Tetrahedron Letters,Vol.27,No.35,pp Printed in Great Britain
DIASTEBEOSPECIFIC
SYNTHESIS ACCESS
A.
Universite
Rene
Abstract --------
rue
from
D-
and
also
provides
Peres
leads
amaans
Greek
and
to
of
J.C.
of
D-MANNITOL.
Paris
chiral
Chimie
et
Associee Cedex
of
D orL
Biochimie
au
06,
CNRS
11~400)
FRANCE.
diastereoisomeric
precursors
synthesizing
Depezay*
de
(Unite
75270
-
FRON
a-AMINOACIDS.
- Laboratoire
opening
mannitol
DIAZIRIDINES
Toxicologiques
Saints
: Nucleophilic
ned
C.
Descartes et
des
OF
CHIRAL
Dureault,
Pharmacologiques 45
TO
oo40-4039/86 $3.00 + .OO Pergamon Journals Ltd.
4157-4160,1986
diaziridines
a-aminoacids
polyhydroxylated
(or
obtai-
aldehydes)
piperidines.
Many non classical a-aminoacids exhibit high biological activity. Therefore new me1 could prove very useful. The preparation of suitably protected,
thods for their synthesis
a-aminoaldehydes as chiral educts for asymmetric products has also attracted a 2 agents for a great deal of interest . Since N-protected aziridines can be aminoalkylating 3 , chiral, suitably funcvariety of nucleophiles and especially for organometallic compounds optically
tionalised
pure
aziridines
The methodology
can be precursors
we propose
ning the synthesis
of enantiomerically
(scheme I) is similar
of chiral
(R)
t
published
concer-
COOH or
NHY
2
to the one we have recently 4
or aldehydes.
.
a-hydroxyaldehydes
HO
a-aminoacids
pure
NHY
2
Nu
==+
t NU
A
I- OH
eP
COOH
CHO
OH
t
OH
2 YHN -c
This note describes
the synthesis
ridines A and -B from D-mannitol, sents,in
order
to
-
of the two functionalised
with various
check the validity
of these aziridines
Nu
nitrogen
of the proposed
followed by oxidative
cleavage 4157
protecting
diastereoisomeric
oractivating
scheme, an example leading
to
diazi-
groups and pre-
of nucleophilic
cy-aminoacids.
opening
4158
l NY
H
$
(g)or (h) or (i) HN
-
YN 1.
6
II
Scheme
*
phcH2~2ph (a)5JTh +$y;;
2
&$
.g
6_b
Y =CO,CH,P
6-c
Y=Ts
h
50%
10_b346 X 1* 85% qxXH,
COOH
2
2
CzHs 12c -
Scheme III
TsNH+
* *
TsNHiIS
13c -
4159 Diaziridines hexane
prepared
from D-mannitol
: 5,6 diimino 3,4-O- methylethylidene
are 1,2
diols 2S, 3R, 4R, 5S, 1 and 2R, 3R, 4R, 5R 1. They are obtained
yield respectively
from diazido
Diaziridine configuration heating
1 results
inversion
in refluxing
diol 3, itself
formed with 50 % yield
from reductive
ring closure
at C-2 and C-5
toluene).
5
Diaziridine
with
100 % and 60 %
from D-mannitol.
of 1 by triphenylphosphine
with
(complete
ring closure occurs after twenty hours
2 results
from reduction
of the diazido
dibromo
compound 5 by lithium aluminium hydride. This reaction involves cyclisation and configuration 6 . 3 has been formed through dimesylation of 1 into &and nucleophilic substitution inversion by bromide
ions (MgBr2) with inversion
7
at C-2 and C-5 of 4
.
In order to effect the following steps (nucleophilic opening - cleavage) the Nunsubstituted
raw diaziridines
1 and 2 were transformed
dines &a, b, c, and la, b, c, respectively Regiospecific 6a promoted dihydroxy
ring-opening
by BF3-etherate
piperidine
addition
2 with four asymmetric
opening
been shown to beapowerful of the first aziridine
heterocyclisation
derivative
carbons
&and
set of inhibitors
N protected
aziri-
.
lo
to N-benzyl
to the chiral
of known configuration.
is attractive
ring leading
into the appropriate
; bY=)jOCH2Ph ; c Y=Ts)
of dimethylcopperlithium
leads to monoalkylated
logues of 2 (using other nucleophiles) recently
(aY=CH2Ph
diaziridine 3-amino-4,5-
Synthesis
of ana-
since polyhydroxylated of glycosidase
to a non stabilised
piperidines have 8 activity . Nucleophilic
metallic
amide,
is followed by
due to attack of the amide at the C-6 of the second aziridine
cycle.
When Y= 0CH2Phor Ts, nucleophilic ring opening addition of fi or SC by dimethylcops perlithium in THF (without Lewis acid catalysis), leads to diamines JJb or NC in 46 % or 85 % 10 yield respectively . In both cases attack occurs at the less hindered carbons. The Ntosyldiaziridine
&c was found as expected
Since some benzylic be due either metallic
to
and oxydative
acid. The specific
cleavage
rotation
reported
for the synthesis herein,
in the reaction,
of the intermediate
ester
substrate
thepoorestyield metallic
group of the aziridine
ti
COmpSreS
than diaziridine
6b.
in case of 6b can
amide, or to intermolecular
carbamate.
The acetonide
diol flc led to tosyl L
of the resulting
of its methyl
: -26", lit. -22" Diastereoisomeric
cursors
is recovered
decomposition
amide attack at the carbonyl
hydrolysed
sults (B
alcohol
partial
to be a more reactive
uc
was
a-aminobutyric
well with previously
reported
re-
9J. N-Tosyl
diaziridines
of enantiomerically
the use of N-benzyl
sis of chiral polyhydroxylated
prepared
pure
diaziridines
from D-mannitol
a-aminoacids. provides
are
By extension
a promising
pre-
interesting
approach
of the results to the
synthe-
amino piperidines.
000
* (a) ref.4 ; (b) NaN3, DMF, 7O"C, 3h.; (c) MsCl, Py, 2O"C, 20h.; (d) MgBr2, CH2C12-ether, 4O"C, 20h. ; (e) LiA1H4, THF, 20°C, 6h. ; (f)PPh3, toluene, 105"C, 20h. ; (g) PbCH2Br, NEt3, THF, 20°C,
15h., 70% ; (h) PhCH20COC1,
NEt3, CH2C12,
2O"C, 60% j (i) I-KH, THF, 20°C 2-TsCl,
55%. ** (a) Me CuLi, BF3.Et20 5eq. THF -78°C --,+20°C ; (b) Me2CuLi, 2eq. THF -78°C --.m -30°C 2 (c) CF3COOH, H20, O°C, 4h. ; (d) Cr03, NaI04, AcOH, H20, ZO'C, 4h. ; (e) CH2N2, ether.
2O"C,
4160
References
and notes
:
. a) Reviews:J.W.
Apsimon and R.P. Seguin, Tetrahedron, 1979, 35, 2797. D. Hoppe, Nachr. Chem. Techn. Lab., 1982, 30,783-U. SchoEkopf in "Topics in current chemistry", 1983, 109, 65,. b) P.J. Maurer, M. Takahata and H. Rapoport, J. Am. Chem. Sot., 1984, 106, 1095 -J.M. Fitzner, R.G. Shea, J.E. Fankhauser, P.B. Hopkins, J. Org. Chem., 1985, 50, 419 -J.A. Bajgrowicz, A. El Hallaoui, R. Jacquier, Ch. Pigiere, Ph. Viallefont, Tetrahedron, 1985, 41, 1833.
W. Oppolzer, . a) J.A. Ferentz
R. Pedrosa and R. Moretti, Tetrahedron and B. Castro, Synthesis, 1983. 676.
Lett.,
1986, 7,831
b) Review :D. Tourwe, Janssen Chimica Acta, 1985, 2, 3. . a) O.C. Dermer, G.E. Heem, "Ethyleneimine and other aziridines" Academic Press, N.Y. 1969. b) A.P. Kozikowski, H. Ishida and K. Isobe, J. Org. Chem., 1979, 9, 2788- M.J. Eis and B. Ganem, Tetrahedron Lett., 1985, 6, 1153- M. Aratani, L.V. Dunkerton, T. Fukuyama, Y. Kishi, H. Kakoi, S. Sugiura, S. Inoue, J. Org. Chem., 1975, 40, 2009. Y. Le Merrer, A. Dureault, C. Gravier, D. Languin and J.C. Depezay, Tetrahedron Lett., 1985, a, 319. Y. Ittah, Y. Sasson, I. Shahak, S. Isaroom and J. Blum, J. Org. Chem., 1978, g, 4271. J.N. Denis, A. Krief, Tetrahedron, 1979, 35, 2901. P.Place, M.L. Roumestant, J. Gore, Bull. Sot. Chim. France, 1976 , 169. P. Lalegerie, G. Legler and J.M. Yon, Biochimie, 1082, 3, 977- G.W. Fleet,P.W. Smith, S.V. Evans and L.E. Fellows, J. Chem. Sot. Chem. Commun.. 1984,~ 1240 and references cited therein S.V. Evans, A.R. Hayman, L.E. Fellows, T.K.M. Shing, A.E. Derome and G.W. Fleet, Tetrahedron Lett., 1985, 2, 1465 and references cited therein- R.C. Bernotas and B. Ganem, Tetrahedron Lett., 1985, a, 4981- M.J. Eis, C.J. Rule, B.A. Wurzburg and B. Ganem, Tetrahedron Lctt., 1985, 2, 5397. J.A. Bajgrowicz, A. El Hallaoui, R. Jacquier, Ch. Pigiere, Ph. Viallefont, Tetrahedron Lett., 1984, 11, 2759. . Yields given on scheme111 and III correspond to purified products (recrystallization or HNMR spectra (250 MHz, CDC13), analyses and/or mass spectra are flash chromatography). consistent with the assigned structures. Specific rotation are taken for A= 589nm, at 20". 3 a]=+ 47" (C=1,4, CHzClz) i; 3" (C=l, CHzClz)- m.p. = 91°C 5 41" (C=l, CH$lz) ;A = -45" (C=l, CHzClzl- NMR : 7,30-7,20 (m. lOH, arom.); 3,55 (m,2H, Ha) ; 3,41-3,30 = 12,5 Hz, 4H, NCHz) ; 1,90 (d, J1,2=3,5 Hz, 2H, HI trans) ; 1,57 (m, 2H, Hq) ; = 6,3 Hz, 2H, H1 cis); 1,34 (s, 6H, C(CH3j2 ). (C=l, CH2C12) - m.p. = 104°C - 24" (C=l,5, CHzCl2) -m.p.= 60°C NMR : 7,82 (d, J = 8 Hz, 4H, arom.) ; 7,35 (d, ; 3,81 (m, 2H, H3) ; 2,76 (m, 2H, Hz) ; 2,60 (d, J1.2 = 7 Hz , 2H, H1 cis) ; 2,45 (s, 6H, CHJ-Ph); 2,38 (d, J1.z = 5 Hz, 2H, H, trans) ; 1,23 (s, 6H, C(CHJ&) 54" (C=l, CH2Clz)- NMR : 7,33-7,25 (m, lOH, arom.) ; 3,50(11x,2H, Ha) ; 3,6772 3,20 CAB, J = 13,5 HZ, 4H, NCH2) ; 1,66 (d, 51.2 = 3,5 HZ, 2H, H1 transl ; 1,6 (m, 2H, H2)
bl
=+
8,5 Hz, 4E, arom.) ; 7,35 ; 2,61 (d, 51.2 = 7 Hz, 2H, H 1 cis) ; trans) ; 1,21 (s, 6H, C(CH3j2) 2,43 (s, 6H, cH$'h); 2:25 id,3J,,2 =1,5 Hz: 2;1, ;, ) NMR : 7,50-7,20 (m, lOH, arom.) ; 3,84 (m, 2H,H4, Hg) ; 3,88-3,65 CAB, J = 13 Hz, 2H,
2
~~~H~se%I;;ci:F;~~~,~~~~~~~~~.~~~l~:~~~~~':~:~8~"d~i;'_
NCH*)
; 3,60-3,33';AB,
J = 13 HZ, 2H, NCHZ)
; 2,40 (m, 1H , Hs) ; 1,85-I,20
(m, 12H) ;
-62" (C=l, CHOCK,) -m.p= 198°C = -104" (C=l, CHzClz) -map= 124°C = -26“ (C=O,7, EtOH) -m-p= 68"C- NMR : 7,75 (d, J = 8,5 Hz, 2H, arom.) ; 7,26 (d, ; 5,lO (d, J?,~H = 10 Hz, lH, NH) ; 3,87 (m, lH, Hz) ; 3,50 (s, 3H, OCH3) ; 2,40 (s, 3H,PhCH3) ; 1,76 (m, lH, H3) ; 1,68 (m, lH, H3 ) ; 0,92 (dd, 53.4 = 7 Hz, J32 = 7,5 Hz, 3H, H4). (Received
in
France
29
May
1986)