Excess molar volumes of (oxane + trichloromethane or tetrachloromethane or 1,2-dichloroethane or 1,1,2-trichloroethane or 1,1,2,2-tetrachloroethane or pentachloroethane) at 303.15 K

Excess molar volumes of (oxane + trichloromethane or tetrachloromethane or 1,2-dichloroethane or 1,1,2-trichloroethane or 1,1,2,2-tetrachloroethane or pentachloroethane) at 303.15 K

M-2372 J. Chem.Thermodynamics 1989,21, 897-901 Excess molar volumes of (oxane trichloromethane or tetrachioromethane or 1,2-dichloroethane or 1 ,I ,2...

231KB Sizes 3 Downloads 89 Views

M-2372 J. Chem.Thermodynamics 1989,21, 897-901

Excess molar volumes of (oxane trichloromethane or tetrachioromethane or 1,2-dichloroethane or 1 ,I ,2-trichloroethane or 1 ,I ,2,2+etrachloroethane or pentachloroethane) at 303.15 K

+

S. C. SHARMA,” I. M. JOSHI, and JASBIR SINGH Department of Chemiktry, Panjab University, Chandigarh-160014, India (Received 7 March 1989) Excess molar volumes of (oxane + trichloromethane or tetrachloromethane or 1,2dichloroethane or 1,1,2-trichloroethane or J&2,2-tetrachloroethane or pentachloroethane) at 303.15K are reported. The excess volume of (oxane + dichloroethane) is positive but all others are negative over the whole composition range. The excess volumes decrease as the number of chlorine atoms in the chloroalkane increases.

1. Introduction We have previously reported the excess molar volumes of (oxolane + a chloroalkane) at 303.15 K. (l) The present paper reports the excessmolar volumes of (oxane + a chloroalkane) at the same temperature. A literature survey shows that the excessmolar volumes have been determined only for (oxane + trichloromethane) at 298.15 Kc2) and (oxane + tetrachloromethane) at 283.15 and 303.15 K.(3)

2. Experimental All liquids except oxane were from the same lot as reported earlier.“) Oxane (Pure, Sisco Chemicals, India) was purified further(4) and stored over molecular sieve in a dark-coloured bottle. Its purity was checked as usual.(‘) As reported earlier,(‘) a continuous-dilution dilatometer was used to determine excessvolumes. ’ To whom the correspondence should be addressed. 002l-9614/89/090897 + 05 W2.00/0

0 1989 Academic Press Limited

TABLE

X

I. Excess molar volumes VE for xC,H,~O

V,” cm3~mol-’

X

V,E cm3.mol-’

+ (1 -x)(CH,-.&I,

X

0.0247 0.0767 0.1043 0.1800 0.2446 0.2779 0.3182

-0.0339 -0.0875 -0.1158 -0.1911 -0.2356 -0.2563 - 0.2776

0.3562 0.3945 0.4172 0.4416 0.4715 0.5032 0.5249

xC,H,,O+(l-x)CHCl, - 0.2939 0.5421 -0.3037 0.5655 -0.3111 0.5985 -0.3115 0.6266 -0.3205 0.6616 -0.3199 0.6928 -0.3221

0.0563 0.1157 0.1590 0.2046 0.2390 0.2835 0.3173

-0.1094 -0.2075 -0.2738 -0.3302 - 0.3729 -0.4190 -0.4502

0.3392 0.3694 0.3985 0.4239 0.4552 0.4901 0.5108

xC,H,,O+(l-x)CCl, - 0.4657 0.5380 -0.4877 0.5606 -0.5031 0.5896 -0.5158 0.6098 - 0.5253 0.6349 -0.5295 0.6551 -0.5288 0.6846

0.0278 0.0545 0.0851 0.1351 0.1788 0.2378 0.2771 0.3116

0.0144 0.0333 0.0551 0.0811 0.1005 0.1206 0.1290 0.1328

0.3487 0.3876 0.4122 0.4384 0.4690 0.4978 0.5239

xC,H,,O+(l-x)CH,ClCH,Cl 0.1344 0.5452 0.1349 0.5881 0.1337 0.5960 0.1320 0.6274 0.1284 0.6629 0.1294 0.6902 0.7171 0.1264

0.0551 0.1292 0.1777 0.2245 0.2614 0.2972 0.3368

-0.0088 - 0.0229 -0.0374 -0.0513 -0.0648 - 0.0809 -0.0913

0.3719 0.4044 0.4258 0.4613 0.4937 0.5206

0.042 1 0.1094 0.1446 0.1891 0.2374 0.2815 0.3176 0.3491

- 0.0674 -0.1751 -0.2314 - 0.2969 -0.3619 -0.4130 -0.4506 - 0.4805

0.3799 0.3998 0.4320 0.4551 0.4770 0.4833 0.4978 0.5144

0.0728 0.1303 0.1944 0.2494 0.2945 0.345 1 0.3744

-0.1679 - 0.2746 -0.3908 -0.4810 - 0.5448 -0.5970 -0.6249

0.4154 0.4441 0.4654 0.4818 0.5044 0.5196

or CH~...,CWH~-N+,C~N-~

V,” cm3.mol-’

X

V,” cm3.mol-’

-0.3138 -0.3057 -0.2977 -0.2838 - 0.2668 - 0.2492

0.7297 0.7703 0.8100 0.8415 0.8919 0.9550

-0.2276 -0.1978 -0.1682 -0.1390 -0.1005 -0.0391

-0.5205 -0.5120 -0.5031 -0.4971 -0.4866 -0.4738 -0.4548

0.7139 0.7454 0.7708 0.8128 0.8499 0.8950 0.9358

-0.4381 -0.4053 - 0.3800 -0.3294 -0.2829 -0.2120 -0.1411

0.7537 0.7862 0.8193 0.8585 0.8966 0.9292 0.9607

0.0655 0.0563 0.045 1 0.0336 0.0251 0.0188 0.0125

0.1250 0.1198 0.1117 0.1027 0.0921 0.0837 0.0755

xC,H,,O+(l-x)CHCl,CH,Cl -0.1054 -0.1129 -0.1236 -0.1289 -0.1376 -0.1448

0.5461 0.5708 0.5903 0.6157 0.6439 0.6673

xC,H,,O+(l-x)CHCl,CHCl, -0.5094 0.5393 -0.5226 0.5591 -0.5454 0.5859 - 0.5576 0.6066 -0.5647 0.6418 -0.5690 0.6745 -0.5752 0.7021 -0.5812 0.7226 xC,H,,O+(l -0.6495 -0.6663 -0.6738 - 0.6807 -0.6933 -0.6975

-0.1506 -0.1558 -0.1568 -0.1609 -0.1613 -0.1601

0.6946 0.7373 0.7826 0.8413 0.8908 0.9582

-0.1587 -0.1519 -0.1397 -0.1188 -0.0916 -0.0409

-0.5874 -0.5878 -0.5811 -0.5786 -0.5715 -0.5530 -0.5323 - 0.4987

0.7514 0.7846 0.8120 0.8365 0.8916 0.9307 0.9569

-0.4743 -0.4320 - 0.3967 -0.3539 -0.2515 -0.1653 -0.1032

-0.6973 -0.6975 - 0.6832 -0.6691 -0.6529 - 0.6238

0.7309 0.7682 0.8067 0.8484 0.8824 0.9382

-0.5716 -0.5226 -0.4606 - 0.3736 -0.3044 -0.1732

-x)CCl,CHCl, 0.5274 0.5549 0.5793 0.6202 0.6493 0.6867

V,E{xc-C&,0+(1 -x)&M-,&I,

OR CH3_,CI,CH,_,+,CI,-,)}

899

TABLE 2. Parameters Ai for equation (I), standard deviation s, and excess molar volumes VL(x = 0.5) xC,H,,O+

4

4

- 1.2684 -2.1029 0.5138 - 0.5644 - 2.3091 -2.7610

1. (1 -x)CHCl, 2. (1 -x)CCI, 3. (1 -x)CH,CICH,CI 4. ( I- $HCl,CH,CI 5. (I- x)CHCI,CHCI, 6. (1 - x)CCI,CHCI,

4

A3

4

0.1422 0.2321 -0.0029 -0.1111 -0.2576 -0.3057 -0.2827 -0.0480 0.0015 -0.4722 0.1548 0.2034 -0.6072 0.0960 0.1354 -0.3959

s

VJ(x = 0.5) cm3.mol-’

0.0032 0.0032 0.0027 0.0016 0.0035 0.0043

-0.317 -0.526 0.128 -0.149 -0.577 -0.690

3. Results Table 1 shows the experimental results. The results were fitted by least squares to the equation: V~/(cn?~mol-‘) =x(1-x)

k 4(1--2x)‘.

(1)

i=O

2.

-8

0

0.2

0.4

0.6

0.8

1

FIGURE 1. Excess molar volumes V,E at 303.15K: $ {xC~H,,O + (1 -x)CHCI,J; 0, {xC,H,,O + (1 -x)CCl,}; 0, {xC,H,,O + (1 -x)CH,CICH,Cl}; 0, {xC,H,,O + (1 -x)CHCI,CH,CI}; A, {xC,H,,O + (1 -x)CHCl,CHCI,}; n , xC,H,,O + (1 -x)CCI,CHCI,).

S. C. SHARMA,

900

I

-0.6 0

1 0.2

I

I. M. JOSHI, AND J. SINGH

1 0.4

I x

L 0.6

1

I 0.8

I

I 1

2. Comparison of our values of V,” with those of previous workers. {xC,H,,O + (1 -x)CHCls}: 0, our values at 303.15K, - - -, Inglese et IA(*) at 298.15K. {xC,H,,O + (1 -x)CCl,}: A, our values at 303.15K, -.-, Guillen and GutiCrrez Losa(3’ at 303.15K. FIGURE

The coefficients Ai along with the standard deviations s and values of V,“(x = 0.5) are collected in table 2. Figure 1 shows plots of V,” against x. Excessmolar volumes were positive for {xC,H,,-,O + (1 -x)CH2ClCH,Cl} over the whole composition range but for all other mixtures were negative.

FIGURE 3. V,“(x = 0.5) plotted against number N of chlorine atoms. 0, chloroethanes; A, chloromethanes.

V,E{XC-C~H~~O+(~-X)(CH~~~C~~OR CH,_,Cl,CHB_,+,CI,_~}

901

Our results for (xC,H,,O + (1 -x)CCl,} (figure 2) agree almost quantitatively with those of Guillen and Gutiirrez Losat3) at 303.15 K. The general trend observed by Inglese et al.(*) for {xC,H,,O + (1 -x)CHCI,} at 298.15 K is confirmed by our results at 303.15 K, but our results are consistently lower over the whole composition range.

4. Discussion It is clear from figure 1 that V,“(x = 0.5) decreasesin the sequence:dichloroethane > trichloroethane > trichloromethane > tetrachloromethane > tetrachloroethane > pentachloroethane. The same sequence was observed for (oxolane + a chloroalkane).(‘) The values of Vz(oxane + a chloroalkane) are, however, higher than those for the corresponding (oxolane + a chloroalkane). A similar trend has been reported for the mixtures of each of these two ethers with Ci4H3,,,(‘) CHCl,,‘*’ CC1,,(3’and CH3CC13.(@Figure 3 shows the behaviour of V,(x = 0.5) for the present mixtures with the number N of chlorine atoms in a chloroalkane. The behaviour is similar to that observed for (oxolane + a chloroalkane).“’ The excessmolar volume for (oxane + a chloroalkane) again deviates from the straight line by about 0.160 cm3 .mol-‘. Extrapolation of the straight line to N = 0 leads to an excess molar volume for (0.5C,H,,O + 0.5C2H6) as about 0.67 cm3 .mol-‘. The variation of V,” for the present mixtures with the nature of chloroalkanes can be explained on the same basis as was done earlier (i) for (oxolane + a chloroalkane). REFERENCES 1. Sharma, S. C.; Joshi, I. M.; Singh, J. J. Chem. Thermodynamics 1989, 21, 331. 2. Inglese, A.; Castagnolo, M.; Dell’Atti, A.; DeGiglio, A. Thermochim. Acta 1981, 44, 77. 3. Guillen, M. D.; Gutibrrez Losa, C. J. Chem. Thermodynamics 1978, 10, 567. 4. Riddick. J. A.; Bunger, W. B. Organic Solvents: Physical Properties and Methods of Purification. Third edn. Wiley-Interscience: New York. 1970. 5. Inglese, A.; Grolier, J. P. E.; Wilhelm, E. J. Chem. Eng. Data 1983, 28, 124. 6. Inglese, A.; Castagnolo, M.; Dell’Atti, A. Thermochim. Acta 1981, 47, 165.