Advunces i n Holornorphy, J . A . Barroso (ed. 1 @ North-Holland Publishing Company, 1979
CONVOLUTION OPERATORS AND SURJECTIVE LIMITS
PAUL BERNER
Convolution operators on a space of entire functions have been studied by a variety of authors including Boland[5] who showed that if
E
is a quasi-complete nuclear and dual
nuclear space, then a non-zero convolution operator on continuous for the compaot open topology
'Go
,
H(E),
satisfies
Malgrange's charactorization of the kernel [8] , and if
E
is
also a dual Frechet nuclear space, then such an operator is also surjective.
In this paper we study the case in which
E
is an open and compact surjective limit of appropriate spaces. Our results enable us to draw Bo1and"s conclusions for nucleaspaces
E
nuclear.
which are not dual metric and not necessarily dual Our result includes the important case of
E = Q',
Schwartz'ts space of distributions, and for this case and others we show that the kernel characterization and surjectivity result holds for the larger class of convolution operators.
d6
continuous
Thus we give two affirmative answers
to a question of Boland [6, problem 2c].
1. DEFINITIONS
We recall (see r 7 ] ) that
93
E = surj limuEA ( E u , n a )
is
P.
94
BERNER
called an open surjective limit of the complex 1.c. spaces if for each a in the directed set ( A , > ) , na:E + E
EEala€A n
R
and
n
that
EB +
=
a
TT
aB
Ea’ B en
a, are open and surjective maps such
2
E
and
B
has the projective limit topology
generated by TT a’ a E A . If also for each a E
2
there exists a compact set
E
we say
an: f E H(Ea) I--
a E A
E H(E).
fon
‘n of
H(E)
f E H(E)
H(E) =
limit.
DEFINITION
u
aEA
H(Ea),
F
Let
A:
H(F)
f(y)
3
(K)
= K , then
denote the transpose map
n
-X
‘n.
It is known (see 171 o r [2])
when
E
is an open surjective
be any complex 1.c.s. %,
H(F) + H(F)
f o r all
A(f)
H(F)
If
has a
then any continuous linear
is called a
%-convolution operator
x E F
and
That is, if
f E H(F)
where
y E F.
f(y+x) all
We say that
is surjective,
Ct
will be regarded as a subspace
if it is translation invariant.
A(T-xf) = 7 -x
Ct
K c Ea
is contained in one of these subspaces.
locally convex topology
on
such that
Since each
H(Ea)
via the inclusion
that every
‘n
let
a is injective, thus
operator
c E
,”
is an open and compact surjective limit.
For each
That is
and each compact set
F
has property M1 for
%-convolution operator on
H(F),
A,
if f o r every
we have that
Ker(A)
the closed linear span of all the exponential-polynomials which belong to
Ker(A).
We say that zero
F
has property M 2 for % if every non-
.G -convolution operator is surjective. It is a result due to Malgrange that every finite
dimensional space
F
has properties M 1 and M2.
is
95
CONVOLUTION OPERATORS AND SURJECTIVE LIMITS
'i$o-CONVOLUTION OPERATORS
2.
LEMMA
E = surj l i m
If
l i m i t and then
H(E)
A:
Irn(AIH(Eu))
U
i t s image
+
H(E)
T
-x
U
)
-
A(fOnu)) = 0
[,I,
A(foTT
f o n
where
U
Dx(A(fon
U x
(A(fon
-X
E nil(0).
[21) it with
= gonu
Now f o r a l l Hence by t h e
E
E
So now by l e m m a 1 . 2 of
a+ 0 n-'(O).
H(Eu).
(
T
- ( ~A ( ~f 0 n
A(fona)
i v e l y : M2 for
%o) then
M2 for
16~).
PROOF
Let
A
a E A
E
E
Un ( H ( E a ) )
i s a n open and
(Eu,nu)
(E,}
uEA
a l s o has M1 f o r
be a non-zero
By t h e l e m m a , f o r e a c h
For
E
That i s ,
t h i s form.
Hence
a 1)
But s i n c e
gonu.
e a c h o f which
h a s p r o p e r t y M 1 f o r t h e compact open t o p o l o g y
a
-
g-1
E = s u r j l i muE.,
If
A
=
A(T-x(fona))
)) = l i m
i s g l o b a l l y of g
a)) =
It f o l l o w s t h a t the d i r e c t -
compact s u r j e c t i v e l i m i t o f s p a c e s
so that
with
i s complete.
and t h e p r o o f THEOREM 1
x
A,
i s l o c a l l y o f t h e form
i s convex ( s e e A(fomu)
E H(Ea).
f
a
0
for a l l
a)
H(Eu)
(fan ) ( y ) = f o n ( y + x ) = f o n , ( y ) .
for a l l
ional derivative
) i s a n open s u r j e c t i v e
a E A.
all
t r a n s l a t i o n i n v a r i a n c e of
= A(fon
a
i t follows t h a t a n element of t h i s s u b
n(H(Ea)),
E Uil(0),
,TI
S i n c e w e have i d e n t i f i e d
s p a c e i s of t h e f o r m x
a
i s a t r a n s l a t i o n i n v a r i a n t operator,
c H(Eu)
a E A.
Let
PROOF
(E
uEA
fixed, l e t
%o
(respectivel~
Z 0 - c o n v o l u t i o n o p e r a t o r on H ( E ) .
a E A,
c (an)-loAou~:
(respect-
%o
H(Ea) + H(Ea)
x , y E Ea
1=
Im(A
and l e t
U
n(H(Eu))
i s w e l l defined.
x,y
E E
be s u c h
96
P.
that
So
= x
nu(;)
A
(H(E),50)
i s j u s t the
A
we
cor,l,l]).
E
Now s u p p o s e e a c h
g =
g E Ker(A)
forr
I
p
Now
)
C N
I$ E E d ,
Eu,
and
i s a p o l y n o m i a l on
'c
and s i n c e
g = an ( f ) E % ( c l
f E H(Eu).
N
= c l sp(N),
E
(p-e'
I
p
Let
and A(p*eCP)=O}.
i s j u s t the
Therefore
sp(N) C K e r ( A ) ,
thus
now
induces w e have t h a t
sp(Nu)) C c l sp(N).
Clearly
Clearly
Zo
U
do,
we
O}.
,
ep E E'
H(E,)
on
=
A(p-e')
E,
(H(E),'Co)
C c l sp(N).
and
i s Hausdorff,
do
which p r o v e s t h a t
Ker(A)
E
has property
,-Go.
M1 for
g = fon
H(Eu),
Property M 1 f o r
a
r e l a t i v e topology t h a t
Ker(A)
and
u
a€A
b e l o n g s t o t h e c l o s e d s p a n of
f
N = (p.ecp
a
Go- convo lu t i o n
H(E) =
u E A
E K e r ( A ).
f
i s a p o l y n o m i a l on
0:
a s c a n e a s i l y be
has p r o p e r t y M 1 for
Since
for some
U
implies
implies t h a t
%(N
v i a the inclusion
T h i s f a c t immediately implies
a E A,
a'
g E Ker(A) c H(E).
must have
H(Ea)
the r e l a t i v e
H(E~).
o p e r a t o r on
and t h a t
H(Ea)
; -continuous hence i t i s a
is
0
i n d u c e s on
t o p o l o g y on
!lo
v e r i f i e d (or s e e [ 3 ,
all
f E H(Eu)
Then f o r e a c h
i s a compact s u r j e c t i v e l i m i t ,
E
topology t h a t
that
nu(?) = y .
and
is translation invariant.
a
Since
n'
BERNER
A
f 0
so there exists
2
ao.
If e a c h
a
property M2 f o r Aa(h) = f .
a
f o r some
Hence
Go,
E, 2
uo
and
f
E
t h e r e e x i s t s an
Go.
such t h a t
h a s M2 f o r
A(honu) = g
has property M2 f o r
a, E I\
and
-Go
H(Eu). h
A U
g
E
H(E)
Since
E H(Ea)
which p r o v e s t h a t
f 0
Ea
for thgl
has
such t h a t E
also
97
CONVOLUTION OPERATORS AND SURJECTIVE LIMITS
Let
COROLLARY
be a compact s u r j e c t i v e l i m i t o f d u a l s o f
E
Frgchet nuclear spaces M 1 and M 2 f o r PROOF
‘6
.
E
(DFN spaces) then
limit
Every s u r j e c t i v e
has p r o p e r t i e s
o f DFN s p a c e s i s n e c e s s a r i l y
a n open s u r j e c t i v e l i m i t and Boland h a s shown DFN s p a c e h a s p r o p e r t i e s M 1 and M2 f o r
I::
m
E =
1.
1 1
i=O
C
i s a n open and compact s u r j e c t i v e l i m i t of
t h e f i n i t e d i m e n s i o n a l DFN s p a c e s m
E =
2.
1-1
i=O
m
c
C x
i=O
l i m i t of DFN s p a c e s Let
3.
t W i 3i c N
I]
Cn,
n
E
N.
i s a n open and compact s u r j e c t i v e
C
II c
i=O
be open i n
m
x
c
C ,
i=O
Eln,
n
E
N.
f o r some
n,
and l e t
be a s e q u e n c e o f o p e n , r e l a t i v e l y compact s u b s e t s
ii c
all
Wi+l,
i,
compact s u r j e c t i v e l i m i t of
4.
z0.
The f o l l o w i n g s p a c e s have p r o p e r t i e s M 1 and M2 f o r
EXAMPLES
with
[ 5 ] t h a t every
Let
F
then
E = Q’(I])
t h e DFN s p a c e s
i s a n open and i
€!’(Wi),
E
IN,
be a s t r i c t i n d u c t i v e l i m i t o f a s e q u e n c e of
Fr6chet n u c l e a r spaces
(FnlnEN,
then (see
[7])
E = F‘
is
a c o u n t a b l e ( s e e below) open and compact s u r j e c t i v e l i m i t o f the DFN spaces REMARKS
Examples
.
1-3 a r e s p e c i a l c a s e s o f example 4 .
T h a t t h e above examples have p r o p e r t y M 1 f o r a l r e a d y known from a theorem o f Boland. does n o t r e s t r i c t t h e i n d e x i n g s e t
I\,
However,
Z
is
Theorem 1
and a n a r b i t r a r y open
and compact s u r j e c t i v e l i m i t o f DFN s p a c e s i s not n e c e s s a r i l y co-nuclear cases.
s o t h a t Boland’s r e s u l t does n o t a p p l y i n such
BERNER
P.
98
That t h e s e examples have p r o p e r t y M 2 f o r be p r e v i o u s l y unknown, spaces r e q u i r e s
Indeed B o l a n d t s r e s u l t f o r n u c l e a r
H i s d u a l m e t r i c e c o n d i t i o n i s needed t o i n s u r e
t h a t the
‘%o t o p o l o g y i s a Ilgood” t o p o l o g y .
(when
i s a DFN s p a c e ) ,
example 1,
i s FrBchet.
‘do
I n h i s case However i n
i s n o t F r e c h e t , and i n example
%o
i s rrbadlri n t h a t
nor b o r n o l o g i c a l
3
seems t o
t o be d u a l m e t r i c which i s e v i d e n t l y n o t
E
the case here.
E
‘Go
5o
2
do
i s n o t even b a r r e l l e d n o r semi-complete
( s e e [ 31 )
and a s shown i n [ 41
Zob
#
‘dub.
‘%* -CONVOLUTION OPERATORS
Whereas
‘Go may sometimes be a I1badl’ t o p o l o g y , we
ZUb = G b
know t h a t
i s a s t r i c t (LF)-nuclear space topology
i n examples 2 and 3 , t h e r e f o r e i t might be i n t e r e s t i n g t o
look a t
‘t;
b
-convolution o p e ra t o rs i n t h e s e cas es .
First let
us n o t e t h a t t h e s e two c l a s s e s o f c o n v o l u t i o n o p e r a t o r s d o not coincide,
zob f zuJb= z6
I n example 2 s i n c e
it follows
from Mackey’s theorem t h a t t h e r e i s a z b - c o n t i n u o u s l i n e a r f u n c t i o n a l T on A
by
H(E)
which i s n o t z - c o n t i n u o u s . 0
Af(X) = T(T_,~) a l l
x
E E,
f
E
H(E),
then
Define A
i s a’
t 6 - c o n v o l u t i o n o p e r a t o r b u t n o t a ’G0-convolution o p e r a t o r . We r e c a l l t h a t a s u r j e c t i v e l i m i t i s c a l l e d c o u n t a b l e
if t h e i n d e x s e t
A
is just
N
and i f t h e r e e x i s t c o n t i n u m .
99
CONVOLUTION OPERATORS AND SURJECTIVE LIMITS
maps
TT
nm : Em
+
En
nn = nnm~TTm
such t h a t
m , ncN
whenever
m > n.
and
W e s h a l l s e e n e x t t h a t i n t h e a b o v e s i t u a t i o n t h e class
of G6-convolution o p e r a t o r s i s s t r i c t l y larger t h a n t h e c l a s s ' of
convolution
THEOREM 2
operators.
E = s u r j l i m nEN
Let
(En,nn)
compact s u r j e c t i v e l i m i t of DFN s p a c e s - c o n v o l u t i o n o p e r a t o r on operator on PROOF
E
H(E),
and
is also a
G6 - c o n v o l u t i o n *Gb.
the subspaces
and o n l y i f
An:
continuous f o r each
is
H(En)
W E n ) , Go>
Hence e v e r y
i s 'E - c o n t i n u o u s
A
"rr c
H(En)
6
(H(En)
J b ) is
But s i n c e t h e i n d u c t i v e l i m i t i s
n.
s t r i c t , the r e l a t i v e topology t h a t is just
i s a s t r i c t inductiw
so that 4
of A
An
In [ 3 ]
30 - c o n t i n u o u s .
(H(E),$)
(H(En),'Lo),
then
zo '
t h e o r e m 1, t h e r e s t r i c t i o n
of
l i m i t of t h e s p a c e s
Z6)
Then e v e r y
h a s p r o p e r t i e s M 1 and M2 f o r
theorem 4 . 1 i t i s shown t h a t
H(E),
.
i s a convolution operator f o r
A
a s shown i n t h e p r o o f
if
'En' nEN
i s n e c e s s a r i l y a n open s u r j e c t i v e l i m i t .
Suppose
t o e a c h of
E
H(E)
be a c o u n t a b l e
'do.
Thus
A
H(E,)
i n h e r i t s from
is also
' & o - c o n v o l u t i o n o p e r a t o r on
t -continuous,
H(E)
6
is also a
0 -convolution operator. d Next s u p p o s e
i s a non-zero
A
( n o t n e c e s s a r i l y 'Go-continuous). operators
(H(E,L
An,
zo)
to
n
- c o n v o l u t i o n operator
The t r a n s l a t i o n i n v a r i a n t
a r e c o n t i n u o u s as o p e r a t o r s f r o m
E IN, H(En)
"6
=
(H(E),Z6)
because
(H(E,),
a r e the d e f i n i n g subspaces of t h e i n d u c t i v e l i m i t
to) nE N Z6.
And
100
P.
BERNER
because t h i s i n d u c t i v e l i m i t i s s t r i c t , each a s a n o p e r a t o r from
E
that
(H(En),Zo)
to
A
i s continuous
n
N o w t o show
(H(En),Zo).
h a s p r o p e r t i e s M 1 and M 2 f o r
w e may p r o c e e d a s
Zb
i n t h e p r o o f o f t h e o r e m 1 n o t i n g t h a t e a c h DFN s p a c e p r o p e r t i e s M 1 and M 2 f o r REMARKS
If
F
i s a DFN s p a c e t h e n
p e r t i e s M 1 and M 2 f o r the space
Z
on
=G8
0
H(F)
(see
E
n E N.
to
ncN
s a t i s f i e s t h e h y p o t h e s i s o f t h e o r e m 2 and
i s a t o p o l o g y on 9
f l l i f t f lfrom t h e s p a c e s
Z8
E.
Whenever
(H(E)
Zo.
t h u s w e may r e g a r d t h e o r e m 2 as s h o w i n g t h a t t h e p r o -
[l]),
G
has
En
zo) IH(P;,)
H(E)
= (H(E)
9%)
such t h a t
then
6 C 'G
Zo 5
8'
IH(En) = ( H ( E ) , " b ) IH(E,)
From t h i s i t f o l l o w s t h a t one may r e p l a c e
f o r each -Gb
by
i n t h e s t a t e m e n t of theorem 2 .
ADDED I N PROOF
I t would s e e m from r e f e r e n c e convolution o p e r a t o r is a
-Gb
in
[4]
t h e d e f i n i t i o n of property
E
i s s a i d t o have p -r o p e r t y ( Q )
e x i s t s a continuous l i n e a r s u r j e c t i o n G,
zo
must be c o r r e c t e d t o r e a d :
An 1 . c . s .
space
t h a t not every
c o n v o l u t i o n o p e r a t o r i n exam-
p l e 3 a s w e l l a s e x a m p l e 2. However, (Q)
[!+I
where
G
i s isomorphic t o
n
from
E
i f there
onto a
m
C
i=O
C.
T h i s c h a n g e e l i m i n a t e s example 3 o f b o t h [ k ] and t h i s p a p e r from t h e c o n c l u s i o n t h a t show a d i f f e r e n c e i n
'Go
'ob
' U b
w h i c h is u s e d t o
and Z - co n v o lu tio n
b
operators.
The c o r r e c t i o n has t h e f o l l o w i n g e f f e c t on t h e o r e m
4.1
CONVOLUTION OPERATORS AND SURJECTIVE LIMITS
of [3]:
I f some
En
has property (Q)
then
#
Gob
1 01
ZWb
and
c o n c l u s i o n s ( 4 ) and
(5) are valid.
Conclusion ( 3 ) should be
corrected t o read:
( 3 ) zu f ZUb,
and
'5
UI
i s semi-montel,
etc. I a m e n d e b t e d t o Segn D i n e e n and P h i l i p B o l a n d f o r
p o i n t i n g out t h e s e c o r r e c t i o n s .
REFERENCES 1. BARROSO, J . , MATOS, M . ,
and N A C H B I N ,
of holomorphic mappings, Proc. Holomorphy,
L.
On bounded s e t s
on I n f i n i t e D i m e n s i o n a l
L e c t u r e N o t e s i n Math.,
Vol.
364, S p r i n g e r
V e r l a g ( 1 9 7 4 ) , 123-133. 2. BERNER, P .
A g l o b a l f a c t o r i z a t i o n p r o p e r t y f o r holomorphic
f u n c t i o n s o f a domain s p r e a d o v e r a s u r j e c t i v e l i m i t , S 6 m i n a i r e P. vol.
L e l o n g 1974/75,
L e c t u r e N o t e s i n Math.,
5 2 4 , S p r i n g e r - V e r l a g ( 1 9 7 6 ) , 130-155.
3. BERNER, P.
T o p o l o g i e s on s p a c e s o f h o l o m o r p h i c f u n c t i o n s
of certain surjective l i m i t s ,
I n f i n i t e Dimensional
Holomorphy a n d A p p l i c a t i o n s , Matos ( e d . ) , Math. S t u d i e s 1 2 , North-Holland
4. BERNER, P.
( 1 9 7 7 ) , 75-92.
S u r l a t o p o l o g i e d e Nachbin d e c e r t a i n s e s p a c e
d e f o n c t i o n s h o l o m o r p h e s , C.R. (1975)
5. BOLAND, P .
Acad.
Sc.
Paris,
t . 280
431-433. Malgrange t h e o r e m f o r e n t i r e f u n c t i o n s on
n u c l e a r spaces, Proc.
on I n f i n i t e D i m e n s i o n a l Holomor-
p h y , L e c t u r e Notes i n Math.,
( 1 9 7 4 ) , 135-144.
Vol.
364, Springer-Verlag
P.
102
6. BOLAND, P.
BERNER
Holomorphic Functions on Nuclear Spaces,
Publicaciones del Dept. de Analisis Mathematico, Serie
B, No. 16, Univ. de Santiago de Compostela (1977).
7 . DINEEN, S.
Surjective limits of locally convex spaces and
their application to infinite dimensional holomorphy, Bull. SOC. Math. France, t. 103 (1975).
8. MALGRANGE, B.
Existence et approximation des solutions des
Qquations aux deriv6es partielles et des Qquations des convolutions, Annales de 1’Institut Fourier, IV, Grenoble
(1955-56), 271-355.
DEPARTMENT OF MATHEMATICS
LE MOYNE COLLEGE SYRACUSE, NEW YORK 13214 USA