Existence and stability of almost periodic solution for BAM neural networks with delays

Existence and stability of almost periodic solution for BAM neural networks with delays

Applied Mathematics and Computation 137 (2003) 177–193 www.elsevier.com/locate/amc Existence and stability of almost periodic solution for BAM neural...

147KB Sizes 1 Downloads 98 Views

Applied Mathematics and Computation 137 (2003) 177–193 www.elsevier.com/locate/amc

Existence and stability of almost periodic solution for BAM neural networks with delays Anping Chen a, Lihong Huang b, Jinde Cao a

c,*

Department of Mathematics, Chenzhou Teacher’s College, Chenzhou, Hunan 423000, China b College of Mathematics and Econometrics, Hunan University, Changsha 410082, China c Department of Applied Mathematics, Southeast University, Nanjing 210096, China

Abstract By using the Banach fixed point theorem and constructing suitable Lyapunov function, some sufficient conditions are obtained ensuring existence, uniqueness and global stability of almost periodic solution of the BAM neural networks with variable coefficients and delays. These results are helpful to design global exponential stable BAM networks and almost periodic oscillatory BAM networks. Ó 2002 Elsevier Science Inc. All rights reserved. Keywords: Almost periodic solution; Global stability; BAM neural networks

1. Introduction Recently, a class of two-layer heteroassociative networks called bidirectional associative memory (BAM) networks [5,12–15] with and without axonal signal transmission delays has been proposed and used in many fields such as pattern recognition and automatic control. At the same time, it has attracted many scholars, e.g., [2–4,8–11,15–23], the stability of bidirectional associative memory neural networks with and without delays has been studied. In [5,10,12–15],

*

Corresponding author. E-mail addresses: [email protected] (A. Chen), [email protected] (L. Huang), [email protected], [email protected] (J. Cao). 0096-3003/02/$ - see front matter Ó 2002 Elsevier Science Inc. All rights reserved. PII: S 0 0 9 6 - 3 0 0 3 ( 0 2 ) 0 0 0 9 5 - 4

178

A. Chen et al. / Appl. Math. Comput. 137 (2003) 177–193

some sufficient conditions have been obtained for globally asymptotic stability of delayed bidirectional associative memory networks (BAM). Moreover, author in [4] researches the periodic oscillatory solution of BAM networks with delays in the case of constant coefficients. It is well known that studies on neural dynamical systems not only involve a discussion of stability properties, but also involve many dynamic behaviors such as periodic oscillatory behavior, almost periodic oscillatory properties, chaos, and bifurcation [17]. In applications, almost periodic oscillatory is more accordant with fact. To the best of our knowledge, few authors have considered almost periodic oscillatory solutions for BAM networks, most of them study the stability, periodic oscillation of BAM networks in the case of constant coefficients. In this paper, we discuss almost periodic oscillatory solutions of BAM networks with variable coefficients and delays, obtain some simple sufficient conditions ensuring the existence and global exponential stability of almost periodic solution. Consider the BAM networks with variable coefficients X dxi ¼ ai ðtÞxi ðtÞ þ pji ðtÞfj ðyj ðt  sji ÞÞ þ Ii ðtÞ; dt j¼1

ð1:1aÞ

n X dyj ¼ bj ðtÞyj ðtÞ þ qij ðtÞfi ðxi ðt  rij ÞÞ þ Jj ðtÞ; dt i¼1

ð1:1bÞ

p

where i ¼ 1; 2; . . . ; n, j ¼ 1; 2; . . . ; p, xi ðtÞ and yj ðtÞ are the activations of the ith neurons and the jth neurons, respectively. pji ðtÞ, qij ðtÞ are the connection weights at the time t, and Ii ðtÞ and Jj ðtÞ denote the external inputs at time t. sji and rij are nonnegative constants, which correspond to the finite speed of the axonal signal transmission. An analog circuit implementing of BAM equation with axonal signal transmission delays can be seen in [4,15,18]. Throughout this paper, we always assume that ai ðtÞ, bj ðtÞ, pji ðtÞ, qij ðtÞ, Ii ðtÞ and Jj ðtÞ are continuous almost periodic functions. Moreover, ai ðtÞ, bj ðtÞ are positive, 0 < inf fai ðtÞg ¼ a i ; t2R

0 < inf fbj ðtÞg ¼ b j ;

qþ ij

¼ supfjqij ðtÞjg < þ1;

Jjþ

¼ supfjJj ðtÞjg < þ1:

t2R

t2R

Iiþ

pjiþ ¼ supfjpji ðtÞjg < þ1; t2R

¼ supfjIi ðtÞjg < þ1; t2R

t2R

Furthermore, the signal function fi possesses the following properties: (H1) fi is bounded on R, for all i ¼ 1; 2; . . . ; maxfn; pg; (H2) There exists a number li > 0 such that jfi ðxÞ  fi ðyÞj 6 li jx  yj, i ¼ 1; 2; . . . ; maxfn; pg.

A. Chen et al. / Appl. Math. Comput. 137 (2003) 177–193

179

The initial conditions associated with (1.1a), (1.1b) are associated to be of the form xi ðtÞ ¼ /i ðsÞ;

s 2 ½s; 0 ;

s ¼ max max fsji g;

yj ðtÞ ¼ wi ðsÞ;

s 2 ½r; 0 ;

r ¼ max max frij g;

16i6n 16j6p

ð1:2Þ

16j6p 16i6n

where /i ðsÞ, wi ðsÞ are continuous almost periodic functions on R. For any solution zðtÞ , ðxðtÞ; yðtÞÞT , ðx1 ðtÞ; x2 ðtÞ; . . . ; xn ðtÞ; y1 ðtÞ; y2 ðtÞ; . . . ; yp ðtÞÞT and almost periodic solution T

z ðtÞ , ðx ðtÞ; y ðtÞÞ , ðx 1 ðtÞ; x 2 ðtÞ; . . . ; x n ðtÞ; y1 ðtÞ; y2 ðtÞ; . . . ; yp ðtÞÞ T

T

T

of system (1.1a), (1.1b), define kð/; wÞ  ðx ; y Þ k as ) ( n X   T T 2

ð/; wÞ  ðx ; y Þ  ¼ sup ð/i ðtÞ  x ðtÞÞ s 6 t 6 0

i

i¼1

( þ sup r 6 t 6 0

p X

) ðwj ðtÞ 

2 yj ðtÞÞ

:

j¼1

Definition 1. The almost periodic solution ðx ðtÞ; y ðtÞÞT of system (1.1a), (1.1b) is said to be global exponential stable, if there exists constants a > 0 and M P 1 such that p n X X   ðxi ðtÞ  x i ðtÞÞ2 þ ðyj ðtÞ  yj ðtÞÞ2 6 M ð/; wÞT  ðx ; y ÞT eat i¼1

j¼1

for all t > 0. Definition 2 [1,7]. Let zðtÞ : R ! Rn be continuous for t 2 R. zðtÞ is said to be almost periodic on R if, for any e > 0, it is possible to find a real number l ¼ lðeÞ > 0 such that, for any interval with length lðeÞ, there exists a number s ¼ sðeÞ in this interval such that jzðt þ sÞ  zðtÞj < e for 8t 2 R: Definition 3 [1]. Let z 2 Rn and QðtÞ be a n  n continuous matrix defined on R. The linear system dz ¼ QðtÞzðtÞ dt

ð1:3Þ

is said to admit an exponential dichotomy on R if there exits constants k, k > 0, projection P and the fundamental matrix ZðtÞ of (1.3) satisfying

180

A. Chen et al. / Appl. Math. Comput. 137 (2003) 177–193

  ZðtÞPZ 1 ðsÞ 6 k ekðtsÞ for t P s;   ZðtÞðI  P ÞZ 1 ðsÞ 6 k ekðstÞ for t 6 s: Lemma 1 [1,7]. If the linear system (1.3) admits an exponential dichotomy, then almost periodic system dz ¼ QðtÞz þ gðtÞ dt

ð1:4Þ

has a unique almost periodic solution zðtÞ, and Z t Z þ1 zðtÞ ¼ ZðtÞPZ 1 ðsÞgðsÞ ds  ZðtÞðI  P ÞZ 1 ðsÞgðsÞ ds: 1

ð1:5Þ

t

Lemma 2 [1]. Assume that ci ðtÞ is an almost periodic function and Z 1 tþT M½ci ¼ lim ci ðsÞ ds > 0; i ¼ 1; 2; . . . ; n: T !þ1 T t Then the system dz ¼ diagðc1 ðtÞ; c2 ðtÞ; . . . ; cn ðtÞÞzðtÞ: dt Then the linear system (1.3) admits an exponential dichotomy. Lemma 3. Assume that fk ðxÞ ðk ¼ 1; 2; . . . ; maxðn; pÞÞ is continuous bounded function on R. Then every solution of system (1.1a), (1.1b) is bounded. Proof. Set di ¼

p X j¼1

pjiþ sup jfj ðxÞj þ Iiþ x2R

and cj ¼

n X i¼1

þ qþ ij sup jfj ðxÞj þ Jj

for i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ; p:

x2R

Let T

zðtÞ , ðx1 ðtÞ; x2 ðtÞ; . . . ; xn ðtÞ; y1 ðtÞ; y2 ðtÞ; . . . ; yp ðtÞÞ

be a solution of (1.1a), (1.1b). Then it follows from (1.1a) that ai ðtÞxi ðtÞ  di 6 x0i ðtÞ 6  ai ðtÞxi ðtÞ þ di :

A. Chen et al. / Appl. Math. Comput. 137 (2003) 177–193

Multiplying the inequality above by e di e

Rt 0

ai ðuÞ du

Rt 0

ai ðuÞ du

181

, we have

  Rt Rt d ai ðuÞ du a ðuÞ du xi ðtÞ e 0 6 ; 6 di e 0 i dt

i ¼ 1; 2; . . . ; n:

By integrating the inequality from 0 to s P 0, we get Z t Rv Z s Rv Rs a ðuÞ du a ðuÞ du a ðuÞ du di e 0 i dv 6 xi ðsÞ e 0 i  xi ð0Þ 6 di e 0 i dv; 0

0

i.e., xi ð0Þ e



Rs 0

ai ðuÞ du

 di

Z

s

e



Rs v

ai ðuÞ du

0

6 xi ðsÞ 6 xi ð0Þ e



Rs 0

ai ðuÞ du

þ di

dv

Z

s

e



Rs v

ai ðuÞ du

dv

0

for s P v P 0. Therefore,     di di di di    jxi ð0Þj þ  eai s   6 xi ðsÞ 6 jxi ð0Þj   eai s þ  ai ai ai ai for all s > 0. Hence, di di di di  jxi ð0Þj     6 xi ðtÞ 6  þ jxi ð0Þj   ai ai ai ai for all s > 0 and i ¼ 1; 2; . . . ; n. Using a similar argument, we can obtain cj cj cj cj  jyj ð0Þj     6 yj ðtÞ 6  þ jyj ð0Þj   bj bj bj bj for all s > 0 and j ¼ 1; 2; . . . ; p. The proof is complete.



2. Existence of almost periodic solution For an arbitrary vector zðtÞ ¼ ðx1 ðtÞ; x2 ðtÞ; . . . ; xn ðtÞ; y1 ðtÞ; y2 ðtÞ; . . . ; yp ðtÞÞT , we define the norm kzðtÞk ¼ max1 6 i 6 n jxi ðtÞj þ max1 6 j 6 p jyj ðtÞj. Set n o T S nþp ¼ z j z ¼ ð/1 ; /2 ; . . . ; /n ; w1 ; w2 ; . . . ; wp Þ ; where /i , wj are continuous almost periodic functions on R, i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ; p. For any z 2 S nþp , we define induced module kzk ¼ supt2R kzðtÞk ¼ supt2R max1 6 i 6 n j/i ðtÞj þ supt2R max1 6 j 6 p jwj ðtÞj, then S nþp is a Banach space.

182

A. Chen et al. / Appl. Math. Comput. 137 (2003) 177–193

Theorem 1. In addition to (H1) and (H2), suppose further that ( Pn )

Pp þ  þ j¼1 pji lj i¼1 qij li (H3) r ¼ max þ max < 1; 16i6n 16j6p a b i j R tþT R tþT (H4) M½ai ¼ limT !þ1 t ai ðsÞ ds > 0, and M½bj ¼ limT !þ1 t bj ðsÞ ds > 0, i ¼ 1; 2; . . . ; n, j ¼ 1; 2; 3; . . . ; p. Then there is a unique periodic solution of system (1.1a), (1.1b) in the region kz  z0 k 6 rI=ð1  rÞ, where ( )

þ Ii Jiþ I ¼ max þ max ;  16i6n 16j6p ai b j and z0 ¼

Z

t



Rt

a1 ðuÞ du

I1 ðsÞ ds; . . . ;

Z

t



Rt

an ðuÞ du

In ðsÞ ds; 1  Z 1 Z R R t t t t  b ðuÞ du  b ðuÞ du e s 1 J1 ðsÞ ds; . . . ; e s p Jp ðsÞ ds : e

s

1

e

s

1

T

T

Proof. For any ð/; wÞ ¼ ð/1 ; /2 ; . . . ; /n ; w1 ; w2 ; . . . ; wp Þ 2 S nþp , we consider the almost solution zð/;wÞT of nonlinear almost periodic differential equation X dxi ¼ ai ðtÞxi ðtÞ þ pji ðtÞfj ðwj ðt  sji ÞÞ þ Ii ðtÞ; dt j¼1

ð2:1aÞ

n X dyj ¼ bj ðtÞyj ðtÞ þ qij ðtÞfi ð/i ðt  rij ÞÞ þ Jj ðtÞ: dt i¼1

ð2:1bÞ

p

Because M½ai > 0, M½bj > 0, by Lemma 2, the linear system dxi ¼ ai ðtÞxi ðtÞ; dt dyj ¼ bj ðtÞyj ðtÞ dt

ð2:2Þ

admits an exponential dichotomy on R. By Lemma 1, the solution zð/;wÞT of (2.1a), (2.1b) can be expressed as following (Z " # Rt p t X  a1 ðuÞ du zð/;wÞT ¼ e s pj1 ðsÞfj ðwj ðs  sj1 ÞÞ þ I1 ðsÞ ds; . . . ; 1

Z

t

e 1



Rt s

" an ðuÞ du

j¼1 p X j¼1

# pjn ðsÞfj ðwj ðs:  sjn ÞÞ þ In ðsÞ ds;

A. Chen et al. / Appl. Math. Comput. 137 (2003) 177–193

Z

t

e



Rt s

" b1 ðuÞ du

1

Z

n X

183

# qj1 ðsÞfi ð/i ðs  ri1 ÞÞ þ J1 ðsÞ ds; . . . ;

i¼1

t

e



Rt s

" bp ðuÞ du

1

n X

#

)

qip ðsÞfi ð/i ðs  sip ÞÞ þ Jp ðsÞ ds :

ð2:3Þ

i¼1

Now we define a mapping T : S nþp ! S nþp ;

T ð/; wÞðtÞ ¼ zð/;wÞT :

Set B ¼

z j z 2 S nþp ; kz  z0 k 6

 rI : 1r

Then B is a closed convex subset of S nþp . According to the definition of the norm of Banach space S nþp , we have Z t Rt  ai ðuÞ du s kz0 k ¼ sup max e Ii ðsÞ ds t2R 1 6 i 6 n

1

Z t Rt  b ðuÞ du þ sup max e s j Jj ðsÞ ds t2R 1 6 j 6 p 1 Z t Rt  a ðuÞ du 6 sup max jIi ðsÞje s i t2R 1 6 i 6 n

1

þ sup max

t2R 1 6 j 6 p

Z

Rt Jj ðsÞ e s bj ðuÞ du ds

t

1

( )  Jjþ Iiþ 6 sup max þ sup max  ai b t2R 1 6 i 6 n t2R 1 6 j 6 p j ( )

þ þ Jj Ii ¼ max þ max  16i6n 16j6p ai b j

¼ I: Therefore, kzk 6 kz  z0 k þ kz0 k ¼

rI I þI ¼ : 1r 1r

ð2:4Þ

First, we prove that the mapping T is a self-mapping from B to B . In fact, for any z 2 B , we have

184

A. Chen et al. / Appl. Math. Comput. 137 (2003) 177–193

( Z " # ) Rt p t X    ai ðuÞ du kT ðzÞ  z0 k ¼ sup max e s pji ðsÞfj wj ðs  sji Þ ds t2R 1 6 i 6 n 1 j¼1 ) ( Z " # Rt n t X    bj ðuÞ du e s qij ðsÞfi /i ðs  rij Þ ds þ sup max 1 6 j 6 p t2R 1 i¼1 (Z " # ) p t X  6 sup max eai ðtsÞ pjiþ lj wj ðs  sji Þ ds t2R 1 6 i 6 n

1

þ sup max

(Z

(Z

t

e

t2R 1 6 i 6 n

¼

(Z

a i ðtsÞ



qþ ij li /i ðs

p X

e

b j ðtsÞ

1

n X i¼1

þ j¼1 pji lj a i

 þ max

16j6p

¼ rkzk rI ; 6 1r

# )  rij Þ ds

)

pjiþ lj kzk ds

j¼1 t

 Pp max

n X i¼1

1

t2R 1 6 j 6 p

16i6n

b j ðtsÞ

1

6 sup max

(

"

e

t2R 1 6 j 6 p

þ sup max

j¼1 t

) qþ ij li k zk ds Pn

þ i¼1 qij li b j

!) kzk

ð2:5Þ

which implies that T ðzÞðtÞ 2 B . Therefore, the mapping T is a self-mapping from B to B . Next, we prove the mapping T is a contraction mapping of B . In fact, in view of (H1) and (H2), for any z1 ; z2 2 B , where T

z1 ¼ ðn1 ; n2 ; . . . ; nn ; g1 ; g2 ; . . . ; gp Þ ; T

z2 ¼ ð/1 ; /2 ; . . . ; /n ; w1 ; w2 ; . . . ; wp Þ ; we have kT ðz1 Þ  T ðz2 Þk

) ( Z Rt p t X    ai ðuÞ du s e pji ðsÞ fj ðnj ðs  sji ÞÞ  fj ð/j ðs  sji ÞÞ ¼ sup max t2R 1 6 i 6 n 1 j¼1 ) ( Z Rt t n X    bj ðuÞ du s e qij ðsÞ fi ðgi ðs  rij ÞÞ  fi ðwi ðs  rij ÞÞ þ sup max 1 t2R 1 6 j 6 p i¼1 (Z " # ) p t X  eai ðtsÞ pþ lj nj ðs  sji Þ  /j ðs  sji Þ ds 6 sup max t2R 1 6 i 6 n

1

ji

j¼1

A. Chen et al. / Appl. Math. Comput. 137 (2003) 177–193

þ sup max

(Z

t2R 1 6 j 6 p

(Z

¼



ebj ðtsÞ

1

e (Z

a i ðtsÞ

t

1

Pp max

16i6n

ds qþ ij li gi ðs  rij Þ  wi ðs  rij Þ

p X

þ j¼1 pji lj a i

b j ðtsÞ

n X i¼1

!

þ max

16j6p

)

)

pjiþ lj kz1

 z2 k ds

j¼1

e

t2R 1 6 j 6 p

n X

185

#

i¼1

1

þ sup max (

t

t

6 sup max

t2R 1 6 i 6 n

"

) qþ ij li kz1

 z2 k ds

Pn

þ i¼1 qij li b j

!) kz 1  z 2 k

¼ rkz1  z2 k:

ð2:6Þ

Noting that r < 1, it is clear that T is a contraction mapping. Thus, T possesses a unique fixed point z 2 B , that is T ðz Þ ¼ z . By (2.3), (2.1a) and (2.1b), T T ðx ; y Þ satisfies (1.1a), (1.1b). So ðx ; y Þ is a unique periodic solution of

(1.1a) and (1.1b) in B . The proof is complete. 

3. Global asymptotic stability of almost periodic solution In this section, we discuss the global asymptotic stability of BAM networks. Set ui ðtÞ ¼ xi ðtÞ  x i ðtÞ;

vj ðtÞ ¼ yj ðtÞ  yj ðtÞ;

gi ðui ðt  rij ÞÞ ¼ fi ðui ðt  rij Þ þ x i ðtÞÞ  fi ðx i ðtÞÞ; gj ðvj ðt  sij ÞÞ ¼ fj ðvj ðt  sji Þ þ yj ðtÞÞ  fj ðyj ðtÞÞ: Then jgi ðui ðt  rij ÞÞj 6 li jui ðt  rij Þj;

jgj ðvj ðt  sij ÞÞj 6 lj jvj ðt  sji Þj

for i ¼ 1; 2; . . . ; n, and j ¼ 1; 2; . . . ; p. It is easy to see that system (1.1a), (1.1b) can be reduced to the following system X dui ¼ ai ðtÞui ðtÞ þ pji ðtÞgj ðvj ðt  sij ÞÞ; dt j¼1 p

n X dvj ¼ bj ðtÞvj ðtÞ þ qij ðtÞgi ðui ðt  rij ÞÞ; dt i¼1

ð3:1Þ

Theorem 2. Assume that the signal function fi ði ¼ 1; 2; . . . ; maxfn; pgÞ satisfies the hypotheses (H1) and (H2), suppose furthermore that (H3) and (H4) hold. If the system parameters satisfy the following conditions

186

ðH5Þ

A. Chen et al. / Appl. Math. Comput. 137 (2003) 177–193 p X  ðpjiþ þ l2i qþ ij Þ < 2ai ;

n X 2 þ  ðqþ ij þ lj pji Þ < 2bj ;

j¼1

i¼1

then the almost periodic solution of the system (1.1a), (1.1b) is global asymptotically stable. Proof. Consider the Lyapunov functional V ðtÞ defined by V ðtÞ ¼ V1 ðtÞ þ V2 ðtÞ; p n X X V1 ðtÞ ¼ u2i ðtÞ þ v2j ðtÞ; j¼1

i¼1

V2 ðtÞ ¼

p n X X i¼1

l2j pjiþ

Z

p X n X

t

v2j ðsÞ ds þ

tsji

j¼1

j¼1

l2i qþ ij

Z

ð3:2Þ t

u2i ðsÞ ds:

trij

i¼1

Calculating the derivative of the Vi ðtÞ, i ¼ 1; 2, along the solutions of (3.1), respectively. p n X X dV1 0 ¼ 2 u ðtÞu ðtÞ þ 2 vj ðtÞv0j ðtÞ i i dt ð3:1Þ j¼1 i¼1 ( " #) p n X X ¼2 ui ðtÞ  ai ðtÞui ðtÞ þ pji ðtÞgj ðt  sij Þ i¼1

þ

p X

(

j¼1

"

vj ðtÞ  bj ðtÞvj ðtÞ þ

j¼1

6

n X

 2ai ðtÞu2i ðtÞ þ

þ

p X

6



2bi ðtÞv2j ðtÞ

(

i¼1

þ

p X j¼1

qij ðtÞgi ðt  rij Þ

 2a i þ (

p X

) h i jpji ðtÞj u2i ðtÞ þ l2j v2j ðt  sji Þ

j¼1

(

j¼1 n X

#)

i¼1

(

i¼1

n X

p X

)

h i jqij ðtÞj v2j ðtÞ þ l2i u2i ðt  rji Þ

n X i¼1

)

i¼1

pjiþ u2i ðtÞ þ

j¼1

 2b j þ

þ

n X

)

p n X X i¼1

2 qþ ij vj ðtÞ þ

pjiþ l2j v2j ðt  sji Þ

j¼1

p X

n X

j¼1

i¼1

2 2 qþ ij li ui ðt  rij Þ:

ð3:3Þ

A. Chen et al. / Appl. Math. Comput. 137 (2003) 177–193

187

p n X n o X dV2 2 þ 2 2 ¼ l p v ðtÞ  v ðt  s Þ ji j ji j j dt ð3:1Þ i¼1 j¼1 p X n X

þ

i¼1

j¼1

¼

n X

p X

i¼1

j¼1

þ

 2  2 l2i qþ ij ui ðtÞ  ui ðt  rij Þ

l2j pjiþ v2j ðtÞ 

p n X X i¼1

p X

n X

j¼1

i¼1

2 l2i qþ ij ui ðtÞ 

l2j pjiþ v2j ðt  sji Þ

j¼1

p X

n X

j¼1

i¼1

2 l2i qþ ij ui ðt  rij Þ:

ð3:4Þ

Note that ri , 2a i 

p X

pjiþ  l2i

j¼1

sj , 2b i 

p X

qþ ij < 0;

j¼1

n X

2 qþ ij  lj

i¼1

n X

pjiþ < 0:

i¼1

Combine with (3.3), (3.4) and (H5), we have ( ) p p n X X X dV  þ 2 þ  2ai þ 6 pji þ li qij u2i ðtÞ dt ð3:1Þ j¼1 j¼1 i¼1 ( ) p n n X X X  þ 2 þ þ qij þ lj pji v2j ðtÞ  2bj þ i¼1

j¼1

¼

n X

ri u2i ðtÞ 

i¼1

p X

i¼1

sj v2j

j¼1

ð3:5Þ

< 0:

By Lemma 1, every solutions of (1.1a), (1.1b) remains bounded for all t P 0, then the derivatives dui ðtÞ=dt and dvj ðtÞ=dt also remain bounded for t P 0, which implies that ui ðtÞ and vj ðtÞ are uniformly continuous on ½0; þ1Þ. It follows from (3.5) that V ðtÞ þ

Z 0

t

n X i¼1

ri u2i ðsÞ ds þ

Z 0

t

p X j¼1

sj v2j ðsÞ ds 6 V ð0Þ:

188

A. Chen et al. / Appl. Math. Comput. 137 (2003) 177–193

Thus, ui ðtÞ; vj ðtÞ 2 L1 ½0; þ1Þ. By BarbalattÕs Lemma (see [6]), we can get that lim ui ðtÞ ¼ 0;

lim vi ðtÞ ¼ 0:

t!þ1

t!þ1

This completes the proof.



4. Global exponential stability of almost periodic solution Theorem 3. Assume that the signal function fi ði ¼ 1; 2; . . . ; maxfn; pgÞ satisfies (H1) and (H2). Conditions (H3) and (H4) hold. If there exist constants ki and knþj (i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ; p) satisfy the following conditions: (H6) ! p p X X  þ ki  2ai þ pji lj þ knþj qþ ij li < 0; j¼1

knþj

 2b j þ

n X

j¼1

! qþ ij li

þ

n X

i¼1

ki pjiþ lj < 0:

i¼1

Then the almost periodic solution of system (1.1a), (1.1b) is global exponential stable. Proof. In view of (H3), we can choose a suitable constant a > 0 such that ! p n X X  þ ki a  2ai þ pji lj þ ear knþj qþ ij li < 0; j¼1

knþj a 

2b j

þ

n X

i¼1

! qþ ij li

þ eas

i¼1

n X

ki pjiþ lj < 0:

i¼1

Consider a Lyapunov functional V ðtÞ defined by V ðtÞ ¼ V1 ðtÞ þ V2 ðtÞ; ( Z p n X X ki u2i ðtÞ eat þ pjiþ lj V1 ðtÞ ¼ i¼1

V2 ðtÞ ¼

p X j¼1

(

knþj v2j ðtÞ eat þ

i¼1

v2j ðsÞ eaðsþsji Þ ds

tsji

j¼1 n X

)

t

qþ ij li

Z

t

; )

ð4:1Þ

u2i ðsÞ eaðsþrij Þ ds :

trij

Calculating the derivative of the Vi ðtÞ ði ¼ 1; 2Þ along solutions of (3.1), we have

A. Chen et al. / Appl. Math. Comput. 137 (2003) 177–193

189

(

n X dV1 ¼ ki a eat u2i ðtÞ þ 2ui ðtÞu0i ðtÞ eat dt ð3:1Þ i¼1 þ

p X

pjiþ lj

h

v2j ðtÞ eaðtþsji Þ



j¼1

¼

n X

(

v2j ðt

 sji Þ e

aðtþssji Þ

"

ki a eat u2i ðtÞ þ 2 eat ui ðtÞ  ai ðtÞui ðtÞ þ

i¼1 p X j¼1

6e

n X

pjiþ lj v2j ðtÞ eaðtþsji Þ

(

ki



pji ðtÞgj ðvj ðt  sji ÞÞ

p X

pjiþ lj v2j ðt

)

aðtþssji Þ

 sji Þ e



p h i X  2 þ 2 2 a  2a ðtÞ þ p l u ðtÞ þ v ðt  s Þ u ji j i i ji i j j¼1

as

þe

p X

pjiþ lj v2j ðtÞ

e

aðssji Þ

j¼1

¼e

#

j¼1

i¼1

at

p X

)

j¼1

þ

at

i

n X

) pjiþ lj v2j ðt

 sji Þ

j¼1

(

ki

p X

a

2a i

i¼1

þ

p X

!

pjiþ lj

u2i ðtÞ

þe

as

j¼1

p X

) pjiþ lj v2j ðtÞ

j¼1

ð4:2Þ and ( ) ! p n n X X X dV2 at  þ 2 ar þ 2 ¼e knþj a  2bj þ qij li vj ðtÞ þ e qij li ui ðtÞ : dt ð3:1Þ j¼1 i¼1 i¼1 ð4:3Þ From (4.2) and (4.3), we obtain ( " ! # p p n X X X dV at  þ ar þ 6e ki a  2ai þ pji lj þ e knþj qij li u2i ðtÞ dt j¼1 j¼1 i¼1 " ) ! # p n n X X X þ knþj a  2b qþ ki pjiþ lj v2j ðtÞ þ eas j þ ij li i¼1

j¼1

i¼1

ð4:4Þ

< 0: Namely, V ðtÞ 6 V ð0Þ for t P 0. Clearly, ( V ðtÞ P

min fkk g e

1 6 k 6 nþp

at

n X i¼1

u2i ðtÞ

þ

p X j¼1

) v2j ðtÞ

:

ð4:5Þ

190

A. Chen et al. / Appl. Math. Comput. 137 (2003) 177–193

On the other hand, from (4.1), we have ( " Z p n X X V ð0Þ 6 max fkk g u2i ð0Þ þ pjiþ lj 1 6 k 6 nþp

þ

p X

v2j ð0Þ

n X

þ

j¼1

6

max fkk g

n X

1 6 k 6 nþp

þ

pjiþ lj eas

p X n X

qþ ij li

Z

s

Z

rij p X

v2j ð0Þ

)

0

u2i ðsÞ eas ds

p n X X

pjiþ lj

j¼1

i¼1

j¼1

u2i ðsÞ eaðsþrij Þ ds

v2j ðsÞ eas ds

r

1 6 k 6 nþp

p X n X

#)

0

0

max fkk g 1 þ s eas

þ a ear

v2j ðsÞ eaðsþsji Þ ds

j¼1

i¼1

j¼1

6

u2i ð0Þ þ

j¼1

i¼1

þe

Z

i¼1

p n X X

ar

qþ ij li

i¼1

(

sji

j¼1

i¼1

"

#

0

! qþ ij li

T

T

 kð/; wÞ  ðx ; y Þ k

i¼1

T

T

¼ M kð/; wÞ  ðx ; y Þ k;

ð4:6Þ

where M ¼ 1 þ s eas

p n X X i¼1

pjiþ lj þ a ear

j¼1

p X n X j¼1

qþ ij li :

i¼1

Set M¼

max1 6 k 6 nþp fkk g M : min1 6 k 6 nþp fkk g

Obviously, M > 1: It follows from (4.5) and (4.6) that n X i¼1

u2i ðtÞ þ

p X

  v2j ðtÞ 6 M ð/; wÞT  ðx ; Y ÞT eat

j¼1

for t P 0. This completes the proof.



A. Chen et al. / Appl. Math. Comput. 137 (2003) 177–193

191

5. An example In this section, we give an example to illustrate that our results are feasible. Consider the following simple BAM networks with periodic coefficients and delays, 3 X dxi ¼ ai ðtÞxi ðtÞ þ pji ðtÞfj ðyj ðt  2pÞÞ þ Ii ðtÞ; dt j¼1

ð5:1aÞ

3 X dyj ¼ bj ðtÞyj ðtÞ þ qij ðtÞfi ðxi ðt  2pÞÞ þ Jj ðtÞ; dt i¼1

ð5:1bÞ

where Ii ðtÞ ¼ sin t

ði ¼ 1; 2; 3Þ;

rij ¼ sji ¼ 2p

Jj ðtÞ ¼ cos t

ðj ¼ 1; 2; 3Þ;

ði ¼ 1; 2; 3; j ¼ 1; 2; 3Þ:

To take fi ðxÞ ¼ 12ðjx þ 1j  jx  1jÞ, we have li ¼ 1 ði ¼ 1; 2; 3; 4; 5; 6Þ. Again take ða1 ðtÞ; a2 ðtÞ; a3 ðtÞÞT ¼ ð2  sin t; 2  cos t; 2  sin tÞT ; T

T

ðb1 ðtÞ; b2 ðtÞ; b3 ðtÞÞ ¼ ð2  cos t; 2  sin t; 2  cos tÞ we obtain T

T

  ðb 1 ; b2 ; b3 Þ ¼ ð1; 1; 1Þ ;

T

T

and M½ai > 0; M½bj > 0:

  ða 1 ; a2 ; a3 Þ ¼ ð1; 1; 1Þ ; þ þ ðbþ 1 ; b2 ; b3 Þ ¼ ð3; 3; 3Þ ;

T

T

Let 0

1 0 1 q11 ðtÞ q12 ðtÞ q13 ðtÞ 0:25 sin t 0:05 cos t 0:15 sin t @ q21 ðtÞ q22 ðtÞ q23 ðtÞ A ¼ @ 0:05 cos t 0:50 sin t 0:05 cos t A; q31 ðtÞ q32 ðtÞ q33 ðtÞ 0:25 sin t 0:05 cos t 0:25 sin t 0 1 0 1 0:05 sin t 0:10 cos t 0:15 sin t p11 ðtÞ p12 ðtÞ p13 ðtÞ @ p21 ðtÞ p22 ðtÞ p23 ðtÞ A ¼ @ 0:15 cos t 0:05 sin t 0:15 cos t A: p31 ðtÞ p32 ðtÞ p33 ðtÞ 0:05 sin t 0:15 cos t 0:05 sin t Then 0

qþ 11 @ qþ 21 qþ 31

qþ 12 qþ 22 qþ 32

1 0 qþ 0:25 13 A ¼ @ 0:05 qþ 23 qþ 0:25 33

0:05 0:50 0:05

1 0:15 0:05 A 0:25

192

A. Chen et al. / Appl. Math. Comput. 137 (2003) 177–193

and 0

þ p11 @ pþ 21 þ p31

þ p12 þ p22 þ p32

1 0 þ p13 0:05 þ A ¼ @ 0:15 p23 þ 0:05 p33

0:10 0:05 0:15

1 0:15 0:15 A: 0:05

Moreover, ( P3

þ j¼1 pji lj a i

r ¼ max

16i63

)

( P3 þ max

16j63

þ i¼1 qij li b j

) ¼ 0:95 < 1:

Set ki ¼ 1 ði ¼ 1; 2; 3; 4; 5; 6Þ, we get ! 3 3 X X  þ pj1 lj þ k3þj qþ k1  2a1 þ 1j l1 ¼ 1:3 < 0; j¼1

k2

 2a 2 þ

3 X

j¼1

! þ pj2 lj

þ

j¼1

k3

 2a 3 þ

3 X

k4

 2b 1 þ

! þ pj3 lj

þ

k5



þ

3 X

! qþ i1 li

þ

 2b 3 þ

3 X i¼1

k3þj qþ 3j l3 ¼ 1:1 < 0;

3 X

ki p1iþ l1 ¼ 1:15 < 0;

i¼1

! qþ i2 li

þ

i¼1

k6

3 X j¼1

i¼1

2b 2

k3þj qþ 2j l2 ¼ 1:1 < 0;

j¼1

j¼1 3 X

3 X

3 X

ki p2iþ l2 ¼ 1:05 < 0;

i¼1

! qþ i3 li

þ

3 X

ki p3iþ l3 ¼ 1:3 < 0:

i¼1

Thus, it follows from Theorems 1 and 2 that the unique periodic solution (5.1a), (5.1b) is globally exponential stable.

Acknowledgements Supported by the NNSF of China (10071016)and Foundation for University Key Teacher by the Ministry of Education of China, as also supported by the Foundation of Southeast University and the Natural Science Foundations of Jiangsu Province and Yunnan Province, China, and by the Foundation of professor project of Chenzhou Teachers College.

A. Chen et al. / Appl. Math. Comput. 137 (2003) 177–193

193

References [1] A.M. Fink, Almost Periodic Differential Equation, Springer-Verlag, Berlin, Heidleberg, New York, 1974. [2] J.D. Cao, Global stability analysis in delayed cellular neural networks, Phys. Rev. E 59 (1999) 5940–5944. [3] J.D. Cao, On stability of delayed cellular neural networks, Phys. Lett. A 261 (1999) 303–308. [4] J.D. Cao, Periodic oscillatory solution of bidirectional associative memory networks with delays, Phys. Rev. E 61 (2000) 1825–1828. [5] K. Gopalsamy, X.Z. He, Delay-independent stability in bi-directional associative memory networks, IEEE Trans. Neural Networks 5 (1994) 998–1002. [6] K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population, Kluwer, Dordrecht, 1992. [7] C.Y. He, Almost Periodic Differential Equation, Higher Education Publishing House, Beijing, 1992 (in Chinese). [8] C. Jin, Stability analysis of discrete-time Hopfield BAM neural networks, Acta. Auto. Sinica 25 (5) (1999) 606–612. [9] T. Kohonen, Self-Organization and Associative Memory, Springer-Verlag, New York, 1988. [10] D.G. Kelly, Stability in contractive nonlinear neural networks, IEEE Trans. Biomed. Eng. 37 (1990) 231–242. [11] B. Kosto, in: Neural Networks and Fuzzy Systems – A Dynamical System Approach to Machine Intelligence, Prentice-Hall, Englewood Cliffs, NJ, 1992, pp. 38–108. [12] B. Kosto, Adaptive bi-directional associative memories, IEEE Trans. Syst. Man Cybernet. 18 (1988) 49. [13] B. Kosto, Bi-directional associative memories, IEEE Trans. Syst. Man Cybernet. 18 (1988) 49– 60. [14] X.F. Liao, J.B. Yu, Qualitative analysis of bidrectional associative memory with time delays, Int. J. Circuit Theory Appl. 26 (1998) 219–229. [15] X.X. Liao, Stability of the Hopfield neural networks, Sci. China 23 (5) (1993) 523–532. [16] X.B. Liang, Global exponential stability and application of the Hopfield neural networks, Sci. China 25 (5) (1995) 523–532. [17] J.J. Wei, S.G. Ruan, Stability and bifurcation in a neural network model with two delays, Phys. D 130 (1999) 255–272. [18] J. Cao, L. Wang, Exponential stability and periodic oscillatory solution in BAM networks with delays, IEEE Trans. Neural Networks 13 (2) (2002). [19] J. Cao, A set of stability criteria for delayed cellular neural networks, IEEE Trans. Circuits Syst. I 48 (4) (2001) 494–498. [20] J. Cao, Global stability conditions for delayed CNNs, IEEE Trans. Circuits Syst. I 48 (11) (2001) 1330–1333. [21] J. Cao, Periodic oscillation and exponential stability of delayed CNNs, Phys. Lett. A 270 (3–4) (2000) 157–163. [22] J. Cao, Exponential stability and periodic solution of delayed cellular neural networks, Science in China (Series E) 43 (3) (2000) 328–336. [23] J. Cao, Global exponential stability of Hopfield neural networks, Int. J. Syst. Sci. 32 (2) (2001) 233–236.