= •B 5)~B, UB '
(14)
w h e r e we have o m i t t e d the m o m e n t u m delta function. Now FS(B) a c t s in the s p a c e of t w o - p a r t i c l e s t a t e s of A and B, but if P(A) is r e p l a c e d by its eigenvalue p(A) in FS(B), we m a y think of it as a s i n g l e - p a r t i c l e o p e r a t o r in the s p a c e of s t a t e s of B. With this in mind, we
CROSSING MATRIX
189
s e e f r o m eq. (8) that FS(B) is a l i n e a r c o m b i n a t i o n of J ( B ) - ~ ( B ) and ~n (since Po(B) = Ip(B) I), and conclude that its e i g e n s t a t e s a r e just the helicity e i g e n s t a t e s of B, at l e a s t f o r p(B) p h y s i c a l . We find s s - rn 2 F k B ' #B(B) - ( p ( s ) , kBI FS(B)I p(B),/~B> - A(s, A, B) AB 6kB, #B
(15)
4
f o r p(B) p h y s i c a l , so if s > m 2 , F ~ B , ~B(B) = AkB, ~B(B). We m a y now fix p(B) and continue in p(A) so that s - m 2 b e c o m e s negative. In this c a s e , AA, #(B) is c l e a r l y unaffected, but F ~ , / l ( B ) m a y change sign u n l e s s A(s, A, B) is t a k e n to continue a s s - m 2. With this choice, F ~ ,,(B) and h A ,,(B) a r e identical f o r all s, and p(B) p h y s i c a l . Now AA,u(B) is by defini[ion i n v a r iant u n d e r any c o m p l e x L o r e n t z t r a n s f o r m a t i o n (which m a y take p(B) to an u n p h y s i c a l value), and F ~ ,,(B) is i n v a r i a n t by c o n s t r u c t i o n , so that F ~ #(B) and AA, #(B) a r e i d e n t i c a l ' ~ r all p(B) and s, and the e i g e n s t a t e s of the two o p e r a t o r s a r e identical (in our r e p r e s e n t a t i o n ) . As FsA, p(B) and AA, p(B) a r e identical in this r e p r e s e n t a t i o n we m a y find an explicit f o r m f o r A(B) f r o m eq. (8): hA, p(B)
=
FSA~(B) , P°(B)2 p ( A ) . p(B))
- ~n(..){P(B),~B)=(P(B),AB] J(B).p(B) {p(B),gB> •
Therefore operator.
Po(B )
"
J . P/Po is the c o r r e c t f o r m for the m a s s l e s s p a r t i c l e helicity
4. THE CROSSINGMATRIX We now c o n s i d e r the b e h a v i o u r of p a r t i c l e B under c r o s s i n g . We c a l c u l a t e F S ( B ) and F t ( B ) in the s a m e f r a m e , so that the m o m e n t a p(B) a p p e a r ing in the two e x p r e s s i o n s a r e the s a m e . A convenient choice is an s - c h a n nel c.m. f r a m e such that the s c a t t e r i n g is in the y z - p l a n e and pp(B) = = (p, 0 , 0 , p ) . * We could have made the other choice. The felicity and helicity would then have 2 and the felicity amplitudes and cross'ng , matrix been of opposite sign for s < m~, would be different from, though-simply related to, the helicity amplitudes and crossing matrix. Our impending calculation of the helicity crossing matrix would be altered in detail, but not in its result.
190
J . R . FOX F r o m eq. (12) we find F S ( B ) = J3(B) .
(16)
F r o m eq. (10), e x p a n d e d in the m a n n e r of eqs. (5) and (6) we find 2 F t ( B ) - A(/, B, D) [J3(B)(D°(D) - P3(D))P - ~ n ( B ) P 2 ( 5 ) P ] in the r e p r e s e n t a t i o n , Therefore
= J3(B) '
(17)
with o u r c h o i c e of sign of A(I, B, D) f o r t < rn 2 . FS(B) = Ft(S) ,
(16)
and the e i g e n s t a t e s a r e r e l a t e d , up to a p h a s e by ]p(B), ~s) = [P(B),~tt = ~ts) ,
(19)
w h e r e ~ts and ~tt a r e the s - and t - c h a n n e l c . m . h e l i c i t i e s of p a r t i c l e B (for a m a s s l e s s p a r t i c l e , the h e l i c i t y is the s a m e in any f r a m e , and so is the s a m e a s the c . m . helicity). F r o m eq. (19) we s e e that the c r o s s i n g r e l a t i o n b e t w e e n the s - and tc h a n n e l h e l i c i t y a m p l i t u d e s , in the spin s p a c e of p a r t i c l e B, is, a p a r t f r o m a possible phase r s
..;.k B
(s,t,u)
(s,t,u) ,
= r t
(20)
..;.)t B
s i n c e the g e n e r a l - f r a m e t - c h a n n e l h e l i c i t y a m p l i t u d e is the s a m e as the c . m . f r a m e h e l i c i t y a m p l i t u d e as f a r a s the m a s s l e s s p a r t i c l e label is c o n cerned. Now let p a r t i c l e A, r a t h e r than B, be m a s s l e s s and let us c a l c u l a t e FS(A) and F t ( ~ , ) in an s - c h a n n e l c . m . f r a m e , with the s c a t t e r i n g in the y z plane and p p ( A ) = -p/z(~,) = (q, 0, 0, q). F r o m eq. (11), FS(A) : J3(A) .
(21)
F r o m eq. (9), e x p a n d e d in the m a n n e r of eqs. (5) and (6) 2
F t ( A ' ) = A(t, A,C-) [ - J 3 ( ~ ' ) ( P ° ( C ) - P 3 ( C ) ) q + ~ n ( ~ ' ) q P 2 ( I ) ) ]
= J3(~') '
(22)
in o u r r e p r e s e n t a t i o n . T h e spin o p e r a t o r s J ( A ) and d(~,) of p a r t i c l e and a n t i p a r t i c l e a r e r e l a t e d by J(A) = _dW(~)
.
(23)
H e n c e J3(A) = -J3(~,), a s the r e p r e s e n t a t i o n is o n e - d i m e n s i o n a l (and in any c a s e , d i a g o n a l f o r J3)- T h e r e f o r e FS(A) = - F t ( ~ - ) ,
(24)
and the e i g e n s t a t e s a r e r e l a t e d up to a p h a s e by IP(A), ~ts) = ]P(A) = -p(A), h t = - h s ) .
(25)
CROSSING MATRIX
191
T h e r e f o r e t h e s - c h a n n e l c . m . h e l i c i t y of A i s o p p o s i t e to t h e t - c h a n n e l c . m . h e l i c i t y of ~, a n d t h e c r o s s i n g r e l a t i o n , in t h e s p i n s p a c e of p a r t i c l e A i s , up t o a p h a s e
Ts
(s, t, u) = T t
• . ; h A.
(s, t, u) .
(26)
.-hA;..
E q s . (20) a n d (26) s h o w t h a t t h e c . m . h e l i c i t y of the m a s s l e s s p a r t i c l e c h a n g e s if a n d only if t h e p a r t i c l e i s c r o s s e d in g o i n g f r o m one c h a n n e l t o t h e o t h e r . T h i s s t a t e m e n t i s i n d e p e n d e n t of t h e p a r t i c l e m o m e n t u m o r t h e v a l u e s of s, t, a n d u, b e c a u s e t h e h e l i c i t i e s a r e . In o t h e r w o r d s , t h e c r o s s ing a n g l e i s e i t h e r 0 o r ~, a n d is c o n s t a n t in t h e e n t i r e i s , t, u) p l a n e . T h e e x t e n s i o n of t h i s a n a l y s i s to p r o c e s s e s i n v o l v i n g m o r e t h a n one m a s s l e s s p a r t i c l e i s t r i v i a l , a s t h e r e a s o n i n g a p p l i e s to e a c h p a r t i c l e i n d e p e n d e n t l y . T h e c r o s s i n g - m a t r i x in t h e p r o d u c t s p a c e of t h e ( r e m a i n i n g ) m a s s i v e p a r t i c l e s h a s b e e n g i v e n by T r u e m a n a n d W i c k [7].
5. D E T E R M I N A T I O N O F A(X, i,j), (m i = O) W e w o u l d l i k e to c o m m e n t on t h e d e t e r m i n a t i o n of A(X, i,j) b e l o w t h e p s e u d o - t h r e s h o l d x = (m i - mj)2 to b e u s e d in t h e e x p r e s s i o n s f o r t h e c e n t r e o f - m a s s s c a t t e r i n g a n g l e s a n d t h e c r o s s i n g a n g l e s of t h e m a s s i v e p a r t i c l e s in t h e r e a c t i o n . L e a d e r ' s [8] e x p r e s s i o n s f o r t h e c o s i n e s of t h e c r o s s i n g angles may be used for the massive particles, with the appropriate masses s e t e q u a l to z e r o , b e c a u s e t h e m a s s l e s s n e s s of o t h e r p a r t i c l e s m a k e s no e s s e n t i a l d i f f e r e n c e to t h e r e a s o n i n g u s e d t o o b t a i n t h e s e e x p r e s s i o n s . H o w e v e r , t h e r e i s a n a m b i g u i t y in t h e i n t e r p r e t a t i o n of A(x, i,j). In e a r l i e r s e c t i o n s of t h i s p a p e r we u s e d t h e a n a l y t i c d e t e r m i n a t i o n of A(X, i,j) when m i o r rnj w a s z e r o , b u t t h i s c h o i c e w a s not e s s e n t i a l to o u r r e s u l t ; it m e r e l y e n a b l e d u s to a r r i v e at t h i s r e s u l t m o r e e a s i l y . C o n s e q u e n t l y , we m u s t d e c i d e a l l o v e r a g a i n how we a r e to i n t e r p r e t A in t h e cosine expressions. We s h o w t h a t , w h e n a m a s s l e s s p a r t i c l e i s p r e s e n t , we a r e f o r c e d b y c o n s i s t e n c y c o n s i d e r a t i o n s to c h o o s e A(X, i,j), (m i = 0) to b e a n a l y t i c in t h e x - p l a n e . W i t h t h i s d e t e r m i n a t i o n of A, L e a d e r ' s e x p r e s s i o n s f o r t h e c r o s s ing angles are valid for the massless particles as well. T h e b o u n d a r y of t h e p h y s i c a l r e g i o n h a s s i x a s y m p t o t i c p o r t i o n s , on e a c h of w h i c h (with t h e p o s s i b l e e x c e p t i o n of t h e l i n e s s = 0, t = 0, u = 0) t h e c r o s s i n g a n d c . m . s c a t t e r i n g a n g l e s a r e c o n s t a n t a n d s e p a r a t e l y e q u a l to 0 o r ~. W e l a b e l t h e s e p o r t i o n s s+, s - , t+, t - , u+, u - , w h e r e s+ i s t h a t p o r t i o n of t h e b o u n d a r y of t h e s - p h y s i c a l r e g i o n on w h i c h c o s 0s = +1, s ~ ~, etc. N e a r s u c h a p o r t i o n , to w i t h i n a p h a s e , s
t
TXCXD;XA)~B(S, t, u) = T)kC~;,,
A~)AB'~''(S, t, U) + ~,, ,
(27)
w h e r e t h e s e t {;~'} i s d e t e r m i n e d in t e r m s of t h e s e t {),} b y t h e c r o s s i n g a n g l e s , a n d ~ g o e s to z e r o on t h e b o u n d a r y , a n d a t l e a s t a s f a s t a s
192
J.R. FOX
Tt{A'}(s, t, u) if t h i s a m p l i t u d e v a n i s h e s t h e r e . B e c a u s e B is a l i n e a r c o m b i n a t i o n of i n d e p e n d e n t t - c h a n n e l h e l i c i t y a m p l i t u d e s , ~ a n d Tt{~, '} c a n n o t in g e n e r a l ' c o n s p i r e ' to m a k e the r i g h t - h a n d s i d e of eq. (27) v a n i s h f a s t e r t h a n Tt{a '} on the b o u n d a r y . F u r t h e r m o r e , n e a r t h i s p o r t i o n of t h e b o u n d a r y [9], t u)
7),C~,D; XA)~B(S, ,
,'x
( s i n 0 s ) [;~C-;~D:FxA+~'B]
(28)
a c c o r d i n g a s c o s 6 s = ± 1, a n d
r b k; xi h(s,
(sin ot)
lab- xk;xb±xh I,
(29)
a c c o r d i n g a s cos 0 t = ± 1. so that in v i e w of o u r p r e v i o u s r e m a r k s , the exp o n e n t s in the r i g h t - h a n d s i d e s of eqs. (28) a n d (29) m u s t b e equal. T h i s i m p l i e s a n i n t i m a t e c o n n e c t i o n b e t w e e n the c r o s s i n g a n d s c a t t e r i n g a n g l e s . L e t u s take p a r t i c l e A a s m a s s l e s s , and c o n s i d e r the c r o s s i n g f r o m s to t - c h a n n e l . Let u s o r d e r the m a s s e s of the p a r t i c l e s : m D > m B ", m C ~ m A = 0. T h e n , with the d e f i n i t i o n s ( c o n s i s t e n t with o u r p r e v i o u s d e f i n i t i o n s of s a n d l c h a n n e l s )
2
2
2
s(t - u) + m B ( m D - mC) cosO s-
A(s, A, B)&(s, C, D)
t(s cos
2
-
2
'
2
u) + r n c ( m D - roB)
0t =
A(t, B, D) A(t, A, C ) 2
2
2
u ( s - t) + m D ( m C - roB) 0u =
cos
A(u, B, C) A(u, A, D)
,
(30)
w h i c h a r e u n a m b i g u o u s a b o v e the r e l e v a n t c h a n n e l t h r e s h o l d s , a l o n g * S+
s --, +oo ,
I ~0-
U
S-
S ~+oo ,
t --~-oo
u~O+
t+
s ~0-
,
t 4+00
?~ ---~ - oo
t-
S
,
t
u~0-
U+
s 40+
,
t ---~-oo
U
U-
s ~-oo
,
t --0+
U ~ +
~-oo
~+oo
- - - ~ - oo ,
~q.
,
, oo ,
c°
•
(31)
* We refer the reader to fig. 1 of ref. [10]. With our ordering of particle m a s s e s , Kibble's region II is our s-physical region, his region I is our t-physical region, and his region III is our u-physical region.
C ROSSING M A T R I X
193
T h i s i n f o r m a t i o n e n a b l e s u s to d e t e r m i n e e a s i l y t h e s i g n of t h e c o s i n e s on a n y of t h e s i x p o r t i o n s of t h e b o u n d a r y . F r o m L e a d e r [8], we h a v e t h e e x p r e s s i o n s f o r t h e c o s i n e s of t h e m a s sive particle crossing angles:
(s + m2-)(tl~ cos
XB
-
-
-
+
roB2 - mr,.u 2 ) - 2 m B2 ( m C2 + m B2
2
roD)
A ( s , A, B) A(t, B, D)
2 2 ( s + m 2 - roD)(/+ m c ) COS XC =
-
2
2
2
2
2 m c .Cm( + m B - roD)
A(s, C, D)A(t, A, C)
(s+ m2D - m2)(t+ m2D - m 2B ) + 2 m D2 ( m C 2 + m 2B - m D) 2 c o s XD = -
A(S, C , D ) ~ ( t , B , D )
, (32)
N o w we c a n c h o o s e p a r t i c u l a r d e t e r m i n a t i o n s f o r t h e A a n d s e e if t h e y a r e c o n s i s t e n t . We f i n d c o s 6 s a n d c o s 0t on e a c h of t h e s i x p o r t i o n s of t h e b o u n d a r y . T h e e q u a l i t y of t h e e x p o n e n t s in e q s . (28) a n d (29) w i t h t h e a p p r o p r i a t e s i g n s g i v e s u s {~'} in t e r m s of {)~} a n d t h e r e f o r e c o s XB, c o s XC a n d c o s XD ( b e c a u s e c o s ×A - - 1). W e c a n t h e n c o m p a r e t h e s e v a l u e s of t h e c o s i n e s of t h e c r o s s i n g a n g l e s w i t h t h e v a l u e s o b t a i n e d f r o m eq. (32). T h e r e s u l t s a r e p r e s e n t e d in t a b l e 1, w h i c h a s s u m e s the c o n v e n t i o n a l d e t e r m i n a t i o n of A(x, ~ j ) f o r mi, mj ¢ 0, t h a t i s , t h e one w h i c h * g i v e s A> 0forx<(m i - m j ) . T h e two d e t e r m i n a t i o n s of A ( x , i , j ) , (m i=O), a r e p r e s e n t e d t o g e t h e r ; w h e n t h e r e i s m o r e t h a n one e n t r y , the u p p e r c o r r e s p o n d s t o A = ] x - m ~ l , j t h e l o w e r to A = x - m 2. (The e n t r i e s a r e a l l + l o r -1; we g i v e o n l y t h e s i g n s . ) It m a y b e s e e n in t a b l e 1 t h a t t h e l o w e r e n t r i e s , but not t h e u p p e r , a r e consistent between lines 4-6 and lines 7-9. This means that, for consiste n c y , A(x, i,j), (m i = 0), m u s t b e t a k e n a s x - m 2, t h e a n a l y t i c f o r m of A in d this case. H a d w e u s e d t h e o t h e r ( a n a l y t i c ) d e t e r m i n a t i o n of A(x, i,j), (mi, mj ¢ 0), our conclusion about the m i = 0 case would have been unaltered. This is a r e f l e c t i o n of t h e f a c t t h a t t h e r e a r e two w a y s of c o n t i n u i n g , in m o m e n t u m , m a s s i v e p a r t i c l e c . m . h e l i c i t y s t a t e s [3]. T h e c o n c l u s i o n s a r e u n a l t e r e d when t h e a n a l y s i s i s e x t e n d e d to t h e r e m a i n i n g , f i n i t e p o r t i o n s of t h e p h y s i c a l r e g i o n b o u n d a r y (on e a c h of w h i c h i t i s s t i l l t r u e t h a t t h e c o s i n e s a r e c o n s t a n t a n d s e p a r a t e l y e q u a l to ± 1). W i t h t h e a b o v e d e t e r m i n a t i o n s of t h e f u n c t i o n s A, a l l t h e c r o s s i n g a n g l e c o s i n e s a r e c o r r e c t l y g i v e n b y L e a d e r ' s e x p r e s s i o n s ; t h a t f o r c o s XA r e d u c i n g to - 1 i d e n t i c a l l y . * Here, x is taken to v a r y along paths which connect the upper side of the r i g h t hand cut of the S-matrix in the x-plane with the lower side of the left-hand cut. Thus if A(x, i,)), (m., m- ¢ 0) is g r e a t e r than zero f o r x below pseudothreshold, it is analytic in the x - pzl a n ]e cut from _oo to (m i- ~mj)2 and (m i ~ mj) 2 to +~ (rather than from pseudothreshold to threshold).
194
J . R . FOX
Table 1 Values of the c o s i n e s of the c r o s s i n g angles on the d i f f e r e n t portions of the boundary.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
t-
u+
u-
=~
~
+
±
~:
+
-
T
cos
01
T
~-
+
-
_
_
.
.
.
.
.
.
.
cosxB
and
see
t+
0s
f r o m eqs. (28) (29),
s-
c o s
cosxA .
s+
.
.
.
.
.
.
.
.
.
.
.
.
.
i
.
.
.
.
.
.
.
.
.
.
.
.
.
.
i
-
~
~:
+
cosxc
-
+
+
+
+
~:
text.
cos XD
-k
:~
+
:F
+
+
f r o m eq. (32)
cos XC
cosx
cos
B
XD
_
_
+
:F
~:
:~
:~
:r
_
_
~
~:
-
~
-
+
+
+
A n a l o g o u s c o n c l u s i o n s a r e o b t a i n e d f r o m a c o n s i d e r a t i o n of s-u a n d crossing, and when more than one massless particle is present.
6.
t-u
CONCLUSION
We have derived the usual massless particle crossing matrix using the felicity (covariant helicity) formalism. We find, incidentally, that the helicity o p e r a t o r f o r a m a s s l e s s p a r t i c l e i s J . P/Po, d e f i n e d f o r a l l pp. We have shown that, for consistency between the crossing matrix and t h e b e h a v i o u r of h e l i c i t y a m p l i t u d e s in t h e t w o c h a n n e l s n e a r t h e b o u n d a r y of t h e p h y s i c a l r e g i o n , t h e f u n c t i o n s a(x, i,j), (m i = 0), a p p e a r i n g in t h e e x p r e s s i o n s f o r t h e c o s i n e s of t h e c r o s s i n g a n d c . m . s c a t t e r i n g a n g l e s , m u s t h a v e t h e i r a n a l y t i c d e t e r m i n a t i o n x - m y f o r a l l x. T h e a u t h o r w o u l d l i k e t o t h a n k P r o f e s s o r s G. F e l d m a n a n d P . T . M a t t h e w s f o r h e l p f u l d i s c u s s i o n s a n d a c r i t i c a l r e a d i n g of t h e m a n u s c r i p t . H e a c k n o w l e d g e s t h e s u p p o r t of a C o m m o n w e a l t h S c h o l a r s h i p .
REFERENCES [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
G. Feldman and P . T . Matthews, Phys. Rev. 168 (1968) 1587. G. F e l d m a n and M. King, Nuovo Cimento 60 (1969) 86. A.H. M u e l l e r and T. L. T r u e m a n , Phys. Rev. 160 (1967) 1306. J . P . Ader, M . C a p d e v i l l e and H . N a v e l e t , N u o v o C i m e n t o 56 (1968) 315. S. Weinberg, Phys. Rev. 134 (1964) B882. S. Schwcber, An introduction to r e l a t i v i s t i c quantum field t h e o r y (Row, P e t e r s o n and Co., Evanston, Illinois, 1961) Ch. 2. T . L . T r u e m a n a n d G . C . W i c k , Ann. of Phys. 26 (1964) 322. E. L e a d e r , Phys. Rev. 166 (1968) 1599. M. J a c o b and G. C. Wick, Ann. of Phys. 7 (1959) 404. T . W . B . K i b b l e , Phys. Rev. 117 (1960) 1159.