Excess enthalpies for (propane + methanol) at the temperatures (298.15, 323.15, 348.15, and 373.15) K and pressures (5, 10, and 15) MPa, and at 363.15K and (5 and 15) MPa

Excess enthalpies for (propane + methanol) at the temperatures (298.15, 323.15, 348.15, and 373.15) K and pressures (5, 10, and 15) MPa, and at 363.15K and (5 and 15) MPa

O-41 1 j. Chem. Thermodynamics 1991, 23, 551 559 Excess enthalpies for (propane + methanol) at the temperatures (298.15, 323.15, 348.15, and 373.15)...

381KB Sizes 0 Downloads 29 Views

O-41 1

j. Chem. Thermodynamics 1991, 23, 551 559

Excess enthalpies for (propane + methanol) at the temperatures (298.15, 323.15, 348.15, and 373.15) K and pressures (5, 10, and 15) MPa, and at 363.15 K and (5 and 15) M Pa J. T. SIPOWSKA, J. B. OTT," B. J. NEELY, and R. M. IZATT

Department of Chemistry, Brigham Young University, Provo, UT 84602, U.S.A. (Received 23 October 1990) Excess molar enthalpies HE for (propane + methanol) have been determined at the temperatures (298.15, 323.15, 348.15, and 373,15) K and at the pressures (5, 10, and 15) MPa. Measurements were also made at 363.15 K and (5 and 15)MPa. (Propane + methanol) is a type-II mixture (Scott and van Konynenburg's classification) with a (liquid + liquid) phase separation at lower temperatures. The measurements reported in this paper were performed at temperatures and pressures at which both com!~onentswere liquids and where phase separation does not occur.

1. Introduction Recent papers (1 3) from our laboratory have reported measurements of excess enthalpies for (ethane + methanol), (1) (ethane + ethanol), (2) and (propane + propan-l-ol). (3) As a continuation of those studies we have determined excess enthalpies for (propane + methanol). The critical p(T) curve for (propane + methanol) has been investigated by Brunner, (4) and the (liquid + liquid) equilibria by Kuenen. (5) Using these results together with the (vapor + liquid) equilibria for pure propane, (6) and methanol, (6) we have constructed the phase diagram for (propane + methanol) shown in figure 1 as a p(T) projection. It is apparent from figure 1 that, according to Scott and van K o n y n e n b u r g ' s classification, (v) (propane + methanol) is a type-II mixture with a continuous critical line between the critical points of the pure components and a (liquid + liquid) immiscibility at lower temperatures. The critical constants Pc and Tc are 4.24 M P a and 369.98 K for propane, (6) and 7.95 M P a and 513.00 K for methanol. (6) We have measured HE at the temperatures (298.15, 323.15, 348.15, and 373.15) K and the pressures (5, 10, and 15) M P a and at 363.15 K and (5 and 15) M P a . These (T, p) conditions are shown in figure 1. aAuthor to whom correspondence should be sent. 0021 9614/91/060551+09 $02.00/0

© 1991 Academic Press Limited

552

J.T. SIPOWSKA E T AL. 16

i

+

+

+

+

+

+

+

+

+

+

12

+

8

[

0

280

."

I

320

f " ' "

360

I

r

400

440

480

520

T/K

F I G U R E 1. (Fluid + fluid) equilibria for {xC3H 8 + ( 1 - x ) C H 3 O H } : [:], critical point for C3H8; /k, critical point for CH3OH; @, U C E P ; + , (p, T) conditions for the HEm results reported in this paper; - - , (vapor + liquid) critical locus; .... , (vapor + liquid) equilibrium lines for C3H8 and CH3OH; - - - , (liquid + liquid) critical line.

The measurements were made above the (gas + liquid) equilibrium line for propane and between the (liquid + liquid) and critical p(T) lines so that both propane and methanol were liquids at all experimental temperatures except at 373.15 K where the propane was a supercritical fluid. 2. Experimental Methanol (B&J Chrom Pure, 99.9 mass per cent) and propane (Phillips, 99.5 mass per cent) were used without further purification. The methanol was stored over Davison 0.3 nm molecular sieves to remove water. The densities at 293.15 K used to calculate the mole fractions were (0.5110, 0.5215, and 0.5305)g-cm 3 for propane at (5, 10, and 15)MPa, respectively,,and (0.7961, 0.8009, and 0.8060)g.cm 3 for methanol (6) at the same pressures. The propane densities were calculated from the modified Benedict-Webb-Rubin equation with the coefficients given by Younglove et al. (8) The densities of methanol were calculated using an isothermal compressibility of 1.215GPa 1(6) and the density at atmospheric pressure of 0.8913 g. cm-336) The isothermal flow calorimeter used for the measurements has been described. (9) Pressures were measured with a Sensotec Model 450 D transducer calibrated against

HEmF O R ( P R O P A N E + M E T H A N O L )

553

TABLE 1. Experimental excess molar enthalpies HEmfor {xC3H 8 + (1 - x ) C H 3 O H } ; 8H~ is the deviation of the experimental results from equation (1)

X

HE J" m o l - 1

8HEm J ' tool- 1

x

0.0238 0.0489 0.0755 0.1037 0.1336 0.1654 0.1994 0.2357

46,4 87,7 128,9 165.3 202.7 233.7 263.5 287.2

1.2 --0.4 0.3 -- 1.3 0.9 --0.2 0.3 --2.2

0.2746 0.3163 0.3612 0.4096 0.4621 0.5191 0.5812 0.6492

0.0242 0.0586 0.0957 0.1358 0.1793 0.2145 0.2520 0.2921 0.3351

48.2 108.6 164.0 217.6 263.0 290.5 316.8 338.3 354.4

--0.3 --0.8 -- 1.5 1.5 2.1 0.0 0.3 -0.9 4.1

0.3656 0.4143 0.4489 0.4854 0.5239 0.5646 0.6077 0.6535 0.6775

0.0245 0.0504 0.0777 0.1066 0.1373 0.1699 0.2166 0.2543 0.2947 0.3379

48.9 97.1 144.0 186.1 227.7 263.3 304.6 332.8 355.0 376.8

-- 1.2 --l.0 0.5 0.0 1.9 1.0 --0.7 --0.4 -2.0 0.1

0.3685 0.4173 0.4520 0.4885 0.5270 0.5677 0.6107 0.6564 0.6802 0.7302

0.0239 0.0492 0.0759 0.1042 0.1343 0.1774 0.2123 0.2495 0.2894 0.3322

47.5 96.l 151.0 185.3 222.4 282.9 320.7 354.8 388.6 422.7

-- 1.7 --0.7 0.8 - 1.5 -- 6.7 0.5 0.5 - 1.2 1.6 0.2

0.3784 0.4111 0.4457 0.4821 0.5206 0.5614 0.6046 0.6506 0.6994 0.7356

0.0242 0.0498 0.0768 0.1054 0.1358 0.1793

54.1 105.0 155.5 205.3 246.2 313.5

0.1 --0.7 0.1 2.0 --3.8 3.9

0.2145 0.2520 0.2921 0.3351 0.3656 0.4143

HEm J ' tool- 1

8H~ J- mol-- a

x

HE J. tool- x

8H E, J. mol x

0.7236 0.8063 0.8662 0.8978 0.9306 0.9647 0.9734

367.9 341.7 312.3 292.1 258.0 211.8 192.5

1.3 -0.5 -0.1 1.6 --2.4 0.3 0.7

0.7277 0.7540 0.8093 0.8384 0.8996 0.9319 0.9653 0.9739

385.6 380.9 356.6 339.1 291.4 267.8 217.8 197.2

--0.1 3.3 2.1 0.3 --4.5 2.6 0.4 -0.5

0.7563 0.8112 0.8401 0.8699 0.9007 0.9326 0.9657 0.9742

380.8 355.0 341.2 325.9 291.2 263.3 211.5 197.4

0.4 --2.0 0.4 5.5 --3.5 1.8 -2.2 0.9

0.7790 0.8073 0.8366 0.8670 0.8984 0.9310 0.9512 0.9649

582.1 573.5 564.2 546.8 519.6 474.7 425.2 384.9

1.5 --0.8 0.9 1.1 1.4 1.6 -3.8 0.4

0.4489 0.4854 0.5239 0.5646 0.6077 0.6535

535.0 554.5 568.8 584.8 592.8 601.6

-1.1 1.4 0.2 2.3 -1.7 - 1.0

T = 298.15 K, p = 5 MPa 316.8 329.9 346.8 362.1 372.0 377.6 379.6 376.2

4.5 -2.0 - 1.5 0.8 0.8 0.0 -0.4 --1.0

T = 298.15 K, p = 10 MPa 370.2 383.8 394.1 398.3 401.2 404.8 403.7 398.5 395.3

0.6 0.2 2.9 1.0 --0.5 0.8 --0.2 - 1.8 - 1.6

T = 298.15 K, p = 15 MPa 386.7 399.9 407.6 410.8 413.4 416.5 409.0 404.1 400.1 389.2

-0.8 --0.4 1.2 0.2 0.6 3.6 --1.4 --0.9 -0.8 0.4

T = 323.15 K, p = 5 MPa 453.2 473.2 495.4 512.2 527.4 547.4 559.2 568.6 582.4 582.2

-0.2 0.0 3.0 1.3 -- 1.3 2.1 -1.1 --4.3 1.0 - 1.5

T = 323.15 K, p = 10 MPa 352.4 388.9 434.6 466.8 485.9 517.7

-0.1 --4.2 3.5 0.6 -2.0 --0.2

E T AL.

J. T . S I P O W S K A

554

T A B L E 1--continued

HEm

HEm ~.mo1-1

J.mol

J. mol

0.6873 0.7277 0.7702 0.8093

604.5 604.0 597.2 587.3

-0.9 -0.3 0.1 3.0

0.8384 0.8684 0.8996 0.9319

0.0245 0.0504 0.0777 0.1066 0.1373 0.1699 0.2166 0.2543 0.2947 0.3379

62.0 118.9 165.8 222.2 266.2 313.0 371.4 410.6 448.5 483.4

2.4 2.8 -3.6 2.1 -1.9 -0.7 0.8 0.1 0.4 0.2

0.3685 0.4173 0.4520 0.4885 0.5270 0.5677 0.6107 0.6564 0.6899 0.7302

0.0239 0.0492 0.0759 0.1042 0.1343 0.1774 0.2123 0.2495 0.2894 0.3322

56.1 106.9 162.9 217.1 273.1 342.0 390.8 444.6 497.0 550.3

0.5 3.4 --1.2 -0.2 3.1 2.2 -1.5 -0.3 --1.1 --1.8

0.3784 0.4111 0.4457 0.4821 0.5206 0.5614 0.6046 0.6506 0.6994 0.7356

0.0242 0.0498 0.0768 0.1054 0.1358 0.1793 0.2145 0.2520 0.2921 0.3351

67.2 132.9 196.3 265.4 326.2 404.1 467.9 534.2 592.1 644.0

0.0 -0.5 --2.0 3.2 0.9 -3.7 --1.2 4.6 2.7 --4.9

0.3656 0.4143 0.4489 0.4854 0.5239 0.5646 0.6077 0.6535 0.6873 0.7277

0.0245 0.0504 0.0777 0.1066 0.1373 0.1699 0.2166 0.2543 0.2947 0.3379

68.6 137.2 209.5 280.5 347.6 414.3 501.9 563.9 625.7 687.6

0.1 -1.2 1.0 2.1 0.0 -1.0 --0.9 -2.0 --1.4 1.1

0.3685 0.4173 0.4520 0.4885 0.5270 0.5677 0.6107 0.6564 0.6899 0.7302

HEm

8U~ 1

570.2 549.9 521.4 477.2

J' mol-

J.mol 1 -0.1 -1.3 -1.8 1.7

8H~ a

J" t o o l - i

0.9451 0.9653

444.4 368.5

0.0 -0.3

0.7724 0.8112 0.8401 0.8699 0.9007 0.9326 0.9657 0.9742

600.8 586.7 568.2 541.8 508.4 456.7 357.0 302.0

2.3 2.2 -0.2 -3.3 -2.0 1.7 5.6 -5.1

0.7790 0.8073 0.8366 0.8670 0.8984 0.9178 0.9310 0.9512 0.9649

936.6 943.6 933.7 915.7 873.4 820.1 781.8 677.9 573.4

-0.2 3.5 -1.5 -0.9 0.6 -5.8 1.8 1.5 2.8

0.7702 0.8093 0.8384 0.8684 0.8996 0.9319 0.9451 0.9653 0.9739

974.6 963.5 947.5 912.0 858.0 747.2 692.0 541.9 453.7

-1.9 -2.1 0.9 - 1.2 2.9 -3.8 5.8 -0.9 -2.9

0.7563 0.7833 0.8112 0.8401 0.8699 0.9007 0.9326 0.9523 0.9657

977.2 971.1 952.6 931.2 897.3 842.1 751.9 651.3 544.6

1.5 3.2 -1.6 -1.3 --1.7 -2.8 3.3 2.8 -2.9

T=323.15K, p=15MPa 504.0 536.6 555.3 570.6 581.0 591.7 604.9 609.8 608.5 606.7

-1.1 1.5 2.0 1.2 -2.4 -3.4 1.2 1.0 -1.2 -0.2

T = 348.15 K, p = 5 M P a 610.6 644.8 679.4 721.7 759.1 795.4 833.8 869.7 899.7 924.2

T = 348.15K,

3.3 0.4 -2.8 1.5 0.7 -1.2 -0.1 0.0 -2.5 2.7 p =

685.4 747.6 789.2 823.7 853.4 891.5 926.7 948.4 965.5 977.0

10MPa -2.8 1.0 4.3 1.4 --4.9 -0.9 3.3 -1.5 1.0 1.8

T=348.15K, p=15MPa 729.5 784.4 816.6 852.9 888.5 921.7 945.9 965.7 972.8 982.8

4.3 2.3 -2.5 -2.0 -0.3 1.6 -1.0 -1.5 -3.1 4.0

555

H E FOR (PROPANE + M E T H A N O L ) TABLE 1--continued

J.mo1-1

J.mo1-1

J- m o l - 1

J. m o l - 1

J. mol - 1

J. mol 1

T = 363.15K, p = 5 M P a 0.0240 0.0581 0.0948 0.1346 0.1778 0.2127 0.2500 0.2900 0.3328 0.3790

55.6 129.2 206.2 275.8 351.5 413.0 469.7 524.4 588.5 658.7

--0.3 --0.8 2.4 --2.1 --1.2 3.4 1.9 --3.6 --1.8 2.5

0.4118 0.4463 0.4828 0.5213 0.5621 0.6053 0.6418 0.6752 0.7000 0.7265

0.0162 0.0594 0.0970 0.1376 0.1702 0.2170 0.2548 0.2952 0.3384 0.3691

56.2 198.8 297.7 405.4 489.8 596.6 676.0 754.7 838.2 884.8

2.7 0.9 --0.5 --2.0 1.3 0.3 --0.5 -1.5 2.8 --3.3

0.4179 0.4525 0.4891 0.5276 0.5682 0.6113 0.6569 0.6807 0.7306 0.7567

0.0492 0.0759 0.1042 0.1343 0,1774 0,2123 0.2495 0,2894 0.3322

92.7 142.2 181.7 237.5 298.2 340.6 392.4 443.4 494.5

-0.2 2.2 -5.2 3.6 1.7 -3.4 0.2 0.8 -1.7

0.3784 0.4111 0.4457 0.4821 0.5206 0.5614 0.6046 0.6506 0.7356

0.0242 0.0498 0.0768 0.1054 0.1358 0.1793 0.2145 0.2520 0.2921 0.3351

88.7 173.l 257.2 348.6 438.6 548.4 641.6 733.5 837.5 933.1

1.5 1.0 --3.2 1.7 4.3 -4.0 --1.6 -2.3 6.7 4.9

0.3656 0.4143 0.4489 0.4854 0.5239 0.5646 0.6077 0.6535 0.6873 0.7277

0.0245 0.0504 0.0777 0.1066 0.1373

92.0 189.0 280.1 379.9 470.6

--1.5 1.3 --2.0 2.7 --2.6

0.1699 0.2166 0.2543 0.2947 0,3379

700.4 746.1 804.5 858.6 913.7 961.3 1018.5 1052.4 1084.3 1121.4

-1.9 --4.3 3.5 4.5 3.9 -6.6 3.0 -5.0 --2.6 5.2

0.7794 0.8077 0.8370 0.8673 0.8987 0.9312 0.9446 0.9650

1163.4 1180.0 1185.7 1176.5 1137.1 1021.7 938.9 766.9

0.7 -0.6 -1.1 1.1 5.5 -1.8 -7.2 4.7

0.7837 0.8116 0.8404 0.8701 0.9009 0.9328 0.9525 0.9658

1245.3 1221.3 1191.5 1139.7 1064.2 928.3 791.7 651.1

5.4 -1.2 -1.6 -5.2 -l.0 3.3 6.6 -6.5

0.7356 0.7790 0.8073 0.8366 0.8670 0.8984 0.9113 0.9310 0.9512

1130.2 1236.3 1293.7 1353.0 1394.2 1391.6 1375.9 1294.8 1132.3

-5.0 4.7 -0.5 0.2 -1.3 -3.8 3.7 0.6 -0.5

0.7702 0.8093 0.8384 0.8684 0.8996 0.9319 0.9518 0.9653

1532.8 1516.3 1497.7 1428.3 1309,8 1123,0 930.6 746.4

- 3.7 --5.6 7.8 0.0 --7.4 4.4 4.0 -- 3.8

0.3685 0.4173 0.4520 0.4885 0.5270

1067.2 1155.7 1225.8 1283.8 1346.4

5.0 --4.7 1.1 --3.4 --0.6

T = 363.15K, p = 15MPa 967.2 1023.2 1066.6 1112.3 1159.7 1196.1 1226.4 1238.6 1252.6 1249.5

0.8 5.6 --1.0 -2.9 0.5 -1.7 --1.9 -0.8 2.3 1.1

T = 373.15K, p = 5 M P a 5~5.7 600.7 636.5 694,4 756,0 809,8 884.1 960.2 1063.3

1.0 3.5 -6.9 0.4 6.0 -2.6 1.1 -4.1 4.4

T = 373.15 K, p = 10 MPa -

-

991.6 1086.7 1164.1 1237.9 1291.7 1357.8 1419.7 1475.6 1497.5 1534.4

3.0 -- 8.7 1.0 7.6 --4.4 - 1.8 0.8 4.1 --4.8 6.9

T = 373.15 K, p = 15 MPa 572.7 691.9 805.0 899.3 993.2

2.7 --8.0 6.9 2.2 --2.9

556

J. T. S I P O W S K A E T AL. TABLE 1--continued

~m

t4~m

~U~

~m

~/-/~

x

J. m o l - 1

J. mol 1

x

J. m o l - 1

J. m o l - 1

0.7563 0.7833 0.8112 0.8401 0.8699

1517.3 1506.1 1473.3 1422.5 1358.3

0.5 2.5 - 3.4 -8.2 1.5

0.9007 0.9326 0.9523 0.9657

1245.7 1041.9 872.9 699.3

6.6 -4.0 6.0 --4.7

~/~m

x

J" m o l - 1

0.5677 0.6107 0.6564 0.6899 0.7302

1405.2 1450.8 1489.5 1514.2 1522.4

J" m o l i 2.6 --0.9 -- 1.8 3.6 2.2

a dead-weight gauge. Bath temperatures were set and monitored with a Hart Model 1006 platinum resistance thermometer calibrated against a Rosemount Thermometer (ITS-90). We estimated our pressures and temperatures to be accurate to +0.1 MPa and _+0.02 K, respectively. 3. Results and discussion Experimental values of HEm{xCaH8 + (1 -x)CH3OH } are given in table 1. They were fitted to the equation: H~/(J" mo1-1) = x(1 - x ) ~ aj(1-2x)i/{1 - k ( 1 - 2 x ) } .

(1)

j-0

The coefficients at, the skewing factor k, and the standard deviations s are given in table 2. Figure 2 compares the effect of pressure on HE at five temperatures. The pressure coefficient (~H~/~p)r is small at 298.15 K but increases with increasing temperature. At all except the lowest temperature, (OHEm/Op)xchanges sign at x ,~ 0.9. At the highest temperature where the propane is a supercritical fluid, the shape of HEm(X)is TABLE 2. Coefficients for representing HE for {xC3H8 + ( 1 - x ) C H 3 O H } with equation (1); s is the

standard deviation p/MPa

T/K

a0

a1

a2

aa

5.0 5.0 5.0 5.0 5.0 10.0 10.0 10.0 10.0 15.0 15.0 15.0 15.0 15.0

298.15 323.15 348.15 363.15 373.15 298.15 323.15 348.15 373.15 298.15 323.15 348.15 363.15 373.15

1504 2078 2953 3299 2879 1597 2237 3345 5024 1646 2296 3462 4327 5223

1274 1091 668.2 244.3 -537.2 1323 1237 1149 709.8 1492 1441 1306 1273 1372

681.6 541.4 451.3 670.7 1407 667.5 708.3 420.2 355.3 763.2 532.6 500.7 317.0 275.4

465.9 519.1 225.4 295.3 -458.2 637.6 344.6 379.7 70.97 440.4 293.4 802.6 597.8 309.8

a4

a5

26.86 279.2 72.53 1321 73.34 -597.7 197.8 645.1 -79.08 184.1 112.0 316.2 129.1

-1042 - 126.5 -171.3

276.4 -797.2 -542.9

a6

k

-0.98 -0.97 -0.90 -0.91 ,~ - 0 . 8 2 -0.98 756.2 0.92 -0.91 -0.83 --0.99 -0.96 -0.90 -0.88 -0.87

s 1.46 2.58 2.11 3.50 3.18 1.79 1.87 2.82 4.60 1.77 2.30 2.16 2.99 3.93

H~ FOR ( P R O P A N E + M E T H A N O L ) 1600

i

t

I

i

/"

1200

557

Xx5

ii j . , 1 ~ i/// ii /// IIIIIIIIIII i//,s ~ iI II /// I IiI I// 111

\

III

800

ii

,;/

/ ////

f--

.....

I/////"-/

\

400

V

0 0

0.2

0.4

0.6

0.8

X

F I G U R E 2. Temperature and pressure dependence of the excess molar enthalpies for {xC3H8 + (1-x)CH3OH}: - - , 5 MPa; - , 15 MPa. 1, 2, 3, 4, and 5 refer to (298.15, 323.15, 348.15, 363.15, and 373.15)K, respectively. t

very different at the two pressures. The HEm(X)curve at 5 M P a is less symmetrical than at 15 MPa, with the maximum shifted toward high x. The shape of the H~(x) curve at 373.15 K and low x can be explained as being due to a negative contribution to HEm, most important at low x, which results from the condensation of the supercritical propane into the liquid methanol. We have earlier observed similar effects for (ethane + ethanol)/2) The shape of HEm(X)at 15 M P a is more typical of what is observed for (an alkane + an alkanol) at temperatures considerably below the critical temperature. Apparently the condensation effect which we have used to explain the unusual shape of HEm(X)at 373.15 K and 5 M P a is not so important at 15 MPa. This is not surprising since the supercritical propane should be much more "liquid-like" at this higher pressure. In an earlier paper (3) we reported H~(x) for (propane + propan-l-ol) and it is interesting to compare those results with those for (propane + methanol) to see the effect of the size of the alkanol on HE. Figure 3 shows HEm(X)for (propane + methanol) and (propane + propan-l-ol) at 298.15 K and at 5 MPa and 15 MPa, together with HEm(X)predicted from UNIFAC-2. For both mixtures the shapes of the H~(x) curves predicted from UNIFAC-2 are qualitatively in agreement with experimental results. Quantitatively the calculated values agree better with the experimental results at 15 MPa. In earlier papers, Cz'3) we have seen that UNIFAC-2

450

.

.

.

.

lll14b@"X X X l

/*x

/....-

A

#.

=

~

/_--

~.

, /." /

150

/

• • • -

i/-." 0

0.2

0.4

x

0.6

0.8

F I G U R E 3. Comparison of excess molar enthalpies at 298.15 K and at 5 M P a and 15 MPa: A , {xCaH8 + (1 -x)C3HTOH } at 5 MPa; O, {xCaH8 + (1 - x ) C 3 H v O H } at 15 MPa; , UNIFAC-2 prediction for {xC3H8 + (1 --x)C3HTOH}; ×, {xC3H8 + (1 - x ) C H 3 O H } at 5 M P a ; . , {xC3H8 + (1 --x)CH3OH } at 15 MPa; - - - , UNIFAC-2 prediction for {xC3H 8 4- (1-x)CH3OH}.

ii

/ /

7 -6 7

10

/

"\

/

\

!

/

k)

5

00 J"f-'Z~'/~//0.2

,

,

0.4

0.6

,

0.8

1

X

F I G U R E 4. Excess molar heat capacities at 15 M P a for {xC3H 8 + (1 -x)CH3OH}: -- -- - ,303.15 K; • 323.15 K: . . . . . . .348.15 K.

H~ FOR (PROPANE+ METHANOL)

559

predictions (which are pressure independent) agree better with the high-pressure results. Figure 4 shows C~,m at 15 M P a and at (303.15, 323.15, and 348.15) K as calculated from the temperature dependence of HE: (~HEn/~T)p = Cp, E m.

(2)

E

Cp, m values at intervals of 0.05x across the entire composition range were calculated from s m o o t h e d H E values obtained from e q u a t i o n ( l ) . The HEm values at each composition were fitted to a quadratic equation as a function of temperature and E then differentiated. With increasing temperature, Cp, m increases and the m a x i m u m e m features for other (alkanol + alkane) mixtures have shifts to lower x. Similar Cp, been reported and explained in several papers31° ! 6) Acknowledgement is made to the D o n o r s of The Petroleum Research Fund, administered by the American Chemical Society, for the support of this research. REFERENCES 1. Sipowska, J. T.; Graham, R. C.; Neely, B. J.; Ott, J. B.; Izatt, R. M. J. Chem. Thermodynamics 1989, 21, 1085. 2. Ott, J. 13.;Sipowska, J. T.; Owen, R. L.; izatt, R. M. J. Chem. Thermodynamics 1990, 22, 683. 3. Sipowska, J. T.; Ott, 3. B.; Woolley, A. T.; Izan, R. M. J. Chem. Thermodynamics 1990, 22, 1159. 4. Brunner, E. J. Chem. Thermodynamics 1985, 17, 871. 5. Kuenen, J. P. Phil. Mag. 1903, (6), 6, 637. 6. Selected Values o f Properties of Chemical Compounds. Thermodynamic Research Center Project: Texas A&M University, College Station, Texas. 1970. 7. Scott, R. L.; van Konynenburg, P. H. Discuss. Faraday Soc. 1970, 49, 87. 8. Younglove, B. A.; Ely, J. F. J. Phys. Chem. Ref. Data 1987, 16, 577. 9. Ott, J. B.; Stouffer, C. E.; Cornett, G. V.; Woodfield, B. F.; Wirthlin, R.C.; Christensen, J.J.; Deiters, U. K. J. Chem. Thermodynamics 1986, 18, 1. 10. Costas, M.; Patterson, D. J. Chem. Soc. Faraday Trans. 1 1985, 81, 1214. 1I. Benson, G. C.; D'Arcy, P. J.; Kumaran, M. K. J. Chem. Thermodynamics 1985, 17, 501. 12. Benson, G. C.; D'Arcy, P. J. J. Chem. Thermodynamics 1986, 18, 403. 13. Andreoli-Ball, L.; Patterson, D.; Costas, M.; Caceres-Alonso, M. J. Chem. Soc. Faraday Trans. 1 1988, 84, 3391. 14. Kalinowska, B.; Jedlinska, J.; Stecki, J.; W6ycicki, W. J. Chem. Thermodynamics 1981, 13, 357. 15. Kalinowska, B.; W6ycicki, W. J. Chem. Thermodynamics 1984, 16, 609. 16. Costas, M.; Patterson, D. Thermochim. Acta 1987, 120, 161.