Physics Letters A 380 (2016) 2122
Contents lists available at ScienceDirect
Physics Letters A www.elsevier.com/locate/pla
Corrigendum
Corrigendum to “On quintic equations with a linear window” [Phys. Lett. A 380 (2016) 135–141] Philip Rosenau School of Mathematics, Tel Aviv University, Tel Aviv, 69978, Israel
a r t i c l e
i n f o
a b s t r a c t
Article history: Received 31 January 2016 Accepted 1 February 2016 Available online 12 April 2016 Communicated by C.R. Doering
Corrigendum to “On quintic equations with a linear window” [Phys. Lett. A 380 (2016) 135–141]. © 2015 Elsevier B.V. All rights reserved.
The author regrets to inform that an erroneous merging of files deleted a multiplicative factor in a number of formulas. The corrected formulas are stated. Equations (13), (15) and the definition of V h , above Eq. (11), should be multiplied by A ω defined via
U = A ω (1 + V h ) where A ω =
1 + ω
(*)
2
In Equations (18), (19), (21), (24) and (27), A ω should replace λ. The respective equations thus read
. γ+
U = A ω 1 + u 1 cos( z) + u 2 cos(rz)
U (s) = A ω 1 −
U=
8 3
r2
cos( z)
r 2 − 1 cos(σ )
+
where z = γ− s and r = cos(r z)
1
γ−
where z = γ− s and
r 2 − 1 cos(r σ )
(13)
. .
σ = γ− L ,
A ω cos4 ( z/2) for | z = sγ− | ≤ σ = π ,
(18)
U = 2 A ω [1 + 2 sin2 ( z/2)] cos4 ( z/2) for | z = sγ− | ≤ σ = π ,
A( z0 ) : U asymm = A ω
U = Aω 1 −
r2 r2
U = Aω 1 −
∗
3 cos( z0 )
cos( z)
+ 1 cos(σ ) r∗2
r2
8 cos( z/2 ± z0 )
−
cosh(r∗ z˜ )
+ 1 cosh(r∗ σ∗ )
+ 1 cosh(r σ )
−
1 r2 ∗
where δ∗ =
cos(˜z)
+ 1 cos(σ∗ )
DOI of original article: http://dx.doi.org/10.1016/j.physleta.2015.09.045. E-mail address:
[email protected]. http://dx.doi.org/10.1016/j.physleta.2016.02.004 0375-9601/© 2015 Elsevier B.V. All rights reserved.
(19)
cos3 ( z/2), z0 < π /2.
cosh(r z)
1 r2
(15)
(21) 4r 2
(1 + r 2 )2
with δ∗ =
4r∗2
(24)
.
(1 + r∗2 )2
.
(27)