Author’s Accepted Manuscript Fretting-Corrosion Behavior in Hip Implant Modular Junctions: The Influence of Friction Energy and pH Variation Dmitry Royhman, Megha Patel, Maria J. Runa, Markus A. Wimmer, Joshua J. Jacobs, Nadim J. Hallab, Mathew T. Mathew www.elsevier.com/locate/jmbbm
PII: DOI: Reference:
S1751-6161(16)30151-5 http://dx.doi.org/10.1016/j.jmbbm.2016.05.024 JMBBM1937
To appear in: Journal of the Mechanical Behavior of Biomedical Materials Received date: 26 September 2015 Revised date: 24 February 2016 Accepted date: 18 May 2016 Cite this article as: Dmitry Royhman, Megha Patel, Maria J. Runa, Markus A. Wimmer, Joshua J. Jacobs, Nadim J. Hallab and Mathew T. Mathew, FrettingCorrosion Behavior in Hip Implant Modular Junctions: The Influence of Friction Energy and pH Variation, Journal of the Mechanical Behavior of Biomedical Materials, http://dx.doi.org/10.1016/j.jmbbm.2016.05.024 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
! " # $ %&$'#($) *'+$ ' , $ -',$.'.$ " / 0 1# 2 1 131 20 *1 &" 12 1 # ) 13120 * ( 0 40512 16 1% ' 7 * .'.
8+' *'10&9: 1 31898& ,4(&5;:& <999 .==.> '
*, # 1 , , 1 , , ' ) .,
. '
* 1 .
, ? ' * . 8*:! ' . 8*:! '* . 4&<1<91991<9&995 &99-' . 4('9@'85. ? 'A . . B ' . ,
) ' 1 . ' 1!" 4 51! 14 51C! 4 5!# 4 ,D 5, 1 , . 99 '0, E"0 , '% , . . '
' 1 . 99 ' + 99F A, 1 . ) .,.8*:! '/1 . , . 1 ' G . 18*:!1 1 1 1
' , . 4*5 , , 1 . ., ,
'41&5 , ,
A '4(1:5
. ) 1''1
'* ., ,1 . '4<185+
1 A,
1
'4@5 2 1 A , ,1A ,) 1. '4H1;5 , . 1. 11 '495 1 A ,) 1 , '45 A , '4;1&1(5 1
, '4;1&1(5 .? ,. I )1. A,
, '4:5" , 1 .1, , 1. '4:B@5 1 A :991999 1 A < '1 ,E 1 '4H5
, 4 5 '4;B&5 . 4 5 ,? 1
.1J 1K '0 1
'4@1&&5 * 1 A ? , '4@1&&5- , ? ,
'4
, , 1. '4&(1&<5 0 1
1 , '4&<1&850 ,,
1
&
1 '4&5
' L
, $ . ,. . 1.
'4&@5 * . . , , 1 . ' 1
. E .
, . M .A 4'1 M , . M . M / ) E '/ N '* , 1.. ,,
14&H5. ? ' , 1.
1 J
K 1., A A J, K J K J K '/
. , 1.. .
4&;5 , 1 . 4 A 5 4@1(91(5' .45 D, , 145 , ) 145 ,.. ' &'9 1 . 4 5' , . A ' 8*:! 1 )1.. . 1.. ? ' 4 5. , 4H1(&1((5 ? ' " 1 ,, '4&H5* 1 , ' &'0% 1 8*:! . D ? ' ,' 1 4&
(
$@ 5. 9 4O&<1O<91O991O<9O&99F54('9 @'85'. . '* . ' . . 1( . N ' 1 1 . ' .. , PH991. .8 A 1 1 , 40
4#5Q&95' . , . . , PH99
4#QH95' 1 4% 5. , 9 ,@9R 1 ., 9 D&91 1 ' &'& * . '* 46(9916 '1+ 1%*120*5 . ( . '*
405. 1 1 . ) 4A 4<':&55' 405 . N,4! S8<35' 0 . 04(9 N3 51-4H N351% % A 4(93N351 ,4<: N3514 A <<3N31 , . @'85'/ @'8. 1 . ('9 ' . . (@ ' 4- 5 4* 5 . A ,. '% 4*
.5A . , A ' . 4 5 ' 1 . , 1 1 '% . 4 1 1
5' 1 .. A 9'H! T'H!4! '05 &!N . ' % . ,. ' 4 A# 51 &<9!4 '05 . ' A <':&. ' 1 405 . , A
) ' 0 . , O9! 4 ' 5 99GD 9'9D'
:
&'( * 1 4 5. ' . &&4& 5'+ &99-1
&%.
' . , 1 & 4 5' .
4 HH@1 1 1*120*51 .
. 1. E O&<1O<91O991O<9 O&99F'E . E D' . 4E S9D9 5' ., 1 ,. ,. 1 . . ' ' , 4'% '
5.
, , '* . '
1. 1 ' 1
. D1 , ,'4(:5% 9'& ,.
'4((5 &* '* 9'& ,
' 1
9'&. , ' &':0D N . . , . 4U -.!.8(991U 1 V1120*5' .), A '
4#5. , '*
D . 4054 0
8:;93!1/A 1/A 12G5 A ' &'<+
. 1 , 0)*,4&9951.
. ' 45 * 1WG.L4
5 , WGL4
5WG.L4
.5'WG.L,, D ' , 4A,
51. .
, ' 1 .
'0 ) ).
. E' 1
. %
<
0E'* 4'<35. ' A .'4(<5 WGL, X E M ×Q K c = 4&5 n× f +WL
1WL4YSZ[7Z [5
. ) , 1W L 4.
S&51WL L 4;8<99N 5' ,
. , . ' ,. . 1 , 4*51
8*:! & '4(85 1
. G , . ,'
1 E . 8*:!' /WG.LWGL,1 E 45, WG.'L G. GSG.4(5 ('9# (' ('' , , ,, , 1 1 ' , , 1 . ' & !" 4" 51! 14* 51C! 4 5!# 4 ,D 5' 4('9@'85 . (* ( ' !" 1! 1C! !# . (
(1 ' 1 4 5 . , '* . (*1((1 4!" 5 . , 1 ' 1!" . '* !" . , @'899F '! 4 ("5 . . ('9 @'8 ' ('9 @'8 A, ,.! 'C! 4 (5 .
8
'!# . ! 4 (5'@'8 . ('9 ' 1 . . ' (''& , :*: . '
' 1.
' , , A
. ::"1 .
1 ., 1 ('9@'8'
1 1
1 1 1. '
. @'8 &99F '
, ::' . ,. 1 1 ' . , ' . ') ,. ' , :* :"' < 1,.
'. , ,.
, ' 1
, ' (''(* # . 8*8 ('9@'81 '. ,. '*('94 8*51.
11 ' *@'84 851. , &<1<9F1 99F 11 '*<9&991 . ' ,, . .
' 8" .
. 1('9 .
' .1 991@'8 )('9 A,
' ('& ('&' @ . 8*:! ('9@'8' . E, A <99!4 '05 ,
A 9!4 '05' . ' 1,
, 1 . &<9
@
!4 05 ' 1 . . ' H*H . ('9@'81 '* 1. ' . ' . . 'A 1 . ('9@'8' HH" . ('9@'81 1.
' 1 &< ? ' ,.
'*
1 .'
. 1 ., 1 ,D '. ,.
('9 @'8$ .1 . ('9' ('&'& 1
. , , ' 1 ,, ,' 4(:5 , ,
1, A ' . &*'* 9'& 4Q9'&5
4\9'&5 '4((5 , . :*: ('9@'81 '* 1
' ; .
' , 4*5('945@'8' 1 ' . 1,. ' 9*9 . 4" &*5 , ' ., '*&<F 1 .. 4 Q9'&5 '* &
' *
. .1 1
1 & 1 , ' 1
. , '* 1@'8N&99 .
' 9*9 . ('9@'81 ' .. ,. ' .1 . , ,. ' 1
H
. '/ 1 &<F . '* .
' ('&'(0 0E. , , D ) N '*E . E 4 . 51 45
4 5 ' * . E 0' . . # 4 51%4
51#4#
51% 4
51# 4#
5' . 0 1 - E 1 ' . ' . , A ,.
.
, . ' 1 A, . , EE .
' " 6' )
'
' , '2 1 . ' . ,. ' .1, 99F 1. ' - . , ' A, , ' 1('91. ,. , ' .1@'81 . ' 1. ,.45 1 145 ' 1 1 . ,. '* . @'8 ('9' ('(0* & .
' 1('9 .
@'8 ' 1
;
. '* 99F, 1 (* . . '*&<F ('9 . ) ' @'8 .
, 1 , , , '*<9F1 , L . .) 1. ) .) 1 . '*991<91&99F 1. . , ., ' ( . . 1 , "0 ' . ) 99F , '@'8 . ('9 A&99F' :'9"
:'! 4 5. , ' ( . ' * ,. , 4 5, '4(&1(8B(;5
.
1 '4H1:91:51L A 1
., 1 ., , ' . A ' * ,.@'8('9' ( . ('9 11 ,. '*@'81 ('9<9199<9F '
99<9F@'8 ('9' , A,
) ,. . 1 .
'0 . ,
'4:&5 ,
1
' . 1 1 E D' .1 . 4&<1<91991<91&99F5' 1 . ' 1 @'8 , A ,.
1
1 1
, , '*('91. ,
1 11 , '0 1
9
, 1 1 , ' 4 ("5 ' 1 ' ( . 1. ,
' 1 . 1 E,'
' :* .
. , '- . , ,.('9@'8'
,
'0 , &<F . .
1. . , ) . '* <9F1
1 ' :'&! , 1
4, 5 . . ) 4 5 ' 1 E . ' H*H . @'8 ('9 ' . ' 1. 1 ). , 1.
' 1 '
. .) ' .@'8('9'* L .1
'4;5 . 1 1
1 A 1 ' % . 4:(1::5' .1 ' 1. ' 1 1
, '%
) , , '2 1 A ,1
, ,) , '
) .
' H )
,. , 1 ,D '" 1 ' 1 . , ('91 ,
4 &5
4 85' )
' ,A, % ,A 4
5'*(1% ,A,
1 @'81.
'4:<5 1 ).
, A ' 1 1E 1
' ' :'(%
, ? , ? ' A A 1 ) .) 1 , 1 1' 1 ,.A 1 . .
) ' 1 ,4 5 1. 1 1
, 1 '1 . . 4&< &99F5 ? ' ? 1 . ('9. 4S@'85' . ' . '" A 1. , , 1. , . .4 1, 1 1, 5' , ? 1 . . , ' , . A
1. . ' :': ' / , . ,
, ',
, . 1. ? ' 1. . ' 1
. . '. , $ .1
. ,
.'/ . '4&1:85 < D ' 8*:! 1. ' $ .1 ? ,.8*:!
&
'" 1 . '2 . 4&<F51 1.8*:! . ' . '* 1
, '2 1 . '* 1
? ' , . , ? . , '4:@5 6,'1 . '1"0 . ]<:R. '4&5 , . "0 4 (51. .]89R@'8](9R('9' , .
.
4 8*:!N 5 , A ' 1 . A. '* . .1 . .499F51
. , 1
11
'0 A ' :'<3 ' 1 . ,
' . . 1., .
48*:! 5' 1 ,E, 1.
'0 1
. E
1.) , '*
.
' 1
, . 1 .
' 1 L E 4E'&5.
4G5'0*
. '1 E D . ' 1 , ,.
' 1 &99-. A '" ' <'9 , D . $
(
. ' 1 . 1. ,, ,
' # D . 1. ,, ,
1 , ' 99F , 1 11
1 . ) . ,.8*:! ' . ,. 1 ' *) . . ) ) . - #9(*#98:99<4 5' . , ' # ' ,1# 6161U. ^G13'%
., '*, ' &99;$<45@&BH9' &' ,-1G1 , ' . ' I 0 '&99$H(4(5:&HB:&H' (' *+1GD01!01!1/
/1 0'%
, , ' *' &99:$:;4(5&8@B@H' :' 3 ! 1+ 01# 16 *1 ' D
B8*B@-, )L ' 0 ' &99:$<45<
:
;' 0.!16,3' 8*:! ' '&9&* $((4&&5<:H@B<9(' 9' ,-1 1 #1* G1 , '
., ' # %*'&99;$;;;;*-*B-*' ' 6 , #16,3' ,
-N*- 8*:! ' '&99:$&<4<5H<B8:' &' 01 013 "' , , 8*:!9';.'R '+'&99: $&<84;
95;8(B@&' (' .0*1 %1G' ' ';HH$84:5<@&B;' :' )0"1)#31 61 .*10)%1" -1'+ '/ ## ';;:$4&;H5H9BH' <' )!10+31 *1 "+' , A '+' ;;;$&(45<:B8:' 8' )#1 #1+ *1 0131+ #G'% " , 3 " % # ' * '&9( 0$&H4H5:(9B8' @' .0*1 *1G.01%) 1!
A1G1' ' * ';;<$845;B&8' H' GD01/ G3131 DG' " . #"20 ' 0 *'&9:*8$;84H58&:B (9' ;' # "12,#1 , 16,3' , , ' # %* '&99;$HH45&98B;' &9' %013#131#6' + , 0* ' % Z['&9:,:Z&9:,:[$*, NN)' ' N9'99@N 88< 9: 9HH@ A &' 6,31) *1 , ' A , ' 1
1 1 ' , ';;($&@4&5<((B::' &&' 6,311%'
B 1 1 ' # %* '&99;$HH458&B@(' &(' 1!"1 #*11% ) +610 01' -) * 3
# * * ' 0 *'&9&0;$;:4H58<
<
&<' 12,#1+A #31 #1 , '* 3
# * -) " 0 . , -)' 0 *'&9( <$;<495H8
) ' '&9<* $;@ 4H59&:B(9' &@' .1 , 1+*'+ , , '/ ## '&9&- $:@945(9;B@' &H' # "1%1 1#1 , 1,-1+*1'
? -.A ' , '&9<- $;&(
' E ' ' ;8H$&:4:5;8B9;' (' 3"310#+' ' , ';@@$4:5<<(B8' (&' 6 1 1 ,%' '+'&99<$&<;4@B&5;:(B<' ((' 01G %1!3'* , '+';;<$H<4B&5(
'*, NN...' 'N N =GDN, N&@8&H9&H9=*=0
=* =.=% = =0 == = = = ,
===* = N) N<<<<;,<;9H8;:(H@' (8' # "1_10 )1) 10) ? 1.' , , , ) B8*B:! '% "*% '&9(/ ;$:84:95:9:99&' (@' *13-1# "1#1.10) ? 1'" 1 " 1 , * * ' , Z['&9<Z&9< ;[$45'*, NN)' ' N9'99@N :9@(< 9: 999: 8 (H' 0', E , * ', '&99H$:4@5<@(BH(' (;' .1.'1%1 1# 1" 1#11 , 1 1 +1) *'1', 3 '*00%0 %, '%
'
8
:9' 3 "1 010' , ' *'&99$:84&:5(;(B&;' :' 016 01 0',
A, ? '+'&9<,$(&: (&<<
1 1 E 1%
1#1' 8*:! ', 10 I '&9<&9$@<
@
3 , , 4. 5 ' ,&0 A ' 1, 0 1 &
, 'GNG. .. . , . , 4'' . , 5' 3 '4*5" 1. E . 1A 1 . . ) 1 1 '45" A ' 1 1
405A .
, 8*:! . 1 < 4&
9'&
45 45'45* ,, A' ( , , , ' 4('9@'85 .4*545 ' 0 J" % 1KJ % 1KJ % LKJ # 1K .4 51 ' :' 1 1 N , 4*5('945 @'8'
.,
45('94"5@'8' "
1 1 ., . 4 5 45('945@'8' ") ' <' ,. 4_A 5
4_&A 5'. . , '*
1 ' 8' 4 5 1 11
4*5('945@'81 D
H
, 0' 45
4G.54"5 ' @'% 1('9@'81 8*:! ' H' 4*5('945@'8' 4_ A $ &< ? 5
4_&A 5 45 ('94"5@'8' ;'"
1 1 ,1 ., 1. 4 51 4*5('945@'8'") ' 9' . ,1 ., 1. 4 51 4*5('945@'8'")
' '4*5 E 0' . . . # 4 51%4
51#4#
51% 4
51# 4#
5'* 0 - E .45451 '*0 1 1 . 1 , 14"5('945@'8'*0 1 1 . 1, 145('9465@'8' &'
' ('4*50 . '*&
;
<" A , 4. 5 ' 4.R5 * ! /& -& & * H;'8& 8' :'9 9'99: 9'8 9'98 9'99H 9'99&& 0 * * 8:'89 &@'8( 8'9: 9'&: 9'88 9'@9 9'9& '
&9
,&0 A ' 1, 0 1 &
, 'GNG. .. . , . , 4'' . , 5' #
&
<9F
99F
<9F
&99F
('9
%0
6
0
6
0
6
0
6
0
@'8
%0
6
0
6
0
6
0
6
0
('9
9'949'95
9'49'95
9'&49'5
9'849'5
9'(49'95
@'8
9'&49'95
9':49'95
9'<49'(5
'949':5
'<49'85
('9
(@'9
(@';
(H'9
<@';
<;'9
@'8
('8
&<':
:&'9
@&'
;H'(
('9
(@'9
(@'H
(@'H
<@'(
@'8
(':
&<'9
:'<
@'
;8'H
('9
9'9
9'9
9'9
9'9
9'9
@'8
9'9
9'9
9'9
9'9
9'9
('9
+
+
+
+
+
@'8
+
+
+
+
+
G4F 5
G.4F 5
G.4F 5
GNG.
"
&
Figures
A.
B.
Figure 1. (A) Diagram of the fretting corrosion aparatus, which includes a square rod undergoing minute displacement against two, axially-loaded, metallic pins and integrated into an electrochemical cell with the rod and pins as the working electrode, a graphite rod as the counter electrode, and a saturated calomel reference electrode. (B) Diagram of the experimental design. Free potential, potentiostatic, and electrochemical impedance spectroscopy (EIS) experiments were performed to evaluate the electrochemical and dissipated friction energy behavior of a Ti6Al4V rod loaded against two CoCrMo pins, and displaced at 5 different displacement amplitudes (25µm, 50 µm, 100 µm, 150 µm and 200 µm).
A. Energy Ratio =
! "
Evolution of Potential (V vs. SCE)
B Start Fretting
End Fretting
-0.25 VRecovery
-0.30 -0.35
DVFretting
VDrop
-0.40
VFretting
-0.45 -0.50 0
1000 2000 3000 4000 5000 6000
Time (s) Figure 2: (A) Representation of Mindlin energy ratio, for which the transition criteria between partial slip and gross slip is defined at a ratio of 0.2 of the disspipated energy (Ed) to total energy (Et). (B) A representaion of the criteria used to decribe the behavior of potential throughtout the fretting experiment.
B Evolution of Potential (V vs. SCE)
A -0.20
Evolution of Potential pH 3.0
-0.25
Fretting Phase
-0.30 25mm 50mm 100mm 150mm 200mm
-0.35 -0.40 -0.45 -0.50 -0.55 0
1000 2000 3000 4000 5000 6000
Time (s)
C
D Drop in Potential
pH 3.0 pH 7.6
-0.24
0.25
-0.26 -0.28
0.20
VFretting (V vs. SCE)
VDrop (V vs. SCE)
pH 3.0 pH 7.6
Average Fretting Potential
-0.22
0.15
0.10
0.05
-0.30 -0.32 -0.34 -0.36 -0.38 -0.40 -0.42 -0.44 -0.46
0.00
-0.48 -0.50 0
50
100
150
200
250
300
0
Displacement Amplitude (mm)
50
100
150
200
250
300
Displacement Amplitude (mm)
E
F Change in Fretting Potential
Fretting Recovery
pH 3.0 pH 7.6
0.12
VRecovery (V vs. SCE)
DVFretting (V vs. SCE)
0.25
pH 3.0 pH 7.6
0.20
0.15
0.10
0.05
0.00
0.10
0.08
0.06
0.04
0.02
0.00 0
50
100
150
200
250
Displacement Amplitude (mm)
300
0
50
100
150
200
250
300
Displacement Amplitude (mm)
Figure 3: The effects of mechanical stimulation on the electrochemical behavior can be evaluated by monitoring the evolution of potential. The response in potential as a function of displacement amplitude and pH (3.0 and 7.6) is shown in (A) and (B) respectively. Specific regions of the curves such as “Drop in Potential,” “Fretting Potential,” “Change in Fretting Potential’” and “Fretting Recovery,” are shown in (C-F), respectively.
A
B. pH 3.0
pH 7.6
D pH 3.0 0.08 0.07 0.06
25mm 50mm 100mm 150mm 200mm
0.05 0.04 0.03 0.02 0.01 0.00 0
Dissipated Friction Energy (J)
Dissipated Friction Energy (J)
C
pH 7.6 0.08 0.07 0.06
25mm 50mm 100mm 150mm 200mm
0.05 0.04 0.03 0.02 0.01 0.00
500 1000 1500 2000 2500 3000 3500 4000
0
500 1000 1500 2000 2500 3000 3500 4000
Cycle (#)
Time (s)
E pH 3.0 0.08
0.06
200mm 150mm
0.04
100mm 0.02
50mm 0.00 0.00
25mm 0.02
0.04
0.06
0.08
0.10
Total Path (m)
0.12
0.14
Dissipated Friction Energy (J)
Dissipated Friction Energy (J)
F pH 7.6 0.08
0.06
200mm 0.04
150mm 100mm
0.02
50mm 0.00 0.00
25mm 0.02
0.04
0.06
0.08
0.10
0.12
0.14
Total Path (m)
Figure 4. The hysteresis response, under free potential mode, of the tangential load/displacement behavior throughout the applied fretting motion at (A) pH 3.0 and (B) pH 7.6. This dissipated friction energy is shown by representative plots of dissipated friction energy in Joules at each movement cycle as a function of (C) pH 3.0 and (D) pH 7.6. Dissipated friction energy in Joules over the total distance traveled, in meters, is shown by averaged curves of all trials with standard deviations (grey) for (E) pH 3.0 and (F) pH 7.6. Darker regions indicate areas of overlap in standard deviation.
pH 7.6 25um amplitude displacement
-0.28 -0.29
0.008
Free Potential 0.006
-0.30 -0.31
0.004
-0.32
Dissipated Energy
0.002
-0.33 -0.34
0.000
Evolution of Dissipated Energy (J)
Evolution of Potential (V vs. SCE)
0.010 -0.27
-0.35 1000
2000
3000
4000
5000
TIme (s) Figure 5. The relationship between the evolution of potential (Y1 axis) and the dissipated friction energy (Y2 axis). The two curves show a correlation in behavior. As the dissipated friction energy increases or decreases, there is a corresponding response in evolution of potential.
B pH 3.0
1.6
Ti Cr Co Mo Total
1.4 1.2
Total Metal Content (mg/Kg)
Total Metal Content (mg/Kg)
A
1.0 0.8 0.6 0.4 0.2 0.0 25
50
100
150
pH 7.6
1.6
Ti Cr Co Mo Total
1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0
200
25
Displacement Amplitude (mm)
50
100
150
200
Displacement Amplitude (mm)
C
D pH 7.6 pH 3.0
Total Charge
6.0x10-3
Kwc (mg)
Total Charge (C)
8.0x10-3
4.0x10-3 2.0x10-3
0.0 25
50
100
150
200
Displacement Amplitude (mm)
pH 7.6 pH 3.0
Material Loss Due to Wear and Corrosion
110 100 90 80 70 60 50 40 30 20 10 0 25
50
100
150
200
Displacement Amplitude (mm)
Figure 6. Total metal content (ions and particles) of Ti, Co, Cr, Mo and their total sum in solution at the conclusion of the potentiostatic tests at pH (A) 3.0 and (B) pH 7.6, analyzed by ICM-MS. Total charge (C) and total material loss (Kwc) (D) during the fretting corrosion test.
Potential (V vs. SCE)
1.5
Potentiodynamic Scan
1.0 Pitting region
0.5 0.0
Chosen potential for potentiostatic tests (-0.250V)
pH 3.0 pH 7.6
Passivation region
Anodic region
-0.5 Equilibrium potential
Cathodic region
-1.0 1E-9 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 0.01
Current Density (A/cm2) Figure 7. Potentiodynamic scans, at pH 3.0 and pH 7.6, for the metal alloy coupled system of CoCrMo alloy pins loaded against a Ti6Al4V rod.
A
B pH 3.0
pH 7.6 1.0x10-5
Sliding Duration
Current Density (A/cm2)
Current Density (A/cm2)
1.0x10-5 8.0x10-6 6.0x10-6
200mm 150mm 100mm 50mm 25mm
4.0x10-6 2.0x10-6 0.0 1000
2000
3000
4000
8.0x10-6 6.0x10-6
Sliding Duration 150mm 200mm 100mm 50mm 25mm
4.0x10-6 2.0x10-6 0.0 1000
5000
Time (s)
2000
3000
4000
5000
Time (s)
D
Evolution of Current Dissipated Friction Energy
4.0x10-6
25mm 50mm 100mm 150mm 200mm
0.12
6.0x10-6
0.10
5.0x10-6
0.08
3.0x10-6
0.06
2.0x10-6
0.04
1.0x10-6
0.02 0.00
0.0
pH 7.6 Evolution of Potential Dissipated Friction Energy
Current (A)
Current (A)
5.0x10-6
pH 3.0
Dissipated energy (J)
6.0x10-6
4.0x10-6
0.12 25mm 50mm 100mm 150mm 200mm
0.10 0.08
3.0x10-6
0.06
2.0x10-6
0.04
1.0x10-6
0.02
Dissipated energy (J)
C
0.00
0.0
1500 2000 2500 3000 3500 4000 4500
1500 2000 2500 3000 3500 4000 4500
Time(s)
Time(s)
Figure 8. Changes in current evolution as a function of sliding distance under potentiostatic mode at (A) pH 3.0 and (B) pH 7.6. Comparison of evolution of current (Y1 axis; smoothed curves using 25 point adjacent averaging) under potentiostatic mode compared to the dissipated friction energy (Y2 axis) at the corresponding time point at (C) pH 3.0 and (D) pH 7.6.
A
B pH 3.0
0.10
0.08
200mm 0.06
150mm
0.04
100mm
0.02
50mm 25mm
0.00 0
500
1000
1500
2000
2500
Cycle (#)
pH 7.6
0.12
3000
3500
4000
Dissipated Friction Energy (J)
Dissipated Friction Energy (J)
0.12
0.10
0.08
200mm
0.06
150mm
0.04
100mm
0.02
50mm 25mm
0.00 0
500
1000
1500
2000
2500
3000
3500
4000
Cycle (#)
Figure 9. Dissipated friction energy under potentiostatic mode, in Joules, as a function of cycle number, shown by averaged curves of all trials, with standard deviations (grey), for (A) pH 3.0 and (B) pH 7.6. Darker areas indicate regions of overlap in standard deviation.
A
B
pH 3.0
pH 7.6
Energy Ratio
0.7 0.6
0.8
50mm
0.6
0.5 0.4
Gross Slip
0.3 Transition Criteria
0.2
25mm
0.1 0.0 1000
2000
Cycle (#)
50mm
0.5 0.4
Gross Slip
0.3 Transition Criteria
0.2
25mm
0.1 0.0
Partial Slip
0
200mm 150mm 100mm
0.7
Energy Ratio
0.8
200mm 150mm 100mm
3000
4000
Partial Slip
0
1000
2000
3000
4000
Cycle (#)
Figure 10. Energy ratios of displacement amplitudes under potentiostatic mode shown as function of cycle number, is shown by averaged curves of all trials, with standard deviations (grey), for (A) pH 3.0 and (B) pH 7.6. Darker areas indicate regions of overlap in standard deviation.
A
B
C 10000 Zmod Zmod Fit Zphase Zphase Fit
50
75
40
45
100
Zimag (W)
60
Zphz(o)
Zmod(W)
1000
90
30 10
Nyquist Nyquist Fit
30 20 10
15 1 10-2
10-1
100
101
102
103
104
0
0
0
105
10
20
30
40
50
Zreal (W)
Frequency (Hz)
D
E
F
G
Figure 11. (A) Electrochemical equivalent circuit used for modelling the EIS data. The representative
properties of the two alloys were incorporated into the model with individual components for: Rsol (resistance of the solution), CPETi (Capacitance of the Ti alloy passive film), RTi (Resistance of the Ti alloy passive film), CPECoCr (Capacitance of the CoCrMo alloy passive film), RCoCr (Resistance of the CoCrMo alloy passive film). A single representative EIS result is presented as Bode and Nyquist plots are shown in (B) and (C), respectively. All EIS results, under free potential mode, are shown as numerical values, before and after fretting, at (D) pH 3.0 and (E) 7.6. All EIS results, under potentiostatic mode, are shown as numerical values, before and after fretting, at (F) pH 3.0 and (G) 7.6.
Roughness
700 600
Ra (nm)
500
pH 3.0 pH 7.6
400 300 200 100 0 0
50
100
150
200
Displacement (mm) Figure 12. Changes in surface roughness of the CoCrMo pins as a function of displacement amplitude under free potential mode.
A.
Ti Atomic % (In weight)
B. 70 60
pH 3.0 pH 7.6
50 40 30 20 10 0 0
50
100
150
200
Displacement Amplitude (mm) Figure 13. (A) SEM images of the wear scar regions of the CoCrMo pins after fretting corrosion test for each pH and displacement amplitude group. At 25µm groups, several fretting features can be seen. At high amplitude displacements (150-200µm), sliding wear predominates, and tribolayer formation occurs. Particle deposits from the counterbody (Ti-alloy rod) were observed in the 200µm groups. (B) the correpoding EDS findings of the atomic percent (In weight) of Ti deposited onto the CoCrMo pins.
A.
B
C.
D.
200
4.0x10-3
100
2.0x10-3 0 0.0
8.0x10-3
300
6.0x10-3
200
4.0x10-3
100
2.0x10-3 0
Friction Energy (J)
6.0x10-3
Total Charge (C)
pH 7.6 300
Friction Energy (J)
Total Charge (C)
pH 3.0 8.0x10-3
0.0 25
50
100
150
200
Displacement Amplitude (mm)
25
50
100
150
200
Displacement Amplitude (mm)
Figure 14: Drop in potential during the fretting-corrosion test for the Ti6Al4V-CoCrMo alloy couple at various displacement amplitudes for free potential tests at (A) pH 3.0 and (B) pH 7.6 and potentiostatic tests at (C) pH 3.0 and (D) pH 7.6. The corresponding friction energies for each group at each condition are plotted on the secondary Y (right) axes.
Figure 15: Degradation mechanisms in the experimental setup as a function of displacement amplitude.