M-2357 J. c‘hcm.
Thermo&zamics
1989, 21, 495-497
Excess molar enthalpies at 298.15 K of (1 -chloropentane + nonane or decane) and of (1 -chlorohexane + nonane or decane or undecane) L. NtJi%EZ.” F. MIGUELEZ,h M. I. PAZ ANDRADE
L. BARRAL.
and
Departamento de Fisica Aplicada, Facultade de Fisk, Universidade de Santiago de Compostela. Spain i Received 25 January 1989)
Excess molar enthalpies Hk, have been measured at atmospheric pressure and 298.15 K for (.YCH,(CH,),CI + (I -x)CH,(CH,),CH3 or (1 -x)CH,(CH,),CH,} and for {uCH,(CH,),CI + (1 -x)CH,(CH,),CHa or (1 -x)CH,(CH,),CH, or (1 -x)CH,(CH,)~CH,). All the mixtures have Hz > 0 and the Hz(x) curves deflect slightly towards .Y > 0.5. that is towards the more chloroalkane-rich compositions.
1. Introduction As a contribution to the study of the mixtures (a chloroalkane + an alkane),” report here the experimental excess molar enthalpies Hg for {xCH,(CH,),CI (1 - x)CH,(CH,),CH, or (1 -x)CH3(CH,),CH3] and for jxCH,(CH,),CI (1 -x)CH,(CH,),CH, or (1 -x)CH,(CH,),CH, or (I -x)CH,(CH,),CH,).
3, we + +
2. Experimental Excess molar enthalpies were determined using a standard Calvet microcalorimeter calibrated electrically, the calibration having been checked by determining, for the entire range of compositions, the excess molar enthalpies of the standard: (hexane + cyclohexane). Our results agree within 0.9 per cent with those of McGlashan and Stoekli.‘3’ The calorimetric technique has been previously described.‘4’ All the liquids used were Fluka with purity levels of 99 moles per cent or better and, since their densities and refractive indices do not differ significantly from those in the literature,‘s’ no purification was attempted. “To whom correspondence should be addressed. “Colexio Universitario de A Corufia, Universidade
0021-9614/89/050495+03
tsOZ.OO/O
de Santiago
de Compostela.
Spain
,(‘i 1989 Academic
Press Limited
496 TABLE
x
L. NUNEZ 1. Excess molar
H; J.mol~
enthalpies
Hk of (1-chloropentane + an alkane) alkane) at 298.15 K
H!i ’
x
J.mol
x
J’mol
345 357 426
0.3323 0.3895 0.4668
472 505 525
0.1594 0.2238 0.2857
291 386 451
0.3582 0.4151 0.4650
514 550 562
0.1114 0.2036 0.2473
185 296 346
0.2907 0.3589 0.4108
378 423 438
0.1359 0.2150 0.3170
222 328 407
0.3795 0.4243 0.49 12
458 463 472
0.1596 0.2285 0.2933
276 346 412
0.4070 0.4377 0.4663
494 454 502
0.4898 0.5472 0.5952
565 561 550
xCH,(CH,),CI+(l
Hk
J’mol
1
X
HL
J,mol
’
x
J.mol
’
0.6882 0.6897 0.7331
457 448 411
0.7762 0.8103 0.8646
371 331 248
0.8966
191
0.6135 0.6618 0.7592
536 503 418
0.8252 0.8510 0.8615
339 330 276
0.8800 0.9129 0.9330
246 177 148
0.7526 0.7889 0.8326
332 293 248
0.8838 0.9 162
181 130
375 325 267
0.8441 0.9014 0.9308
254 173 123
436 388 347
0.8487 0.8500 0.8988
267 263 189
0.9966
147
-x)CH,(CH2),CH3 450 450 434
xCH,(CH,),Cl
0.6235 0.6589 0.7193
417 408 355
+(l -.Y)CH~(CH,)&H, 464 462 416
uCH,(CH,),CI 0.5125 0.5649 0.6100
x
+(I -x)CH,(CH,),CH,
0.5187 0.5400 0.5687
0.5900 0.5927 0.6753
’
+ an
1 -x)CH,(CH,),CH, 529 528 509
.xCH,(CH,),CI
0.4713 0.5020 0.5881
and of (I-chlorohexane
H;
H!i ’
.xCH,(CH,),Cl+( 0.2024 0.2081 0.2655
ET AL.
0.7277 0.7844 0.8332 +( 1 -x)CH,(CH,)&H,
510 500 490
0.6892 0.7463 0.7822
3. Results and discussion Table 1 summarizes the HE(x) results. The values of Hk were curve-fitted using the equation: H~J(J~molk’)
= x(1-x)
f
The coefficients A, were calculated by the least-squares determined by applying an F-test for the significance coefficients are listed in table 2 together with standard enthalpies are positive. Examination of the excess molar
TABLE
2. Coefficients
A, of
equation
method, their number being of successive terms. These deviations s. All the excess enthalpies shows, for a given
(1) and standard
A0 xCH,(CH,),CI+(l +(l xCH,(CH~)~C~+(~ +(l +(I
-x)CH,(CH2),CH3 -x)CH,(CH,),CH, -x)CH,(CH&CH, -x)CH,(CHz)sCH, -x)CH,(CH&CH,
(1)
A,(1 -2x)“.
2126.1 2253.3 1805.2 1908.8 2029.0
deviations
s
A,
s
-31.3 78.2 -67.3
4.6 4.5 3.0 4.0 4.3
54.5
Hi
of (I CHLOROPENTANE
against FIGURE I. H:.,,, bCH,V.X,),Cl + (1 -.KHzn+z, & 0, literature values.
OR
I CHLOROHEXANE
+ ALKANE)
497
N (number of carbons) for (xCH,(CH,),CI + (I px)C.HZn+2) and for t at 298.15 K. A. CH,(CH,),CI: 0. CH,(CH2),CI: A, n . our values:
chloroalkane, that Hti, increases linearly with the length of the alkane chain. The H:(x) curves deflect slightly towards x > 0.5, that is towards the more chloroalkanerich compositions. In figure 1 the maximum excess molar enthalpies Hk.,,, are plotted against the number N of carbon atoms in the alkane for chloropentane and for chlorohexane. The excess molar enthalpies increase systematically with N. The maximum values of the excess molar enthalpy increase both for chloropentane and for chlorohexane by about 30 J. mol- ’ with each integral value of N. In the two chloroalkanes studied the excess molar enthalpies decrease with the number of carbon atoms in the chloroalkane. The maximum values Hz, max show a regular decrease of about 80 J. mol- ’ from chloropentane to chlorohexane mixtures. REFERENCES I. Paz-Andrade. M. 1.; Bravo, R.; Garcia. M.: 51. 2. Handa, Y. P.; Knpbler, C. M.: Scott. R.L. 3. McGlashan, M. L.; Stoeckli, H. F. J. Chem. 4. Paz-Andrade. M. I.; Hernandez, C.: Nuiiez, 5. Riddick, J. A.: Burger, W. B. Technique.7 of York. 1970.
Grolier.
J. P. E.: Kehiaian.
J. Chem. Thermodynumicv Thermodynamics 1969, 1, L.: Jimtnez. E. J. fhim. Chemistry. Third edition,
H. V. J. C’him. Ph~.v. 1979, 76. 1977, 9. 451. 589. Phys, 1972, 7. 1 131. Vol 2. Wiley-Interscience:
Neu