Game Theoretic Approach to Sensitivity Design of Optimal Systems

Game Theoretic Approach to Sensitivity Design of Optimal Systems

GAME THEORETIC APPROACH TO SENSITIVITY DESIGN OF OPTIMAL SYSTEMS Yoshikazu SAWARAGI and Katsuya OGINO Dept. o f Applied Mathematics & P h y s i c s F...

2MB Sizes 0 Downloads 98 Views

GAME THEORETIC APPROACH TO SENSITIVITY DESIGN OF OPTIMAL SYSTEMS

Yoshikazu SAWARAGI and Katsuya OGINO Dept. o f Applied Mathematics & P h y s i c s F a c u l t y o f E n g i n e e r i n g , Kyoto U n i v e r s i t y Kyoto, JAPAN

INTRODUCTION I t is a c h a l l e n g i n g problem t o d e s i g n an o p t i m a l c o n t r o l l e r f o r s y s t e m s w i t h u n c e r t a i n t i e s . Although it is p o s s i b l e t o p r e s e r v e a s a t i s f a c t o r y p e r formance by i d e n t i f y i n g t h e u n c e r t a i n t i e s and cons t r u c t i n g a d a p t i v e c o n t r o l l e r s , it i s u s u a l l y a d i f f i c u l t o r expensive t a s k t o r e a l i z e i t , especial l y when t h e u n c e r t a i n t i e s a r e l a r g e . From t h e p o i n t o f view o f s e n s i t i v i t y d e s i g n a g a i n s t l a r g e u n c e r t a i n t i e s , i t seems r e a s o n a b l e t o assume t h a t t h e s y s t e m u n c e r t a i n t i e s t a k e on v a l u e s which maxmize t h e performance i n d e x . Thus, t h e game t h e o r e t i c approach a p p e a r s t o b e a v e r y n a t u r a l and e f f e c t i v e one f o r t h e s e n s i t i v i t y d e s i g n and h a s t h e advantage t h a t it y i e l d s an optimal c o n t r o l l e r which is e f f e c t i v e u n d e r t h e w o r s t c a s e .

tpg

There have been v a r i o u s a t t e m p t s t o d e v e l o p s e n s it i v i problem a l o n g t h g , + ) i n e . Sworder , indicated the appliMesarovi?Y and D o r a t o e t a l . c a b i l i t y o f t h e g g ~ t h e o r yt o t h e s e n g j t i v i t y problem, w h i l e Salmon and Rohrer e t a l . a d o p t e d t h e min-max approach i n t h e y e g q i t i v i t y d e s i g n . On t h e o t h e r h a n d , Sarma e t a l . ' d i s c u s s e d t h e v a r i o u s d i f f i c u l t i e s inherent i n solving optimal control problems a l o n g t h i s l i n e . T h i s p a p e r p r e s e n t s two d i f f e r e n t game t h e o r e t i c a p p r o a c h e s t o t h e s t a t e r e g u l a t o r problem i n t h e presence o f l a r g e u n c e r t a i n t i e s . In t h e f i r s t p a r t o f t h e p a p e r , t h e s e n s i t i v i t y problem o f t h e s y s t e m w i t h u n c e r t a i n t y is d i s c u s s e d , and t h e o p t i m a l c o n t r o l problem w i t h u n c e r t a i n t y i s p r e c i s e l y f o r mulated and developed a s a game, where t h e c o n t r o l l e r and t h e e q u a t i o n e r r o r caused by t h e s y s t e m uncertainty a r e considered t o be the antagonists. The u p p e r bound o f t h e performance i n d e x p r e s e r v e d by t h e game t h e o r e t i c d e s i g n i s d e r i v e d a s t h e s o l t i o n of a matrix d i f f e r e n t i a l equation. It o f t e n happens i n p r a c t i c a l s i t u a t i o n s t h a t t h e game t h e o r e t i c d e s i g n is t o o p e s s i m i s t i c . S e c o n d l y , t h e n , p r e s e n t e d i s t h e s e n s i t i v e game t h e o r e t i c d e s i g n which i s an i n t e r - m e d i a t e between t h e p r e c e d i n g game t h e o r e t i c d e s i g n and t h e nominal d e s i g n which a d o p t s t h e model s y s t e m as t h e c o n t r o l l e d s y s t e m . The u p p e r bound o f t h e performance i n d e x p r e s e r v e d by t h i s d e s i g n is a l s o d e r i v e d . T h i r d l y , t h e r e l a t i o n between t h e e q u a t i o n e r r o r and t h e performance i n d i c e s c o r r e s p o n d i n g t o t h e t h r e e d e s i g n methods a r e a n a l y z e d and t h e c o n d i t i o n s f o r t h e performance

i n d i c e s t o be p - s e n s i t i v e 9 ) a r e d e r i v e d . Numerical examples a r e p r e s e n t e d t o show t h e e f f e c t i v e n e s s o f t h e p r e s e n t game t h e o r e t i c a p p r o a c h e s t o t h e s e n s i t i v i t y design. OPTIMAL CONTROL PROBLEM IN THE PRESENCE OF UNCERTAINTY L e t t h e model s y s t e m o f a n a c t u a l s y s t e m w i t h uncert a i n t y b e g i v e n by where x , u , A ( t ) and B ( t ) a r e r e s p e c t i v e l y t h e ns t a t e v e c t o r , t h e r - c o n t r o l v e c t o r , t h e nxn- and nxr-nominal m a t r i c e s . The o p t i m a l c o n t r o l problem c o n s i d e r e d i n t h i s p a p e r i s t h e s t a t e r e g u l a t o r problem, t h a t i s , t h e problem o f d e s i g n i n g t h e o p t i m a l c o n t r o l which minimizes t h e f o l l o w i n g performance i n d e x .

where T,S,Q( t ) and R( t ) a r e r e s p e c t i v e l y a f i x e d terminal time, a constant nxn-positive semidefinite m a t r i x , an n x n - p o s i t i v e s e m i d e f i n i t e m a t r i x and a n rxr-positive d e f i n i t e matrix. I t is w e l l known t h a t t h e o p t i m a l c o n t r o l f o r t h e model s y s t e m ( I ) , i n t h e feedback form, i s g i v e n by

u;:

=

R ~ l B t K

(3) 1 and t h e o p t i m a l v a l u e o f performance i n d e x i s g i v e n by 1 J ( u 5 ) = 7 xAKl(0)xo ('4)

where K (t) is t h e s o l u t i o n o f t h e m a t r i x R i c c a t i 1 equation

K1(T) = S

(5)

The d e s i g n which a d o p t s t h e model s y s t e m ( 1 ) a s t h e c o n t r o l l e d system w i l l henceforth be r e f e r r e d t o a s t h e nominal d e s i g n , and u* i n ( 3 ) and J(u'5) i n ( 4 ) w i l l r e s p e c t i v e l y b e c a l l e d nominal o p t i m a l c o n t r o l and nominal o p t i m a l p e r f o r r a n c e . I t is assumed h e r e t h a t t h e a c t u a l s y s t e m w i t h unc e r t a i n t y i s r e p r e s e n t e d by

where AA(t) and AB(t) correspond t o t h e system unc e r t a i n t y . I t i s t o be noted t h a t t h e i n i t i a l cond i t i o n o f t h e system i s assumed t o be e x a c t l y k n m . When t h e nominal o p t i m a l c o n t r o l u* is a p p l i e d , i n t h e feedback form, t o t h e a c t u a l system (61, t h e system is w r i t t e n as

mum energy. Thus t h e d e s i r e d s e n s i t i v i t y design o f t h e system under l a r g e u n c e r t a i n t y can n a t u r a l l y be formulated as a game between t h e c o n t r o l l e r and t h e system u n c e r t a i n t y . By doing t h i s , one can t a k e t h e e f f e c t o f l a r g e system u n c e r t a i n t y i n t o consid e r a t i o n a t t h e i n i t i a l s t a g e o f t h e design. This i s t h e b a s i s of t h e p r e s e n t game t h e o r e t i c design f o r t h e u n c e r t a i n system. The r e g u l a t o r problem can t h u s be r e s t a t e d as a game a s follows: " For t h e system

Here E r e p r e s e n t s t h e e q u a t i o n e r r o r i n t h e model 1 system (l), and i s c a u s e d by t h e v a r i a t i o n i n t h e m a t r i c e s A and B. The value o f t h e a c t u a l p e r f o r mance i n d e x ( 2 ) e v a l u a t e d along t h e s o l u t i o n o f ( 7 ) is given by A 1 J(u*,AA,AB) = 11(0) = x~Vl(0)xo (9) where V ( t ) is t h e s o l u t i o n o f t h e m a t r i x d i f f e r e n 1 t i a l equation

A s t h e nominal design does n o t t a k e t h e system unc e r t a i n t y i n t o account t h e value of t h e performance index I1 is no l o n g e r a c t u a l l y optimal. Thus, when t h e nominal o p t i m a l c o n t r o l is adopted t o t h e a c t u a l system, it can b e s a i d t h a t t h e performance index i s d e t e r i o r a t e d t o t h e v a l u e I1 by t h e equat i o n e r r o r El. E s p e c i a l l y when t h e e q u a t i o n e r r o r i s l a r g e , t h e performance d e t e r i o r a t i o n makes t h e nominal design meaningless. Thus, it i s h i g h l y d e s i r a b l e t o f i n d a s e n s i t i v i t y design which accounts t h e l a r g e u n c e r t a i n t y i n t h e system a t t h e i n i t i a l s t a g e of t h e design. When t h e s e n s i t i v i t y design is viewed a s an o p t i m i z a t i o n problem with u n c e r t a i n t y , t h e game t h e o r e t i c approach appears t o be a very n a t u r a l one.

w i t h payoff

f i n d feedback c o n t r o l s u * ( t ) and v;(t) which a r e o p t i m a l i n t h e s e n s e t h a ? , f o r any feedback c o n t r o l s up( t ) and vg( t ) , t h e r e h o l d s

i . e . , f i n d a s a d d l e p o i n t o f J ( u v ) i f it exists'! The s u b s c r i p t 2 i n (110, ( 1 5 ) & d 2 i 1 9 ) i s u t i l i z e d t o d i s t i n g u i s h t h e above problem from t h e o r i g i n a l r e g u l a t o r problem. I t is t o be n o t e d t h a t t h e m a t r i x R ( t ) i s a s u i t a b l y chosen nxn-positive d e f i n i t e 2 matrix. The l a s t term i n ( 1 5 ) r e p r e s e n t s t h e consuming energy o f t h e system u n c e r t a i n t y . Thus, i n t h e above f o r m u l a t i o n , it is assumed t h a t t h e system unc e r t a i n t y s e e k s an o p t i m a l feedback c o n t r o l which maximizes t h e performance i n d e x ( 2 1 , w h i l e minimiz i n g i t s consuming energy. I n a q u i t e s i m i l a r form t o t h e one-sided r e g u l a t o r probl?m, ~ ~ e l p ~ t i mc oa nl t r o l s o f t h e above problem a r e glven ' by

u* = -R - 1B'K2x

(17)

GAME THEORETIC DESIGN

L e t ' s g i v e a t t e n t i o n t o t h e a c t u a l system ( 6 ) which can be r e w r i t t e n as k=Ax+Bu+v2, v

2

4 AAx +

and t h e value of t h e o p t i m a l payoff is given by

x(0)=xo where K ( t ) i s t h e s o l u t i o n o f t h e m a t r i x R i c c a t i 2 equation

ABu

where t h e n - v e c t o r v ( t ) r e p r e s e n t s t h e system un2 c e r t a i n t y , a n d it i s reasonable t o r e w r i t e v ( t ) i n 2 t h e form v2 = E2x

(13)

Here n m - m a t r i x E ( t ) corresponds t o t h e e q u a t i o n e r r o r i n t h e mode?.

Henceforth t h e o p t i m a l c o n t r o l u * ( t ) i n ( 1 7 ) w i l l be 2 r e f e r r e d t o as t h e GO-control, and t h e above design w i l l be c a l l e d game t h e o r e t i c design.

The unknown v e c t o r v ( t ) , which r e p r e s e n t s t h e 2 l a r g e u n c e r t a i n t y i n t h e system, causes t h e p e r f o r mance d e t e r i o r a t i o n i n t h e design. Then, from t h e p o i n t o f view o f s e n s i t i v i t y d e s i g n , t h e v e c t o r v 2 ( t ) i n t h e form o f (13) s h o u l d be considered t o be under t h e c o n t r o l o f system u n c e r t a i n t y , and/or i n t h e s e n s e o f t h e w o r s t case i t should be consid e r e d as an feedback c o n t r o l by which t h e system u n c e r t a i n t y antagonize t o t h e c o n t r o l l e r and maximize t h e performance index J ( u ) i n ( 2 ) by t h e mini-

I t should be mentioned t h a t a necessary and s u f f i c i e n t c o n d i t i o n f o r t h e s a d d l e p o i n t (u*,vn) t o e x i s t and t o be unique is t h a t the2ma$rix K ( t ) s o l v i n g ( 2 0 ) e x i s t f o r a l l tc[O ,TI. Although ?he game problem ( 1 4 ) and ( 1 5 ) is a game t h e o r e t i c ext e n s i o n of t h e one-sided r e g u l a t o r problem ( T h i s i s t h e main reason of f o r m u l a t i n g t h e s e n s i t i v i t y d e s i g n by ( 1 4 ) and ( 1 5 ) ) , t h e e x i s t e n c e of t h e s o l u t i o n o f t h e m a t r i x R i c c a t i e q u a t i o n ( 2 0 ) i s n o t always assured u n l i k e t h e one-sided r e g u l a t o r problem. T h i s

problem is examined i n Refs.

[lo]

and

e m r i n t h e model.

C111.

When t h e GO-control u $ ( t ) is adopted t o t h e a c t u a l system (11) , t h e o r i m n a l performance index ( 2 ) is, with t h e a i d of t h e s a d d l e p o i n t condition (161, evaluated as

is given by (13) and is evaluated with

where v,(t)

From ( 2 1 ) , (22) and ( 2 3 ) , we o b t a i n t h e upper bound of t h e performance index ( 2 ) corresponding t o t h e GO-control u;(t) as follows: [Theorem 11 When t h e GO-control u$( t ) is adopted t o t h e a c t u a l system i n t h e presence of u n c e r t a i n t y , t h e value of t h e performance index J(u;) is evalua t e d as J(u;)

1 12(0) p

x;V2(0)xo

Thus, t h e performance d e t e r i o r a t i o n is caused by t h e unknown v e c t o r v 3 ( t ) which is un&r t h e i n f l u ence o f t h e l a r g e u n c e r t a i n t y i n t h e system. F ~ w a t h e p o i n t o f view o f t h e s e n s i t i v i t y design, it is again n a t u r a l t o c o n s i d e r t h e v e c t o r v ( t ) as an ant a g o n i s t t o t h e designer and t o t a k e aavantage of t h e worst case design. By doing t h i s , one can account t h e advantage of t h e nominal design t o g e t h e r with t h a t of t h e worst casedesign. This is t h e b a s i c i d e a o f t h e game t h e o r e t i c approach t o t h e s e n s i t i v i t y design i n t h i s s e c t i o n . The design considered i n t h i s section w i l l be called the sensitive game design, s i n c e it tends t o t r a c k t h e new optimum f o r t h e performance i n t h e presence o f system u n c e ~ tainty

.

The r e g u l a t o r problem can t h u s be r e w r i t t e n as a game as follows : " For t h e system

(24)

where nxn-matrix V ( t ) is t h e s o l u t i o n of t h e matrix 2 d i f f e r e n t i a l equation

with payoff

f i n d feedback c o n t r o l s Au ( t ) and v 3 ( t ) which a r e optimal i n t h e sense t h a t , f o r any feedback c o n t r o l s Au( t ) and v3( t ) , t h e r e h o l d s SENSITIVE GAME THEORETIC DESIGN

J3(Au*,v3) ( J3(Au*,v3*)

I t o f t e n happens i n p r a c t i c a l s i t u a t i o n s t h a t t h e game t h e o r e t i c design presented i n t h e preceding s e c t i o n is t o o p e s s i m i s t i c because it is t h e worst case design f o r t h e system with uncertainty. For example, i n some cases when t h e equation e r r o r makes t h e a c t u a l system more s t a b l e than its model system, t h e nominal optimal c o n t r o l preserves a f a i r l y good performance, compared with t h e GO-control. (This f a c t w i l l be seen i n t h e following examples.) Thus, it is d e s i r a b l e t o t a k e t h i s advantage of t h e nomin a l design i n t o consideration a t t h e i n i t i a l s t a g e of t h e worst case design. Suppose t h a t one adopts a new feedback contro1,based on t h e nominal optimal c o n t r o l , a s u

3

= u*

+

(26)

Au

t o t r a c k t h e new optimum f o r t h e performance index whenever t h e r e is t h e u n c e r t a i n t y i n t h e matrices A ( t ) and B( t ) . Then, t h e system under consideration is represented by

k = A x + Bu*

+

BAu+ v3,

x(0)

= xo

(27)

v3

= E3x.

(29

Here nxn-matrix E 3 ( t ) corresponds t o t h e equation

(33)

i . e . , f i n d a s a d d l e p o i n t of J3(Au,v3) i f it e x i s t s . " Here t h e s u b s c r i p t 3 i n (301, (32) and (33) is adopt e d t o d i s t i n g u i s h t h e p r e s e n t design from t h e previous designs. The optimal c o n t r o l s are obtained a s AU* V$

=

-

(3'4)

R-'BIK~X

= R;'K,~

(35)

and t h e value o f t h e optimal payoff is given by 1 J3(Au*,v3) = q xiK3(O)x0 (36) where K3(t) i s t h e s o l u t i o n of t h e matrix R i c c a t i equation i3= 01n3- K ~ D+ K ~ ( B R1B- I R ; ~ ) K~ Q ,

-

-

K3(T)

-

= S

(37)

From ( 3 ) , (26) and (341, t h e optimal c o n t r o l of t h e p r e s e n t design u:(t) is given by u$ =

where t h e n-vector v 3 ( t ) r e p r e s e n t s t h e system unc e r t a i n t y , and it is again reasonable t o express v 3 ( t ) i n t h e form

(J3(Au,9)

- R-hl(K1

+

K3)x.

(38)

I n t h e f o l l w i n g , t h e optimal c o n t r o l u$ is r e f e r r e d t o as t h e SGO-control. With t h e a i d of t h e s a d d l e p o i n t condition (331, t h e o r i g i n a l performance index ( 2 ) corresponding t o t h e SGO-control u $ ( t ) is evaluated as

f o r 11(0)

where v g ( t ) is given by ( 2 8 ) and i s e v a l u a t e d w i t h

+

5 = Dx E3 = AA

+

BAu*

-

E3x,

-1B1(K1+

ABR

x ( 0 ) = xo

5

pJ(u*)

is given by

where W , ( t ) s a t i s f i e s

(40

Kg)

From (391, ( 4 0 ) and (411, we o b t a i n t h e upper bound o f t h e performance i n d e x ( 2 ) corresponding t o t h e SGO-control u$( t ) as follows: [Theorem 21 When t h e SGO-control u:(t) is adopted t o t h e a c t u a l system i n t h e p r e s e n c e o f u n c e r t a i n t y , t h e v a l u e o f t h e performance i n d e x J(u$j) is evalua t e d as

where nxn-matrix V ( t ) is t h e s o l u t i o n o f t h e m a t r i x 3 d i f f e r e n t i a l equation

[Theorem 41 The s u f f i c i e n t c o n d i t i o n f o r p-sensit i v i t y is given by

I n t h e c a s e o f t h e game t h e o r e t i c d e s i g n , t h e upper bound o f t h e performance index i s given by 1 2 ( 0 ) i n ( 2 4 ) and is t o be compared with t h e v a l u e o f t h e nominal o p t i m a l c o n t r o l . I n t h e same way as Mcclamroch, we o b t a i n t h e f o l l w i n g c o n d i t i o n s f o r p-sensitivity. [Theorem 51 The n e c e s s a r y and s u f f i c i e n t c o n d i t i o n s f o r 1 2 ( 0 ) 5 pJ(u*) i s given by

where W ( t ) i s t h e s o l u t i o n o f 2 i2= ( A - B R - ~ I K+? E ~ ) -~w w2 ( ~- B R - ~ B ~ +K E~ ? )

I t is t o be n o t i c e d t h a t compared w i t h t h e precedi n g game t h e o r e t i c d e s i g n , t h e p r e s e n t design i s t h e w o r s t c a s e design b a s i n g on t h e nominal design. I n t h i s s e n s e , i t can be s a i d t h a t t h e p r e s e n t design is an i n t e r mediate between t h e nominal one and t h e game t h e o r e t i c one.

-E2'K1 +C2

,

-

K1E2'

+

(K2

-

1 K ~ ) B RBIM1(K1-

W (T) = 0

K2) (48)

2

[Theorem 6 1 The s u f f i c i e n t c o n d i t i o n f o r p - s e n s i t i v i t y is given by 1 -p(Et2K1 + K1E2) p(K2 - K ~ ) B RB1(K2 - K1)

-

DETERMINATION OF ADMISSIBLE ERROR I n t h e p r e c e d i n g s e c t i o n s , t h e performance d e t e r i o r a t i o n caused by t h e e q u a t i o n e r r o r a r e mainly con-s i d e r e d , and t h e upper bound o f t h e performance i n dex is d e r i v e d as t h e s o l u t i o n o f a m a t r i x d i f f e r e n t i a l e q u a t i o n i n t h e case o f t h e two game t h e o r e t i c d e s i g n s . Conversely, i n t h i s s e c t i o n , t h e problem o f determining t h e a d m i s s i b l e e q u a t i o n e r r o r s o t h a t t h e value o f t h e performance index does n o t exceed some s t a n g ~ r dvalue i s considered by t h e use of p-sensitivity.

+

( p- I ) ( Q

+

K~BR-$IK+ ~ )c2

2 O.

(49)

I n t h e c a s e o f t h e s e n s i t i v e game t h e o r e t i c d e s i g n , t h e upper bound o f t h e performance index i s given by I (0) i n ( 4 2 ) and is t o b e compared with t h e 3 value of nominal o p t i m a l performance. I n t h e same manner, we o b t a i n t h e f o l l o w i n g c o n d i t i o n s f o r psensitivity. [Theorem 71 The necessary and s u f f i c i e n t c o n d i t i o n s f o r 1 3 ( 0 ) 2 pJ(u*) i s given by

F o l l w i n ~McClamroch , t h e p - s e n s i t i v i t y i s d e f i n e d as f o l l w s . [ D e f i n i t i o n ] For some r e a l number p(, 1 1 , some feedback c o n t r o l ;tnd some c l a s s o f e r r o r s E , t h e a c t u a l system i s a i d t o be p - s e n s i t i v e , i f t h e i n equality J(U)

5

pJ(u*)

,

for a l l E

E E

where W3(t) i s t h e s o l u t i o n o f

(44)

i s s a t i s f i e d , where J ( u * ) is t h e nominal o p t i m a l performance v a l u e . When t h e nominal o p t i m a l c o n t r o l i s adopted t o t h e a c t u a l system, t h e performance i n d e x i s given by 11(0) i n (9!. By a p p l y i n g t h e theorem d e r i v e d by Mcclamroch , t h e c o n d i t i o n s f o r p - s e n s i t i v i t y is given as follows: [Theorem 31')

Necessary and s u f f i c i e n t c o n d i t i o n

[Theorem 81 The s u f f i c i e n t c o n d i t i o n f o r p - s e n s i t i v i t y is given by -~(E;K, (Kl

+

+

K 1E 3

Kg)]

-

+

K ~ B R - ~ B+ I K(p-I)[Q ~)

C3,

0,

for a l l

+

( K +~ K ~ ) X

0
(52)

I n t h r e e c a s e s o f d e s i g n , t h e necessary and s u f f i c i -

e n t c o n d i t i o n s and t h e s u f f i c i e n t c o n d i t i o n s f o r t h e a c t u a l system t o be p - s e n s i t i v e a r e d e r i v e d . A s i t is e a s i l y understood, t h e s u f f i c i e n t c o n d i t i o n s a r e more p r a c t i c a l t o apply. From t h e s e c o n d i t i o n s one can o b t a i n t h e information on t h e e f f e c t s o f t h e e q u a t i o n e r r o r on t h e performance index. EXAMPLE For i l l u s t r a t i v e example, c o n s i d e r t h e problem o f f i n d i n g t h e o p t i m a l c o n t r o l which minimizes

f o r t h e f i r s t o r d e r system

k = ax +bu,

x(0) = 1

.

Together w i t h t h e a c t u a l o p t i m a l performance v a l u e , t h e values o f t h e performance index corresponding t o t h e t h r e e design method. versus t h e parameter e m r a r e shown i n Figs. 1,2 and 3 r e s p e c t i v e l y f o r t h e t h r e e cases of uncertainty. The e f f e c t i v e n e s s o f t h e two game t h e o r e t i c designs a r e c l e a r l y understood from t h e s e r e s u l t s . A s i s s e e n i n F i g u r e s , i n t h e case when t h e e q u a t i o n errormakes t h e system mre u n s t a b l e t h a n t h e model, t h e two game t h e o r e t i c design y i e l d s b e t t e r p e r f o r mance t h a n t h e nominal design. And t h e o t h e r way around i n t h e case when t h e e q u a t i o n e r r o r makes t h e system more s t a b l e t h a n t h e model system. This i n f e r i o r i t y o f t h e game designs t o t h e nominal d e s i gn can be understood because t h e game t h e o r e t i c designs a r e t h e worst c a s e design. I t i s a l s o und e r s t o o d from t h e s e Figures t h a t t h e s e n s i t i v e game t h e o r e t i c design i s an i n t e r mediate one between t h e nominal one and game t h e o r e t i c one. CONCLUSIONS Two game t h e o r e t i c approaches t o s e n s i t i v i t y design f o r l i n e a r r e g u l a t o r problem under l a r g e u n c e r t a i n t y a r e developed, where t h e e q u a t i o n e r r o r i n model system and t h e feedback c o n t r o l l e r a r e assumed t o be a n t a g o n i s t s . The s o - c a l l e d game t h e o r e t i c d e s i g n , which i s t h e worst c a s e d e s i g n , a r e f i r s t l y developed, and t h e upper bound o f t h e value of t h e performance index i s derived. Accounting t h e advantage of t h e nomin a l d e s i g n , a s l i g h t l y d i f f e r e n t game design c a l l e d s e n s i t i v e game t h e o r e t i c design is a l s o p r e s e n t e d . The s e n s i t i v e game t h e o r e t i c design i s an i n t e r mediate one between t h e nominal one and t h e preced i n g game t h e o r e t i c design. The problem of determining admissible e r r o r s s o t h a t t h e value o f t h e performance i n d e x does n o t exceed some value i s d i s c u s s e d by t h e use o f p - s e n s i t i v i t y . The c o n d i t i o n s f o r t h e performance index does n o t i n c r e a s e by more t h a n a f a c t o r o f p i n comparison with t h e nominal performance value a r e d e r i v e d f o r t h r e e design c a s e s By g i v i n g simple examples, t h e e f f e c t i v e n e s s o f t h e p r e s e n t game t h e o r e t i c approaches t o t h e s e n s i t i v i t y design a r e shown. A l l numerical computations were performed byFACOM

230-60 a t Data P r o c e s s i n g C e n t e r i n Kyoto University. REFERENCES 1 ) D.D. Sworder: Minimax c o n t r o l o f d i s c r e t e time s t o c h a s t i c systems; J.SIAM on C o n t r o l ser.A, Vol. 2 , No. 3, pp.433-449, 1965. 2) M.D. Mesarovic: S a t i f a c t i o n approach t o t h e synt h e s i s and c o n t r o l o f systems; Proc. 1965 3rd Annual A l l e r t o n Conference on C i r c u i t and s y s tem Theory, pp. 930-942, 3) P. Dorato & R.F.Drenick: O p t i m a l i t y , i n s e n s i t i v i t y and game t h e o r y ; i n S e n s i t i v i t y methods i n c o n t r o l t h e o r y e d i t e d by L. Radanovic, 1966 Pergamon P r e s s . 4) P . Dorato & A. Kestenbaum: A p p l i c a t i o n o f game t h e o r y t o t h e s e n s i t i v i t y design o f optimal system;.IEEE Trans. Vol.AC-12, No.1, pp. 85-87 1968 5 ) D.M. Salmon: minimax c o n t r o l l e r design; IEEE Trans., Vol.AC-13, No. 4 , pp.369-376, 1968 6)R.A. Rohrer & M. S o b r a l Jr.: S e n s i t i v i t y consid e r a t i o n s i n optimal system d e s i g n ; IEEE Trans. Vol.AC-10, No. 1, pp.43-48, 1965. 7) G. I .Sarma & R.K.Ragade: Some c o n s i d e r a t i o n s i n f ? m u l a t i n g o p t i m a l c o n t r o l problem as d i f f e r e n t i a l games; I n t . J. C o n t r . , Vo1.4,No.3, pp. 265-279, 1966. 8 ) R.K.Ragade & I . G . Sarma: A game t h e o r e t i c approach t o optimal c o n t r o l i n t h e presence o f unc e r t a i n t y ; IEEE Trans. , Vol.AC-12, No.4, pp. 395 -401, 1967. 9 ) N.H.Mcclamroch, G.L.ClarJc & J.K.Aggarwa1: Sens i t i v i t y o f l i n e a r c o n t r o l systems t o l a r g e parameter v a r i a t i o n s , Automatics, Vo1.5, pp .257 -263, 1969. 10) H. Kimura: A game t h e o r e t i c approach t o c o n t r o l and s t a b i l i z a t i o n o f systems with d i s t u r b a n c e s ; ( i n J a p a n e s e ) , Trans. SICE, Vo1.6, No.4, pp.366 -371, 1970. 1 1 ) I .B. Rohdes & D.G.Luenberger: D i f f e r e n t i a l games w i t h i m p e r f e c t s t a t e i n f o r m a t i o n ; IEEE Trans. Vol. AC-14, No. 1, pp.29-38,1969.