Journal Pre-proof Fossil woods from the Lower Cretaceous Tres Lagunas Formation of central Patagonia (Chubut Province, Argentina) Carlos D. Greppi, Roberto R. Pujana, Roberto A. Scasso PII:
S0195-6671(19)30268-X
DOI:
https://doi.org/10.1016/j.cretres.2019.104322
Reference:
YCRES 104322
To appear in:
Cretaceous Research
Received Date: 21 June 2019 Revised Date:
30 September 2019
Accepted Date: 17 November 2019
Please cite this article as: Greppi, C.D., Pujana, R.R., Scasso, R.A., Fossil woods from the Lower Cretaceous Tres Lagunas Formation of central Patagonia (Chubut Province, Argentina), Cretaceous Research, https://doi.org/10.1016/j.cretres.2019.104322. This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2019 Elsevier Ltd. All rights reserved.
1
Fossil woods from the Lower Cretaceous Tres Lagunas Formation of central Patagonia
2
(Chubut Province, Argentina)
3
Carlos D. Greppia*, Roberto R. Pujanaa and Roberto A. Scassob.
4
a
5
Ciudad de Buenos Aires, Argentina.
6
b
7
Departamento de Geología, Facultad de Ciencias Exactas y Naturales, Universidad de
8
Buenos Aires, Intendente Guiraldes 2620, (1428) Ciudad de Buenos Aires, Argentina.
9
*Corresponding autor. E-mail address:
[email protected]
Museo Argentino de Ciencias Naturales-CONICET, Av. Ángel Gallardo 470, (1405)
Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires (IGEBA),
10
ABSTRACT
11
Silicified fossil woods are common in the Tres Lagunas Formation (Lower Cretaceous) of
12
central Patagonia. This region has a poor record of Early Cretaceous fossil woods. A
13
collection of 23 fossil woods is studied. Fossil wood anatomy is described and compared in
14
detail. The wood flora is composed of conifers. Most of the samples have Araucariaceae-
15
like wood anatomy. The samples are placed into seven taxonomic units: three fossil-species
16
of Agathoxylon, two more taxonomic units related to Agathoxylon, one taxonomic unit
17
consistent with Cupressinoxylon? and one fossil-species of Brachyoxylon. This study
18
indicates a dominance of conifers, particularly Araucaiaceae, during the Early Cretaceous
19
of this zone of central Patagonia which partially does not coincide with the taxonomic
20
proportions of previous studies of coeval pollen and plant macrofossils.
21 22
Key words: Fossil wood; Wood anatomy; Conifers; Early Cretaceous; Tres Lagunas
23
Formation.
24 25 26
1. Introduction
27 28
Gondwana's Early Cretaceous was characterized by a series of events related to the
29
development of rifts and the fragmentation of the continent, marine regressions and
30
transgressions, absence of polar ice and changes in the concentration of CO2 due to the rift-
31
associated volcanism that induced the expansion of the warm to temperate paleoclimate
32
zones toward the poles and favored the development, extension and diversification of the
33
flora (McLoughlin, 2001; Passalía, 2004; Del Fueyo et al., 2007).
34
During the Early Cretaceous, southern Patagonia flora was dominated by different
35
groups of conifers and pteridosperms, in addition to ginkgoaleans, cycads, bennettitaleans,
36
equisetaleans and ferns. Within the conifers, the most important groups were the
37
Araucariaceae, the Podocarpaceae and the Cheirolepidiaceae that developed large tall
38
forests and associated umbrophil plants in delta, fluvial and lacustrine environments, while
39
the open areas were apparently dominated mainly by cycads and bennettitals (Del Fueyo et
40
al., 2007). These paleoflora studies are based on the abundant fossil leaves and
41
palynomorphs from different stratigraphic units of central and southern Patagonia
42
(Baldoni, 1979; Baldoni and De Vera, 1980; Archangelsky et al., 1984; Archangelsky and
43
Llorens, 2003).
44
Detailed studies of Patagonian woods from the Lower Cretaceous, however, are
45
scarce and isolated, and there are only some recent studies mostly based on one or very few
46
samples (e.g. Martínez and Lutz, 2007; Vera and Césari, 2012; Carrizo and Del Fueyo,
47
2015; Brea et al., 2016; Gnaedinger et al., 2017; Nunes et al., 2018, 2019).
48
In this contribution, a relatively large collection of fossil woods is described with
49
taxonomy based on recent bibliography. This is the first detailed study of the anatomy of
50
conifer woods from the Tres Lagunas Formation and from southwestern Chubut Province,
51
Argentina. Comments about the diversity of the ancient forests and comparisons to other
52
paleofloras are made.
53 54
2. Geological setting
55 56
The Tres Lagunas Formation is equivalent to the Toqui Formation, the lowermost
57
unit of the Tithonian–Aptian Coyhaique Group (Heim, 1940; Ramos, 1981; Suárez et al.,
58
2009). It discordantly overlies Jurassic lavas and breccias of the Lago La Plata Formation
59
and upper Paleozoic sedimentary rocks and it is transitionally overlain by the Katterfeld
60
and Apeleg formations (Fig. 1) (Ramos, 1981; Olivero, 1987; Ploszkiewicz, 1987).
61
According to the literature the age of the Coyhaique Group is not older than Tithonian and
62
not younger than Aptian (Scasso, 1989). The most likely age for the Tres Lagunas
63
Formation is late Valanginian (Aguirre Urreta and Rawson, 1998).
64
The Tres Lagunas Formation mainly consists of conglomerates, sandstones, shales
65
and black limestones cropping out close to the Tres Lagunas locality (Fig. 2) and in the
66
southern margin of the Fontana Lake (Bergmann, 1956; Ramos, 1981; Scasso, 1989;
67
Hechem et al., 1993). In spite of intense faulting and folding, the lithology and fossiliferous
68
content of the rocks, together with their relation with other formations in the region, drove
69
most authors to consider the Tres Lagunas Formation as a single sequence (Masiuk and
70
Nakayama, 1978; Ramos, 1981) of mixed carbonate-siliciclastic and pyroclastic sediments
71
(Scasso, 1989), with an upward trend towards siliciclastic deposits at the top in the Tres
72
Lagunas area (Scasso and Kiessling, 2002). There, thick conglomerate beds with rounded
73
clasts and sandy matrix, at the base of the unit, bear dark purple, silicified logs
74
(Ploszkiewicz, 1987). Dark shales with interbedded sandstones and black limestones,
75
contain a marine, varied mollusc fauna (Ploszkiewicz and Ramos, 1977; Ramos, 1981;
76
Ploszkiewicz, 1987; Olivero, 1983). Rapid lateral and vertical facies changes characterize
77
the Tres Lagunas Formation. This is attributed to a very irregular relief caused by tectonism
78
and volcanism. Depositional environments range from coastal, shallow marine
79
environments (e.g. shoreface and patch-reef), developed on the margins of small volcanic
80
islands, to deeper fringe-apron environments such as front-reef or small submarine fans
81
developed around and down-slope of the clastic-carbonatic shelves (Scasso, 1987; 1989).
82
Synchronous volcanism is represented by coarse volcanic detritus, which comprises most of
83
the epiclastic fraction, as well as by fall-out tuffs interbedded with the clastic and
84
carbonatic beds (Scasso, 1989; Scasso and Kiessling, 2002).
85 86
3. Material and methods
87 88
A collection of 23 fossil woods was studied. The samples were collected in central
89
Patagonia, in the Tres Lagunas locality, from two fossiliferous outcrops (1= 44°52'02'' S,
90
70º47'16'' W and 2= 44º52'07'' S, 70º47'49'' W, Fig. 1). Both outcrops are in the type
91
locality of the Tres Lagunas Formation, 20 km north of Alto Rio Senguer town, Chubut
92
Province, Argentina. Samples were stratigraphical and geographically located (Fig. 1, Fig.
93
2).
94
These specimens are housed in the Museo Paleontológico Egidio Feruglio, located
95
in Chubut Province, Argentina, under accession numbers MPEF Pb 10113–10135 (Table
96
1). Microscopic slides bear the same number as the hand specimen followed by a lower
97
case letter.
98
The specimens are silicified, mainly dark purple. They were sectioned according to
99
the typical methodology for studying petrified woods: transverse section (TS), radial
100
longitudinal section (RLS) and longitudinal tangential section (TLS). Some acetate peels
101
according to the method of Galtier and Phillips (1999) were carried out, but these did not
102
show good anatomical details. All samples were observed with scanning electron
103
microscopy (SEM) after being gold coated. The slides were studied using light microscopy
104
(Leica DM2500) and photographed with Leica 1295 DFC camera. At least 20
105
measurements or observations of each character for each specimen were made when
106
possible. Measurements are expressed as the weighted mean followed by the range between
107
parenthesis and mean standard deviation of all the specimens assigned to each taxonomic
108
unit.
109
The terminology used follows the IAWA recommendations for softwood
110
identification (IAWA Softwood Committee, 2004) when possible. Indices for measuring
111
and quantifying the radial intertracheary pitting arrangement (Cp and Si) are those of
112
Pujana et al. (2016). Si= 1. 00 indicates that all the intertracheary pits are uniseriate, Si > 1.
113
00 indicates that there are two- or more-seriate pits, Cp= 0 % that no pits touch and Cp=
114
100 % that all pits touch (Pujana et al., 2016). For open nomenclature names, Bengston
115
(1988) was followed.
116
It is very challenging to assign an accurate extant affinity to fossil woods previous
117
to the Cenozoic, and the parataxonomy for fossil-genera delimitation of Philippe and
118
Bamford (2008) is followed. Consequently, only the fossil-genus and not higher taxonomic
119
ranges are given in the systematic palaeontology section, but the probable familial affinity
120
is discussed in the remarks of each taxonomic unit.
121 122
4. Systematic palaeontology
123 124
Fossil-genus Agathoxylon Hartig, 1848
125
Type species: Agathoxylon cordaianum Hartig, 1848, p. 188
126 127
Agathoxylon antarcticus (Poole and Cantrill, 2001) Pujana, Santillana and Marenssi, 2014
128
Fig. 3A–H
129
2001 Araucariopitys antarcticus Poole and Cantrill, p. 1086, pl. I, figs. 2–10.
130
2005 Agathoxylon matildense Zamuner and Falaschi, p. 340, fig. 2.
131 132
New material. MPEF-Pb 10115, 10117, 10124, 10125 and 10131.
133
Description. The specimens are pycnoxylic secondary xylem, with variable preservation.
134
Growth rings boundaries are distinct, latewood with 2–6 rows of tracheids (Fig. 3A–B).
135
The earlywood-latewood transition is abrupt and the cells roundish to polygonal in
136
transverse section. Intertracheary pitting on radial walls is araucarian, uni- to biseriate, in
137
most samples predominantly uniseriate (Si= 1.10), contiguous (Cp= 90.1%), and alternate
138
when biseriate (Fig. 3C–D). Intertracheary radial pits are circular to hexagonal, 12.5 (9.8–
139
15.4, sd= 1.0) µm in vertical diameter. Tracheid tangential diameter is 37.9 (19.5–59.2, sd=
140
4.7) µm. Pits on tangential section are not observed. Horizontal and end walls of ray
141
parenchyma cells are smooth. Mean ray height is very low to medium 6.8 (1–25, sd= 4.7)
142
cells high, almost exclusively uniseriate (Fig. 3E–F), very rarely biseriate portions and with
143
a frequency of 5.3 (3–8, sd= 1.0) rays per mm. Ray height is 143 (20–459, sd= 90) µm.
144
Cross-fields are araucarioid with 4–9, mean 6.2, sd= 0.9, contiguous pits per cross-field
145
(Fig. 3G–H, Fig. 4A). Cross-field pits are half-bordered (= oculipores) circular and 7.1
146
(4.7–11.4, sd= 0.6) µm in vertical diameter.
147
Remarks. This fossil-species is characterized by its distinct to indistinct growth ring
148
boundaries, araucarian mostly uniseriate radial intertracheary pitting, araucarioid cross-
149
fields and absence of axial parenchyma and resin plugs. Pujana et al. (2014) discussed and
150
compared this fossil-species in detail.
151
The wood anatomy of A. antarcticus, and from all the samples referred to
152
Agathoxylon from the Tres Lagunas Formation are typical of the living Araucariaceae, as
153
many of the species of Agathoxylon. However, not all the numerous Agathoxylon species,
154
particularly Paleozoic species, can be assigned to this family (Philippe, 2011; Rößler et al.,
155
2014).
156
Agathoxylon antarcticus was found in Antarctica from the Cretaceous to the Eocene
157
(Poole and Cantrill, 2001; Pujana et al., 2014, 2015, 2017; Mirabelli et al., 2017). In South
158
America was found in the Jurassic and Cretaceous (Zamuner and Falaschi, 2005; Pujana et
159
al., 2007). This fossil-species is the most abundant of the assemblage of the Tres Lagunas
160
Formation (Table 1).
161 162
Agathoxylon kellerense (Lucas and Lacey, 1981) Pujana, 2017
163
Fig. 3I–P
164
1990 Araucarioxylon kellerense Nishida, Ohsawa and Rancusi, p. 27.
165
Basionyms. Dadoxylon kellerense Lucas and Lacey, 1981.
166 167
New material. MPEF-Pb 10116, 10118, 10119 and 10135.
168
Description. The specimens are pycnoxylic secondary xylem, with variable preservation.
169
Growth ring boundaries are distinct, latewood with 1–7 rows of tracheids (Fig. 3I). The
170
earlywood-latewood transition is abrupt and the cells are roundish to polygonal as seen in
171
transverse section. Intertracheary pitting on radial walls is araucarian, uni- to triseriate,
172
mostly biseriate or triseriate, rarely uniseriate (Si= 2.05), contiguous (Cp= 100%), and
173
alternate when biseriate or triseriate (Fig. 3J–L). Intertracheary radial pits are hexagonal,
174
13.7 (9.5–19.1, sd= 1.2) µm in vertical diameter (Fig. 3J–L). Tracheid tangential diameter
175
is 38.9 (19.2–62.9, sd= 6.4) µm. Pits on tangential walls are slightly smaller and with
176
similar arrangement to the intertracheary radial pits (araucarian). Horizontal and end walls
177
of ray parenchyma cells are smooth. Mean ray height is medium, 8.3 (1–29, sd= 4.4) cells
178
high, exclusively uniseriate (Fig. 3M–N), with a frequency of 4.7 (2–7, sd= 1.0) rays per
179
mm. Ray height is 193 (58–574, sd= 96) µm. Cross-fields are araucarioid with 5.7 (3–6,
180
sd= 0.5), contiguous half-bordered pits (= oculipores) per cross-field (Fig. 3O–P, Fig. 4A).
181
Cross-field pits are circular 8.7 (6.3–11.5, sd= 0.9) µm in vertical diameter.
182
Remarks. Agathoxylon kellerense is characterized by its distinct growth ring boundaries and
183
araucarioid radial pitting with mostly bi- to triseriate pitting (Lucas and Lacey, 1981;
184
Pujana et al., 2014, 2017). Seriation of radial pitting differentiates it from Agathoxylon
185
antarcticus which has mainly uniseriate pitting (Pujana et al., 2014). Fossil-species of
186
Araucariaceae-like wood have been historically classified by the number of vertical rows of
187
tracheid pitting (e.g. Penhallow, 1907), along with other characters.
188
This fossil-species was first described from the King George (25 de Mayo) Island,
189
Antarctica, by Lucas and Lacey (1981) and later found in other localities of Antarctica and
190
Patagonia (Nishida et al., 1990; Mirabelli et al., 2017; Pujana et al., 2017).
191 192
Agathoxylon pseudoparenchymatosum (Gothan, 1908) Pujana, Santillana and Marenssi,
193
2014
194
Fig. 5A–H
195
1908 Dadoxylon pseudoparenchymatosum Gothan, p. 10, pl. I, figs. 1–3, 12–16.
196
1914 Araucarioxylon novaezeelandii Stopes, p.348, pl. XX.
197
1919 Araucarioxylon kerguelense Seward, p. 185, fig. 714.
198
1921 Dadoxylon kerguelense (Seward) Edwards, p.614, pl. XXIII.
199
1926 Dadoxylon kaiparaense Edwards, p. 127, figs. 11–13.
200
1970 Araucarioxylon chilense Nishida, p.14, pl. II, fig. 4.
201
1984 Araucarioxylon pseudoparenchymatosum (Gothan) Nishida, p. 89, pl. LXXXI.
202 203
New material. MPEF-Pb 10126.
204
Description. The specimen is pycnoxylic secondary xylem.Growth ring boundaries are
205
distinct, latewood with 1–3 rows of tracheids (Fig. 5A). The earlywood-latewood transition
206
is abrupt and the cells roundish to polygonal in transverse section with resin plugs in
207
tracheids adjacent to the rays (Fig. 5B). Intertracheary pitting on radial walls is araucarian,
208
uni- to triseriate, predominantly uniseriate (Si= 1.66), contiguous (Cp= 96.6%), and
209
alternate when biseriate or triseriate (Fig. 5C–D). Intertracheary radial pits are circular to
210
hexagonal, 14.0 (12.0–16.8, sd= 1.0) µm in vertical diameter (Fig. 5C–D). Tracheid
211
tangential diameter is 30.5 (19.5–41.9, sd= 5.9) µm. Pits on tangential walls are not
212
observed. Horizontal and end walls of ray parenchyma cells are smooth. Mean ray height is
213
medium, 8 (3–19, sd= 3.85) cells high, almost exclusively uniseriate (Fig. 5E–F), and with
214
a frequency of 3.6 (2–6, sd= 0.9) rays per mm. Ray height is 192 (78–391, sd= 86) µm.
215
Resin plugs in tracheids adjacent to the rays (Fig. 5B, E–F), with variable heights, mostly
216
plate-like (Fig. 5E–F). Cross-fields are araucarioid with 6.2 (5–8, sd= 0.9), mostly
217
contiguous pits per cross-field (Fig. 5G–H, Fig. 4A). Cross-field pits are half bordered (=
218
oculipores), circular, and 8.3 (6.2–9.9, sd= 100) µm in vertical diameter.
219
Remarks. Agathoxylon pseudoparenchymatosum is characterized by its distinct to indistinct
220
growth ring boundaries, mainly uni- to biseriate araucarioid radial pitting, araucarioid
221
cross-fields and presence of resin plugs. Occurrence of resin plugs differentiates it from
222
Agathoxylon antarcticus (Pujana et al., 2014).
223
This fossil-species is frequently found in South America and Antarctica (Gothan,
224
1908; Seward, 1919; Kräusel, 1924; Nishida, 1970, 1981, 1984; Torres et al., 1994; Pujana
225
et al., 2014, 2015, 2017; Mirabelli et al., 2017).
226 227
Agathoxylon sp.
228
Fig. 5I–P.
229 230
New material. MPEF-Pb 10130.
231
Description. The specimen is pycnoxylic secondary xylem. Growth ring boundaries are not
232
observed, probably because of the poor preservation of the specimen (Fig. 5I).
233
Intertracheary pitting on radial walls is uni- to biseriate, mostly uniseriate (Si= 1.39),
234
continuous (Cp= 100%), and alternate when biseriate (Fig. 5J–L). Intertracheary radial pits
235
are circular to hexagonal 11.3 (9.2–13.9, sd= 1.0) µm in vertical diameter. Tracheid
236
tangential diameter is 31.8 (21.1–44.6, sd= 5.3) µm. Pits on tangential walls are not
237
observed. Horizontal and end walls of ray parenchyma cells are smooth. Mean ray height is
238
medium, 8.5 (1–23, sd= 6.1) cells high, uniseriate to partially biseriate, rays uniseriate
239
(86%) or uniseriate with biseriate portions (14%) (Fig. 5M–O), with a frequency of 6.1 (4–
240
9, sd= 1.37) rays per mm. Ray height is 250 (42–557, sd= 145) µm. Only a few cross-fields
241
could be observed, apparently all araucarioid, with ca. 5–8 contiguous half-bordered pits
242
(oculipores) per cross-field (Fig. 5P, Fig. 4A).
243
Remarks. Araucarian tracheid radial pitting and araucarioid cross-field pits indicate an
244
affinity with Agathoxylon (Philippe and Bamford, 2008). Poor preservation of the sample
245
prevented the observation of the growth ring boundaries and allowed to observe only a few
246
cross-fields and other details. The most significant character of this specimen is the 14% of
247
partially biseriate rays. Araucarioxylon semibiseriatum Pant and Singh from the Permian of
248
India and Dadoxylon weavirense Maheshwari from the Permian of Falklands/Malvinas
249
Islands have frequently biseriate rays but they have mostly multiseriate radial pitting
250
(Maheshwari, 1972; Pant and Singh, 1987). Specimens studied by Lutz et al. (2001) from
251
the Triassic of Chile are very alike the specimen from Patagonia. They were assigned to A.
252
semibiseriatum but they do not have predominantly multiseriate radial pitting as the
253
holotype of that fossil-species from India
254 255
Agathoxylon?
256
Fig. 6A–H.
257 258
New material. MPEF-Pb 10114, 10120, 10128, 10129 and 10132–10134.
259
Description. The specimens are pycnoxylic secondary xylem. Most are poorly preserved,
260
and only a few characters could be observed confidently. In some specimens growth rings
261
boundaries are distinct (Fig. 6A) with earlywood-latewood transition abrupt, with 1–5 rows
262
of tracheids. In others they are apparently indistinct or absent (Fig. 6B) and the cells are
263
roundish to polygonal as seen in transverse section (Fig. 6B). All of them have araucarian
264
intertracheary radial pitting, mostly uni- to biseriate and alternate when biseriate (Fig. 6C–
265
E). Pits on tangential walls are not observed. Rays are uniseriate. Resin plugs and axial
266
parenchyma are not observed. Horizontal and end walls of ray parenchyma cells are
267
smooth. Mean ray height is very low to medium, exclusively uniseriate (Fig. 6F–H). Cross-
268
fields are not observed.
269
Remarks. The specimens assigned to this taxonomic unit are poorly preserved. However,
270
some diagnostic characters, like araucarian intertracheary radial pitting indicate similarities
271
and consistency with Agahoxylon.
272 273
Fossil-genus Brachyoxylon Hollick and Jeffrey, 1909
274
Type species. Brachyoxylon notabile Hollick and Jeffrey, 1909
275 276
Brachyoxylon raritanense Torrey, 1923
277
Fig. 7A–H.
278 279
New material. MPEF-Pb 10113 and 10122.
280
Description. Gymnosperm pycnoxylic secondary xylem with growth ring boundaries
281
indistinct (Fig. 7A), hardly observed macroscopically. Cells are roundish to polygonal as
282
seen in transverse section. Intertracheary pitting on radial walls is mixed, uniseriate (Si=
283
1.00), mostly contiguous (Cp= 60.9%) (Fig. 7B–D). Intertracheary radial pits are circular,
284
11.3 (7.5–16.2, sd= 1.4) µm in vertical diameter. Tracheid tangential diameter is 24.8
285
(13.9–27.4, sd= 4.2) µm. Pits on tangential walls are not observed. Horizontal and end
286
walls of ray parenchyma cells are smooth. Mean ray height is very low, 4.3 (1–11, sd=
287
2.16) cells high, uniseriate to partially biseriate (Fig. 7E–F), with a frequency of 5.6 (4–7,
288
sd= 0.8) rays per mm. Ray height is 91 (19–552, sd= 57) µm. Cross-fields with 6.7 (4–10,
289
sd= 2.1), contiguous half-bordered pits (= oculipores) per cross-field (Fig. 7G–H, Fig. 4B).
290
Cross-field pits are circular to elliptic 5.1 (3.2–7.3, sd= 0.8) µm in vertical diameter.
291
Remarks. The samples are assigned to Brachyoxylon because they have mixed radial pitting
292
arrangement and araucarioid cross-fields with several contiguous half-bordered pits
293
(Philippe and Bamford, 2008). The samples were compared with species of Brachyoxylon
294
in Table 2.
295
The most similar fossil-species is B. raritanense Torrey from the Cretaceous of
296
North America, which matches all the diagnostic characters (i.e. exclusively uniseriate
297
radial pitting, lack of axial parenchyma, ray height and seriation, etc., Torrey, 1923) with
298
the Patagonian samples. The description of Torrey (1923) is not very detailed (e.g. it lacks
299
many measurements). Tangential pits on the tracheids were described in the holotype
300
(Torrey, 1923), but they could not be observed in the new specimens (probably because of
301
the preservation). Brachyoxylon liebermanii Philippe from the Cretaceous of Europe also
302
shares the diagnostic characters (Philippe, 1995) with B. raritanense, indicating that these
303
two fossil-species are very similar. Kräusel (1949) synonymized B. raritanense with B.
304
notabile Hollick and Jeffrey. However B. notabile has axial parenchyma, traumatic canals
305
and biseriate pits (Hollick and Jeffrey, 1909) and we consider these differences enough for
306
separating those two fossil-species.
307 308
Brachyoxylon is associated with the family Cheirolepidiaceae, an extinct family of conifers (Alvin et al., 1981). This family was particularly diverse and abundant globally
309
during the Jurassic and Early Cretaceous with a wide range environments from flood plains
310
near river systems or lake margins to environments halophytic or xeric environments
311
(Alvin, 1982; Watson, 1988). Classopollis is the pollen type of the Cheirolepidiaceae and is
312
widely distributed (Alvin et al.1981; Alvin 1982; Zhou 1983; Machhour and Pons 1992;
313
Limarino et al. 2012) and is usually found in association with cones of Classostrobus
314
(Hieger et al., 2015). Leaves are also associated with this extinct family (e.g.
315
Brachyphyllum, Pseudofrenelopsis, Tomaxiellia) (Alvin, 1983; Villar de Seoane, 1998;
316
Moreno Sánchez et al., 2007; Sucerquia et al., 2015). In the Cretaceous of Patagonia, most
317
records of Cheirolepidiaceae are from leaves, cones and pollen (e.g. Archangelsky, 1963;
318
Traverso, 1966; Baldoni, 1978; Archangelsky et al., 1981, Escapa et al., 2012).
319
Brachyoxylon is widely distributed, however its species are mostly found in
320
northern hemisphere sediments (Table 2) (Hollick and Jeffrey, 1909; Philippe, 1995; Tian
321
et al., 2018). In Patagonia, it was found only in the Lower–Middle Jurassic and Lower
322
Cretaceous by Bodnar et al. (2013) and Vera and Césari (2015) respectively and it is
323
virtually absent in Antarctica, only one wood with a putative assignation to this fossil-
324
genus has been described (Torres et al., 1997a).
325 326
Cupressinoxylon?
327
Fig. 7I–P.
328 329
New material. MPEF-Pb 10121.
330
Description. Gymnosperm pycnoxylic secondary xylem with growth ring boundaries
331
indistinct to distinct, the number of tracheid rows of the latewood is difficult to count due to
332
the poor preservation of the specimen (Fig. 7I). Intertracheary pitting on radial walls is
333
abietinoid, uni- to biseriate, mostly uniseriate (Si= 1.35), mostly continuous (Cp= 70.1 %),
334
and opposite when biseriate (Fig. 7J–L). Intertracheary radial pits are circular, 15.5 (11.5–
335
18.4, sd= 1.6) µm in vertical diameter. Tracheid tangential diameter is 34.6 (26.9–45.8, sd=
336
5.02) µm. Pits on tangential walls are not observed. Horizontal and end walls of ray
337
parenchyma cells are smooth. Mean ray height is medium, 5.5 (1–19, sd= 3.6) cells high,
338
exclusively uniseriate (Fig. 7M–N), with a frequency of 4.7 (4–6, sd= 0.8) rays per mm.
339
Ray height is 128 (19–332, sd= 82) µm. Cross-fields with 1.2 (1–2, sd= 0.4), non-
340
contiguous and apparently are cupressoid half-bordered pits (= oculipores) per cross-field
341
(Fig. 7O–P, Fig. 4C). Cross-field pits are circular 11.3 (9.3–13.8, sd= 1.1) µm in vertical
342
diameter.
343
Remarks. The specimen has a poor preservation and many character details (i.e. radial
344
pitting, cross-field pits) were observed better with SEM. We consider that the wood has an
345
abietinean radial pitting arrangement because despite that most uniseriate and biseriate pits
346
are contiguous, when they are biseriate they are almost always circular and opposite (rarely
347
subopposite) and never alternate and hexagonal.
348
Cross-field pits are half-bordered, however the width of the border is not always
349
observed clearly, but seems to be wider than the aperture. Cupressinoxylon differs from
350
Podocarpoxylon mainly by the type of cross-field pits; Podocarpoxylon spp. have usually
351
cross-field pits that match the taxodioid type of IAWA Softwood Committee (2004) or
352
“podocarpoid” sensu other authors (see Pujana and Ruiz, 2017) cross-fields and
353
Cupressinoxylon has cupressoid cross-field pits. Similar fossil-species with usually one,
354
relatively large (mean diameter >10 um), half-bordered pit per cross-field from Patagonia
355
and Antarctica include:
356
1. Cupressinoxylon rotundum Pujana. This Antarctic fossil-species is very similar, but the
357
specimen from Patagonia lacks axial parenchyma (Pujana et al., 2017).
358
2. Ruiz et al., (2017) described C. austrocedroides Nishida from the lower Paleocene of
359
Patagonia. In these samples some of the horizontal walls of the ray parenchyma cells are
360
nodular and axial parenchyma is present.
361
3. Podocarpoxylon multiparenchymatoum Pujana and Ruiz from the Eocene, has clearly
362
taxodioid sensu IAWA Softwood Committee (2004) cross-field pits (half-borders of the
363
pits are thinner than the aperture and with a near to vertical aperture) and abundant axial
364
parenchyma (Pujana and Ruiz, 2017).
365
4. Circoporoxylon gregussii Del Fueyo of the Upper Cretaceous of Patagonia has uniseriate
366
to biseriate rays and axial parenchyma is present (Del Fueyo, 1998).
367
The type of cross-field of the sample is more similar to that of extant Podocarpaceae
368
rather than that of extant Cupressaceae which usually have more than one pit per cross-field
369
(Patel, 1967; Gajardo et al., 1998; Roig, 1992).
370
A few Cupressinoxylon species were found in Patagonia (e.g. Kräusel, 1924; Ruiz
371
et al., 2017). This fossil-genus includes species with affinity to the Cupressaceae or
372
Podocarpaceae (Vaudois and Privé, 1971; Pujana et al., 2017).
373 374
5. Discussion
375 376
The Lower Cretaceous of Gondwana is characterized by the diverse environments
377
caused by the opening of the Atlantic ocean and a change in ocean circulation (Scotese et
378
al., 1999). These paleogeographic changes in the Late Jurassic-Early Cretaceous originated
379
a small ice house in some regions of the planet including Patagonia (Scotese et al., 1999).
380
The paleoflora of the Tres Lagunas Formation would have developed in a paleolatitude
381
between 45º to 54º S according to the coral hermatipics fossils found in the same formation
382
associated with volcanic activity (Scasso and Kiessling, 2002).
383
Consequently, the paleoforest of Tres Lagunas would have developed in a volcanic
384
area. A similar scenario was described for the Early Cretaceous flora of the Livingston
385
Island, which developed in proximity to a volcanic arc at a paleolatitude of 62º (Falcon-
386
Lang and Cantrill, 2001). Based on the analysisof cuticles, during the middle Aptian and
387
the late Albian–early Cenomanian, Patagonian floras (e.g. cycads, bennettitaleans and
388
Cheirolepidiaceae) would have developed mainly in temperate-warm climates (Passalía,
389
2009). This was a result of the the expansion of tropical to subtropical paleofloras towards
390
high latitudes, which were found in South America, Antarctica and Australia (Iglesias et al.,
391
2011).
392
All the fossil woods of the studied assemblage have a conifer-like structure. It is
393
dominated by Araucariaceae-like woods (86%), followed by Brachyoxylon raritanense
394
with 9% (Cheirolepidiaceae), and Cupressinoxylon? with 5% (Fig. 8). Two samples were
395
assigned as “Gymnosperm indet.” because they are very poorly preserved (Fig. 8; Table 1).
396
The paleoforest of the Tres Lagunas Formation was dominated by Agathoxylon, a fossil-
397
genus with affinity to the Araucariaceae. However, older species of this genus, particularly
398
those form the Paleozoic, would have no relation to the family. The Araucariaceae is
399
particularly diverse and abundant in South America and Antarctica during the Jurassic and
400
Early Cretaceous (Philippe et al., 2004; Panti et al., 2012), which is consistent with the
401
proportions we obtained.
402
Fossil wood studies from the Lower Cretaceous of Patagonia are very scarce.
403
Therefore, the taxonomic proportions we obtained can not be compared with those previous
404
studies of fossil woods which were based only in one or very few samples. However, some
405
fossil wood studies from the Lower Cretaceous of Western Antarctica showed a dominance
406
of conifers over other gymnosperms (Torres et al., 1982; Philippe et al., 1995; Falcon-Lang
407
and Cantrill, 2001). In Byers Peninsula, Livingston Island, (Torres et al., 1982; Falcon-
408
Lang and Cantrill, 2001) and in Snow Island (Philippe et al., 1995; Torres et al., 1997a), in
409
outcrops of the Lower Cretaceous Cerro Negro Formation, fossil wood assemblages are
410
dominated by conifers, with Agathoxylon, Podocarpaceae and other putative fossil-genera.
411
However, in none of those studies a dominance of Agathoxylon was found, suggesting that
412
the Araucariaceae were more abundant in Patagonia than in Antarctica. In addition, non-
413
conifers woods were found in Antarctica, particularly Sahnioxylon (Torres et al., 1997a;
414
Falcon-Lang and Cantrill, 2001), which was not found in Patagonia until today.
415
The conifer-dominated forests indicated by the wood assemblage of Tres Lagunas
416
and the absence of cycads (which may have a low potential for fossilization) and other non-
417
conifer trunks like tree ferns differ in the proportions with the pollen and macrofloras
418
previously described from the Lower Cretaceous of the area (e.g. Baldoni, 1978;
419
Archangelsky et al., 1981). Baldoni and De Vera (1980) and Baldoni and Olivero (1983)
420
described Upper Jurassic-Lower Cretaceous fossil leaves assemblages from the Lake
421
Fontana area, about 50 km west from Tres Lagunas locality, which show a dominance of
422
ferns joined with equisetaleans, cycads, bennettitaleans, caytoniales and conifers. Other
423
similar leaf floras were found in the Lower Cretaceous of Patagonia (Baldoni, 1978, 1979):
424
Kachaike Fm. (Del Fueyo et al., 2007; Passalía, 2007a,b), Baqueró group (Archangelsky,
425
2001 and references therein), Springhill Fm. (Del Fueyo et al., 2007; Carrizo and Del
426
Fueyo, 2015), and in the Lower Cretaceous of the Antarctic Peninsula (Torres et al., 1997b;
427
Cantrill, 1998; Falcon-Lang and Cantrill, 2002). The studies from Patagonia indicate a
428
significant diversity of plants with local turnovers in the flora composition (Del Fueyo et
429
al., 2007). In most of the floras, conifers are not a dominant part of the vegetation (Baldoni,
430
1978).
431
The differences in the taxonomic composition between the wood flora from Tres
432
Lagunas and the other mentioned macrofloras can be explained by a local dominance of
433
Araucariaceae or by the fact that araucarias are low producers of leaf fossils, due to their
434
evergreen habit (Falcon-Lang, 2000) or because of the rate of preservation of their leaves.In
435
addtion, palynological studies from surface sediments and drill cores from localities near
436
Tres Lagunas, show a dominance of Classopollis of the Cheirolepidiaceae and
437
Callialasporites whose affinity is questioned between Araucariaceae and Podocarpaceae
438
(Batten and Dutta, 1997). Other pollen grains of the Araucariaceae, Araucariacites and
439
Cyclusphaera are infrequent (Archangelsky et al., 1981; Seiler and Moroni, 1984).
440
Growth rings with narrow latewood composed of only a few rows of cells may
441
indicate a little marked seasonality, typical of subtropical to tropical climates. However,
442
some conifers (as most of the Araucariaceae) have this type of growth rings because of
443
their evergreen habit (Falcon-Lang, 2000), and consequently we must be caution about this
444
deduction. In addition, Brison et al. (2001) recommended not to assure paleoclimatic
445
conclusions taken from Agathoxylon woods make.
446 447
6. Conclusions
448 449
Anatomical descriptions of the woods have shown that the woody plants of the area
450
consisted of Agathoxylon (Araucariaceae), Brachyoxylon (Cheirolepidiaceae) and probably
451
Cupressinoxylon (Cupressaceae or Podocarpaceae).
452
The generic proportions of the fossil woods indicate an Araucariaceae-dominated
453
forest. This is consistent with the fossil record, because the Araucariaceae reaches its major
454
diversity and abundance in South America and Antarctica in the Early Cretaceous (Panti et
455
al., 2012). However, coeval fossil leaf and pollen floras of the region and of Antarctica do
456
not indicate an Araucariaceae dominance.
457 458
Acknowledgments
459
The authors thank two anonymous reviewers and the editor for their suggestions
460
and corrections. Funds for this work were provided by PIP 2014-0259 granted to RRP by
461
Conicet and PUE 0098 granted to the MACN by Conicet. Ana Greppi is acknowledged for
462
her collaboration with the drawings.
463 464
References
465
Aguirre Urreta, M.B., Rawson, P.F., 1998. The Early Cretaceous (Valanginian) ammonite
466
Chacantuceras gen. nov. - a link between Neuquén and Austral basins. Revista de la
467
Asociación Geológica Argentina 53, 354–364.
468 469 470 471
Alvin, K.L., 1982. Cheirolepidiaceae: Biology, structure and paleoecology. Review of Palaeobotany and Palynology 37, 71–98. Alvin, K.L., 1983. Reconstruction of a Lower Cretaceous conifer. Botanical Journal of the Linnean Society 86, 169–176.
472
Alvin, K.L., Fraser, C.J., Spicer, R.A., 1981. Anatomy and paleoecology of
473
Pseudofrenelopsis and associated conifers in the English Wealden. Palaeontology
474
24, 759–778.
475
Archangelsky, A., Llorens, M., 2003. Palinología de la Formación Kachaike, Cretácico
476
Inferior de la Cuenca Austral, provincia de Santa Cruz. I- Esporas lisas y
477
cinguladas. Ameghiniana 40, 71–80.
478 479
Archangelsky, S., 1963. A new Mesozoic flora from Ticó, Santa Cruz Province, Argentina. Bulletin of the British Museum (Natural History) Geology 8, 45–92.
480
Archangelsky, S., 2001. Evidences of an Early Cretaceous floristic change in Patagonia,
481
Argentina. Actas VII International Symposium on Mesozoic Terrestrial Ecosystems
482
7, 15–19.
483
Archangelsky, S., Baldoni, A., Gamerro, J.C., Palamarczuk, S., Seiler, J., 1981. Palinología
484
estratigráfica del Cretácico de Argentina Austral. Diagrama de grupos polínicos del
485
suroeste de Chubut y Noroeste de Santa Cruz. Actas VIII Congreso Geológico
486
Argentino, San Luis 4, 719–742.
487
Archangelsky, S., Baldoni, A., Gamerro, J.C., Seiler, J., 1984. Palinología estratigráfica del
488
Cretácico de Argentina Austral. 3. Distribución de las especies y conclusiones.
489
Ameghiniana 21, 15–33.
490
Baldoni, A.M., 1978. Análisis de algunas tafofloras jurásicas y eocretácicas de Argentina y
491
Chile. Actas II Congreso Argentino de Paleontología y Bioestratigrafía y I
492
Congreso Latinoamericano de Paleontología 5, 15–39.
493
Baldoni, A.M., 1979. Nuevos elementos paleoflorísticos de la tafoflora de la Formación
494
Springhill, límite Jurásico-Cretácico, subsuelo de Argentina y Chile Austral.
495
Ameghiniana 16, 103–119.
496 497
Baldoni, A.M., De Vera, H., 1980. Plantas fósiles de la Formación Apeleg (Cretácico) en la zona del lago Fontana, Provincia de Chubut. Ameghiniana 17, 289–296.
498
Baldoni, A.M., Olivero, E., 1983. Plantas fósiles de la Formación Lago La Plata
499
procendentes de Arroyo Canogas, provincia de Chubut, Argentina. Ameghiniana
500
20, 34–40.
501
Barale, G., 1981. La paléoflore jurassique du Jura français: étude systématique, aspects
502
stratigraphiques et paléoecologiques. Documents du Laboratoire de Géologie de
503
Lyon 81, 1–467.
504
Batten, D.J., Dutta, R.J., 1997. Ultrastructure of exine of gymnospermous pollen grains
505
from Jurassic and basal Cretaceous deposits in Northwest Europe and implications
506
for botanical relationships. Review of Palaeobotany and Palynology 99, 25–54.
507
Bengston, P., 1988. Open nomenclature. Palaeontology 31, 223–227.
508
Bergmann, F.A., 1956. Fáunula neocomiana de la laguna Salada en la zona del Apeleg-
509
Senguerr del Chubut occidental. Sociedad Argentina de Minería y Geología, Revista
510
Minera 22, 14–16.
511
Bodnar, J., Escapa, I., Cúneo, N.R., Gnaedinger, S., 2013. First record of conifer from the
512
Cañadón Asfalto Formation (Early–Middle Jurassic), Chubut Province, Argentina.
513
Ameghiniana 50, 227–239.
514
Boureau, E., Serra, C., 1961. Sur les structures normales et traumatiques d’un bois
515
mésozoïque du Cambodge, le Brachyoxylon saurinii, n.sp. Revue Générale de
516
Botanique 68, 373–393.
517
Brea, M., Bellosi, E.S., Umazano, A.M., Kause, J.M., 2016. Aptian–Albian Cupressaceae
518
(sensu stricto) woods from Cañadón Asfalto Basin, Patagonia Argentina.
519
Cretaceous Research 58, 17–28.
520 521 522 523
Brison, A.L., Philippe, M., Thevenard, F., 2001. Are Mesozoic wood growth rings climateinduced? Paleobiology 27, 531–538. Cantrill, D.J., 1998. Early Cretaceous fern foliage from President Head, Snow Island, Antarctica. Alcheringa 22, 241–258.
524
Carrizo, M.A., Del Fueyo, G.M., 2015. The Early Cretaceous megaflora of the Springhill
525
Formation, Patagonia. Paleofloristic and Paleonvironmental inferences. Cretaceous
526
Research 56, 93–109.
527 528
Del Fueyo, G.M., 1998. Coniferous woods from the Upper Cretaceous of Patagonia, Argentina. Revista Española de Paleontología 13, 43–50.
529
Del Fueyo, G.M., Villar de Seoane, L., Archangelsky, A., Guler, V., Llorens, M.,
530
Archangelsky, S., Gamerro, J.C., Musacchio, E.A., Passalia, M.G., Barreda, V.D.,
531
2007. Biodiversidad de las paleofloras de Patagonia Austral durante el Cretácico
532
Inferior. Publicación Especial de la Asociación Paleontológica Argentina 11, 101–
533
122.
534
Dupéron-Laudouéneix, M., 1991. Importance of fossil woods (conifers and angiosperms)
535
discovered in continental Mesozoic sediments of Northern Equatorial Africa.
536
Journal of African Earth Sciences 12, 391–396.
537
Escapa, I.H., Rothwell, G.W., Stockey, R.A., Cúneo, N.R., 2012. Seed cone anatomy of
538
Cheirolepidaceae (Coniferales): Reinterpreting Pararaucaria patagonica Wieland.
539
American Journal of Botany 99, 1058–1068.
540
Falcon-Lang, H.J., 2000. The relationship between leaf longevity and growth ring
541
markedness in modern conifer wood and its implications for palaeoclimatic studies.
542
Palaeogeography, Palaeoclimatology, Palaeoecology 160, 317–328.
543
Falcon-Lang, H.J., Cantrill, D.J., 2001. Gymnosperm woods from the Cretaceous (mid-
544
Aptian) Cerro Negro Formation, Byers Peninsula, Livingston Island, Antarctica:
545
The arborescent vegetation of a volcanic arc. Cretaceous Research 22, 277–293.
546
Falcon-Lang, H.J., Cantrill, D.J., 2002. Terrestrial paleoecology of the Cretaceous (Early
547
Aptian) Cerro Negro Formation, South Shetland Islands, Antarctica: a record of
548
polar vegetation in a volcanic arc environment. Palaios 17, 491–506.
549
Gajardo, R., Woltz, P., Gondran, M., Marguerier, J., 1996. Xylologie des conifères
550
endémiques des Andes méridionales au MEB. I. Saxegothaeaceae. Revue de
551
Cytologie et de Biologie Végétales, Le Botaniste 19, 31–45.
552
Galtier, J., Phillips, T.L., 1999. The acetate peel technique. In: Jones, T.P., Rowe, N.P.
553
(Ed), Fossil plants and spores: modern techniques. Geological Society, London, 67–
554
70.
555
Gnaedinger, S., Coria, R.A., Kopphelus, E., Casadío, S., Tunik, M., Currie, P., 2017. First
556
Lower Cretaceous record of Podocarpaceae wood associated with dinosaur remains
557
from Patagonia, Neuquén Province, Argentina. Cretaceous Research 78, 228–239.
558
Gothan, W., 1908. Die fossilen Hölzer von der Seymour und Snow Hill Inseln.
559
Wissenschaftliche Ergebnisse der Schwedischen Südpolar Expedition 1901–1903 3,
560
1–33.
561
Hechem, J.J., Figari, E., Homovc, J., 1993. Secuencias deposicionales en el Neocomiano
562
del lago Fontana, Chubut, Argentina. Actas XII Congreso Geológico Argentino
563
(Mendoza) 2, 119–123.
564 565
Heim, A., 1940. Geological observations in the Patagonian Cordillera. Eclogae Geologicae Helveticae 33, 25–51.
566
Hieger, T.J., Serbet, R., Harper, C.J., Taylor, T.N., Taylor, E.L., Gulbranson, E.L., 2015.
567
Cheirolepidiaceous diversity: an anatomically preserved pollen cone from the
568
Lower Jurassic of southern Victoria Land, Antarctica. Review of Palaeobotany and
569
Palynology 220, 78–87.
570 571
Holden, R., 1913. Contributions to the anatomy of Mesozoic conifers. I. Jurassic coniferous from Yorkshire. Annals of Botany 27, 533–554.
572
Hollick, A., Jeffrey, E.C., 1909. Studies of Cretaceous coniferous remains from
573
Kreischerville, New York. Memoirs of New York Botanical Garden 3, 1–138.
574
IAWA Softwood committee, 2004. IAWA list of microscopic features for softwood
575 576 577
identification. IAWA Journal 25, 1–70. Iamandei, E., Iamandei, S., 2005. Early Cretaceous protopinaceous fossil wood from South Dobrogea, Romania. Acta Palaeontologica Romaniae 5, 231–247.
578
Iamandei, E., Iamandei, S., Gradĭnaru, E., 2018. Contributions to the study of the Early
579
Jurassic petrified forest of Holbav and Cristian areas (Braşov region, South
580
Carpathians, Romania). 1st part. Acta Palaeontologica Romaniae 14, 3–34.
581
Iglesias, A., Artabe, A.E., Morel, E.M., 2011. The evolution of Patagonian climate and
582
vegetation from the Mesozoic to the present. Biological Journal of the Linnean
583
Society 130, 409–422.
584 585 586 587
Kräusel, R., 1924. Beiträge zur Kenntnis der fossilen Flora Südamerikas 1. Fossile Hölzeraus Patagonien und benachbarten Gebieten. Arkiv für Botanik 19, 1–36. Kräusel, R., 1949. Die fossilen Koniferen-Hölzer (unter Ausschluss von Araucarixoxylon Kraus). Palaeontographica B 89, 83–203.
588
Kurzawe, F., Merlotti, S., 2010. O complexo Dadoxylon-Araucarioxylon, Carbonífero e
589
Permiano do Gondwana: estudo taxonômico do gênero Araucarioxylon. Pesquisas
590
em Geociências 37, 41–50.
591
Kurzawe, F., Iannuzzi, R., Merlotti, S., 2012. On the Permian permineralized woods of the
592
“The fossil flora of the Coal Measures of Brazil” (D. White, 1908): taxonomic re-
593
evaluation. The Palaeobotanist 61, 57–65.
594 595
Laudouéneix, M., 1973. Sur deux bois homoxylés de Lagon (Tchad). Comptes Rendus du 96ème Congrès des Sociétés savantes (Toulouse), Sciences 5, 107–131.
596
Limarino, C.O., Passalía, M.G., Llorens, M., Vera, E.I., Perez Loinaze, V.S., Césari, S.N.,
597
2012. Depositional environments and vegetation of Aptian sequences affected by
598
volcanism in Patagonia. Palaeogeography, Palaeoclimatology, Palaeoecology 323–
599
325, 22–41.
600
Lucas, R.C., Lacey, W.S., 1981. A permineralized wood flora of probable early Tertiary
601
age from King George Island, South Shetland islands. British Antarctic Survey
602
Bulletin 53, 147–151.
603
Lutz, A.I., Crisafulli, A., Herbst, R., 2001. Contribución al estudio xiloflorístico de la
604
Formación La Ternera, Triásico Superior (Chile). Ameghiniana 38, 119–127.
605
Machhour, L., Pons, D., 1992. Bois de coniférales dans l’Albien du synclinal du Beausset
606
(Var, SE France): Signification paléogéographique et paléoclimatique. Geobios 25,
607
181–193.
608 609
Maheshwari, H.K., 1972. Permian wood from Antarctica and revision of some Lower Gondwana wood taxa. Palaeontographica B 138, 1–43.
610
Martínez, L.C.A., Lutz, A.I., 2007. Especies nuevas de Baieroxylon Greguss y
611
Circoporoxylon Kaüsel en las formaciones Rayoso y Huincul (Cretácico), provincia
612
de Neuquén, Argentina. Ameghiniana 44, 537–546.
613 614 615 616
Masiuk, V., Nakayama, C., 1978. Sedimentitas marinas del lago Fontana. Su importancia. Actas 7° Congreso Geológico Argentino 2, 261–378. McLoughlin, S., 2001. The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Australian Journal of Botany 49, 271–300.
617
Mirabelli, S.L., Pujana, R.R., Marenssi, S.A., Santillana, S.N., 2017. Conifer fossil woods
618
from the Sobral Formation (lower Paleocene, Western Antarctica). Ameghiniana 55,
619
91–108.
620
Moreno Sánchez, M., Gómez Cruz, A. de J., Castillo González, H., 2007. Frenelopsis y
621
Pseudofrenelopsis (Coniferales: Cheirolepidaceae) en el Cretácico Temprano de
622
Colombia. Boletín de Geología 29, 13–19.
623 624
Nishida, M., 1970. On some fossil plants from Chile, South America. Annual Report of the foreign Students College of Chiba University 5, 13–18.
625
Nishida, M., 1981. Petrified woods from the Tertiary of Quiriquina Island (a preliminary
626
report). In: Nishida, M. (Ed), A report of paleobotanical survey to southern Chile.
627
Faculty of Science, Chiba University, Chiba, 38–40.
628
Nishida, M., 1984. The anatomy and affinities of the petrified from the Tertiary of Chile II.
629
Araucarioxylon from Quiriquina Island, near Concepción. In: Nishida, M. (Ed),
630
Contributions to the Botany in the Andes I. Academia Scientific Book Inc., Tokyo,
631
86–90.
632
Nishida, M., Ohsawa, T., Rancusi, M.H., 1990. Miscellaneous notes on the petrified
633
coniferous woods from central Chilean Patagonia, XI Region, Chile. In: Nishida, M.
634
(Ed), A report of the paleobotanical survey to Patagonia, Chile. Faculty of Science,
635
Chiba University, Chiba, 21–29.
636
Nunes, C.I., Pujana, R.R., Escapa, I.H., Gandolfo, M.A., Cúneo, R.N., 2018. A new species
637
of Carlquistoxylon from the Early Cretaceous of Patagonia (Chubut Province,
638
Argentina): The oldest record of angiosperm wood from South America. IAWA
639
Journal 39, 406–426.
640
Nunes, C.I., Bodnar, J., Escapa, I.H., Gandolfo, M.A., Cúneo, N.R., 2019. A new
641
cupressaceous wood from the Lower Cretaceous of Central Patagonia reveals
642
possible clonal growth habit. Cretaceous Research 99, 133–148.
643 644 645 646 647 648 649 650 651 652
Olivero, E.B., 1983. Amonoideos y bivalvos berriasianos en la cantera Tres Lagunas, Chubut. Ameghiniana 20, 11–20. Olivero, E.B., 1987. Cefalópodos y bivalvos titonianos y hauterivianos de la Formación Lago La Plata, Chubut. Ameghiniana 24, 181–202. Pant, D., Singh, V., 1987. Xylotomy of some woods from Raniganj Formation (Permian), Raniganj Coalfield, India. Palaeontographica B 203, 1–82. Panti, C., Pujana, R.R., Zamaloa, M. del C., Romero, E.J., 2012. Araucariaceae macrofossil record from South America and Antarctica. Alcheringa 36, 1–22. Patel, R.N., 1967. Wood anatomy of Podocarpaceae indigenous to New Zealand. 2. Podocarpus. New Zealand Journal of Botany 5, 307–321.
653
Passalía, M.G., 2004. Gimnospermas cretácicas de Patagonia como indicadores de CO2
654
atmosférico. 11° Reunião de Paleobotânicos e Palinólogos (Gramados), Boletín de
655
Resumos, 112.
656 657 658 659
Passalía, M.G., 2007a. A mid-Cretaceous flora from the Kachaike Formation, Patagonia, Argentina. Cretaceous Research 28, 830–840. Passalía, M.G., 2007b. Nuevos registros para la flora cretácica descripta por Halle (1913) en Lago San Martín, Santa Cruz, Argentina. Ameghiniana 44, 565–595.
660
Passalía, M.G., 2009. Cretaceous pCO2 estimation from stomatal frequency analysis of
661
gymnosperm leaves of Patagonia, Argentina. Palaeogeography, Palaeoclimatology,
662
Palaeoecology 273, 17–24.
663 664 665 666 667 668
Penhallow, D.P., 1907. A manual of the North American gymnosperms. Ginn and Company, Boston. Philippe, M., 1995. Bois fossiles du Jurassique de Franche-Comté (nord-est de la France): systématique et biogéographie. Palaeontographica B 236, 325–343. Philippe, M., 2002. Reappraisal of five genera designed for fossil coniferous woods by early American wood anatomists. IAWA Journal 23, 319–326.
669 670 671 672
Philippe, M., 2011. How many species of Araucarioxylon? Comptes Rendus Palevol 10, 201–208. Philippe, M., Bamford, M.K., 2008. A key to morphogenera used for Mesozoic conifer-like woods. Review of Palaeobotany and Palynology 148, 184–207.
673
Philippe, M., Torres, T, Barale, G., Thevenard, F., 1995. President Head, Snow Island,
674
South Shetland, a key-point for Antarctica Mesozoic palaeobotany. Comptes Redus
675
de l´Acadêmie des Sciences, París, Series II 321, 1055–1061.
676
Philippe, M., Bamford, M., McLoughlin, S., Alves, L.S.R., Falcon-Lang, H.J., Gnaedinger,
677
S., Ottone, E.G., Pole, M., Rajanikanth, A., Shoemaker, R.E., Torres, T., Zamuner,
678
A., 2004. Biogeographic analysis of Jurassic–Early Cretaceous wood assemblages
679
from Gondwana. Review of Palaeobotany and Palynology 129, 141–173.
680
Philippe, M., Suteethorn,V., Buffetaut, E., 2011. Révision de Brachyoxylon rotnaense
681
Mathiesen, description de B. serrae n.sp. et conséquences pour la stratigraphie du
682
Crétacé inférieur d’Asie du Sud-Est. Geodiversitas 33, 25–32.
683 684 685 686
Ploszkiewicz, V., 1987. Descripción geológica de la Hoja 47c, Apeleg, provincia del Chubut. Servicio Geologico Nacional, Boletin n°204, Buenos Aires. Ploszkiewicz, V., Ramos, V.A., 1977. Estratigrafía y tectónica de la Sierra de Payaniyeu, provincia del Chubut. Revista de la Asociación Geológica Argentina 32, 209–226.
687
Poole, I., Cantrill, D., 2001. Fossil woods from Williams Point beds, Livingston Island,
688
Antarctica: A late Cretaceous southern high latitude flora. Palaeontology 44, 1081–
689
1112.
690 691
Pujana, R.R., Ruiz, D.P., 2017. Podocarpoxylon Gothan reviewed in the light of a new species from the Eocene of Patagonia. IAWA Journal 38, 220–244.
692
Pujana, R.R., Umazano, A.M., Bellosi, E.S., 2007. Maderas fósiles afines a Araucariaceae
693
de la Formación Bajo Barreal, Cretácico Tardío de Patagonia central (Argentina).
694
Revista del Museo Argentino de Ciencias Naturales 9, 161–167.
695
Pujana, R.R., Santillana, S.N., Marenssi, S.A., 2014. Conifer fossil woods from the La
696
Meseta Formation (Eocene of Western Antarctica): Evidence of Podocarpaceae-
697
dominated forests. Review of Palaeobotany and Palynology 200, 122–137.
698
Pujana, R.R., Marenssi, S.A., Santillana, S.N., 2015. Fossil woods from the Cross Valley
699
Formation (Paleocene of Western Antarctica): Araucariaceae-dominated forests.
700
Review of Palaeobotany and Palynology 222, 56–66.
701
Pujana, R.R., Ruiz, D.P., Martínez, L.C.A., Zhang, Y., 2016. Proposals for quantifying two
702
characteristics of tracheid pit arrangement in gymnosperm woods. Revista del
703
Museo Argentino de Ciencias Naturales. 18, 117–124.
704
Pujana, R.R., Raffi, M.E., Olivero, E.B., 2017. Conifer fossil woods from the Santa Marta
705
Formation (Upper Cretaceous), Brandy Bay, James Ross Island, Antarctica.
706
Cretaceous Research 77, 28–38.
707 708
Ramos, V., 1981. Descripción geológica de la Hoja 47ab “Lago Fontana”. Provincia del Chubut. Servicio Geológico Nacional, Boletín nº183, Buenos Aires.
709
Rößler, R., Philippe, M., Van Konijenburg-Van Cittert, J.H.A., McLoughlin, S., Sakala, J.,
710
Zijlstra, G., Bamford, M.K., Booi, M., Brea, M., Crisafulli, A., Decombeix, A.L.,
711
Dolezych, M., Dutra, T.L., Esteban, L.G., Falaschi, P., Feng, Z., Gnaedinger, S.C.,
712
Sommer, M.G., Harland, M., Herbst, R., Iamandei, E., Iamandei, S., Jiang, H.,
713
Kunzmann, L., Kurzawe, F., Merlotti, S., Naugolnykh, S., Nishida, H., Noll, R., Oh,
714
C., Orlova, O., de Palacios, P.P., Poole, I., Pujana, R.R., Rajanikanth, A., Ryberg,
715
P., Terada, K., Thévenard, F., Torres, T., Vera, E.I., Zhang, W., Zheng, S., 2014.
716
Which name(s) should be used for araucaria-like fossil wood?- Results of a poll.
717
Taxon 63, 177–184.
718 719 720
Roig, F.A., 1992. Comparative wood anatomy of southern South America Cupressaceae. IAWA Bulletin 13, 151–162. Ruiz, D.P., Brea, M., Raigemborn, M.S., Matheos, S.D., 2017. Conifer woods from the
721
Salamanca
Formation
(early
Paleocene),
Central
Patagonia,
Argentina:
722
Paleoenvironmental implications. Journal of South American Earth Sciences 76,
723
427–445.
724
Seiler, J., Moroni, A.M., 1984. Zonación palinológica del subsuelo en el oeste del Golfo de
725
San Jorge. Correlación con pozos de la misma zona. Actas 3° Congreso Argentino
726
de Paleontología y Bioestratigrafía (Corrientes), 115–123.
727 728
Seward, A.C., 1919. Fossil Plants. Volume 4. Ginkgoales, Coniferales, Gnetales. Cambridge University Press.
729
Scasso, R.A., 1987. Estratigrafía y ambientes de sedimentación del ciclo sedimentario del
730
Jurásico Superior y Cretácico Inferior de la región sudoccidental del Chubut, con
731
referencias a la estratigrafía general del área (Unpubl. PhD thesis). Universidad de
732
Buenos Aires, 300 pp.
733
Scasso, R.A., 1989. La cuenca del Jurásico Superior-Cretácico Inferior de la región
734
sudoccidental del Chubut. In: Chebli, G.A., Spalletti, L.A. (Ed), Cuencas
735
Sedimentarias Argentinas. Instituto Superior de Correlación Geológica, Serie de
736
Correlación Geológica 6, Universidad Nacional de Tucumán, 395–417.
737
Scasso, R.A., Kiessling, W., 2002. Earliest Cretaceous high latitude reef in Tres Lagunas
738
(Chubut Province, Argentina). Actas 15° Congreso Geológico Argentino 1, 754–
739
759.
740 741
Scotese, C.R., Boucot, A.J., McKerrow, M.S., 1999. Gondwanan palaeogeography and palaeoclimatology. Journal of African Earth Science 28, 99–114.
742
Suárez, M., De la Cruz, R., Aguirre-Urreta, B., Fanning, M., 2009. Relationship between
743
volcanism and marine sedimentation in northern Austral (Aysén) Basin, central
744
Patagonia: Stratigraphic, U-Pb SHRIMP and paleontologic evidence. Journal of
745
South American Earth Sciences 27, 309–325.
746
Sucerquia, P.A., Bernardes-de-Oliveira, M.E.C., Mohr, B.A.R., 2015. Phytogeographic,
747
stratigraphic, and paleoclimatic significance of Pseudofrenelopsis capillata sp. nov.
748
from the Lower Cretaceous Crato Formation, Brazil. Review of Palaeobotany and
749
Palynology 222, 116–128.
750
Thevenard, F., Philippe, M., Barale, G., 1995. Le delta hettangien de La Grandville
751
(Ardennes, France): étude paléobotanique et paléoécologique. Geobios 28, 145–
752
162.
753
Tian, N., Zhu, Z.-P., Wang, Y.-D., Wang, S.-C., 2018. Ocurrence of Brachyoxylon Hollick
754
et Jeffrey from the Lower Cretaceous of Zhejiang Province, southeastern China.
755
Journal of Palaeogeography 7, 1–10.
756
Torres, T., Valenzuela, E., González, I., 1982. Paleoxilología de Península Byers, Isla
757
Livingston, Antartica. Actas 3° Congreso Geológico Chileno (Concepción) 2, 321–
758
342.
759 760
Torres, T., Marenssi, S.A., Santillán, S., 1994. Maderas fósiles de la isla Seymour, Formación La Meseta, Antártica. Serie Científica INACH 44, 17–38.
761
Torres, T., Barale, G., Meón, H., Philippe, M., Thévenard, F., 1997a. Cretaceous flora from
762
Snow Island (South Shetland Islands, Antarctica) and their biostratigraphic
763
significance. In: Ricci C.A. (Ed.), The Antarctic Region: Geological Evolution and
764
Processes. Terra Antarctica Publication, Siena, 1023–1028.
765
Torres, T., Barale, G., Thévenard, F., Philippe, M., Galleguillos, H., 1997b. Morfología y
766
sistemática de la flora del Cretácico Inferior de President Head, isla Snow,
767
archipiélago de las Shetland del Sur, Antártica. Serie Científica Inach 47, 59–86.
768
Torrey, R.E., 1923. The comparative anatomy and phylogeny of the Coniferales, Part. 3:
769
Mesozoic and Tertiary coniferous woods. Memoirs of Boston Society of Natural
770
History 6, 39–106.
771 772 773 774 775 776
Traverso, N.E., 1966. Brachyphyllum tigrense, nueva conífera de la Formación Baqueró, Cretácico de Santa Cruz. Ameghiniana 4, 189–194. Vaudois,
N.,
Privé,
C.,
1971. Révision
des
bois
fossiles
de Cupressaceae.
Palaeontographica B 134, 61–86. Vera, E.I., Césari, S.N., 2015. New species of conifer wood from the Baqueró Group (Early Cretaceous) of Patagonia. Ameghiniana 52, 468–471.
777
Villar de Seoane, L., 1998. Comparative study of extant and fossil conifer leaves from the
778
Baqueró Formation (Lower Cretaceous), Santa Cruz Province, Argentina. Review
779
of Palaeobotany and Palynology 99, 247–263.
780 781
Watson , J., 1988. The Cheirolepidiaceae. In: Beck, C.B. (Ed.), Origin and evolution of gymnosperms. Columbia University Press, New York, 382–447.
782
White, D., 1908. Fossil Flora of the Coal Measures of Brazil. In: White, I.C. (Ed.),
783
Comissão de Estudos das Minas de Carvão de Pedra do Brasil. Relatório Final.
784
Seventh Gondwana Symposium, 2nd ed. 1988, Departamento Nacional de Produção
785
Mineral, São Paulo, 558–568.
786
Zamuner, A.B., Falaschi., 2005. Agathoxylon matildense n. sp., leño araucariáceo del
787
Bosque Petrificado del Cerro Madre e Hija, Formación La Matilde (Jurasico medio),
788
provincia de Santa Cruz, Argentina. Ameghiniana 42, 339–346.
789 790
Zhou, Z., 1983. A heterophyllous conifer from the Cretaceous of east China. Palaeontology 26, 789–811.
791
Fig. 1. Stratigraphic table based on data compiled from Ploszkiewick (1987), Aguirre
792
Urreta and Rawson (1998), and Scasso and Kiessling (2002).
793 794
Fig. 2. Location map of the two outcrops.
795 796
Fig. 3. A–H, Agathoxylon antarcticus (Poole and Cantrill) Pujana, Santillana and Marenssi,
797
I–P, Agathoxylon kellerense (Lucas and Lacey) Pujana. A–B. Distinct to indistinct growth
798
ring boundaries in transverse section (TS). Bars: 200 µm. MPEF-Pb 10125 (A) and 10123
799
(B). C. Predominantly uniseriate radial pitting in a longitudinal radial section (RLS). Bar:
800
50 µm. MPEF-Pb 10125. D. Uni-biseriate radial pitting (SEM). Bar: 45 µm. MPEF-Pb
801
10117. E–F. Uniseriate rays (TLS). Bars: 200 µm (E) and 100 µm (F). MPEF-Pb 10115 (E)
802
and 10129 (F). G–H. Cross-fields (SEM). Bar: 20 µm. MPEF-Pb 10131 (G) and 10125 (H).
803
I. Distinct growth ring boundary (TS). Bar: 200 µm. MPEF-Pb 10118. J–L. Bi-triseriate
804
radial pitting (RLS). Bars: 100 µm (J, L) and 50 µm (K). MPEF-Pb 10135 (J, K) and 10118
805
(L). M–N. Uniseriate rays (TLS). Bars: 200 µm. MPEF-Pb 10118 (M) and 10119 (N). O–P.
806
Cross-fields (RLS). Bars: 50 µm. MPEF-Pb 10118 (O) and 10135 (P).
807 808
Fig. 4. Schematic draw of cross-fields. A. Agathoxylon. B. Brachyoxylon raritanense. C.
809
Cupressinoxylon?. All samples assigned to Agathoxylon have similar cross-fields.
810 811
Fig. 5. A–H, Agathoxylon pseudoparenchymatosum (Gothan) Pujana, Santillana and
812
Marenssi, MPEF-Pb 10126. I–P, Agathoxylon sp., MPEF-Pb 10130. A. Distinct growth
813
ring boundary (TS). Bar: 200 µm. B. Resin plugs in tracheids close to the rays (arrowhead)
814
(TS). Bar: 100 µm. C. Bi-triseriate radial pitting. Bar: 50 µm. D. Uniseriate radial pitting
815
(SEM). Bar: 40 µm. E–F. Uniseriate rays and resin plugs (arrowheads) (TLS). Bars: 200
816
µm (E) and 100 µm (F). G–H. Cross-fields. Bars: 50 µm. I. Traqueids in a transverse
817
section, growth rings boundaries not observed (TS). Bar: 200 mm. J–K. Uni-biseriate radial
818
pitting (SEM). Bars: 30 µm. L. Uni-biseriate radial pitting (RLS). Bar: 50 m. M–O. Rays
819
uniseriate and uniseriate with biseriate portions (TLS). Bars: 200 µm (M) and 100 µm (N,
820
O). P. Cross-fields (SEM). Bar: 20 µm.
821
822
Fig. 6. Agathoxylon?. A. Distinct to indistinct growth ring boundary (TS). Bar: 200 µm.
823
MPEF-Pb 10134. B. Tracheids (TS). Bar: 200 µm. MPEF-Pb 10133. C. Biseriate radial
824
pitting (RLS). Bar: 50 µm. MPEF-Pb 10128. D–E. Biseriate radial pitting (SEM). Bars: 30
825
µm (D) and 20 µm (E). MPEF-Pb 10114 (D) and 10120 (E). F–H. Uniseriate rays (TLS).
826
Bars: 200 (F, G) and 100 (H) µm. MPEF-Pb 10128 (F), 10114 (G) and 10129 (H).
827 828
Fig. 7. A–H, Brachyoxylon raritanense Torrey. I–P, Cupressinoxylon?, MPEF-Pb 10121.
829
A. Growth ring boundaries indistinct (TS). Bar: 500 µm. MPEF-Pb 10113. B–C. Uniseriate
830
mixed radial pitting (SEM). Bar: 40 µm. MPEF-Pb 10113. D. Uniseriate and contiguous
831
radial pitting. Bar: 40 µm. MPEF-Pb 10122. E–F. Uniseriate rays (TLS). Bars: 200 µm.
832
MPEF-Pb 10113. G–H. Cross-fields (SEM). Bar: 20 mm. MPEF-Pb 10122. I. Growth ring
833
boundary indistinct (TS). Bar: 200 µm. J. Uniseriate radial pitting. Bar: 50 µm. K. Uni-
834
biseriate radial pitting (RLS). Bar: 50 µm. L. Uniseriate radial pitting (SEM). Bar: 45 µm.
835
M–N. Uniseriate rays (TLS). Bars: 200 µm (M) and 100 µm (N). O–P. Cross-fields (SEM).
836
Bars: 20 µm.
837 838
Fig. 8. Circle with the proportions of the fossil-genera studied.
839 840
Table 1. List of studied specimens. Si and Cp indices are those of Pujana et al. (2016).
841
Abbreviations: VDRP= Vertical diameter radial pits; AP= Axial parenchyma; TTD=
842
Tracheid tangential diameter; NPxCF= Number of pits per cross-field; VDCFP= Vertical
843
diameter of cross-field pits; RH= Ray height; R x mm= Rays per mm. A= absent; ?=
844
unknown values; *= less than 15 measurements.
845 846
Table 2. Comparison of Brachyoxylon raritanense with other species of Brachyoxylon.
847
Abbreviations: GRB= Growth ring boundary; IPS= Intertracheary pitting seriation; PxCF=
848
Pit per cross-field; RS= Ray seriation; RH= Ray height; AP= Axial parenchyma; C=
849
Crassulae; RC= Resin canal; D= Distinct; I= Indistinct; A= Absent; P= Present; ?=
850
unknown; T= Traumatic; (T)= Rarely traumatic; e.g.: 1(2)s= Mainly uniseriate, rarely
851
biseriate pits. Bold letter indicates similarities with the Tres Lagunas samples. All the
852
authorities cites are in the references.
MPEF-Pb
Taxon
Si
Cp [%]
VDRP[µm]
AP
TTD [µm]
NPxCF [cells]
VDCFP [µm] 4.7
RH [cells] 4.3
RH [µm] 100.1
10113
Brachyoxylon raritanense
1.00
41.2
11.0
A
24.6
6.5
10114
Agathoxylon?
1.60
100.0
13.2
?
38.8
10115
Agathoxylon antarcticus
1.01
76.5
12.2
A
34.0
10116
Agathoxylon kellerense
2.01
100.0
12.7
A
31.8
10117
Agathoxylon antarcticus
1.74
100.0
12.8
A
42.6
R x mm
?
7.2*
8.4*
241.0*
4.8
5.5*
10.4*
5.5
101.0
6.1
6*
9.2*
6.8
138.7
5.4
5.3*
7.7
6.2
157.7
3.8
6.2*
10118
Agathoxylon kellerense
1.84
100.0
13.9
A
41.0
4.3
9.0
8.3
207.5
4.2
10119
Agathoxylon kellerense
2.00
100.0
16.0
A
39.8
6.3*
8.2*
13.0
264.6
4.3
10120
Agathoxylon?
2.08
100.0
13.2
?
?
?
?
5.0*
191.1*
4.6
10121
Cupressinoxylon?
1.35
88.3
15.5
A
34.6
1.2
11.3
5.5
127.7
4.7
10122
Brachyoxylon raritanense
1.00
80.6
11.6
A
25.0
6.8*
5.6
4.3
79.5
5.0*
10123
Gymnosperm indet.
1.00
100.0
13.5*
?
36.5*
?
?
?
282.5*
?
10124
Agathoxylon antarcticus
1.00
100.0
11.8
A
38.6*
5.0*
5.4*
8.2
153.6
4.7*
10125
Agathoxylon antarcticus
1.00
94.5
13.2
A
34.1
5.2*
6.1
9.0
176.2
6.6*
10126
1.66
96.6
14.0
A
30.5
6.2*
8.3
8.0
192.2
3.7
10127
Agathoxylon pseudoparenchymatosum Gymnosperm indet.
1.00*
100.0*
13.8*
?
29.3
?
?
3.0*
73.7*
5.1
10128
Agathoxylon?
1.55
100.0
12.0
?
?
?
?
8.4
197.3
5.3*
10129
Agathoxylon?
1.00
100.0
12.7
?
36.4
?
?
3.1
62.0
?
10130
Agathoxylon sp.
1.40
100.0
11.3
A
32.0
5.2*
?
8.5
250.7
6.1
10131
Agathoxylon antarcticus
1.00
79.5
12.5
A
40.1*
9*
6.0
5.1
126.1
5.3
10132
Agathoxylon?
1.00
100.0
11.4
?
33.6
?
?
6.5
173.1
?
10133
Agathoxylon?
1.77
100.0
12.0
?
?
?
?
6.5
202.0
4.8
10134
Agathoxylon?
2.0*
100.0*
14.8*
?
40.6
6*
5.8*
7.4
164.1
?
10135
Agathoxylon kellerense
2.33
100.0
12.2
A
43.4
6.7*
8.6
5.0
162.5
4.8
Fossil-species
Age
Country
GRB
IPS
PxCF
RS, RH[cells]
AP
C
RC
B. avramii Iamandei and Iamandei, 2005 B. baqueroensis Vera and Césari, 2015 B. comanchense Torrey, 1923 B. cristianicum Iamandei, Iamandei and Grǎdinaru, 2018 B. currumilii Bodnar, Escapa, Cúneo and Gnaedinger, 2013 B. dobroglacum Imandei and Iamandei, 2005 B. eboracense (Holden, 1913) Philippe, 2002 B. holvavicum Iamandei, Iamandei and Grǎdinaru, 2018 B. lagonense (Laoudouéneix, 1973) Dupéron-Laoudouéneix, 1991 B. liebermannii Philippe, 1995 B. notabile Hollick and Jeffrey, 1909 B. nummularium (White, 1908) Kurzawe, Iannuzzi and Merlotti, 2012 B. raritanense Torrey, 1923 B. saurinii Boreau and Serra, 1961 B. semibiseriatum (Pant and Singh, 1987) Kurzawe and Merlotti, 2010 B. serrae Philippe, Suttethorn and Buffetaut, 2011 B. trautii (Barale, 1981) Philippe, 1995 B. voisinii Thevenard, Philippe and Barale, 1995 B. woodworthianum Torrey, 1923 B. zhejiangense Tian, Zhu, Wang and Wang, 2018
Early Cretaceous Late Cretaceous Cretaceous Early Jurassic Early–Middle Jurassic Early Cretaceous Jurassic Early Jurassic Cretaceous Jurassic Late Cretaceous Permian Cretaceous Jurassic (?) Permian Early Cretaceous Middle Jurassic Jurassic Early Cretaceous Early Cretaceous
Romania Argentina USA Romania Argentina Romania England Romania Chad France USA Brazil USA Cambodia Brazil Thailand France France USA China
D D D D D D D D ? I D I I D D D D A D D
1–2s 1–3s 1–2s 1–2s 1–2s 1–3s 1–2s 1(2)s 2–3s 1s 1–2s 1–2s 1s 1–2s 1–5s 1–2s 1-2s 1s 1(2)s 1-2s
1–8 8–26 12 1–6 4–11 1–6 numerous cupressoid 1–9 cupressoid 5–12 cupressoid to podocarpoid 5–11 1–6 1–9 2–12 4–16 5–16 4–9 3-8 cupressoid 2–7
1(2)s, 1–21 1s, 1–9 1s, 1–6 1(2)s, 1–20 1s, 1–10 1s, 1–10 1s, low 1–2s, 1–25 1s, low 1s, low 1s, 1–8 1(2)s, 1–39 1s, 1–15 1s, 1–31 1s, 1–38 cells 1s, 1–15 1s, 1–10 1s, mean 5.8 1–4s, 1s high, 2–4s low 1(2)s, 1–16
B. raritanense, new samples
Early Cretaceous
Argentina
I
1s
4–10
1(2)s, 1–11
A A A P P P A A A A A A A A A A A A A A A
A A ? A A P A A A A P A A A A A A A A A A
T A T A A A A A (T) T A T A A T P T A A T A A
1
Highlights.
2
Fossil woods from the Tres Lagunas Fm. (Lower Cretaceous of Patagonia) are studied.
3
We found a total dominance of conifer-like woods.
4
Three fossil-genera were found (Agathoxylon, Brachyoxylon and Cupressinoxylon?).
5
Agathoxylon, related to the Araucariaceae, dominates the assemblage.
6
No conflict of interest.