M, El-Rifai W, Lahtinen T, Andersson LC, Miettinen M, Knuutila S. Different patterns of DNA copy number changes in gastrointestinal stromal tumors, leiomyomas, and schwannomas. Hum Pathol 1998;29:476–81. [76] Van Dekken H, Geelen E, Dinjens WN, Wijnhoven BP, Tilanus HW, Tanke HJ, Rosenberg C. Comparative genomic hybridization of cancer of the gastroesophageal junction: deletion of 14Q31-32.1 discriminates between esophageal (Barrett’s) and gastric cardia adenocarcinomas. Cancer Res 1999;59:748–52. [77] Rijken AM, Hu J, Perlman EJ, Morsberger LA, Long P, Kern SE, Hruban RH, Yeo CJ, Griffin CA. Genomic alterations in distal bile duct carcinoma by comparative genomic hybridization and karyotype analysis. Genes Chromosom Cancer 1999;26:185–91. [78] Shiraishi K, Kusano N, Okita S, Oga A, Okita K, Sasaki K. Genetic
80
[79]
[80]
[81]
[82]
[83]
[84]
[85]
[86]
[87]
[88]
[89]
[90]
[91]
[92]
[93]
[94]
S. Struski et al. / Cancer Genetics and Cytogenetics 135 (2002) 63–90 aberrations detected by comparative genomic hybridization in biliary tract cancers. Oncology 1999;57:42–9. Al-Mulla F, Keith WN, Pickford IR, Going JJ, Birnie GD. Comparative genomic hybridization analysis of primary colorectal carcinomas and their synchronous metastases. Genes Chromosom Cancer 1999;24:306–14. Aust DE, Willenbucher RF, Terdiman JP, Ferrell LD, Chang CG, Moore DH 2nd, Molinaro-Clark A, Baretton GB, Loehrs U, Waldman FM. Chromosomal alterations in ulcerative colitis-related and sporadic colorectal cancers by comparative genomic hybridization. Hum Pathol 2000;31:109–14. De Angelis PM, Clausen OP, Schjolberg A, Stokke T. Chromosomal gains and losses in primary colorectal carcinomas detected by CGH and their associations with tumour DNA ploidy, genotypes and phenotypes. Br J Cancer 1999;80:526–35. Georgiades IB, Curtis LJ, Morris RM, Bird CC, Wyllie AH. Heterogeneity studies identify a subset of sporadic colorectal cancers without evidence for chromosomal or microsatellite instability. Oncogene 1999;18:7933–40. Korn WM, Yasutake T, Kuo WL, Warren RS, Collins C, Tomita M, Gray J, Waldman FM. Chromosome arm 20q gains and other genomic alterations in colorectal cancer metastatic to liver, as analyzed by comparative genomic hybridization and fluorescence in situ hybridization. Genes Chromosom Cancer 1999;25:82–90. Meijer GA, Hermsen MA, Baak JP, van Diest PJ, Meuwissen SG, Belien JA, Hoovers JM, Joenje H, Snijders PJ, Walboomers JM. Progression from colorectal adenoma to carcinoma is associated with non-random chromosomal gains as detected by comparative genomic hybridisation. J Clin Pathol 1998;51:901–9. Nakao K, Shibusawa M, Tsunoda A, Yoshizawa H, Murakami M, Kusano M, Uesugi N, Sasaki K. Genetic changes in primary colorectal cancer by comparative genomic hybridization. Surg Today 1998;28:567–9. Nakao K, Shibusawa M, Ishibara A, Yoshizawa H, Tsunoda A, Kusano M, Kurose A, Makita T, Sasaki K. Genetic changes in colorectal carcinoma tumors with liver metastases analyzed by comparative genomic hybridization and DNA ploidy. Cancer 2001;91:721–6. Paredes-Zaglul A, Kang JJ, Essig YP, Mao W, Irby R, Wloch M, Yeatman TJ. Analysis of colorectal cancer by comparative genomic hybridization: evidence for induction of the metastatic phenotype by loss of tumor suppressor genes. Clin Cancer Res 1998; 4:879–86. Ried T, Knutzen R, Steinbeck R, Blegen H, Schrock E, Heselmeyer K, du Manoir S, Auer G. Comparative genomic hybridization reveals a specific pattern of chromosomal gains and losses during the genesis of colorectal tumors. Genes Chromosom Cancer 1996;15:234–45. Schlegel J, Stumm G, Scherthan H, Bocker T, Zirngibl H, Ruschoff J, Hofstadter F. Comparative genomic in situ hybridization of colon carcinomas with replication error. Cancer Res 1995;55:6002–5. Willenbucher RF, Zelman SJ, Ferrell LD, Moore DH 2nd, Waldman FM. Chromosomal alterations in ulcerative colitis-related neoplastic progression. Gastroenterology 1997;113:791–801. Willenbucher RF, Aust DE, Chang CG, Zelman SJ, Ferrell LD, Moore DH 2nd, Waldman FM. Genomic instability is an early event during the progression pathway of ulcerative-colitis-related neoplasia. Am J Pathol 1999;154:1825–30. Heselmeyer K, du Manoir S, Blegen H, Friberg B, Svensson C, Schrock E, Veldman T, Shah K, Auer G, Ried T. A recurrent pattern of chromosomal aberrations and immunophenotypic appearance defines anal squamous cell carcinomas. Br J Cancer 1997;76:1271–8. Balsara B, Pei J, De Rienzo A, Simon D, Tosolini A, Lu Y, Shen F, Fan X, Lin W, Buetow K, London W, Testa J. Human hepatocellular carcinoma is characterized by a highly consistent pattern of genomic imbalances, including frequent loss of 16q23.1-24.1. Genes Chromosom Cancer 2001;30:245–53. Chen YJ, Yeh SH, Chen JT, Wu CC, Hsu MT, Tsai SF, Chen PJ, Lin CH. Chromosomal changes and clonality relationship between
[95]
[96]
[97]
[98]
[99]
[100]
[101]
[102]
[103]
[104]
[105]
[106]
[107]
[108]
[109]
[110]
[111]
primary and recurrent hepatocellular carcinoma. Gastroenterology 2000;119:431–40. Guan XY, Fang Y, Sham JST, Kwong DLW, Zhang Y, Liang Q, Li H, Zhou H, Trent JM. Recurrent chromosome alterations in hepatocellular carcinoma detected by comparative genomic hybridization. Genes Chromosom Cancer 2000;29:110–6. Harada T, Shiraishi K, Kusano N, Umayahara K, Kondoh S, Okita K, Sasaki K. Evaluation of the reliability of chromosomal imbalances detected by combined use of universal DNA amplification and comparative genomic hybridization. Jpn J Cancer Res 2000;91:1119–25. Kusano N, Shiraishi K, Kubo K, Oga A, Okita K, Sasaki K. Genetic aberrations detected by comparative genomic hybridization in hepatocellular carcinomas: their relationship to clinicopathological features. Hepatology 1999;29:1858–62. Lin YW, Sheu JC, Huang GT, Lee HS, Chen CH, Wang JT, Lee PH, Lu FJ. Chromosomal abnormality in hepatocellular carcinoma by comparative genomic hybridisation in Taiwan. Eur J Cancer 1999;35:652–8. Marchio A, Meddeb M, Pineau P, Danglot G, Tiollais P, Bernheim A, Dejean A. Recurrent chromosomal abnormalities in hepatocellular carcinoma detected by comparative genomic hybridization. Genes Chromosom Cancer 1997;18:59–65. Marchio A, Pineau P, Meddeb M, Terris B, Tiollais P, Bernheim A, Dejean A. Distinct chromosomal abnormality pattern in primary liver cancer of non-B, non-C patients. Oncogene 2000;19:3733–8. Qin LX, Tang ZY, Sham JS, Ma ZC, Ye SL, Zhou XD, Wu ZQ, Trent JM, Guan XY. The association of chromosome 8p deletion and tumor metastasis in human hepatocellular carcinoma. Cancer Res 1999;59:5662–5. Sakakura C, Hagiwara A, Taniguchi H, Yamaguchi T, Yamagishi H, Takahashi T, Koyama K, Nakamura Y, Abe T, Inazawa J. Chromosomal aberrations in human hepatocellular carcinomas associated with hepatitis C virus infection detected by comparative genomic hybridization. Br J Cancer 1999;80:2034–9. Tornillo L, Carafa V, Richter J, Sauter G, Moch H, Minola E, Gambacorta M, Bianchi L, Vecchione R, Terracciano LM. Marked genetic similarities between hepatitis B virus-positive and hepatitis C virus-positive hepatocellular carcinomas. J Pathol 2000;192:307–12. Wilkens L, Bredt M, Flemming P, Becker T, Klempnauer J, Kreipe HH. Differentiation of liver cell adenomas from well-differentiated hepatocellular carcinomas by comparative genomic hybridization. J Pathol 2001;193:476–82. Wong N, Lai P, Lee SW, Fan S, Pang E, Liew CT, Sheng Z, Lau JW, Johnson PJ. Assessment of genetic changes in hepatocellular carcinoma by comparative genomic hybridization analysis: relationship to disease stage, tumor size, and cirrhosis. Am J Pathol 1999;154:37–43. Wong N, Lai P, Pang E, Fung LF, Sheng Z, Wong V, Wang W, Hayashi Y, Perlman E, Yuna S, Lau JW, Johnson PJ. Genomic aberrations in human hepatocellular carcinomas of differing etiologies. Clin Cancer Res 2000;6:4000–9. Zondervan PE, Wink J, Alers JC, IJzermans JN, Schalm SW, de Man RA, van Dekken H. Molecular cytogenetic evaluation of virusassociated and non-viral hepatocellular carcinoma: analysis of 26 carcinomas and 12 concurrent dysplasias. J Pathol 2000;192:207–15. Gray SG, Kytola S, Matsunaga T, Larsson C, Ekstrom TJ. Comparative genomic hybridization reveals population-based genetic alterations in hepatoblastomas. Br J Cancer 2000;83:1020–5. Hu J, Wills M, Baker BA, Perlman EJ. Comparative genomic hybridization analysis of hepatoblastomas. Genes Chromosom Cancer 2000;27:196–201. Steenman M, Tomlinson G, Westerveld A, Mannens M. Comparative genomic hybridization analysis of hepatoblastomas: additional evidence for a genetic link with Wilms tumor and rhabdomyosarcoma. Cytogenet Cell Genet 1999;86:157–61. Dohna M, Reincke M, Mincheva A, Allolio B, Solinas-Toldo S, Lichter P. Adrenocortical carcinoma is characterized by a high frequency of chromosomal gains and high-level amplifications. Genes Chromosom Cancer 2000;28:145–52.
S. Struski et al. / Cancer Genetics and Cytogenetics 135 (2002) 63–90 [112] Edstrom E, Mahlamaki E, Nord B, Kjellman M, Karhu R, Hoog A, Goncharov N, Teh BT, Backdahl M, Larsson C. Comparative genomic hybridization reveals frequent losses of chromosomes 1p and 3q in pheochromocytomas and abdominal paragangliomas, suggesting a common genetic etiology. Am J Pathol 2000;156:651–9. [113] Figueiredo BC, Stratakis CA, Sandrini R, DeLacerda L, Pianovsky MA, Giatzakis C, Young HM, Haddad BR. Comparative genomic hybridization analysis of adrenocortical tumors of childhood. J Clin Endocrinol Metab 1999;84:1116–21. [114] James LA, Kelsey AM, Birch JM, Varley JM. Highly consistent genetic alterations in childhood adrenocortical tumours detected by comparative genomic hybridization. Br J Cancer 1999;81:300–4. [115] Kjellman M, Kallioniemi OP, Karhu R, Hoog A, Farnebo LO, Auer G, Larsson C, Backdahl M. Genetic aberrations in adrenocortical tumors detected using comparative genomic hybridization correlate with tumor size and malignancy. Cancer Res 1996;56:4219–23. [116] Zhao J, Speel EJ, Muletta-Feurer S, Rutimann K, Saremaslani P, Roth J, Heitz PU, Komminoth P. Analysis of genomic alterations in sporadic adrenocortical lesions. Gain of chromosome 17 is an early event in adrenocortical tumorigenesis. Am J Pathol 1999;155:1039–45. [117] Fukushige S, Waldman FM, Kimura M, Abe T, Furukawa T, Sunamura M, Kobari M, Horii A. Frequent gain of copy number on the long arm of chromosome 20 in human pancreatic adenocarcinoma. Genes Chromosom Cancer 1997;19:161–9. [118] Mahlamaki EH, Hoglund M, Gorunova L, Karhu R, Dawiskiba S, Andren-Sandberg A, Kallioniemi OP, Johansson B. Comparative genomic hybridization reveals frequent gains of 20q, 8q, 11q, 12p, and 17q, and losses of 18q, 9p, and 15q in pancreatic cancer. Genes Chromosom Cancer 1997;20:383–91. [119] Schleger C, Arens N, Zentgraf H, Bleyl U, Verbeke C. Identification of frequent chromosomal aberrations in ductal adenocarcinoma of the pancreas by comparative genomic hybridization (CGH). J Pathol 2000;191:27–32. [120] Solinas-Toldo S, Wallrapp C, Muller-Pillasch F, Bentz M, Gress T, Lichter P. Mapping of chromosomal imbalances in pancreatic carcinoma by comparative genomic hybridization. Cancer Res 1996;56: 3803–7. [121] Speel EJ, Richter J, Moch H, Egenter C, Saremaslani P, Rutimann K, Zhao J, Barghorn A, Roth J, Heitz PU, Komminoth P. Genetic differences in endocrine pancreatic tumor subtypes detected by comparative genomic hybridization. Am J Pathol 1999;155:1787–94. [122] Stumpf E, Aalto Y, Hoog A, Kjellman M, Otonkoski T, Knuutila S, Andersson LC. Chromosomal alterations in human pancreatic endocrine tumors. Genes Chromosom Cancer 2000;29:83–7. [123] Taruscio D, Paradisi S, Zamboni G, Rigaud G, Falconi M, Scarpa A. Pancreatic acinar carcinoma shows a distinct pattern of chromosomal imbalances by comparative genomic hybridization. Genes Chromosom Cancer 2000;28:294–9. [124] Chen X, Knauf JA, Gonsky R, Wang M, Lai EH, Chissoe S, Fagin JA, Korenberg JR. From amplification to gene in thyroid cancer: a highresolution mapped bacterial-artificial-chromosome resource for cancer chromosome aberrations guides gene discovery after comparative genome hybridization. Am J Hum Genet 1998;63:625–37. [125] Frisk T, Kytola S, Wallin G, Zedenius J, Larsson C. Low frequency of numerical chromosomal aberrations in follicular thyroid tumors detected by comparative genomic hybridization. Genes Chromosom Cancer 1999;25:349–53. [126] Frisk T, Zedenius J, Lundberg J, Wallin G, Kytola S, Larsson C. CGH alterations in medullary thyroid carcinomas in relation to the RET M918T mutation and clinical outcome. Int J Oncol 2001;18:1219–25. [127] Hemmer S, Wasenius VM, Knuutila S, Joensuu H, Franssila K. Comparison of benign and malignant follicular thyroid tumours by comparative genomic hybridization. Br J Cancer 1998;78:1012–7. [128] Hemmer S, Wasenius VM, Knuutila S, Franssila K, Joensuu H. DNA copy number changes in thyroid carcinoma. Am J Pathol 1999;154:1539–47. [129] Komoike Y, Tamaki Y, Sakita I, Tomita N, Ohue M, Sekimoto M,
[130]
[131]
[132]
[133]
[134]
[135]
[136]
[137]
[138]
[139]
[140]
[141]
[142]
[143]
[144]
[145]
[146]
81
Miyazaki M, Kadota M, Masuda N, Ooka M, Ohnishi T, Nakano Y, Kozaki T, Kobayashi T, Matsuura N, Ikeda T, Horii A, Monden M. Comparative genomic hybridization defines frequent loss on 16p in human anaplastic thyroid carcinoma. Int J Oncol 1999;14:1157–62. Singh B, Lim D, Cigudosa JC, Ghossein R, Shaha AR, Poluri A, Wreesmann VB, Tuttle M, Shah JP, Rao PH. Screening for genetic aberrations in papillary thyroid cancer by using comparative genomic hybridization. Surgery 2000;128:888–94. Tallini G, Hsueh A, Liu S, Garcia-Rostan G, Speicher MR, Ward DC. Frequent chromosomal DNA unbalance in thyroid oncocytic (Hurthle cell) neoplasms detected by comparative genomic hybridization. Lab Invest 1999;79:547–55. Wilkens L, Benten D, Tchinda J, Brabant G, Potter E, Dralle H, von Wasielewski R. Aberrations of chromosomes 5 and 8 as recurrent cytogenetic events in anaplastic carcinoma of the thyroid as detected by fluorescence in situ hybridisation and comparative genomic hybridisation. Virchows Arch 2000;436:312–8. Agarwal SK, Schrock E, Kester MB, Burns AL, Heffess CS, Ried T, Marx SJ. Comparative genomic hybridization analysis of human parathyroid tumors. Cancer Genet Cytogenet 1998;106:30–6. Farnebo F, Kytola S, Teh BT, Dwight T, Wong FK, Hoog A, Elvius M, Wassif WS, Thompson NW, Farnebo LO, Sandelin K, Larsson C. Alternative genetic pathways in parathyroid tumorigenesis. J Clin Endocrinol Metab 1999;84:3775–80. Kytola S, Farnebo F, Obara T, Isola J, Grimelius L, Farnebo LO, Sandelin K, Larsson C. Patterns of chromosomal imbalances in parathyroid carcinomas. Am J Pathol 2000;157:579–86. Palanisamy N, Imanishi Y, Rao PH, Tahara H, Chaganti RS, Arnold A. Novel chromosomal abnormalities identified by comparative genomic hybridization in parathyroid adenomas. J Clin Endocrinol Metab 1998;83:1766–70. Daniely M, Aviram A, Adams EF, Buchfelder M, Barkai G, Fahlbusch R, Goldman B, Friedman E. Comparative genomic hybridization analysis of nonfunctioning pituitary tumors. J Clin Endocrinol Metab 1998;83:1801–5. Harada K, Nishizaki T, Ozaki S, Kubota H, Harada K, Okamura T, Ito H, Sasaki K. Cytogenetic alterations in pituitary adenomas detected by comparative genomic hybridization. Cancer Genet Cytogenet 1999;112:38–41. Hui AB, Pang JC, Ko CW, Ng HK. Detection of chromosomal imbalances in growth hormone-secreting pituitary tumors by comparative genomic hybridization. Hum Pathol 1999;30:1019–23. Metzger AK, Mohapatra G, Minn YA, Bollen AW, Lamborn K, Waldman FM, Wilson CB, Feuerstein BG. Multiple genetic aberrations including evidence of chromosome 11q13 rearrangement detected in pituitary adenomas by comparative genomic hybridization. J Neurosurg 1999;90:306–14. Trautmann K, Thakker RV, Ellison DW, Ibrahim A, Lees PD, Harding B, Fischer C, Popp S, Bartram CR, Jauch A. Chromosomal aberrations in sporadic pituitary tumors. Int J Cancer 2001;91:809–14. Rickert CH, Simon R, Bergmann M, Dockhorn-Dworniczak B, Paulus W. Comparative genomic hybridization in pineal germ cell tumors. J Neuropathol Exp Neurol 2000;59:815–21. Rickert CH, Simon R, Bergmann M, Dockhorn-Dworniczak B, Paulus W. Comparative genomic hybridization in pineal parenchymal tumors. Genes Chromosom Cancer 2001;30:99–104. Barnard M, Bayani J, Grant R, Zielenska M, Squire J, Thorner P. Comparative genomic hybridization analysis of clear cell sarcoma of the kidney. Med Pediatr Oncol 2000;34:113–6. Bissig H, Richter J, Desper R, Meier V, Schraml P, Schaffer AA, Sauter G, Mihatsch MJ, Moch H. Evaluation of the clonal relationship between primary and metastatic renal cell carcinoma by comparative genomic hybridization. Am J Pathol 1999;155:267–74. Chudek J, Herbers J, Wilhelm M, Kenck C, Bugert P, Ritz E, Waldman F, Kovacs G. The genetics of renal tumors in end-stage renal failure differs from those occurring in the general population. J Am Soc Nephrol 1998;9:1045–51.
82
S. Struski et al. / Cancer Genetics and Cytogenetics 135 (2002) 63–90
[147] Gronwald J, Storkel S, Holtgreve-Grez H, Hadaczek P, Brinkschmidt C, Jauch A, Lubinski J, Cremer T. Comparison of DNA gains and losses in primary renal clear cell carcinomas and metastatic sites: importance of 1q and 3p copy number changes in metastatic events. Cancer Res 1997;57:481–7. [148] Gronwald J, Baur AS, Holtgreve-Grez H, Jauch A, Mosimann F, Jichlinski P, Wauters JP, Cremer T, Guillou L. Chromosomal abnormalities in renal cell neoplasms associated with acquired renal cystic disease. A series studied by comparative genomic hybridization and fluorescence in situ hybridization. J Pathol 1999;187:308–12. [149] Jiang F, Richter J, Schraml P, Bubendorf L, Gasser T, Sauter G, Mihatsch MJ, Moch H. Chromosomal imbalances in papillary renal cell carcinoma: genetic differences between histological subtypes. Am J Pathol 1998;153:1467–73. [150] Junker K, Schlichter A, Hindermann W, Schubert J. Genetic characterization of multifocal tumor growth in renal cell carcinoma. Kidney Int 1999;56:1291–4. [151] Junker K, Moravek P, Podhola M, Weirich G, Hindermann W, Janitzky V, Schubert J. Genetic alterations in metastatic renal cell carcinoma detected by comparative genomic hybridization: correlation with clinical and histological data. Int J Oncol 2000;17:903–8. [152] Moch H, Presti JC Jr, Sauter G, Buchholz N, Jordan P, Mihatsch MJ, Waldman FM. Genetic aberrations detected by comparative genomic hybridization are associated with clinical outcome in renal cell carcinoma. Cancer Res 1996;56:27–30. [153] Presti JC Jr, Moch H, Reuter VE, Cordon-Cardo C, Waldman FM. Renal cell carcinoma genetic analysis by comparative genomic hybridization and restriction fragment length polymorphism analysis. J Urol 1996;156:281–5. [154] Presti JC Jr, Moch H, Reuter VE, Huynh D, Waldman FM. Comparative genomic hybridization for genetic analysis of renal oncocytomas. Genes Chromosom Cancer 1996;17:199–204. [155] Schraml P, Zhaou M, Richter J, Bruning T, Pommer M, Sauter G, Mihatsch MJ, Moch H. [Analysis of kidney tumors in trichloroethylene exposed workers by comparative genomic hybridization and DNA sequence analysis]. Verh Dtsch Ges Pathol 1999;83:218–24. [156] Speicher MR, Schoell B, du Manoir S, Schrock E, Ried T, Cremer T, Storkel S, Kovacs A, Kovacs G. Specific loss of chromosomes 1, 2, 6, 10, 13, 17, and 21 in chromophobe renal cell carcinomas revealed by comparative genomic hybridization. Am J Pathol 1994; 145:356–64. [157] Altura RA, Valentine M, Li H, Boyett JM, Shearer P, Grundy P, Shapiro DN, Look AT. Identification of novel regions of deletion in familial Wilms’ tumor by comparative genomic hybridization. Cancer Res 1996;56:3837–41. [158] Getman ME, Houseal TW, Miller GA, Grundy PE, Cowell JK, Landes GM. Comparative genomic hybridization and its application to Wilms’ tumorigenesis. Cytogenet Cell Genet 1998;82:284–90. [159] Hing S, Lu YJ, Summersgill B, King-Underwood L, Nicholson J, Grundy P, Grundy R, Gessler M, Shipley J, Pritchard-Jones K. Gain of 1q is associated with adverse outcome in favorable histology Wilms’ tumors. Am J Pathol 2001;158:393–8. [160] Steenman M, Redeker B, de Meulemeester M, Wiesmeijer K, Voute PA, Westerveld A, Slater R, Mannens M. Comparative genomic hybridization analysis of Wilms tumors. Cytogenet Cell Genet 1997; 77:296–303. [161] El-Rifai W, Kamel D, Larramendy ML, Shoman S, Gad Y, Baithun S, El-Awady M, Eissa S, Khaled H, Soloneski S, Sheaff M, Knuutila S. DNA copy number changes in schistosoma-associated and nonschistosoma-associated bladder cancer. Am J Pathol 2000;156:871–8. [162] Hovey RM, Chu L, Balazs M, DeVries S, Moore D, Sauter G, Carroll PR, Waldman FM. Genetic alterations in primary bladder cancers and their metastases. Cancer Res 1998;58:3555–60. [163] Kallioniemi A, Kallioniemi OP, Citro G, Sauter G, DeVries S, Kerschmann R, Caroll P, Waldman F. Identification of gains and losses of DNA sequences in primary bladder cancer by comparative genomic hybridization. Genes Chromosom Cancer 1995;12:213–9.
[164] Koo SH, Kwon KC, Ihm CH, Jeon YM, Park JW, Sul CK. Detection of genetic alterations in bladder tumors by comparative genomic hybridization and cytogenetic analysis. Cancer Genet Cytogenet 1999; 110:87–93. [165] Mahdy E, Yoshihiro S, Zech L, Wester K, Pan Y, Busch C, Dohner H, Kallioniemi O, Bergerheim U, Malmstrom PU. Comparison of comparative genomic hybridization, fluorescence in situ hybridization and flow cytometry in urinary bladder cancer. Anticancer Res 1999;19:7–12. [166] Richter J, Jiang F, Gorog JP, Sartorius G, Egenter C, Gasser TC, Moch H, Mihatsch MJ, Sauter G. Marked genetic differences between stage pTa and stage pT1 papillary bladder cancer detected by comparative genomic hybridization. Cancer Res 1997;57:2860–4. [167] Richter J, Wagner U, Schraml P, Maurer R, Alund G, Knonagel H, Moch H, Mihatsch MJ, Gasser TC, Sauter G. Chromosomal imbalances are associated with a high risk of progression in early invasive (pT1) urinary bladder cancer. Cancer Res 1999;59:5687–91. [168] Sauter G. [Rudolf Virchow Prize 1997. Molecular cytogenetic analysis of superficial urothelial cancer of the bladder]. Verh Dtsch Ges Pathol 1997;81:18–27. [169] Simon R, Burger H, Brinkschmidt C, Bocker W, Hertle L, Terpe H. Chromosomal aberrations associated with invasion in papillary superficial bladder cancer. J Pathol 1998;185:345–51. [170] Simon R, Burger H, Semjonow A, Hertle L, Terpe HJ, Bocker W. Patterns of chromosomal imbalances in muscle invasive bladder cancer. Int J Oncol 2000;17:1025–9. [171] Simon R, Eltze E, Schafer KL, Burger H, Semjonow A, Hertle L, Dockhorn-Dworniczak B, Terpe HJ, Bocker W. Cytogenetic analysis of multifocal bladder cancer supports a monoclonal origin and intraepithelial spread of tumor cells. Cancer Res 2001;61:355–62. [172] Terracciano L, Richter J, Tornillo L, Beffa L, Diener PA, Maurer R, Gasser TC, Moch H, Mihatsch MJ, Sauter G. Chromosomal imbalances in small cell carcinomas of the urinary bladder. J Pathol 1999; 189:230–5. [173] Voorter C, Joos S, Bringuier PP, Vallinga M, Poddighe P, Schalken J, du Manoir S, Ramaekers F, Lichter P, Hopman A. Detection of chromosomal imbalances in transitional cell carcinoma of the bladder by comparative genomic hybridization. Am J Pathol 1995;146: 1341–54. [174] Zhao J, Richter J, Wagner U, Roth B, Schraml P, Zellweger T, Ackermann D, Schmid U, Moch H, Mihatsch MJ, Gasser TC, Sauter G. Chromosomal imbalances in noninvasive papillary bladder neoplasms (pTa). Cancer Res 1999;59:4658–61. [175] Bigner SH, Matthews MR, Rasheed BK, Wiltshire RN, Friedman HS, Friedman AH, Stenzel TT, Dawes DM, McLendon RE, Bigner DD. Molecular genetic aspects of oligodendrogliomas including analysis by comparative genomic hybridization. Am J Pathol 1999; 155:375–86. [176] Boerman RH, Anderl K, Herath J, Borell T, Johnson N, SchaefferKlein J, Kirchhof A, Raap AK, Scheithauer BW, Jenkins RB. The glial and mesenchymal elements of gliosarcomas share similar genetic alterations. J Neuropathol Exp Neurol 1996;55:973–81. [177] Brat DJ, Hirose Y, Cohen KJ, Feuerstein BG, Burger PC. Astroblastoma: clinicopathologic features and chromosomal abnormalities defined by comparative genomic hybridization. Brain Pathol 2000; 10:342–52. [178] Brunner C, Jung V, Henn W, Zang KD, Urbschat S. Comparative genomic hybridization reveals recurrent enhancements on chromosome 20 and in one case combined amplification sites on 15q24q26 and 20p11p12 in glioblastomas. Cancer Genet Cytogenet 2000;121:124–7. [179] Harada K, Nishizaki T, Ozaki S, Kubota H, Ito H, Sasaki K. Intratumoral cytogenetic heterogeneity detected by comparative genomic hybridization and laser scanning cytometry in human gliomas. Cancer Res 1998;58:4694–700. [180] Huhn SL, Mohapatra G, Bollen A, Lamborn K, Prados MD, Feuerstein BG. Chromosomal abnormalities in glioblastoma multiforme by comparative genomic hybridization: correlation with radiation treatment outcome. Clin Cancer Res 1999;5:1435–43.
S. Struski et al. / Cancer Genetics and Cytogenetics 135 (2002) 63–90 [181] Jeuken JW, Sprenger SH, Wesseling P, Macville MV, von Deimling A, Teepen HL, van Overbeeke JJ, Boerman RH. Identification of subgroups of high-grade oligodendroglial tumors by comparative genomic hybridization. J Neuropathol Exp Neurol 1999;58:606–12. [182] Jeuken JW, Sprenger SH, Boerman RH, von Deimling A, Teepen HL, van Overbeeke JJ, Wesseling P. Subtyping of oligo-astrocytic tumours by comparative genomic hybridization. J Pathol 2001;194: 81–7. [183] Jung V, Romeike BF, Henn W, Feiden W, Moringlane JR, Zang KD, Urbschat S. Evidence of focal genetic microheterogeneity in glioblastoma multiforme by area-specific CGH on microdissected tumor cells. J Neuropathol Exp Neurol 1999;58:993–9. [184] Kim DH, Mohapatra G, Bollen A, Waldman FM, Feuerstein BG. Chromosomal abnormalities in glioblastoma multiforme tumors and glioma cell lines detected by comparative genomic hybridization. Int J Cancer 1995;60:812–9. [185] Kros JM, van Run PR, Alers JC, Beverloo HB, van den Bent MJ, Avezaat CJ, van Dekken H. Genetic aberrations in oligodendroglial tumours: an analysis using comparative genomic hybridization. J Pathol 1999;188:282–8. [186] Mao X, Hamoudi RA. Molecular and cytogenetic analysis of glioblastoma multiforme. Cancer Genet Cytogenet 2000;122:87–92. [187] Maruno M, Yoshimine T, Muhammad AK, Ninomiya H, Kato A, Hayakawa T. Chromosomal aberrations detected by comparative genomic hybridization (CGH) in human astrocytic tumors. Cancer Lett 1999;135:61–6. [188] Mohapatra G, Bollen AW, Kim DH, Lamborn K, Moore DH, Prados MD, Feuerstein BG. Genetic analysis of glioblastoma multiforme provides evidence for subgroups within the grade. Genes Chromosom Cancer 1998;21:195–206. [189] Muleris M, Almeida A, Dutrillaux AM, Pruchon E, Vega F, Delattre JY, Poisson M, Malfoy B, Dutrillaux B. Oncogene amplification in human gliomas: a molecular cytogenetic analysis. Oncogene 1994;9:2717–22. [190] Nishizaki T, Ozaki S, Harada K, Ito H, Arai H, Beppu T, Sasaki K. Investigation of genetic alterations associated with the grade of astrocytic tumor by comparative genomic hybridization. Genes Chromosom Cancer 1998;21:340–6. [191] Patel A, van Meyel DJ, Mohapatra G, Bollen A, Wrensch M, Cairncross JG, Feuerstein BG. Gliomas in families: chromosomal analysis by comparative genomic hybridization. Cancer Genet Cytogenet 1998;100:77–83. [192] Paunu N, Sallinen SL, Karhu R, Miettinen H, Sallinen P, Kononen J, Laippala P, Simola KO, Helen P, Haapasalo H. Chromosome imbalances in familial gliomas detected by comparative genomic hybridization. Genes Chromosom Cancer 2000;29:339–46. [193] Petersen I, Hidalgo A, Petersen S, Schluns K, Schewe C, PacynaGengelbach M, Goeze A, Krebber B, Knosel T, Kaufmann O, Szymas J, von Deimling A. Chromosomal imbalances in brain metastases of solid tumors. Brain Pathol 2000;10:395–401. [194] Reardon DA, Entrekin RE, Sublett J, Ragsdale S, Li H, Boyett J, Kepner JL, Look AT. Chromosome arm 6q loss is the most common recurrent autosomal alteration detected in primary pediatric ependymoma. Genes Chromosom Cancer 1999;24:230–7. [195] Sallinen SL, Sallinen P, Haapasalo H, Kononen J, Karhu R, Helen P, Isola J. Accumulation of genetic changes is associated with poor prognosis in grade II astrocytomas. Am J Pathol 1997;151:1799–807. [196] Scheil S, Bruderlein S, Eicker M, Herms J, Herold-Mende C, Steiner HH, Barth TF, Moller P. Low frequency of chromosomal imbalances in anaplastic ependymomas as detected by comparative genomic hybridization. Brain Pathol 2001;11:133–43. [197] Schlegel J, Scherthan H, Arens N, Stumm G, Kiessling M. Detection of complex genetic alterations in human glioblastoma multiforme using comparative genomic hybridization. J Neuropathol Exp Neurol 1996;55:81–7. [198] Schrock E, Thiel G, Lozanova T, du Manoir S, Meffert MC, Jauch A, Speicher MR, Nurnberg P, Vogel S, Janisch W, Donis-Keller H, Ried T, Witkowski R, Cremer T. Comparative genomic hybridiza-
[199]
[200]
[201]
[202]
[203]
[204]
[205]
[206]
[207]
[208]
[209]
[210]
[211]
[212]
[213]
[214]
83
tion of human malignant gliomas reveals multiple amplification sites and nonrandom chromosomal gains and losses. Am J Pathol 1994;144:1203–18. Schrock E, Blume C, Meffert MC, du Manoir S, Bersch W, Kiessling M, Lozanowa T, Thiel G, Witkowski R, Ried T, Cremer T. Recurrent gain of chromosome arm 7q in low-grade astrocytic tumors studied by comparative genomic hybridization. Genes Chromosom Cancer 1996;15:199–205. Weber RG, Sabel M, Reifenberger J, Sommer C, Oberstrass J, Reifenberger G, Kiessling M, Cremer T. Characterization of genomic alterations associated with glioma progression by comparative genomic hybridization. Oncogene 1996;13:983–94. Weber RG, Sommer C, Albert FK, Kiessling M, Cremer T. Clinically distinct subgroups of glioblastoma multiforme studied by comparative genomic hybridization. Lab Invest 1996;74:108–19. Avet-Loiseau H, Venuat AM, Terrier-Lacombe MJ, Lellouch-Tubiana A, Zerah M, Vassal G. Comparative genomic hybridization detects many recurrent imbalances in central nervous system primitive neuroectodermal tumours in children. Br J Cancer 1999;79:1843–7. Bayani J, Zielenska M, Marrano P, Kwan Ng Y, Taylor MD, Jay V, Rutka JT, Squire JA. Molecular cytogenetic analysis of medulloblastomas and supratentorial primitive neuroectodermal tumors by using conventional banding, comparative genomic hybridization, and spectral karyotyping. J Neurosurg 2000;93:437–48. Nicholson JC, Ross FM, Kohler JA, Ellison DW. Comparative genomic hybridization and histological variation in primitive neuroectodermal tumours. Br J Cancer 1999;80:1322–31. Nishizaki T, Harada K, Kubota H, Ozaki S, Ito H, Sasaki K. Genetic alterations in pediatric medulloblastomas detected by comparative genomic hybridization. Pediatr Neurosurg 1999;31:27–32. Reardon DA, Michalkiewicz E, Boyett JM, Sublett JE, Entrekin RE, Ragsdale ST, Valentine MB, Behm FG, Li H, Heideman RL, Kun LE, Shapiro DN, Look AT. Extensive genomic abnormalities in childhood medulloblastoma by comparative genomic hybridization. Cancer Res 1997;57:4042–7. Russo C, Pellarin M, Tingby O, Bollen AW, Lamborn KR, Mohapatra G, Collins VP, Feuerstein BG. Comparative genomic hybridization in patients with supratentorial and infratentorial primitive neuroectodermal tumors. Cancer 1999;86:331–9. Schutz BR, Scheurlen W, Krauss J, du Manoir S, Joos S, Bentz M, Lichter P. Mapping of chromosomal gains and losses in primitive neuroectodermal tumors by comparative genomic hybridization. Genes Chromosom Cancer 1996;16:196–203. Altura RA, Maris JM, Li H, Boyett JM, Brodeur GM, Look AT. Novel regions of chromosomal loss in familial neuroblastoma by comparative genomic hybridization. Genes Chromosom Cancer 1997;19:176–84. Breen CJ, O’Meara A, McDermott M, Mullarkey M, Stallings RL. Coordinate deletion of chromosome 3p and 11q in neuroblastoma detected by comparative genomic hybridization. Cancer Genet Cytogenet 2000;120:44–9. Brinkschmidt C, Christiansen H, Terpe HJ, Simon R, Boecker W, Lampert F, Stoerkel S. Comparative genomic hybridization (CGH) analysis of neuroblastomas—an important methodological approach in paediatric tumour pathology. J Pathol 1997;181:394–400. Brinkschmidt C, Poremba C, Christiansen H, Simon R, Schafer KL, Terpe HJ, Lampert F, Boecker W, Dockhorn-Dworniczak B. Comparative genomic hybridization and telomerase activity analysis identify two biologically different groups of 4s neuroblastomas. Br J Cancer 1998;77:2223–9. Cunsolo CL, Bicocchi MP, Petti AR, Tonini GP. Numerical and structural aberrations in advanced neuroblastoma tumours by CGH analysis; survival correlates with chromosome 17 status. Br J Cancer 2000;83:1295–300. Hirai M, Yoshida S, Kashiwagi H, Kawamura T, Ishikawa T, Kaneko M, Ohkawa H, Nakagawara A, Miwa M, Uchida K. 1q23 gain is associated with progressive neuroblastoma resistant to aggressive treatment. Genes Chromosom Cancer 1999;25:261–9.
84
S. Struski et al. / Cancer Genetics and Cytogenetics 135 (2002) 63–90
[215] Lastowska M, Nacheva E, McGuckin A, Curtis A, Grace C, Pearson A, Bown N. Comparative genomic hybridization study of primary neuroblastoma tumors. United Kingdom Children’s Cancer Study Group. Genes Chromosom Cancer 1997;18:162–9. [216] Plantaz D, Mohapatra G, Matthay KK, Pellarin M, Seeger RC, Feuerstein BG. Gain of chromosome 17 is the most frequent abnormality detected in neuroblastoma by comparative genomic hybridization. Am J Pathol 1997;150:81–9. [217] Plantaz D, Vandesompele J, Van Roy N, Lastowska M, Bown N, Combaret V, Favrot MC, Delattre O, Michon J, Bénard J, Hartmann O, Nicholson JC, Ross FM, Brinkschmidt C, Laureys G, Caron H, Matthay KK, Feuerstein BG, Speleman F. Comparative genomic hybridization (CGH) analysis of stage 4 neuroblastoma reveals high frequency of 11Q deletion in tumors lacking MYCN amplification. Int J Cancer 2001;91:680–6. [218] Vandesompele J, Van Roy N, Van Gele M, Laureys G, Ambros P, Heimann P, Devalck C, Schuuring E, Brock P, Otten J, Gyselinck J, De Paepe A, Speleman F. Genetic heterogeneity of neuroblastoma studied by comparative genomic hybridization. Genes Chromosom Cancer 1998;23:141–52. [219] Van Gele M, Van Roy N, Jauch A, Laureys G, Benoit Y, Schelfhout V, De Potter CR, Brock P, Uyttebroeck A, Sciot R, Schuuring E, Versteeg R, Speleman F. Sensitive and reliable detection of genomic imbalances in human neuroblastomas using comparative genomic hybridisation analysis. Eur J Cancer 1997;33:1979–82. [220] Vettenranta K, Aalto Y, Wikstrom S, Knuutila S, Saarinen-Pihkala U. Comparative genomic hybridization reveals changes in DNAcopy number in poor-risk neuroblastoma. Cancer Genet Cytogenet 2001;125:125–30. [221] Carlson KM, Bruder C, Nordenskjold M, Dumanski JP. 1p and 3p deletions in meningiomas without detectable aberrations of chromosome 22 identified by comparative genomic hybridization. Genes Chromosom Cancer 1997;20:419–24. [222] Maruno M, Yoshimine T, Muhammad AK, Ninomiya H, Hayakawa T. Chromosomal losses and gains in meningiomas: comparative genomic hybridization (CGH) study of the whole genome. Neurol Res 1998;20:612–6. [223] Ozaki S, Nishizaki T, Ito H, Sasaki K. Comparative genomic hybridization analysis of genetic alterations associated with malignant progression of meningioma. J Neurooncol 1999;41:167–74. [224] Weber RG, Bostrom J, Wolter M, Baudis M, Collins VP, Reifenberger G, Lichter P. Analysis of genomic alterations in benign, atypical, and anaplastic meningiomas: toward a genetic model of meningioma progression. Proc Natl Acad Sci 1997;94:14719–24. [225] Lothe RA, Karhu R, Mandahl N, Mertens F, Saeter G, Heim S, Borresen-Dale AL, Kallioniemi OP. Gain of 17q24-qter detected by comparative genomic hybridization in malignant tumors from patients with von Recklinghausen’s neurofibromatosis. Cancer Res 1996;56:4778–81. [226] Mechtersheimer G, Otano-Joos M, Ohl S, Benner A, Lehnert T, Willeke F, Moller P, Otto HF, Lichter P, Joos S. Analysis of chromosomal imbalances in sporadic and NF1-associated peripheral nerve sheath tumors by comparative genomic hybridization. Genes Chromosom Cancer 1999;25:362–9. [227] Schmidt H, Wurl P, Taubert H, Meye A, Bache M, Holzhausen HJ, Hinze R. Genomic imbalances of 7p and 17q in malignant peripheral nerve sheath tumors are clinically relevant. Genes Chromosom Cancer 1999;25:205–11. [228] Terris B, Meddeb M, Marchio A, Danglot G, Flejou JF, Belghiti J, Ruszniewski P, Bernheim A. Comparative genomic hybridization analysis of sporadic neuroendocrine tumors of the digestive system. Genes Chromosom Cancer 1998;22:50–6. [229] Terris B, Bernheim A. [Comparative genomic hybridization (CGH): application to the study of neuroendocrine tumors]. Ann Pathol 1999;19:S9–11. [230] Tonnies H, Toliat MR, Ramel C, Pape UF, Neitzel H, Berger W, Wiedenmann B. Analysis of sporadic neuroendocrine tumours of
[231]
[232]
[233]
[234]
[235]
[236]
[237]
[238]
[239]
[240]
[241]
[242]
[243]
[244]
[245]
[246]
the enteropancreatic system by comparative genomic hybridisation. Gut 2001;48:536–41. Aalto Y, Eriksson L, Seregard S, Larsson O, Knuutila S. Concomitant loss of chromosome 3 and whole arm losses and gains of chromosome 1, 6, or 8 in metastasizing primary uveal melanoma. Invest Ophthalmol Vis Sci 2001;42:313–7. Ghazvini S, Char DH, Kroll S, Waldman FM, Pinkel D. Comparative genomic hybridization analysis of archival formalin-fixed paraffinembedded uveal melanomas. Cancer Genet Cytogenet 1996;90: 95–101. Gordon KB, Thompson CT, Char DH, O’Brien JM, Kroll S, Ghazvini S, Gray JW. Comparative genomic hybridization in the detection of DNA copy number abnormalities in uveal melanoma. Cancer Res 1994;54:4764–8. Naus N, van Drunen E, de Klein A, Luyten G, Paridaens D, Alers J, Ksander B, Beverloo H, Slater R. Characterization of complex chromosomal abnormalities in uveal melanoma by fluorescence in situ hybridization, spectral karyotyping, and comparative genomic hybridization. Genes Chromosom Cancer 2001;30:267–73. Speicher MR, Prescher G, du Manoir S, Jauch A, Horsthemke B, Bornfeld N, Becher R, Cremer T. Chromosomal gains and losses in uveal melanomas detected by comparative genomic hybridization. Cancer Res 1994;54:3817–23. Tschentscher F, Prescher G, Zeschnigk M, Horsthemke B, Lohmann DR. Identification of chromosomes 3, 6, and 8 aberrations in uveal melanoma by microsatellite analysis in comparison to comparative genomic hybridization. Cancer Genet Cytogenet 2000;122:13–7. Herzog S, Lohmann DR, Buiting K, Schuler A, Horsthemke B, Rehder H, Rieder H. Marked differences in unilateral isolated retinoblastomas from young and older children studied by comparative genomic hybridization. Hum Genet 2001;108:98–104. Mairal A, Pinglier E, Gilbert E, Peter M, Validire P, Desjardins L, Doz F, Aurias A, Couturier J. Detection of chromosome imbalances in retinoblastoma by parallel karyotype and CGH analyses. Genes Chromosom Cancer 2000;28:370–9. Bastian BC, LeBoit PE, Hamm H, Brocker EB, Pinkel D. Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization. Cancer Res 1998;58:2170–5. Bastian BC, Wesselmann U, Pinkel D, Leboit PE. Molecular cytogenetic analysis of Spitz nevi shows clear differences to melanoma. J Invest Dermatol 1999;113:1065–9. Wiltshire RN, Duray P, Bittner ML, Visakorpi T, Meltzer PS, Tuthill RJ, Liotta LA, Trent JM. Direct visualization of the clonal progression of primary cutaneous melanoma: application of tissue microdissection and comparative genomic hybridization. Cancer Res 1995;55:3954–7. Harle M, Arens N, Moll I, Back W, Schulz T, Scherthan H. Comparative genomic hybridization (CGH) discloses chromosomal and subchromosomal copy number changes in Merkel cell carcinomas. J Cutan Pathol 1996;23:391–7. Van Gele M, Speleman F, Vandesompele J, Van Roy N, Leonard JH. Characteristic pattern of chromosomal gains and losses in Merkel cell carcinoma detected by comparative genomic hybridization. Cancer Res 1998;58:1503–8. Aubele M, Mattis A, Zitzelsberger H, Walch A, Kremer M, Hutzler P, Hofler H, Werner M. Intratumoral heterogeneity in breast carcinoma revealed by laser-microdissection and comparative genomic hybridization. Cancer Genet Cytogenet 1999;110:94–102. Aubele M, Mattis A, Zitzelsberger H, Walch A, Kremer M, Welzl G, Hofler H, Werner M. Extensive ductal carcinoma in situ with small foci of invasive ductal carcinoma: evidence of genetic resemblance by CGH. Int J Cancer 2000;85:82–6. Buerger H, Otterbach F, Simon R, Poremba C, Diallo R, Decker T, Riethdorf L, Brinkschmidt C, Dockhorn-Dworniczak B, Boecker W. Comparative genomic hybridization of ductal carcinoma in situ of the breast-evidence of multiple genetic pathways. J Pathol 1999; 187:396–402.
S. Struski et al. / Cancer Genetics and Cytogenetics 135 (2002) 63–90 [247] Buerger H, Otterbach F, Simon R, Schafer KL, Poremba C, Diallo R, Brinkschmidt C, Dockhorn-Dworniczak B, Boecker W. Different genetic pathways in the evolution of invasive breast cancer are associated with distinct morphological subtypes. J Pathol 1999;189:521–6. [248] Buerger H, Simon R, Schafer KL, Diallo R, Littmann R, Poremba C, van Diest PJ, Dockhorn-Dworniczak B, Bocker W. Genetic relation of lobular carcinoma in situ, ductal carcinoma in situ, and associated invasive carcinoma of the breast. Mol Pathol 2000;53:118–21. [249] Burki NG, Caduff R, Walt H, Moll C, Pejovic T, Haller U, Ward DC. Comparative genomic hybridization of fine needle aspirates from breast carcinomas. Int J Cancer 2000;88:607–13. [250] Courjal F, Theillet C. Comparative genomic hybridization analysis of breast tumors with predetermined profiles of DNA amplification. Cancer Res 1997;57:4368–77. [251] Forozan F, Veldman R, Ammerman CA, Parsa NZ, Kallioniemi A, Kallioniemi OP, Ethier SP. Molecular cytogenetic analysis of 11 new breast cancer cell lines. Br J Cancer 1999;81:1328–34. [252] Fung LF, Wong N, Tang N, Lau A, Wong V, Pang CP, Suen M, King W, Johnson PJ. Genetic imbalances in pT2 breast cancers of southern Chinese women. Cancer Genet Cytogenet 2001;124:56–61. [253] Gunther K, Merkelbach-Bruse S, Amo-Takyi BK, Handt S, Schroder W, Tietze L. Differences in genetic alterations between primary lobular and ductal breast cancers detected by comparative genomic hybridization. J Pathol 2001;193:40–7. [254] Hermsen MA, Baak JP, Meijer GA, Weiss JM, Walboomers JW, Snijders PJ, van Diest PJ. Genetic analysis of 53 lymph node-negative breast carcinomas by CGH and relation to clinical, pathological, morphometric, and DNA cytometric prognostic factors. J Pathol 1998;186:356–62. [255] Isola JJ, Kallioniemi OP, Chu LW, Fuqua SA, Hilsenbeck SG, Osborne CK, Waldman FM. Genetic aberrations detected by comparative genomic hybridization predict outcome in node-negative breast cancer. Am J Pathol 1995;147:905–11. [256] Isola J, Chu L, DeVries S, Matsumura K, Chew K, Ljung BM, Waldman FM. Genetic alterations in ERBB2-amplified breast carcinomas. Clin Cancer Res 1999;5:4140–5. [257] James LA, Mitchell EL, Menasce L, Varley JM. Comparative genomic hybridisation of ductal carcinoma in situ of the breast: identification of regions of DNA amplification and deletion in common with invasive breast carcinoma. Oncogene 1997;14:1059–65. [258] Kallioniemi A, Kallioniemi OP, Piper J, Tanner M, Stokke T, Chen L, Smith HS, Pinkel D, Gray JW, Waldman FM. Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. Proc Natl Acad Sci 1994;91:2156–60. [259] Kuukasjarvi T, Karhu R, Tanner M, Kahkonen M, Schaffer A, Nupponen N, Pennanen S, Kallioniemi A, Kallioniemi OP, Isola J. Genetic heterogeneity and clonal evolution underlying development of asynchronous metastasis in human breast cancer. Cancer Res 1997; 57:1597–604. [260] Kuukasjarvi T, Tanner M, Pennanen S, Karhu R, Kallioniemi OP, Isola J. Genetic changes in intraductal breast cancer detected by comparative genomic hybridization. Am J Pathol 1997;150:1465–71. [261] Larramendy ML, Lushnikova T, Bjorkqvist A, Wistuba II, Virmani AK, Shivapurkar N, Gazdar AF, Knuutila S. Comparative genomic hybridization reveals complex genetic changes in primary breast cancer tumors and their cell lines. Cancer Genet Cytogenet 2000; 119:132–8. [262] Loveday RL, Greenman J, Drew PJ, Monson JR, Kerin MJ. Genetic changes associated with telomerase activity in breast cancer. Int J Cancer 1999;84:516–20. [263] Loveday RL, Greenman J, Simcox DL, Speirs V, Drew PJ, Monson JR, Kerin MJ. Genetic changes in breast cancer detected by comparative genomic hybridization. Int J Cancer 2000;86:494–500. [264] Lu YJ, Birdsall S, Osin P, Gusterson B, Shipley J. Phyllodes tumors of the breast analyzed by comparative genomic hybridization and association of increased 1q copy number with stromal overgrowth and recurrence. Genes Chromosom Cancer 1997;20:275–81.
85
[265] Lu YJ, Osin P, Lakhani SR, Di Palma S, Gusterson BA, Shipley JM. Comparative genomic hybridization analysis of lobular carcinoma in situ and atypical lobular hyperplasia and potential roles for gains and losses of genetic material in breast neoplasia. Cancer Res 1998; 58:4721–7. [266] Malamou-Mitsi VD, Syrrou M, Georgiou I, Pagoulatos G, Agnantis NJ. Analysis of chromosomal aberrations in breast cancer by comparative genomic hybridization (CGH). Correlation with histoprognostic variables and c-erbB-2 immunoexpression. J Exp Clin Cancer Res 1999;18:357–61. [267] Moore E, Magee H, Coyne J, Gorey T, Dervan PA. Widespread chromosomal abnormalities in high-grade ductal carcinoma in situ of the breast. Comparative genomic hybridization study of pure high-grade DCIS. J Pathol 1999;187:403–9. [268] Muleris M, Almeida A, Gerbault-Seureau M, Malfoy B, Dutrillaux B. Detection of DNA amplification in 17 primary breast carcinomas with homogeneously staining regions by a modified comparative genomic hybridization technique. Genes Chromosom Cancer 1994; 10:160–70. [269] Muleris M, Almeida A, Gerbault-Seureau M, Malfoy B, Dutrillaux B. Identification of amplified DNA sequences in breast cancer and their organization within homogeneously staining regions. Genes Chromosom Cancer 1995;14:155–63. [270] Nishizaki T, Chew K, Chu L, Isola J, Kallioniemi A, Weidner N, Waldman FM. Genetic alterations in lobular breast cancer by comparative genomic hybridization. Int J Cancer 1997;74:513–7. [271] Nishizaki T, DeVries S, Chew K, Goodson WH 3rd, Ljung BM, Thor A, Waldman FM. Genetic alterations in primary breast cancers and their metastases: direct comparison using modified comparative genomic hybridization. Genes Chromosom Cancer 1997;19:267–72. [272] Ojopi EP, Rogatto SR, Caldeira JR, Barbieri-Neto J, Squire JA. Comparative genomic hybridization detects novel amplifications in fibroadenomas of the breast. Genes Chromosom Cancer 2001;30: 25–31. [273] Persson K, Pandis N, Mertens F, Borg A, Baldetorp B, Killander D, Isola J. Chromosomal aberrations in breast cancer: a comparison between cytogenetics and comparative genomic hybridization. Genes Chromosom Cancer 1999;25:115–22. [274] Richard F, Pacyna-Gengelbach M, Schluns K, Fleige B, Winzer KJ, Szymas J, Dietel M, Petersen I, Scwendel A. Patterns of chromosomal imbalances in invasive breast cancer. Int J Cancer 2000;89:305–10. [275] Ried T, Just KE, Holtgreve-Grez H, du Manoir S, Speicher MR, Schrock E, Latham C, Blegen H, Zetterberg A, Cremer T, Auer G. Comparative genomic hybridization of formalin-fixed, paraffinembedded breast tumors reveals different patterns of chromosomal gains and losses in fibroadenomas and diploid and aneuploid carcinomas. Cancer Res 1995;55:5415–23. [276] Roylance R, Gorman P, Harris W, Liebmann R, Barnes D, Hanby A, Sheer D. Comparative genomic hybridization of breast tumors stratified by histological grade reveals new insights into the biological progression of breast cancer. Cancer Res 1999;59:1433–6. [277] Schwendel A, Richard F, Langreck H, Kaufmann O, Lage H, Winzer KJ, Petersen I, Dietel M. Chromosome alterations in breast carcinomas: frequent involvement of DNA losses including chromosomes 4q and 21q. Br J Cancer 1998;78:806–11. [278] Tanner MM, Karhu RA, Nupponen NN, Borg A, Baldetorp B, Pejovic T, Ferno M, Killander D, Isola JJ. Genetic aberrations in hypodiploid breast cancer: frequent loss of chromosome 4 and amplification of cyclin D1 oncogene. Am J Pathol 1998;153:191–9. [279] Tirkkonen M, Johannsson O, Agnarsson BA, Olsson H, Ingvarsson S, Karhu R, Tanner M, Isola J, Barkardottir RB, Borg A, Kallioniemi OP. Distinct somatic genetic changes associated with tumor progression in carriers of BRCA1 and BRCA2 germ-line mutations. Cancer Res 1997;57:1222–7. [280] Tirkkonen M, Tanner M, Karhu R, Kallioniemi A, Isola J, Kallioniemi OP. Molecular cytogenetics of primary breast cancer by CGH. Genes Chromosom Cancer 1998;21:177–84.
86
S. Struski et al. / Cancer Genetics and Cytogenetics 135 (2002) 63–90
[281] Tirkkonen M, Kainu T, Loman N, Johannsson OT, Olsson H, Barkardottir RB, Kallioniemi OP, Borg A. Somatic genetic alterations in BRCA2-associated and sporadic male breast cancer. Genes Chromosom Cancer 1999;24:56–61. [282] Vos CB, ter Haar NT, Rosenberg C, Peterse JL, Cleton-Jansen AM, Cornelisse CJ, van de Vijver MJ. Genetic alterations on chromosome 16 and 17 are important features of ductal carcinoma in situ of the breast and are associated with histologic type. Br J Cancer 1999; 81:1410–8. [283] Waldman FM, DeVries S, Chew KL, Moore DH 2nd, Kerlikowske K, Ljung BM. Chromosomal alterations in ductal carcinomas in situ and their in situ recurrences. J Natl Cancer Inst 2000;92:313–20. [284] Arnold N, Hagele L, Walz L, Schempp W, Pfisterer J, Bauknecht T, Kiechle M. Overrepresentation of 3q and 8q material and loss of 18q material are recurrent findings in advanced human ovarian cancer. Genes Chromosom Cancer 1996;16:46–54. [285] Iwabuchi H, Sakamoto M, Sakunaga H, Ma YY, Carcangiu ML, Pinkel D, Yang-Feng TL, Gray JW. Genetic analysis of benign, low-grade, and high-grade ovarian tumors. Cancer Res 1995;55: 6172–80. [286] Kiechle M, Jacobsen A, Schwarz-Boeger U, Hedderich J, Pfisterer J, Arnold N. Comparative genomic hybridization detects genetic imbalances in primary ovarian carcinomas as correlated with grade of differentiation. Cancer 2001;91:534–40. [287] Sakamoto M, Umayahara K, Sakamoto H, Kawasaki K, Suehiro Y, Kunugi T, Akiya T, Iwabuchi H, Sakunaga H, Muroya T, Kikuchi Y, Sugishita T, Tenjin Y, Gray JW, Tanaka T. [Cancer-associated gene abnormalities and chemosensitivity]. Gan To Kagaku Ryoho 1998;25:1819–31. [288] Sonoda G, Palazzo J, du Manoir S, Godwin AK, Feder M, Yakushiji M, Testa JR. Comparative genomic hybridization detects frequent overrepresentation of chromosomal material from 3q26, 8q24, and 20q13 in human ovarian carcinomas. Genes Chromosom Cancer 1997;20: 320–8. [289] Suehiro Y, Sakamoto M, Umayahara K, Iwabuchi H, Sakamoto H, Tanaka N, Takeshima N, Yamauchi K, Hasumi K, Akiya T, Sakunaga H, Muroya T, Numa F, Kato H, Tenjin Y, Sugishita T. Genetic aberrations detected by comparative genomic hybridization in ovarian clear cell adenocarcinomas. Oncology 2000;59:50–6. [290] Tapper J, Butzow R, Wahlstrom T, Seppala M, Knuutila S. Evidence for divergence of DNA copy number changes in serous, mucinous and endometrioid ovarian carcinomas. Br J Cancer 1997;75: 1782–7. [291] Tapper J, Sarantaus L, Vahteristo P, Nevanlinna H, Hemmer S, Seppala M, Knuutila S, Butzow R. Genetic changes in inherited and sporadic ovarian carcinomas by comparative genomic hybridization: extensive similarity except for a difference at chromosome 2q24-q32. Cancer Res 1998;58:2715–9. [292] Wolf NG, Abdul-Karim FW, Farver C, Schrock E, du Manoir S, Schwartz S. Analysis of ovarian borderline tumors using comparative genomic hybridization and fluorescence in situ hybridization. Genes Chromosom Cancer 1999;25:307–15. [293] Wolff E, Liehr T, Vorderwulbecke U, Tulusan AH, Husslein EM, Gebhart E. Frequent gains and losses of specific chromosome segments in human ovarian carcinomas shown by comparative genomic hybridization. Int J Oncol 1997;11:19–23. [294] Aubele M, Zitzelsberger H, Schenck U, Walch A, Hofler H, Werner M. Distinct cytogenetic alterations in squamous intraepithelial lesions of the cervix revealed by laser-assisted microdissection and comparative genomic hybridization. Cancer 1998;84:375–9. [295] Dellas A, Torhorst J, Jiang F, Proffitt J, Schultheiss E, Holzgreve W, Sauter G, Mihatsch MJ, Moch H. Prognostic value of genomic alterations in invasive cervical squamous cell carcinoma of clinical stage IB detected by comparative genomic hybridization. Cancer Res 1999;59:3475–9. [296] Gogusev J, Bouquet de Joliniere J, Telvi L, Doussau M, du Manoir S, Stojkoski A, Levardon M. Detection of DNA copy number
[297]
[298]
[299]
[300]
[301]
[302] [303]
[304]
[305]
[306]
[307]
[308]
[309]
[310]
[311]
[312]
[313]
changes in human endometriosis by comparative genomic hybridization. Hum Genet 1999;105:444–51. Heselmeyer K, Schrock E, du Manoir S, Blegen H, Shah K, Steinbeck R, Auer G, Ried T. Gain of chromosome 3q defines the transition from severe dysplasia to invasive carcinoma of the uterine cervix. Proc Natl Acad Sci 1996;93:479–84. Heselmeyer K, Macville M, Schrock E, Blegen H, Hellstrom AC, Shah K, Auer G, Ried T. Advanced-stage cervical carcinomas are defined by a recurrent pattern of chromosomal aberrations revealing high genetic instability and a consistent gain of chromosome arm 3q. Genes Chromosom Cancer 1997;19:233–40. Hidalgo A, Schewe C, Petersen S, Salcedo M, Gariglio P, Schluns K, Dietel M, Petersen I. Human papilloma virus status and chromosomal imbalances in primary cervical carcinomas and tumour cell lines. Eur J Cancer 2000;36:542–8. Kiechle M, Hinrichs M, Jacobsen A, Luttges J, Pfisterer J, Kommoss F, Arnold N. Genetic imbalances in precursor lesions of endometrial cancer detected by comparative genomic hybridization. Am J Pathol 2000;156:1827–33. Kirchhoff M, Rose H, Petersen BL, Maahr J, Gerdes T, Lundsteen C, Bryndorf T, Kryger-Baggesen N, Christensen L, Engelholm SA, Philip J. Comparative genomic hybridization reveals a recurrent pattern of chromosomal aberrations in severe dysplasia/carcinoma in situ of the cervix and in advanced-stage cervical carcinoma. Genes Chromosom Cancer 1999;24:144–50. Matthews CP, Shera KA, McDougall JK. Genomic changes and HPV type in cervical carcinoma. Proc Soc Exp Biol Med 2000;223:316–21. Pere H, Tapper J, Wahlstrom T, Knuutila S, Butzow R. Distinct chromosomal imbalances in uterine serous and endometrioid carcinomas. Cancer Res 1998;58:892–5. Sonoda G, du Manoir S, Godwin AK, Bell DW, Liu Z, Hogan M, Yakushiji M, Testa JR. Detection of DNA gains and losses in primary endometrial carcinomas by comparative genomic hybridization. Genes Chromosom Cancer 1997;18:115–25. Suehiro Y, Umayahara K, Ogata H, Numa F, Yamashita Y, Oga A, Morioka H, Ito T, Kato H, Sasaki K. Genetic aberrations detected by comparative genomic hybridization predict outcome in patients with endometrioid carcinoma. Genes Chromosom Cancer 2000;29:75–82. Suzuki A, Fukushige S, Nagase S, Ohuchi N, Satomi S, Horii A. Frequent gains on chromosome arms 1q and/or 8q in human endometrial cancer. Hum Genet 1997;100:629–36. Jee KJ, Kim YT, Kim KR, Kim HS, Yan A, Knuutila S. Loss in 3p and 4p and gain of 3q are concomitant aberrations in squamous cell carcinoma of the vulva. Mod Pathol 2001;14:377–81. Riopel MA, Spellerberg A, Griffin CA, Perlman EJ. Genetic analysis of ovarian germ cell tumors by comparative genomic hybridization. Cancer Res 1998;58:3105–10. Heselmeyer K, Hellstrom AC, Blegen H, Schrock E, Silfversward C, Shah K, Auer G, Ried T. Primary carcinoma of the fallopian tube: comparative genomic hybridization reveals high genetic instability and a specific, recurring pattern of chromosomal aberrations. Int J Gynecol Pathol 1998;17:245–54. Pere H, Tapper J, Seppala M, Knuutila S, Butzow R. Genomic alterations in fallopian tube carcinoma: comparison to serous uterine and ovarian carcinomas reveals similarity suggesting likeness in molecular pathogenesis. Cancer Res 1998;58:4274–6. Korn WM, Oide Weghuis DE, Suijkerbuijk RF, Schmidt U, Otto T, du Manoir S, Geurts van Kessel A, Harstrick A, Seeber S, Becher R. Detection of chromosomal DNA gains and losses in testicular germ cell tumors by comparative genomic hybridization. Genes Chromosom Cancer 1996;17:78–87. Mostert MM, van de Pol M, Olde Weghuis D, Suijkerbuijk RF, Geurts van Kessel A, van Echten J, Oosterhuis JW, Looijenga LH. Comparative genomic hybridization of germ cell tumors of the adult testis: confirmation of karyotypic findings and identification of a 12p-amplicon. Cancer Genet Cytogenet 1996;89:146–52. Mostert M, Rosenberg C, Stoop H, Schuyer M, Timmer A, Ooster-
S. Struski et al. / Cancer Genetics and Cytogenetics 135 (2002) 63–90
[314]
[315]
[316]
[317]
[318]
[319]
[320]
[321]
[322]
[323]
[324]
[325]
[326]
[327]
[328]
[329]
huis W, Looijenga L. Comparative genomic and in situ hybridization of germ cell tumors of the infantile testis. Lab Invest 2000;80: 1055–64. Ottesen AM, Kirchhoff M, De-Meyts ER, Maahr J, Gerdes T, Rose H, Lundsteen C, Petersen PM, Philip J, Skakkebaek NE. Detection of chromosomal aberrations in seminomatous germ cell tumours using comparative genomic hybridization. Genes Chromosom Cancer 1997;20:412–8. Rao PH, Houldsworth J, Palanisamy N, Murty VV, Reuter VE, Motzer RJ, Bosl GJ, Chaganti RS. Chromosomal amplification is associated with cisplatin resistance of human male germ cell tumors. Cancer Res 1998;58:4260–3. Rosenberg C, Schut TB, Mostert M, Tanke H, Raap A, Oosterhuis JW, Looijenga L. Chromosomal gains and losses in testicular germ cell tumors of adolescents and adults investigated by a modified comparative genomic hybridization approach. Lab Invest 1999;79:1447–51. Summersgill B, Goker H, Weber-Hall S, Huddart R, Horwich A, Shipley J. Molecular cytogenetic analysis of adult testicular germ cell tumours and identification of regions of consensus copy number change. Br J Cancer 1998;77:305–13. Cher ML, MacGrogan D, Bookstein R, Brown JA, Jenkins RB, Jensen RH. Comparative genomic hybridization, allelic imbalance, and fluorescence in situ hybridization on chromosome 8 in prostate cancer. Genes Chromosom Cancer 1994;11:153–62. Cher ML, Bova GS, Moore DH, Small EJ, Carroll PR, Pin SS, Epstein JI, Isaacs WB, Jensen RH. Genetic alterations in untreated metastases and androgen-independent prostate cancer detected by comparative genomic hybridization and allelotyping. Cancer Res 1996; 56:3091–102. Cher ML, Lewis PE, Banerjee M, Hurley PM, Sakr W, Grignon DJ, Powell IJ. A similar pattern of chromosomal alterations in prostate cancers from African-Americans and Caucasian Americans. Clin Cancer Res 1998;4:1273–8. El Gedaily A, Bubendorf L, Willi N, Fu W, Richter J, Moch H, Mihatsch MJ, Sauter G, Gasser TC. Discovery of new DNA amplification loci in prostate cancer by comparative genomic hybridization. Prostate 2001;46:184–90. Joos S, Bergerheim US, Pan Y, Matsuyama H, Bentz M, du Manoir S, Lichter P. Mapping of chromosomal gains and losses in prostate cancer by comparative genomic hybridization. Genes Chromosom Cancer 1995;14:267–76. Koivisto PA, Schleutker J, Helin H, Ehren-van Eekelen C, Kallioniemi OP, Trapman J. Androgen receptor gene alterations and chromosomal gains and losses in prostate carcinomas appearing during finasteride treatment for benign prostatic hyperplasia. Clin Cancer Res 1999;5:3578–82. Nupponen NN, Kakkola L, Koivisto P, Visakorpi T. Genetic alterations in hormone-refractory recurrent prostate carcinomas. Am J Pathol 1998;153:141–8. Rokman A, Koivisto PA, Matikainen MP, Kuukasjarvi T, Poutiainen M, Helin HJ, Karhu R, Kallioniemi OP, Schleutker J. Genetic changes in familial prostate cancer by comparative genomic hybridization. Prostate 2001;46:233–9. Sattler HP, Rohde V, Bonkhoff H, Zwergel T, Wullich B. Comparative genomic hybridization reveals DNA copy number gains to frequently occur in human prostate cancer. Prostate 1999;39:79–86. Verhagen PC, Zhu XL, Rohr LR, Cannon-Albright LA, Tavtigian SV, Skolnick MH, Brothman AR. Microdissection, DOP-PCR, and comparative genomic hybridization of paraffin-embedded familial prostate cancers. Cancer Genet Cytogenet 2000;122:43–8. Visakorpi T, Kallioniemi AH, Syvanen AC, Hyytinen ER, Karhu R, Tammela T, Isola JJ, Kallioniemi OP. Genetic changes in primary and recurrent prostate cancer by comparative genomic hybridization. Cancer Res 1995;55:342–7. Zitzelsberger H, Kulka U, Lehmann L, Walch A, Smida J, Aubele M, Lorch T, Hofler H, Bauchinger M, Werner M. Genetic heterogeneity in a prostatic carcinoma and associated prostatic intraepithelial
[330]
[331]
[332]
[333]
[334]
[335]
[336]
[337]
[338]
[339]
[340]
[341]
[342]
[343]
[344]
87
neoplasia as demonstrated by combined use of laser-microdissection, degenerate oligonucleotide primed PCR and comparative genomic hybridization. Virchows Arch 1998;433:297–304. Zitzelsberger H, Engert D, Walch A, Kulka U, Aubele M, Hofler H, Bauchinger M, Werner M. Chromosomal changes during development and progression of prostate adenocarcinomas. Br J Cancer 2001;84:202–8. Brinkschmidt C, Blasius S, Burger H, Simon R, Diallo R, Battmann A, Winkelmann W, Bocker W, Dockhorn-Dworniczak B. [Comparative genomic hybridization (CGH) for detecting a heretofore undescribed amplified chromosomal segment in high-grade medullary osteosarcoma]. Verh Dtsch Ges Pathol 1998;82:184–8. Forus A, Weghuis DO, Smeets D, Fodstad O, Myklebost O, Geurts van Kessel A. Comparative genomic hybridization analysis of human sarcomas: II. Identification of novel amplicons at 6p and 17p in osteosarcomas. Genes Chromosom Cancer 1995;14:15–21. Simons A, Janssen IM, Suijkerbuijk RF, Veth RP, Pruszczynski M, Hulsbergen-van de Kaa CA, du Manoir S, Geurts van Kessel A. Isolation of osteosarcoma-associated amplified DNA sequences using representational difference analysis. Genes Chromosom Cancer 1997;20:196–200. Stock C, Kager L, Fink FM, Gadner H, Ambros PF. Chromosomal regions involved in the pathogenesis of osteosarcomas. Genes Chromosom Cancer 2000;28:329–36. Szymanska J, Mandahl N, Mertens F, Tarkkanen M, Karaharju E, Knuutila S. Ring chromosomes in parosteal osteosarcoma contain sequences from 12q13-15: a combined cytogenetic and comparative genomic hybridization study. Genes Chromosom Cancer 1996;16:31–4. Tarkkanen M, Karhu R, Kallioniemi A, Elomaa I, Kivioja AH, Nevalainen J, Bohling T, Karaharju E, Hyytinen E, Knuutila S, Kallioniemi OP. Gains and losses of DNA sequences in osteosarcomas by comparative genomic hybridization. Cancer Res 1995;55:1334–8. Tarkkanen M, Bohling T, Gamberi G, Ragazzini P, Benassi MS, Kivioja A, Kallio P, Elomaa I, Picci P, Knuutila S. Comparative genomic hybridization of low-grade central osteosarcoma. Mod Pathol 1998;11:421–6. Tarkkanen M, Elomaa I, Blomqvist C, Kivioja AH, KellokumpuLehtinen P, Bohling T, Valle J, Knuutila S. DNA sequence copy number increase at 8q: a potential new prognostic marker in highgrade osteosarcoma. Int J Cancer 1999;84:114–21. Larramendy ML, Tarkkanen M, Valle J, Kivioja AH, Ervasti H, Karaharju E, Salmivalli T, Elomaa I, Knuutila S. Gains, losses, and amplifications of DNA sequences evaluated by comparative genomic hybridization in chondrosarcomas. Am J Pathol 1997;150:685–91. Larramendy ML, Mandahl N, Mertens F, Blomqvist C, Kivioja AH, Karaharju E, Valle J, Bohling T, Tarkkanen M, Rydholm A, Akerman M, Bauer HC, Anttila JP, Elomaa I, Knuutila S. Clinical significance of genetic imbalances revealed by comparative genomic hybridization in chondrosarcomas. Hum Pathol 1999;30:1247–53. Armengol G, Tarkkanen M, Virolainen M, Forus A, Valle J, Bohling T, Asko-Seljavaara S, Blomqvist C, Elomaa I, Karaharju E, Kivioja AH, Siimes MA, Tukiainen E, Caballin MR, Myklebost O, Knuutila S. Recurrent gains of 1q, 8 and 12 in the Ewing family of tumours by comparative genomic hybridization. Br J Cancer 1997;75:1403–9. Tarkkanen M, Kiuru-Kuhlefelt S, Blomqvist C, Armengol G, Bohling T, Ekfors T, Virolainen M, Lindholm P, Monge O, Picci P, Knuutila S, Elomaa I. Clinical correlations of genetic changes by comparative genomic hybridization in Ewing sarcoma and related tumors. Cancer Genet Cytogenet 1999;114:35–41. Hinze R, Schagdarsurengin U, Taubert H, Meye A, Wurl P, Holzhausen HJ, Rath FW, Schmidt H. Assessment of genomic imbalances in malignant fibrous histiocytomas by comparative genomic hybridization. Int J Mol Med 1999;3:75–9. Larramendy ML, Tarkkanen M, Blomqvist C, Virolainen M, Wiklund T, Asko-Seljavaara S, Elomaa I, Knuutila S. Comparative genomic hybridization of malignant fibrous histiocytoma reveals a novel prognostic marker. Am J Pathol 1997;151:1153–61.
88
S. Struski et al. / Cancer Genetics and Cytogenetics 135 (2002) 63–90
[345] Mairal A, Terrier P, Chibon F, Sastre X, Lecesne A, Aurias A. Loss of chromosome 13 is the most frequent genomic imbalance in malignant fibrous histiocytomas. A comparative genomic hybridization analysis of a series of 30 cases. Cancer Genet Cytogenet 1999;111:134–8. [346] Sakabe T, Shinomiya T, Mori T, Ariyama Y, Fukuda Y, Fujiwara T, Nakamura Y, Inazawa J. Identification of a novel gene, MASL1, within an amplicon at 8p23.1 detected in malignant fibrous histiocytomas by comparative genomic hybridization. Cancer Res 1999;59:511–5. [347] Simons A, Schepens M, Jeuken J, Sprenger S, van de Zande G, Bjerkehagen B, Forus A, Weibolt V, Molenaar I, van den Berg E, Myklebost O, Bridge J, van Kessel AG, Suijkerbuijk R. Frequent loss of 9p21 (p16(INK4A)) and other genomic imbalances in human malignant fibrous histiocytoma. Cancer Genet Cytogenet 2000;118:89–98. [348] Forus A, Weghuis DO, Smeets D, Fodstad O, Myklebost O, van Kessel AG. Comparative genomic hybridization analysis of human sarcomas: I. Occurrence of genomic imbalances and identification of a novel major amplicon at 1q21-q22 in soft tissue sarcomas. Genes Chromosom Cancer 1995;14:8–14. [349] Kattar MM, Grignon DJ, Eble JN, Hurley PM, Lewis PE, Sakr WE, Cher ML. Chromosomal analysis of renal angiomyolipoma by comparative genomic hybridization: evidence for clonal origin. Hum Pathol 1999;30:295–9. [350] Lushnikova T, Knuutila S, Miettinen M. DNA copy number changes in epithelioid sarcoma and its variants: a comparative genomic hybridization study. Mod Pathol 2000;13:1092–6. [351] Parente F, Grosgeorge J, Coindre JM, Terrier P, Vilain O, TurcCarel C. Comparative genomic hybridization reveals novel chromosome deletions in 90 primary soft tissue tumors. Cancer Genet Cytogenet 1999;115:89–95. [352] Suijkerbuijk RF, Olde Weghuis DE, Van den Berg M, Pedeutour F, Forus A, Myklebost O, Glier C, Turc-Carel C, Geurts van Kessel A. Comparative genomic hybridization as a tool to define two distinct chromosome 12-derived amplification units in well-differentiated liposarcomas. Genes Chromosom Cancer 1994;9:292–5. [353] Szymanska J, Tarkkanen M, Wiklund T, Virolainen M, Blomqvist C, Asko-Seljavaara S, Tukiainen E, Elomaa I, Knuutila S. Gains and losses of DNA sequences in liposarcomas evaluated by comparative genomic hybridization. Genes Chromosom Cancer 1996;15:89–94. [354] Szymanska J, Virolainen M, Tarkkanen M, Wiklund T, Asko-Seljavaara S, Tukiainen E, Elomaa I, Blomqvist C, Knuutila S. Overrepresentation of 1q21-23 and 12q13-21 in lipoma-like liposarcomas but not in benign lipomas: a comparative genomic hybridization study. Cancer Genet Cytogenet 1997;99:14–8. [355] El-Rifai W, Sarlomo-Rikala M, Knuutila S, Miettinen M. DNA copy number changes in development and progression in leiomyosarcomas of soft tissues. Am J Pathol 1998;153:985–90. [356] Levy B, Mukherjee T, Hirschhorn K. Molecular cytogenetic analysis of uterine leiomyoma and leiomyosarcoma by comparative genomic hybridization. Cancer Genet Cytogenet 2000;121:1–8. [357] Otano-Joos M, Mechtersheimer G, Ohl S, Lehnert T, Willeke F, Moller P, Otto HF, Lichter P, Joos S. [Analysis of chromosome copy number changes in leiomyosarcoma through molecular cytogenetic methods]. Verh Dtsch Ges Pathol 1998;82:207–9. [358] Packenham JP, du Manoir S, Schrock E, Risinger JI, Dixon D, Denz DN, Evans JA, Berchuck A, Barrett JC, Devereux TR, Ried T. Analysis of genetic alterations in uterine leiomyomas and leiomyosarcomas by comparative genomic hybridization. Mol Carcinog 1997;19:273–9. [359] Skytting BT, Szymanska J, Aalto Y, Lushnikova T, Blomqvist C, Elomaa I, Larsson O, Knuutila S. Clinical importance of genomic imbalances in synovial sarcoma evaluated by comparative genomic hybridization. Cancer Genet Cytogenet 1999;115:39–46. [360] Szymanska J, Serra M, Skytting B, Larsson O, Virolainen M, Akerman M, Tarkkanen M, Huuhtanen R, Picci P, Bacchini P, Asko-Seljavaara S, Elomaa I, Knuutila S. Genetic imbalances in 67 synovial sarcomas evaluated by comparative genomic hybridization. Genes Chromosom Cancer 1998;23:213–9.
[361] Bridge JA, Liu J, Weibolt V, Baker KS, Perry D, Kruger R, Qualman S, Barr F, Sorensen P, Triche T, Suijkerbuijk R. Novel genomic imbalances in embryonal rhabdomyosarcoma revealed by comparative genomic hybridization and fluorescence in situ hybridization: an intergroup rhabdomyosarcoma study. Genes Chromosom Cancer 2000;27:337–44. [362] Gordon AT, Brinkschmidt C, Anderson J, Coleman N, DockhornDworniczak B, Pritchard-Jones K, Shipley J. A novel and consistent amplicon at 13q31 associated with alveolar rhabdomyosarcoma. Genes Chromosom Cancer 2000;28:220–6. [363] Pandita A, Zielenska M, Thorner P, Bayani J, Godbout R, Greenberg M, Squire JA. Application of comparative genomic hybridization, spectral karyotyping, and microarray analysis in the identification of subtype-specific patterns of genomic changes in rhabdomyosarcoma. Neoplasia 1999;1:262–75. [364] Weber-Hall S, Anderson J, McManus A, Abe S, Nojima T, Pinkerton R, Pritchard-Jones K, Shipley J. Gains, losses, and amplification of genomic material in rhabdomyosarcoma analyzed by comparative genomic hybridization. Cancer Res 1996;56:3220–4. [365] Weber-Hall S, McManus A, Anderson J, Nojima T, Abe S, Pritchard-Jones K, Shipley J. Novel formation and amplification of the PAX7-FKHR fusion gene in a case of alveolar rhabdomyosarcoma. Genes Chromosom Cancer 1996;17:7–13. [366] Kiuru-Kuhlefelt S, El-Rifai W, Sarlomo-Rikala M, Knuutila S, Miettinen M. DNA copy number changes in alveolar soft part sarcoma: a comparative genomic hybridization study. Mod Pathol 1998;11:227–31. [367] Krismann M, Adams H, Jaworska M, Muller KM, Johnen G. Patterns of chromosomal imbalances in benign solitary fibrous tumours of the pleura. Virchows Arch 2000;437:248–55. [368] Miettinen MM, el-Rifai W, Sarlomo-Rikala M, Andersson LC, Knuutila S. Tumor size-related DNA copy number changes occur in solitary fibrous tumors but not in hemangiopericytomas. Mod Pathol 1997;10:1194–200. [369] Naeem R, Lux ML, Huang SF, Naber SP, Corson JM, Fletcher JA. Ring chromosomes in dermatofibrosarcoma protuberans are composed of interspersed sequences from chromosomes 17 and 22. Am J Pathol 1995;147:1553–8. [370] Pedeutour F, Simon MP, Minoletti F, Sozzi G, Pierotti MA, Hecht F, Turc-Carel C. Ring 22 chromosomes in dermatofibrosarcoma protuberans are low-level amplifiers of chromosome 17 and 22 sequences. Cancer Res 1995;55:2400–3. [371] Larramendy ML, Virolainen M, Tukiainen E, Elomaa I, Knuutila S. Chromosome band 1q21 is recurrently gained in desmoid tumors. Genes Chromosom Cancer 1998;23:183–6. [372] Mertens F, Larramendy M, Gustavsson A, Gisselsson D, Rydholm A, Brosjo O, Mitelman F, Knuutila S, Mandahl N. Radiation-associated sarcomas are characterized by complex karyotypes with frequent rearrangements of chromosome arm 3p. Cancer Genet Cytogenet 2000; 116:89–96. [373] Ahmed MN, Kim K, Haddad B, Berchuck A, Qumsiyeh MB. Comparative genomic hybridization studies in hydatidiform moles and choriocarcinoma: amplification of 7q21-q31 and loss of 8p12-p21 in choriocarcinoma. Cancer Genet Cytogenet 2000;116:10–5. [374] Bentz M, Huck K, du Manoir S, Joos S, Werner CA, Fischer K, Dohner H, Lichter P. Comparative genomic hybridization in chronic B-cell leukemias shows a high incidence of chromosomal gains and losses. Blood 1995;85:3610–8. [375] Jarosova M, Jedlickova K, Holzerova M, Urbanova R, Papajik T, Raida L, Pikalova Z, Lakoma II, Prekopova II, Kropackova J, Indrak K. Contribution of comparative genomic hybridization and fluorescence in situ hybridization to the detection of chromosomal abnormalities in b-cell chronic lymphocytic leukemia. Onkologie 2001;24:60–5. [376] Karhu R, Knuutila S, Kallioniemi OP, Siltonen S, Aine R, Vilpo L, Vilpo J. Frequent loss of the 11q14-24 region in chronic lymphocytic leukemia: a study by comparative genomic hybridization. Tampere CLL Group. Genes Chromosom Cancer 1997;19:286–90.
S. Struski et al. / Cancer Genetics and Cytogenetics 135 (2002) 63–90 [377] Nessling M, Solinas-Toldo S, Lichter P, Reifenberger G, Wolter M, Moller P, Dohner H, Bentz M. Genomic imbalances are rare in hairy cell leukemia. Genes Chromosom Cancer 1999;26:182–83. [378] O’Connor SJ, Su’ut L, Morgan GJ, Jack AS. The relationship between typical and atypical B-cell chronic lymphocytic leukemia. A comparative genomic hybridization-based study. Am J Clin Pathol 2000;114:448–58. [379] Ariyama Y, Mori T, Shinomiya T, Sakabe T, Fukuda Y, Kanamaru A, Yamada Y, Isobe M, Seto M, Nakamura Y, Inazawa J. Chromosomal imbalances in adult T-cell leukemia revealed by comparative genomic hybridization: gains at 14q32 and 2p16-22 in cell lines. J Hum Genet 1999;44:357–63. [380] Arranz E, Martinez-Delgado B, Richart A, Osorio A, Cebrian A, Robledo M, Rivas C, Benitez J. Identification by comparative genomic hybridization of genetic changes involved in tumoral progression of a T-cell non-Hodgkin lymphoma. Cancer Genet Cytogenet 2000;117:41–4. [381] Werner CA, Dohner H, Joos S, Trumper LH, Baudis M, Barth TF, Ott G, Moller P, Lichter P, Bentz M. High-level DNA amplifications are common genetic aberrations in B-cell neoplasms. Am J Pathol 1997;151:335–42. [382] Autio K, Aalto Y, Franssila K, Elonen E, Joensuu H, Knuutila S. Low number of DNA copy number changes in small lymphocytic lymphoma. Haematologica 1998;83:690–2. [383] Bea S, Ribas M, Hernandez JM, Bosch F, Pinyol M, Hernandez L, Garcia JL, Flores T, Gonzalez M, Lopez-Guillermo A, Piris MA, Cardesa A, Montserrat E, Miro R, Campo E. Increased number of chromosomal imbalances and high-level DNA amplifications in mantle cell lymphoma are associated with blastoid variants. Blood 1999;93:4365–74. [384] Bentz M, Plesch A, Bullinger L, Stilgenbauer S, Ott G, Muller-Hermelink HK, Baudis M, Barth TF, Moller P, Lichter P, Dohner H. t(11;14)-positive mantle cell lymphomas exhibit complex karyotypes and share similarities with B-cell chronic lymphocytic leukemia. Genes Chromosom Cancer 2000;27:285–94. [385] Monni O, Oinonen R, Elonen E, Franssila K, Teerenhovi L, Joensuu H, Knuutila S. Gain of 3q and deletion of 11q22 are frequent aberrations in mantle cell lymphoma. Genes Chromosom Cancer 1998;21:298–307. [386] Avet-Loiseau H, Vigier M, Moreau A, Mellerin MP, Gaillard F, Harousseau JL, Bataille R, Milpied N. Comparative genomic hybridization detects genomic abnormalities in 80% of follicular lymphomas. Br J Haematol 1997;97:119–22. [387] Bentz M, Werner CA, Dohner H, Joos S, Barth TF, Siebert R, Schroder M, Stilgenbauer S, Fischer K, Moller P, Lichter P. High incidence of chromosomal imbalances and gene amplifications in the classical follicular variant of follicle center lymphoma. Blood 1996;88:1437–44. [388] Chan WY, Wong N, Chan AB, Chow JH, Lee JC. Consistent copy number gain in chromosome 12 in primary diffuse large cell lymphomas of the stomach. Am J Pathol 1998;152:11–6. [389] Dierlamm J, Rosenberg C, Stul M, Pittaluga S, Wlodarska I, Michaux L, Dehaen M, Verhoef G, Thomas J, de Kelver W, Bakker-Schut T, Cassiman JJ, Raap AK, De Wolf-Peeters C, Van den Berghe H, Hagemeijer A. Characteristic pattern of chromosomal gains and losses in marginal zone B cell lymphoma detected by comparative genomic hybridization. Leukemia 1997;11:747–58. [390] Hernandez JM, Garcia JL, Gutierrez NC, Mollejo M, Martinez-Climent JA, Flores T, Gonzalez MB, Piris MA, San Miguel JF. Novel genomic imbalances in b-cell splenic marginal zone lymphomas revealed by comparative genomic hybridization and cytogenetics. Am J Pathol 2001;158:1843–50. [391] Bentz M, Barth TF, Bruderlein S, Bock D, Schwerer MJ, Baudis M, Joos S, Viardot A, Feller AC, Muller-Hermelink HK, Lichter P, Dohner H, Moller P. Gain of chromosome arm 9p is characteristic of primary mediastinal B-cell lymphoma (MLB): comprehensive molecular cytogenetic analysis and presentation of a novel MBL cell line. Genes Chromosom Cancer 2001;30:393–401.
89
[392] Joos S, Otano-Joos MI, Ziegler S, Bruderlein S, du Manoir S, Bentz M, Moller P, Lichter P. Primary mediastinal (thymic) B-cell lymphoma is characterized by gains of chromosomal material including 9p and amplification of the REL gene. Blood 1996;87:1571–8. [393] Scarpa A, Taruscio D, Scardoni M, Iosi F, Paradisi S, Ennas MG, Rigaud G, Moore PS, Menestrina F. Nonrandom chromosomal imbalances in primary mediastinal B-cell lymphoma detected by arbitrarily primed PCR fingerprinting. Genes Chromosom Cancer 1999;26:203–9. [394] Barth TF, Dohner H, Werner CA, Stilgenbauer S, Schlotter M, Pawlita M, Lichter P, Moller P, Bentz M. Characteristic pattern of chromosomal gains and losses in primary large B-cell lymphomas of the gastrointestinal tract. Blood 1998;91:4321–30. [395] Harada K, Nishizaki T, Kubota H, Harada K, Suzuki M, Sasaki K. Distinct primary central nervous system lymphoma defined by comparative genomic hybridization and laser scanning cytometry. Cancer Genet Cytogenet 2001;125:147–50. [396] Houldsworth J, Mathew S, Rao PH, Dyomina K, Louie DC, Parsa N, Offit K, Chaganti RS. REL proto-oncogene is frequently amplified in extranodal diffuse large cell lymphoma. Blood 1996;87:25–9. [397] Monni O, Joensuu H, Franssila K, Knuutila S. DNA copy number changes in diffuse large B-cell lymphoma—comparative genomic hybridization study. Blood 1996;87:5269–78. [398] Monni O, Joensuu H, Franssila K, Klefstrom J, Alitalo K, Knuutila S. BCL2 overexpression associated with chromosomal amplification in diffuse large B-cell lymphoma. Blood 1997;90:1168–74. [399] Rao PH, Houldsworth J, Dyomina K, Parsa NZ, Cigudosa JC, Louie DC, Popplewell L, Offit K, Jhanwar SC, Chaganti RS. Chromosomal and gene amplification in diffuse large B-cell lymphoma. Blood 1998;92:234–40. [400] Rickert CH, Dockhorn-Dworniczak B, Simon R, Paulus W. Chromosomal imbalances in primary lymphomas of the central nervous system. Am J Pathol 1999;155:1445–51. [401] Weber T, Weber RG, Kaulich K, Actor B, Meyer-Puttlitz B, Lampel S, Buschges R, Weigel R, Deckert-Schluter M, Schmiedek P, Reifenberger G, Lichter P. Characteristic chromosomal imbalances in primary central nervous system lymphomas of the diffuse large B-cell type. Brain Pathol 2000;10:73–84. [402] Franke S, Wlodarska I, Maes B, Vandenberghe P, Delabie J, Hagemeijer A, De Wolf-Peeters C. Lymphocyte predominance Hodgkin disease is characterized by recurrent genomic imbalances. Blood 2001;97:1845–53. [403] Joos S, Kupper M, Ohl S, von Bonin F, Mechtersheimer G, Bentz M, Marynen P, Moller P, Pfreundschuh M, Trumper L, Lichter P. Genomic imbalances including amplification of the tyrosine kinase gene JAK2 in CD30 Hodgkin cells. Cancer Res 2000;60:549–52. [404] Ohshima K, Ishiguro M, Ohgami A, Sugihara M, Haraoka S, Suzumiya J, Kikuchi M. Genetic analysis of sorted Hodgkin and ReedSternberg cells using comparative genomic hybridization. Int J Cancer 1999;82:250–5. [405] Aalto Y, Nordling S, Kivioja AH, Karaharju E, Elomaa I, Knuutila S. Among numerous DNA copy number changes, losses of chromosome 13 are highly recurrent in plasmacytoma. Genes Chromosom Cancer 1999;25:104–7. [406] Avet-Loiseau H, Andree-Ashley LE, Moore D 2nd, Mellerin MP, Feusner J, Bataille R, Pallavicini MG. Molecular cytogenetic abnormalities in multiple myeloma and plasma cell leukemia measured using comparative genomic hybridization. Genes Chromosom Cancer 1997;19:124–33. [407] Cigudosa JC, Rao PH, Calasanz MJ, Odero MD, Michaeli J, Jhanwar SC, Chaganti RS. Characterization of nonrandom chromosomal gains and losses in multiple myeloma by comparative genomic hybridization. Blood 1998;91:3007–10. [408] Gutierrez NC, Hernandez JM, Garcia JL, Canizo MC, Gonzalez M, Hernandez J, Gonzalez MB, Garcia-Marcos MA, San Miguel JF. Differences in genetic changes between multiple myeloma and plasma cell leukemia demonstrated by comparative genomic hybridization. Leukemia 2001;15:840–5.
90
S. Struski et al. / Cancer Genetics and Cytogenetics 135 (2002) 63–90
[409] Bentz M, Dohner H, Huck K, Schutz B, Ganser A, Joos S, du Manoir S, Lichter P. Comparative genomic hybridization in the investigation of myeloid leukemias. Genes Chromosom Cancer 1995;12: 193–200. [410] Castuma MV, Rao PH, Acevedo SH, Larripa IB. Comparative genomic hybridization study of de novo myeloid neoplasia. Acta Haematol 2000;104:25–30. [411] Crossen PE, Morrison MJ, Rodley P, Cochrane J, Morris CM. Identification of amplified genes in a patient with acute myeloid leukemia and double minute chromosomes. Cancer Genet Cytogenet 1999;113:126–33. [412] El-Rifai W, Elonen E, Larramendy M, Ruutu T, Knuutila S. Chromosomal breakpoints and changes in DNA copy number in refractory acute myeloid leukemia. Leukemia 1997;11:958–63. [413] Gebhart E, Verdorfer I, Saul W, Trautmann U, Brecevic L. Delimiting the use of comparative genomic hybridization in human myeloid neoplastic disorders. Int J Oncol 2000;16:1099–105. [414] Heller A, Chudoba I, Bleck C, Senger G, Claussen U, Liehr T. Microdissection based comparative genomic hybridization analysis (micro-CGH) of secondary acute myelogenous leukemias. Int J Oncol 2000;16:461–8. [415] Huhta T, Vettenranta K, Heinonen K, Kanerva J, Larramendy ML, Mahlamaki E, Saarinen-Pihkala UM, Knuutila S. Comparative genomic hybridization and conventional cytogenetic analyses in childhood acute myeloid leukemia. Leuk Lymphoma 1999;35:311–5. [416] Kim MH, Stewart J, Devlin C, Kim YT, Boyd E, Connor M. The application of comparative genomic hybridization as an additional tool in the chromosome analysis of acute myeloid leukemia and myelodysplastic syndromes. Cancer Genet Cytogenet 2001;126:26–33. [417] Larramendy ML, El-Rifai W, Knuutila S. Comparison of fluorescein isothiocyanate- and Texas red-conjugated nucleotides for direct labeling in comparative genomic hybridization. Cytometry 1998;31: 174–9. [418] Mohamed AN, Macoska JA, Kallioniemi A, Kallioniemi OP, Waldman F, Ratanatharathorn V, Wolman SR. Extrachromosomal gene amplification in acute myeloid leukemia; characterization by metaphase analysis, comparative genomic hybridization, and semi-quantitative PCR. Genes Chromosom Cancer 1993;8:185–9. [419] Nacheva E, Grace C, Holloway TL, Green AR. Comparative genomic hybridization in acute myeloid leukemia. A comparison with G-banding and chromosome painting. Cancer Genet Cytogenet 1995; 82:9–16. [420] Verdorfer I, Brecevic L, Saul W, Schenker B, Kirsch M, Trautmann U, Helm G, Gramatzki M, Gebhart E. Comparative genomic hybridization-aided unraveling of complex karyotypes in human hematopoietic neoplasias. Cancer Genet Cytogenet 2001;124:1–6. [421] Wilkens L, Tchinda J, Burkhardt D, Nolte M, Werner M, Georgii A. Analysis of hematologic diseases using conventional karyotyping, fluorescence in situ hybridization (FISH), and comparative genomic hybridization (CGH). Hum Pathol 1998;29:833–9. [422] Willem P, Mendelow B. 12p rearrangement and DNA amplification mapped by comparative genomic hybridization in a patient with secondary myeloid leukemia. Cancer Genet Cytogenet 1997;99:30–7. [423] Jarosova M, Holzerova M, Jedlickova K, Mihal V, Zuna J, Stary J, Pospisilova D, Zemanova Z, Trka J, Blazek J, Pikalova Z, Indrak K. Importance of using comparative genomic hybridization to improve detection of chromosomal changes in childhood acute lymphoblastic leukemia. Cancer Genet Cytogenet 2000;123:114–22. [424] Karhu R, Siitonen S, Tanner M, Keinanen M, Makipernaa A, Lehtinen M, Vilpo JA, Isola J. Genetic aberrations in pediatric acute lymphoblastic leukemia by comparative genomic hybridization. Cancer Genet Cytogenet 1997;95:123–9. [425] Larramendy ML, Huhta T, Vettenranta K, El-Rifai W, Lundin J, Pa-
[426]
[427]
[428]
[429]
[430]
[431]
[432]
[433]
[434]
[435]
[436]
[437]
[438]
kkala S, Saarinen-Pihkala UM, Knuutila S. Comparative genomic hybridization in childhood acute lymphoblastic leukemia. Leukemia 1998;12:1638–44. Scholz I, Popp S, Granzow M, Schoell B, Holtgreve-Grez H, Takeuchi S, Schrappe M, Harbott J, Teigler-Schlegel A, Zimmermann M, Fischer C, Koeffler HP, Bartram CR, Jauch A. Comparative genomic hybridization in childhood acute lymphoblastic leukemia: correlation with interphase cytogenetics and loss of heterozygosity analysis. Cancer Genet Cytogenet 2001;124:89–97. Wong N, Chen SJ, Cao Q, Su XY, Niu C, Wu QW, Leung TW, Wickham N, Johnson PJ, Chen Z. Detection of chromosome overand underrepresentations in hyperdiploid acute lymphoblastic leukemia by comparative genomic hybridization. Cancer Genet Cytogenet 1998;103:20–4. Siu LL, Wong KF, Chan JK, Kwong YL. Comparative genomic hybridization analysis of natural killer cell lymphoma/leukemia. Recognition of consistent patterns of genetic alterations. Am J Pathol 1999;155:1419–25. Gribble SM, Sinclair PB, Grace C, Green AR, Nacheva EP. Comparative analysis of G-banding, chromosome painting, locus-specific fluorescence in situ hybridization, and comparative genomic hybridization in chronic myeloid leukemia blast crisis. Cancer Genet Cytogenet 1999;111:7–17. Su XY, Wong N, Cao Q, Yu LZ, Niu C, Wickham N, Johnson PJ, Chen Z, Chen SJ. Chromosomal aberrations during progression of chronic myeloid leukemia identified by cytogenetic and molecular cytogenetic tools: implication of 1q12-21. Cancer Genet Cytogenet 1999;108:6–12. Wilkens L, Burkhardt D, Tchinda J, Busche G, Werner M, Nolte M, Ganser A, Georgii A. Cytogenetic aberrations in myelodysplastic syndrome detected by comparative genomic hybridization and fluorescence in situ hybridization. Diagn Mol Pathol 1999;8:47–53. Knuutila S, Bjorkqvist AM, Autio K, Tarkkanen M, Wolf M, Monni O, Szymanska J, Larramendy ML, Tapper J, Pere H, El-Rifai W, Hemmer S, Wasenius VM, Vidgren V, Zhu Y. DNA copy number amplifications in human neoplasms: review of comparative genomic hybridization studies. Am J Pathol 1998;152:1107–23. Knuutila S, Aalto Y, Autio K, Bjorkqvist AM, El-Rifai W, Hemmer S, Huhta T, Kettunen E, Kiuru-Kuhlefelt S, Larramendy ML, Lushnikova T, Monni O, Pere H, Tapper J, Tarkkanen M, Varis A, Wasenius VM, Wolf M, Zhu Y. DNA copy number losses in human neoplasms. Am J Pathol 1999;155:683–94. Zitzelsberger H, Lehmann L, Werner M, Bauchinger M. Comparative genomic hybridisation for the analysis of chromosomal imbalances in solid tumours and haematological malignancies. Histochem Cell Biol 1997;108:403–17. Kallioniemi OP, Kallioniemi A, Piper J, Isola J, Waldman FM, Gray JW, Pinkel D. Optimizing comparative genomic hybridization for analysis of DNA sequence copy number changes in solid tumors. Genes Chromosom Cancer 1994;10:231–43. Albertson DG, Ylstra B, Segraves R, Collins C, Dairkee SH, Kowbel D, Kuo WL, Gray JW, Pinkel D. Quantitative mapping of amplicon structure by array CGH identifies CYP24 as a candidate oncogene. Nat Genet 2000;25:144–6. Solinas-Toldo S, Lampel S, Stilgenbauer S, Nickolenko J, Benner A, Dohner H, Cremer T, Lichter P. Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosom Cancer 1997;20:399–407. Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D, Collins C, Kuo WL, Chen C, Zhai Y, Dairkee SH, Ljung BM, Gray JW, Albertson DG. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 1998;20:207–11.