Formation of Carbocations from C6 Compounds in Zeolites

Formation of Carbocations from C6 Compounds in Zeolites

H.G. Karge, J. Weitkamp (Editors),Zeolites as Catalysts, Sorbents and Detergent Builders 0 1989 Elsevier Science Publishers B.V., Amsterdam - Printed ...

474KB Sizes 0 Downloads 63 Views

H.G. Karge, J. Weitkamp (Editors),Zeolites as Catalysts, Sorbents and Detergent Builders 0 1989 Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands

FORMATION OF CARBOCATIONS FROM C,

COMPOUNDS I N ZEOLITES

Imre K i r i c s i ' , H o r s t F o r s t e r 2 and Gyula T a s i ' ' A p p l i e d Chemistry Department, J o z s e f A t t i l a U n i v e r s i t y , R e r r i c h B. t e r 1, H-6720 Szeged, Hungary ' I n s t i t u t e o f P h y s i c a l Chemistry, U n i v e r s i t y o f Hamburg, Bundesstr. 45, 0-2000 Hamburg 13, Federal R e p u b l i c o f Germany ABSTRACT Formation o f u n s a t u r a t e d carbenium i o n s f r o m 1-hexene, cyclohexane, c y c l o hexene, cyclohexadiene and benzene upon i n t e r a c t i o n w i t h t h e H-forms o f z e o l i t e s ZSM-5 and Y was p r o v e d by U V - V I S and I R spectroscopy. W i t h t h e e x c e p t i o n o f benzene, which forms d i e n y l i o n s a t t h e b e g i n n i n g , c a r b o c a t i o n f o r m a t i o n from t h e o t h e r C, compounds s t a r t s w i t h monoenylic species, which t r a n s f o r m i n t o o l i g o e n y l i c i o n s w i t h t i m e o f c o n t a c t . From the c y c l i c hydrocarbons c y c l i c i o n s as w e l l as open-chain a l k e n y l i o n s a r e formed. The i o n f o r m a t i o n c a p a b i l i t y decreases i n t h e sequence c y c l o h e x a d i e n e > c y c l o h e x ene > 1-hexene > cyclohexane > benzene. F o r t h e f i r s t stages o f carbenium i o n development t h e f o r m a t i o n o f a r o m a t i c s u r f a c e species may be excluded.

INTRODUCTION Formation o f a r o m a t i c s i n t h e MTG process i s supposed t o proceed v i a and

alkenyl

carbenium i o n s formed f r o m o l e f i n s as p r i m a r y

t h i s process ( r e f .

alkyl

intermediates

of

1 ) . R e c e n t l y some papers have been p u b l i s h e d d e a l i n g w i t h

g e n e r a t i o n and t r a n s f o r m a t i o n o f a l k y l carbenium i o n s f r o m ethene and

propene

i n zeolites (ref.

olefins

in

zeolites

2 ) . Formation o f a l k e n y l carbenium i o n s f r o m l o w e r

mordenite,

f a u j a s i t e and ZSM-5 has been p r o v e n a l s o

by

UV-VIS

spectroscopy ( r e f . 3 ) . The o b j e c t i v e o f t h i s paper was t o i n v e s t i g a t e i n d e t a i l t h e i d e n t i f i c a t i o n of

unsaturated

zeolites.

s u r f a c e i n t e r m e d i a t e s d e r i v e d f r o m some

cyclohexadiene

+

benzene,

assumed t o be one o f t h e

a r o m a t i c s i n t h e MTG process ( r e f . carbenium

C,

hydrocarbons

S p e c i a l a t t e n t i o n was d i r e c t e d t o t h e t r a n s f o r m a t i o n cyclohexene

ions

4),

pathways

for

in +

yielding

although the formation o f unsaturated

f r o m these c y c l i c compounds has n o t y e t

been

experimentally

proved. EXPERIMENTAL Starting

m a t e r i a l s were z e o l i t e NaY f r o m Union Carbide and z e o l i t e

synthesized i n the laboratory o f Prof.

ZSM-5,

L e c h e r t . D e t a i l s o f sample p r e p a r a t i o n

356 and f u r t h e r t r e a t m e n t a r e g i v e n by K i r i c s i and F o r s t e r ( s e e r e f . cell

compositions

determined

by

neutron

activation

5 ) . The u n i t

analysis

and

atomic

a b s o r p t i o n spectroscopy were HNaY: H, ,Na, ,A1 HNaZSM-5 : T r a n s f o r m a t i o n o f C, 1-Hexene, chased

,Si

.O Z N a O .

,03 0 6 A 1 1 . O ESi

9 4 . go, 9 2 .

hydrocarbons was more t h o r o u g h l y s t u d i e d w i t h t h e l a t t e r .

cyclohexane,

f r o m Merck,

cyclohexene,

Darmstadt,

c y c l o h e x a d i e n e - 1 . 4 and benzene, p u r -

i n a q u a l i t y b e t t e r t h a n 99%, were

used

as

adsorbates. For the spectroscopic i n v e s t i g a t i o n s s e l f - s u p p o r t i n g wafers o f 5-7

mg/cm2

pressed and outgassed a t 770 K o v e r n i g h t

vacuum

thickness

were

under

high

c o n d i t i o n s i n t h e o p t i c a l c e l l , made f r o m f u s e d q u a r t z f o r t h e U V - V I S and f r o m g l a s s w i t h S i l v a c a - g l u e d KBr windows f o r t h e I R e x p e r i m e n t s . The

UV-VIS

spectra

were r u n i n t r a n s m i s s i o n on a

c o n t r o l l e d by a B a s i s 108 computer. background

correction.

deconvolution

of

the

Cary

17

spectrometer

The d i g i t i z e d s p e c t r a were smoothed a f t e r

A n o n l i n e a r l e a s t squares p r o c e d u r e was used f o r e l e c t r o n i c spectra,

fitting

Gaussian

peaks

the

to

the

measured d a t a . I R s p e c t r a were r e c o r d e d on a P e r k i n - E l m e r 225 s p e c t r o m e t e r . The a c i d i t y o f t h e samples was determined a p p l y i n g p y r i d i n e as a p r o b e . The r a t i o o f B r o n s t e d t o Lewis a c i d s i t e s Bpy/Lpy was f o u n d t o be 0.19 and 2 . 2 1 i n case o f HNaY and HNaZSM-5, r e s p e c t i v e l y . RESULTS U n s a t u r a t e d carbenium i o n s have been formed f r o m a l l C 6 compounds gated.

Similarities

investi-

as w e l l as d i f f e r e n c e s were f o u n d i n t h e s p e c t r a o f

v a r i o u s hydrocarbons a f t e r a d s o r p t i o n .

the

While a f t e r cyclohexane admission o n l y

a weak band near 310 nm appeared a t room temperature,

two bands o f v e r y

low

i n t e n s i t i e s a t 373 and 495 nm were f o u n d a f t e r a d s o r p t i o n o f benzene. Generation and t r a n s f o r m a t i o n o f a l k e n y l carbenium i o n s f r o m 1-hexene v e r y s i m i l a r t o those o b t a i n e d f r o m propene i n b o t h z e o l i t e s HNaY and 5.

After

developed, ions,

a d s o r p t i o n and r e a c t i o n o f 1-hexene bands a t 325, which

can be assigned t o t h e mono-,

respectively.

Details

HNaZSM-

380 and

d i - and t r i e n y l i c

o f 1-hexene a d s o r p t i o n and c o n v e r s i o n

comparison o f these U V - V I S r e s u l t s w i t h those o f Maixner e t a l . ,

were

450

nm

carbenium and

the

obtained

by

NMR spectroscopy a r e g i v e n elsewhere ( r e f . 5 ) . Cyclohexene adsorbed i n HNaZSM-5 gave r i s e t o a b s o r p t i o n s a t 298, and 391 nm,

as can be seen i n F i g .

1.

310, 340

W i t h c o n t a c t t i m e t h e 310 and 340

nm

bands i n c r e a s e d and two new a b s o r p t i o n s near 420 and 530 nm became d e t e c t a b l e . Upon e v a c u a t i o n a t 370 K t h e i n t e n s i t y o f t h e 310 nm band was enhanced and additional

band a t 380 nm developed and became d o m i n a t i n g i n t h e whole

an

spec-

357

aI

U

n m

aJ U c

0

v)

n m

n 4

m 0

n

4

3 300

Fig.

400

X/nm

Transmission

1.

500

300

electronic

s p e c t r a o f z e o l i t e HNaZSM-5 loaded w i t h 666 P a cyclohexene. ( a ) A t room temperature, immediately a f t e r admission, ( b ) 1. ( c ) 2, ( d ) 3 h l a t e r . A f t e r evacuation f o r 1 h a t

room temperature, ( f ) 370 K, (9) 470 K and (h) 570 K.

(e)

trum.

Fig.

400

X/nm

500

U V - V I S spectra o f z e o l i t e exposed t o 133 Pa cyclohexadiene. ( a ) A t room temperature, s h o r t l y a f t e r admission, ( b ) 30 min, ( c ) 1 h l a t e r . A f t e r evacuat i o n f o r 1 h a t ( d ) room temperature, ( e ) 370 K, ( f ! 470 K and ( 9 ) 570 K.

2.

HNaZSM-5

A f t e r vacuum t r e a t m e n t a t 470 K a b s o r p t i o n s a t 270 ( s h o u l d e r ) , 295 ( t h e

most i n t e n s e band),

380, 420 and 530 nm were observed, w h i l e a t 570 K a

340,

broad a b s o r p t i o n o f o v e r l a p p i n g bands remained. a t 320

S h o r t l y a f t e r admission o f 133 Pa cyclohexadiene v e r y i n t e n s e bands

410, 460, 520 and 570 nm c o u l d be d i s t i n g u i s h e d even by t h e naked

(shoulder), eye (see F i g . at

2);

t h e i n t e n s i t y o f each i n c r e a s e d w i t h t i m e . Upon e v a c u a t i o n

room temperature t h e i n t e n s i t y o f t h e l o w frequency bands

spectrum

d),

while

at

370

K a new band arose a t 590

nm.

decreased

At

a b s o r p t i o n s a t l o n g e r wavelengths almost c o m p l e t e l y disappeared. after

(see

K

470

the

The spectrum

e v a c u a t i o n a t 570 K was s i m i l a r t o those o f cyclohexene under t h e

same

c o n d i t i o n s (compare s p e c t r a h and g i n F i g . 1 and 2 ) . I t was

a general observation t h a t w i t h exception o f

benzene

carbocation

f o r m a t i o n s t a r t s w i t h t h e monoenylic species f o l l o w e d by t h e o l i g o e n y l i c i o n s . In

t h e case o f benzene o n l y t h e development o f t h e d i - and t r i e n y l i c i o n s

is

observed.

As from

i n f o r m a t i o n about t h e s t r u c t u r e o f t h e s u r f a c e s p e c i e s can be the

i n f r a r e d region,

supplementary I R s p e c t r a o f t h e two

most

obtained impor-

t a n t compounds cyclohexene and cyclohexadiene were r u n upon a d s o r p t i o n i n

the

358 zeolites. because

The

IR

s t u d y o f benzene a d s o r p t i o n i n t h e z e o l i t e s

t h i s has a l r e a d y

was

been conducted i n d e t a i l b y Karge and

omitted,

Datka

(ref.

6). The 3.

s p e c t r a o f cyclohexene adsorbed i n z e o l i t e HNaZSM-5 a r e shown i n

The s p e c t r a l changes a r e s i m i l a r t o t h o s e observed by Haber e t

al.

Fig. (ref.

7 ) . Bands a t 1653 and 3025 CN’ a r e c h a r a c t e r i s t i c o f t h e C=C i n t e r n a l c y c l i c double bond and =C-H bond s t r e t c h i n g v i b r a t i o n s , b o t h d e c r e a s i n g w i t h t i m e . The

f a s t e v o l u t i o n o f an a b s o r p t i o n near 1510 cm-’ r e f l e c t s t h e

u n s a t u r a t e d carbenium i o n s . stretching

vibration

No band a t 1478 cm-I,

o f benzene was d e t e c t a b l e .

formation

of

c h a r a c t e r i s t i c f o r the r i n g A f t e r evacuation a t

470

K

to

be

almost a l l bands disappeared. I

al

U

c

m

Y

CI

.r

E

VI

C

a L

I-

1 3100

2900

2700

1700

1600

I 500

1400

Wavenumber/cm-’

F i g . 3 . IR s p e c t r a o f cyclohexene adsorbed i n z e o l i t e HNaZSM-5. ( a ) Z e o l i t e background spectrum. A t beam temperature ( b ) 2 min a f t e r admission o f 666 Pa o f cyclohexene, ( c ) 1 h, ( d ) 3 h l a t e r . A f t e r e v a c u a t i o n a t ( e ) beam temperature, ( f ) 370 K and ( 9 ) 470 K f o r 1 h. Spectra

obtained

from

c y c l o h e x a d i e n e i n z e o l i t e HNaZSM-5

proved

r a t h e r complex (see F i g . 4 ) . The band a t 3032 cm-’ due t o i n t a c t c y c l o h e x a d i e n e decreased

with

t i m e o f c o n t a c t a t beam t e m p e r a t u r e as a

t r a n s f o r m a t i o n o f t h i s compound. assigned

result

of

surface

Bands d e v e l o p i n g a t 1505 and 1535 cm-’ can be

t o u n s a t u r a t e d carbenium i o n s formed on t h e

zeolite

surface.

Here

again t h e band c h a r a c t e r i s t i c o f adsorbed benzene a t 1478 c d i s absent. S i n c e t h i s band i s u s u a l l y v e r y sharp and i n t e n s e and we c a n n o t f i n d any

indication

359

I

31 00

2900

..

2700

1600

1500

1400

Wavenumber/cm-’ F i g . 4 . IR s p e c t r a o f cyclohexadiene adsorbed i n z e o l i t e HNaZSM5. ( a ) Z e o l i t e background spectrum. ( b ) A t beam t e m p e r a t u r e , 3 min a f t e r admission o f 213 P a o f cyclohexadiene, ( c ) 1 h, ( d ) 2 h, ( e ) 4 h l a t e r . ( f ) A t 370 K a f t e r 1 h. ( 9 ) A f t e r 1 h e v a c u a t i o n a t beam temperature. of

it

in

our

spectra,

the

formation

of

benzene

from

cyclohexene

upon admission t o z e o l i t e s a t low temperatures does n o t

cyclohexadiene

and occur

t o any a p p r e c i a b l e e x t e n t .

DISCUSSION Electronic unresolved

spectra

usually

extremely d i f f i c u l t . t i o n program (see F i g .

as broad

absorptions

rendering t h e i r

due

complete

to

their

analysis

Consequently, a d j a c e n t e l e c t r o n i c t r a n s i t i o n s merge i n t o

broad o v e r l a p p i n g bands, analysis

appear

rovibrational f i n e structure,

which can be deconvoluted a p p l y i n g a d a t a

5),

d e t a i l s o f which and a p p l i c a t i o n t o

o f U V - V I S s p e c t r a w i l l be p u b l i s h e d elsewhere ( r e f .

manipula-

quantitative

8).

Using

the

bands r e s o l v e d by t h i s procedure q u a n t i t a t i v e c o n c l u s i o n s c o n c e r n i n g c a r b o c a t i o n f o r m a t i o n can be drawn. UV-VIS

bands

of

hydrocarbons adsorbed on s o l i d

surfaces

are

generally

360

compared

t o t h e s p e c t r a o f u n s a t u r a t e d carbenium i o n s observed

in

superacid

s o l u t i o n s . T h i s i s t h e most advantageous way f o r a t t r i b u t i n g bands t o d i s t i n c t i o n i c species, as c a r b o c a t i o n f o r m a t i o n has been v e r y e x t e n s i v e l y s t u d i e d superacids ( r e f . 9 ) .

in

a

10.2 Absorbance u n i t s

C

400

300

I n some cases, rate

of

and

environments not

e.g. f o r t h e appearance o f c e r t a i n carbenium i o n s and t h e i r

formation,

solution only

the

500

X/nm

F i g . 5. Deconvoluted s p e c t r a o f ( a ) benzene, ( b ) c y c l o h e x e n e and ( c ) c y c l o h e x a d i e n e adsorbed i n z e o l i t e s . The s p e c t r a were r e c o r d e d a f t e r e x p o s i n g t h e zeol i t e s t o t h e adsorbates f o r 1 h a t room t e m p e r a t u r e .

the

good

correlations

z e o l i t e surface could

or be

similarities

between

ascertained,

even

o f t h e c a r b o c a t i o n s i n b o t h systems a r e d i f f e r e n t and r a t e o f formation b u t also the s t a b i l i t y

of

the

superacid though

the

influence unsaturated

species ( r e f . l o ) . In

other

cases,

l a r g e r d i f f e r e n c e s i n t h e band

maxima

of

carbocations

formed i n s u p e r a c i d s and i n z e o l i t e s were found. T h i s i s demonstrated by Table

1,

in

which

the

wavelengths o f maximum absorbance o f

the

carbenium

i d e n t i f i e d i n a c i d i c s o l u t i o n s a r e compared t o t h o s e observed upon o f hydrocarbons i n z e o l it e s

.

ions

adsorption

I n t h e case o f benzene t h e two bands observed a t 373 and 495 nm do n o t agree w i t h t h e f i n d i n g s o f p r e v i o u s a u t h o r s ( r e f . 1 2 ) , w h i c h means t h a t f u r t h e r i n v e s t i g a t i o n s are required.

The absence o f monoenylic species, p r o v e d by us,

361

is

quite

understandable s i n c e p r o t o n a t i o n o f t h e a r o m a t i c

y i e l d s d i e n y l i c s p e c i e s and,furthermore,

ring

immediately

r i n g - o p e n i n g seems t o be u n f a v o u r a b l e

a t low temperatures. Comparing t h e s p e c t r a o f benzene,

TABLE 1 A b s o r p t i o n maxima superacids.

cyclohexene and c y c l o h e x a d i e n e ( s e e F i g .

o f c a r b o c a t i o n s formed

Carbocations i n s u p e r a c i d s *

CH(

zeolites,

maxi''

+

C-CH-CH, - - - - - - - CH,

0

305

315

CH, =CH-CH, -CH, -CH, -CH,

325 380 450 298 310 340 391

0

284 324 414 464 517 5 74

0

440, 550 373, 495

325

0

0

330

compared

Hydrocarbons adsorbed i n z e o l i t e s

max'nm CH,\

in

310

0 cb

470

to Ref

**

**

**

12

**

** 13

~

315

450 530 325 357 377 392 415

408

From r e f . 11;

**

T h i s work

12

-14

5 ) i t becomes e v i d e n t t h a t those o f t h e . l a t t e r two resemble each o t h e r . I t i s a l s o obvious t h a t t h e c a p a b i l i t y o f cyclohexadiene f o r i o n f o r m a t i o n exceeds that

o f cyclohexene.

B u t i n t h e i r s p e c t r a t h e r e i s no e v i d e n c e f o r bands

373 and 495 nm c h a r a c t e r i s t i c f o r adsorbed benzene. a

correct

and

unambiguous

assignment o f t h e

at

I t must be mentioned t h a t

UV-VIS

bands

obtained

upon

362

a d s o r p t i o n o f c y c l i c hydrocarbons has n o t y e t been p u b l i s h e d . As

far

as

the

f o r m a t i o n o f benzene

is

concerned,

Gibbs

i n t h e sequence o f t h e r e a c t i o n m e t h y l c y c l o p e n t a n e

formation cyclohexene

+

cyclohexadiene

+

energies cyclohexane

benzene were c a l c u l a t e d f o r d i f f e r e n t

+

of +

tempera-

t u r e s u s i n g t h e thermodynamic d a t a g i v e n i n r e f . 15 (see Table 2 ) . Herefrom i t becomes e v i d e n t t h a t f o r m a t i o n o f benzene and c y c l o h e x a d i e n e i s u n f a v o u r e d low

temperatures.

according

This

is

in

good

agreement

with

experimental

t o which t h e f o r m a t i o n o f a r o m a t i c s f r o m l o w e r o l e f i n s

on

at

results zeolite

HZSM-5 proceeds a t temperatures above 570 K ( r e f . 4 ) . From o u r s p e c t r o s c o p i c r e s u l t s t h e same c o n c l u s i o n s can be drawn. TABLE 2 Gibbs f r e e energy o f f o r m a t i o n o f m e t h y l c y c l o pentane, cyclohexane, cyclohexene, c y c l o h e x a diene, benzene and 1-hexene i n t h e t e m p e r a t u r e range 298-673 K (see r e f . 15).

I

T'K

As

AGf/kJ mol-'

-

MCP

CHAN

CHEN

CHOEN BENZ

298 323 373 473 573 673

35.6 36.6 72.4 123.8 176.8 231.1

31.6 44.7 71.6 127.2 184.4 242.8

106.7 116.3 135.7 176.1 217.8 260.3

186.5 193.0 206.4 234.6 264.0 294.2

1-HEXENE

129.6 133.6 141.8 159.3 177.6 196.5

87.4 98.3 120.6 166.8 214.5 263.2

t h e z e o l i t e s used i n t h i s s t u d y c o n t a i n e d b o t h B r o n s t e d und Lewis

acid

s i t e s , t h e f o r m a t i o n o f t h e f o l l o w i n g s u r f a c e s p e c i e s may be assumed:

b 0 0 0

uv-vis active

*

* ) means a b s o r p t i o n a t h>200 nm This

v e r y s i m p l i f i e d r e a c t i o n scheme shows t h a t f o r m a t i o n

carbenium i o n s can be e x p e c t e d f r o m each compound,

of

unsaturated

i n c l u d i n g cyclohexane,

in

363 t h i s case by secondary t r a n s f o r m a t i o n v i a t h e c y c l o h e x y l carbonium may

be

the

reason

f o r the observation

that

cyclohexane

is

ion.

only

This slowly

UV-VIS a c t i v e s u r f a c e compounds.

converted i n t o

Interconversion o f

carbenium

ions

can

also

take

place

in

zeolites.

T h e r e f o r e t h e bands observed w i t h cyclohexene and cyclohexadiene can be a t t r i buted

to

different

intermediates

formed

upon

transformation

of

primary

generated i o n s . CONLCUSIONS

-

From o u r i n v e s t i g a t i o n s t h e f o l l o w i n g c o n c l u s i o n s must be drawn: From a l l C,

compounds under i n v e s t i g a t i o n u n s a t u r a t e d carbenium i o n s

could

be generated. The c a r b o c a t i o n f o r m a t i o n s t a r t s w i t h t h e monoenyl species, i n t h e case o f benzene w i t h t h e d i e n y l i c carbenium i o n .

- Carbocations cyclohexyl depending sites.

formed and

on

from

cyclohexene and

cyclohexenyl

or

cyclohexadiene

cyclohexenyl

and

may

either

cyclohexadienyl

whether i n t e r a c t i o n t a k e s p l a c e w i t h B r o n s t e d o r

These

be

ions

Lewis

species undergo r i n g - o p e n i n g t o open-chain a l k e n y l

acid

carbenium

ions .

-

Cyclohexane

transforms

in

a b s o r b i n g i n t h e FUV range,

the f i r s t

step

into

saturated

carbocations,

y i e l d i n g e n y l i c carbenium i o n s o n l y a f t e r r i n g -

opening .

-

From

the

formation

spectroscopic capability

sequence cyclohexadiene

-

At

the

i n v e s t i g a t i o n s i t can be

of

>

inferred

t h e hydrocarbons i n v e s t i g a t e d cyclohexene

>

1-hexene

>

cyclohexane

f i r s t stages o f c a r b o c a t i o n development f r o m

C,

that

decreases

>

the

ion

in

the

benzene.

hydrocarbons

the

f o r m a t i o n o f a r o m a t i c s u r f a c e species may be excluded. ACKNOWLEDGEMENT One o f t h e a u t h o r s ( I . K . )

i s g r a t e f u l t o t h e Alexander von Humboldt Founda-

t i o n f o r a r e s e a r c h f e l l o w s h i p . We thank D r . J . t e n Pas f o r t h e s y n t h e s i s o f z e o l i t e ZSM-5. REFERENCES

1 S. Ceckiewicz, J.C.S. Faraday 1, 77 (1981) 269-280; R.L.V. Rao, P. Levesque and B. S j i a r i e l , Can. J . Chem. Eng., 64 (1986) 514516; J . Heering, M. K o t t e r and L. R i e k e r t , Chem. Eng. S c i . , 37 (1982) 581-584; J . Nowakova, L . Kubelkova and Z. D o l e j s e k , J . C a t a l . , 108 (1987) 208-213; T. Mole, G . B e t t and D.Seddon, J . C a t a l . , 84 (1983) 435-445; J.P. Wolthuizen, J.P. van den Berg and J.C.H. van H o o f f , i n B. I m e l i k e t a l . ( E d i t o r s ) , C a t a l y s i s by Z e o l i t e s , E l s e v i e r , Amsterdam, 1980, pp. 85-92.

364 H.G. Karge, i n J.R. Katzer ( E d i t o r ) , Molecular Sieves 11, ACS Symp. Ser. No. 40, Am. Chem. SOC., Washington D.C., 1977, pp. 584-595; V . B o l i s , J. Vedrine, J.P. van den Berg, J.P. Wolthuizen and E.G. Derouane, J.C.S. Faraday 1, 76 (1980) 1606-1616; J.P. van den Berg, J.P. Wolthuizen, A.D.H. Clague, G.R. Hays, R. Huis and J.C.H. van Hooff, J. Catal., 80 (1983) 130-138; M. Zardkoohi, J.F. Haw and J.H. Lunsford, J. Am. Chem. SOC., 109 (1987) 5278- 5280. 3 E.D. Garbowski and H. P r a l i a u d , J. Chim. Phys. Phys.-Chim. B i o l . , 76 (1979) 687-692; H. F o r s t e r , S. Franke and J. Seebode, J.C.S. Faraday 1, 79 (1983) 373-382; H. F o r s t e r , J. Seebode, P. F e j e s and I. K i r i c s i , J.C.S. Faraday 1, 83 (1987) 1109-1117; M. Laniecki and H.G. Karge, i n D. Shopov e t a l . ( E d i t o r s ) , Heterogeneous C a t a l y s i s , Proc. V I t h I n t . Symp., S o f i a , 1987, Vol. 2, pp. 129-134; H. F o r s t e r and I. K i r i c s i , Z e o l i t e s , 7 (1987) 508-510. Garbowski, i n B. I m e l i k e t a l . 4 J.C. Vedrine, D. D e j a i f v e and E.D. ( E d i t o r s ) , C a t a l y s i s by Z e o l i t e s , E l s e v i e r , Amsterdam, 1980, pp. 29-37. 5 I.K i r i c s i and H. F o r s t e r , J.C.S. Faraday 1, 84 (1988) 491-499; H. F o r s t e r , I. K i r i c s i and J. Seebode, i n P.J. Grobet e t a l . ( E d i t o r s ) , I n n o v a t i o n i n Z e o l i t e M a t e r i a l s Science, E l s e v i e r , Amsterdam, 1988, pp. 435-442; S. Maixner, C.Y. Chen, P.J. Grobet, P.A. Jacobs and J. Weitkamp, i n Y . Mukami e t a l . ( E d i t o r s ) , Proc. 7 t h I n t . Z e o l i t e Conf., Tokyo, 1986, pp. 693-700. 6 H.G. Karge, J. Ladebeck, Z.Sarback and K. Hatada, Z e o l i t e s , 2 (1982) 94-102 J. Datka, J.C.S. Faraday 1, 77 (1981) 511-517. 7 J. Haber, J . Komorek-Hlodzik and T. Romotowski, Z e o l i t e s , 2 (1982) 179-184; J. Haber, J. Komorek and T . Romotowski, Proc. o f Zeocat 85, I n t . Symp. on Z e o l i t e C a t a l y s i s , Siofok, 1985, pp. 671-679. 8 I. K i r i c s i and Gy. Tasi, i n p r e p a r a t i o n . 9 G.A. Olah and P. Schleyer ( E d i t o r s ) , Carbonium I o n s I - I V , WileyI n t e r s c i e n c e , New York, 1970. 10 P. Fejes, H. F o r s t e r , I. K i r i c s i and J. Seebode, i n P.A. Jacobs e t a l . (Editors), S t r u c t u r e and R e a c t i v i t y o f M o d i f i e d Z e o l i t e s , E l s e v i e r , Amsterdam, 1984, pp. 91-98. 11 G.A. Olah, C.U. Pittman and M.C.R. Symons, i n G.A. Olah and P . Schleyer ( E d i t o r s ) , Carbonium Ions, Wiley-Interscience, New York, Vol. 1, pp. 153222. 12 A . V . Kiselev, L.A. Kupcha, V . I . Lygin and V.G. S h a t s k i i , K i n e t i k a i Katal i z , 10 (1969) 449-451. 13 C . Bezuhanova, A . V . Kiselev, D.G. K i t i a s h v i l i and V . I . Lygin, K i n e t i k a i Katal i z , 13 (1972) 431-434. 14 H.G. Karge, W. Abke, E.P. Boldingh and M. L a n i e c k i , Actas Simp. Iberoam. C a t a l . 9th, Lisboa, 1984, 1, 582-583. 15 L. Seres, L. Z a l o t a i and F. M a r t a , Acta Phys. Chem. Szeged, 23 (1977), 433468.

2