Enhanced solubility of quadrupolar molecules in benzene

Enhanced solubility of quadrupolar molecules in benzene

;. apd F!wnt ‘, :, - mclecuies. :’ _. _.’ ” : ,_ mbjod~ction The structures of molecular crystatii are governed by.the multipolar interactio...

298KB Sizes 0 Downloads 41 Views

;.

apd F!wnt ‘,

:,

-

mclecuies.

:’

_.

_.’ ”

: ,_

mbjod~ction

The structures of molecular crystatii are governed by.the multipolar interactions between mdecla+ .‘, (IQ+& [I}). The cjstaf structure of carbon &oxide, for example; is represented by assembling about twenty pieces of mokcul~ models made of barium-ferrite magnets which simulate magnetically the electric qua’ drupole of the teat molecule (fig. 1); the crystal s&fcture of bkrrzeneis represented by assembbng qua&polar molecu&r models similai to the molecule of benzene (fig.’Z), ‘@es@quadrupole-quaclrupoJe interactions do not : play ti essential role in a gaseous state: Ehiira’s~core, potential of intermokcukir forces, which takes in ac.

.

._ ._,’ :

::

_

.:

_,I. .

.,,

count the size and shape of molecules, is a good ap prdx.&atiop [Z]. This core potential of intermolecular forces has b&n applied to sofubitity of gasesin liquids, The solubilities of Ne, Ar, Kr, Xe, N2, CO,, C3H6, and cyclopropane in cyclohexane are we,llrepresented by use of the core potential &rose parameters art$determined from fhe second,viriaf coefficients of gases j3j. The pirpose of the present papei is to show that the’ quadrupole-quadrupole ir~teractionspiay an important part if botfi the solute and solvent mblecties have appreciable ele&ric qluadrupoles, as in the case of carbon dioxide @Ibenzene.

~0Iume

CJiEMICAL PHYSICS

?J; number 1

Benzene-cyctohexane volubility

ratio

,c/cO in benzene c/co in cyclohexane

Temperature

Ne Ar

0.70

20 to w4O”C

0.70

20 to $WzR

[z;

Fe

0.70

20 to =4cFc 20 to c*40Y!

141

0.77 0.80

25°C

;:f

25°C

1.58

171

1.52

20°C 3PC

PI

1.75 1.25 1.05

4°C 20VC 40°C

Solute

cl.68

CHq Na co2

HC!=C!H BF3

15 September 1971

LIYITERS

Ref.

Fig. 3. Foosib!e coafiitior~

oECQ2 molwukk in liquid

benzene. Tabie 2 Quadrupole moments of motauics
191

llOi co2

G-b

N2

HC=Xli

-4.2

-3.6

-1S

+3.0

Table 1 gives, for a number of solutes, the observed ratio of the solubihty in benzene at a certain temperature to tire solubiiity in cyclohexane at the sarn~ temperature. The ratio is close to 0.70 for inert gases but somewhat larger for nitrogen and considerably larger

_.

for carbor! dioxide and acetylene. Lacking observed values of c/co of boron trifluoride

i 3.9A

L

in cyclohexane, we have used the values kLc/co = -0.611

at 20°C and -0.482 at 40% ,

Fig. 4. A possible conf$uration of an acetylene mokcuie in benzene.

on the basis of the core potential deter-

caIcuIated

mined from the second virial coefficient. (The core is a triangle joining fluorine atoms, V= 0, S = 4.86 A2, M= 1 I.17 -4, a = 2.23 A, e/k = 320% in the notation of ief. 131.)

pole-qua&pole

3. Explanation

For acetylene, A+# in eq. (I) is -250°K at 4°C; which is close to -260°K cakuIated for the configura-

interac.tian

energies -190’K

and shown in fig. 3. Here use has been made of f.k values of quadrupkle moments given ;~r tabk 2.

-380%

calcillated for the two configurations

tion shown in fig. 4. These enhanced soiubilities of quadrupolar molecules in benzene can be explained serni~quantitatively in terms of the energy Aq4(< 0) of quadrupole-quadrupoIe interaction between the soiute and solvent molecules:

c/co in benzene c/co in sy clohexane

= 0.70 exp(-AJkT)

,

(11

where kT is Boltzmann’s constant times the absolute .temperature. For.carbon dioxide, A,,lk in eq. (I) is -240°K

for 20 to -34°C. This value is between the quadru:

The authors wish to thank Dr. MS. Jhon of Korea Institute of Science and Technology for helpful infor‘r-nation abaut experimental data of solubility.

References (1) T.Kihara, Acta Crys~ 16 (1963) 1119; Zt (1966) 877; A26 (197Oj315. 63

.

...‘.

-‘y

,.,‘-

:

.’

i&.-F&& ihys. 25 (1933j.i3& Adv&.‘&&i,~~ ; _I (71 J&.Gjaidb& Ad !&Hilde+ar$, 3. Am.,Cb&~~oc. .,._ ’...’.ii)T%hara, .’ 71 @49)(3147;‘.. ,’ J. 7.. ‘,:’ : ., Thy&Q (195Q 147;..’ _,.:,.. f8j J.CIir.Gjahlbaek; Acta Ch& SC&. 7 (1953) 5’37. T.Kihaza,‘K.Yimqaki, M$.Jhan arid +U&n, Cheni : ._ ‘_’ ; .. [9] M#%pley a& C&,Hpl$y Jr., J. && Chem.~Suc. 61. ~‘.’ : ,. :’ 1. Ph);s..tetters 9.f1971)62; T.para’and M.S.Jhon,~Chw@hys; Letten 7 !1970) :, f3j (i939) 1599; I .‘. ,., “. .’ ., ,.‘-,a$p3* ,. ._ :- .., .., ., jr01 C.~.Wheeler Jr. and H,P.Keating, 3. Pbys; C&m. 58’ fir) H.L.Ciciw, B.&&tino, J.HSay!osandP;M.Gross,,J. :._. (1954) 117,l.: .. fll] A.D.Buckfng?tam; AcWa&Chem.‘i%ys. 12 (1967)I&.; -“WLs Chdm. 61(1957) 1078. El21 D.E.Sirogryn and AD.Stxogryn, Mol. Phys. 11.(1966) .. 2.’ [S] @Xl&er;J. phys. C&-n. 62 (1?58) 375. ;3?1. 1‘ ; [6] A.Laiu&g a@ J.Cbr.Gjzldbaek, ActaCh&m, S,cand. 14 ‘. (1960) 1124, ‘. :, ‘. .: ::I .

,: :: :”

.., ‘.

.. 1

. “--

-.

. .

_.

:

.’

:

/,

..:

‘.

(., ,.

.

-

,.

..,~...

.,

.-

‘.

: ,/‘.,

.’ :

,.(.

.

:

_’

.

.)

,’ ‘.

.

‘.

‘,.

.~

.’

,.

.

:

,..

;



.,

‘.’

.‘,.