Geochronology, petrogenesis and tectonic implication of Late Paleozoic volcanic rocks from the Dashizhai Formation in Inner Mongolia, NE China Qian Yu, Wen-Chun Ge, Jian Zhang, Guo-Chun Zhao, Yan-Long Zhang, Hao Yang PII: DOI: Reference:
S1342-937X(16)30002-8 doi: 10.1016/j.gr.2016.01.010 GR 1580
To appear in:
Gondwana Research
Received date: Revised date: Accepted date:
23 January 2015 30 January 2016 31 January 2016
Please cite this article as: Yu, Qian, Ge, Wen-Chun, Zhang, Jian, Zhao, Guo-Chun, Zhang, Yan-Long, Yang, Hao, Geochronology, petrogenesis and tectonic implication of Late Paleozoic volcanic rocks from the Dashizhai Formation in Inner Mongolia, NE China, Gondwana Research (2016), doi: 10.1016/j.gr.2016.01.010
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
ACCEPTED MANUSCRIPT Geochronology, petrogenesis and tectonic implication of Late Paleozoic volcanic
SC R
IP
T
rocks from the Dashizhai Formation in Inner Mongolia, NE China
Qian Yu a, Wen-Chun Ge a*, Jian Zhang a, Guo-Chun Zhao b, Yan-Long Zhang a, Hao
MA
NU
Yang a
College of Earth Sciences, Jilin University, Changchun 130061, China
b
Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
CE P
TE
D
a
AC
*Corresponding author:
College of Earth Sciences Jilin University No. 2199 Jianshe Street Changchun, 130061, China
Tel.:
86-0431-88502278
Fax:
86-0431-88584422
E-mail:
[email protected]
ACCEPTED MANUSCRIPT Abstract In this paper we report on geochemical, zircon U–Pb and Hf isotopic data for the late
T
Paleozoic volcanic rocks of the Dashizhai Formation, which are exposed along the
IP
northwestern margin of the Songnen terrane in eastern Inner Mongolia. Our aim is to
SC R
constrain the petrogenesis and tectonic setting of the volcanic rocks and to unravel the late Paleozoic tectonic evolution of the northwestern part of the Songnen terrane, along the eastern segment of the Central Asian Orogenic Belt. Lithologically, the
NU
Dashizhai Formation is composed mainly of rhyolitic tuff, rhyolite, dacite, andesite, basaltic andesite and basalt, with minor basaltic trachyandesite. The zircons separated
MA
from these rocks are euhedral–subhedral, have high Th/U ratios (0.2–1.6), and display broad oscillatory growth zoning, indicating a magmatic origin. The results of zircon U–Pb dating indicate the volcanic rocks formed during the early Permian (295–283
D
Ma). Geochemically, these volcanic rocks belong to the mid–K to high–K
TE
calc-alkaline series and are characterized by an enrichment in large ion lithophile elements (LILEs) and a depletion in high field strength elements (HFSEs, such as Nb,
CE P
Ta, and Ti), similar to igneous rocks that form in active continental margin settings. Most magmatic zircons of the rhyolites show positive εHf(t) values (+3.65–+13.0) and two–stage model ages (TDM2) of 1396–551 Ma. These geochemical characteristics
AC
indicate that the acidic volcanic rocks of the Dashizhai Formation were most likely derived from the partial melting of dominantly juvenile crustal components with a possible addition of “old” materials. In contrast, the basic to intermediate volcanic rocks were derived from the partial melting of a depleted lithospheric mantle that had been metasomatized by fluids derived from a subducted slab. These data, together with regional geological investigations, suggest that the generation of the early Permian volcanic rocks of the Dashizhai Formation was related to the southward subduction of the Paleo–Asian oceanic plate beneath the Songnen terrane. This also implies that the terminal collision between the Songnen and Xing’an terranes did not occur before the early Permian. Keywords: Late Paleozoic; Volcanic rocks; Zircon U–Pb geochronology;
ACCEPTED MANUSCRIPT
AC
CE P
TE
D
MA
NU
SC R
IP
T
Geochemistry; Dashizhai Formation; Inner Mongolia
ACCEPTED MANUSCRIPT 1. Introduction The Central Asian Orogenic Belt (CAOB), one of the world’s largest accretionary orogens (Sengör et al., 1993; Windley et al., 2007), evolved over ~800
IP
T
Myr, involving multiple episodes of subduction and long continuous periods of accretion (Coleman, 1989; Kovalenko et al., 2004; Kröner et al., 2007, 2014; Rytsk et
SC R
al., 2007; Windley et al., 2007; Xiao and Santosh, 2014). The CAOB is situated between the Siberian, Tarim, North China, and East European cratons, and was the remarkable site of Phanerozoic crustal growth (Kovalenko et al., 1996, 2004; Kröner
NU
et al., 2014; Sengör et al., 1993; Xiao and Santosh, 2014). The architecture and amalgamation history of the CAOB are closely associated with the closing of the
MA
Paleo–Asian Ocean, and have attracted wide interest from the international tectonics community (Cawood et al., 2009; Mossakovsky et al., 1993; Windley et al., 2007;
D
Xiao et al., 2013; Zonenshain et al., 1990).
TE
Many researchers have studied the tectonic history of the CAOB based on its sutures, which represent the boundaries between accreted blocks and the sites of
CE P
closure of the Paleo–Asian Ocean (Li, 2006; Sengör, 1992; Wu et al., 2011; Xiao et al., 2013, 2014). It is well established that the terminal collision of the western segment of the CAOB (e.g., the Junggar and Tianshan orogens) occurred by the late Permian to
AC
Triassic (Han et al., 2015; Scheltens et al., 2015; Xiao et al., 2013, 2014; Xiao and Santosh, 2014). However, the tectonic evolution and timing of amalgamation along the eastern CAOB are debated (Badarch et al., 2002; Chen et al., 2000, 2009; Jian et al., 2008, 2010, 2012; Miao et al., 2007, 2008; Wang and Liu, 1986; Xiao et al., 2003, 2009). This paper focuses on late Paleozoic magmatism in the Songnen terrane, which occurred in the NE China segment of the eastern CAOB. This region of NE China saw the amalgamation of microcontinental blocks (from NW to SE, the Erguna, Xing’an, Songnen, and Jiamusi–Khanka blocks) during the Paleozoic (Li, 2006; Sengör et al., 1993; Wu et al., 2011) and was affected by circum–Pacific tectonism during the Mesozoic (Wu et al., 2007; Xu et al., 2009; Yu et al., 2012). Several sutures have been recently discovered in this region; i.e., the Solonker–Xra Moron and Hegenshan ophiolite belts. Most previous studies have identified the Solonker–Xra
ACCEPTED MANUSCRIPT Moron ophiolite belt as the final suture that represents closure of the Paleo–Asian Ocean between the North China and Siberian blocks (Huang, 1983; Li and Wang, 1983; Wang and Liu, 1986; Wang et al., 1991; Wu et al., 2011). Although many
IP
T
studies have helped constrain the geochronology and tectonic setting of the Hegenshan ophiolite belt, which marks the zone of collision between the Xing’an and
SC R
Songnen terranes, questions remain regarding the late Paleozoic tectonic setting of the Xing’an and Songnen terranes (Eizenhöfer et al., 2014; Jian et al., 2012; Miao et al., 2008; Xiao et al., 2003, 2009; Zhang et al., 2014) and the timing of their terminal
NU
collision (Bao et al., 1994; Miao et al., 2008; Nozaka and Liu, 2002; Robinson et al., 1999; Tang, 1990).
MA
These uncertainties arise from the lack of precise geochronological and geochemical data for the late Paleozoic volcanic rocks of the Xing’an and Songnen
D
terranes. To examine the geochronology, petrogenesis, and tectonic implications along
TE
this segment of the eastern CAOB, we present whole–rock geochemical data, zircon U–Pb ages, and in situ Hf isotopic compositions for late Paleozoic volcanic rocks in
CE P
the Songnen terrane.
AC
2. Geological background and sample descriptions
Tectonically, the Songnen terrane is considered as a part of the eastern CAOB, located between the Siberian and North China blocks (Jahn et al., 2000; Li, 2006; Sengör et al., 1993). The Songnen terrane is bounded by the Solonker–Xra Moron suture zone to the south, the Jiamusi–Khanka block to the east, and the Xing’an terrane to the north (Fig. 1). The Hegenshan ophiolite belt is generally believed to have resulted from the middle Paleozoic collision between the Songnen and Xing’an terranes (Bao et al., 1994; Nozaka and Liu, 2002; Robinson et al., 1999; Tang, 1990) and was subsequently affected by asthenospheric upwelling and lithospheric extension in the late Paleozoic (Jian et al., 2012; Zhang et al., 2008; Zhang et al., 2014). Recent studies have argued that this tectonism occurred during the Permian and led to a supra-subduction setting for the Songnen terrane (Eizenhöfer et al., 2014; Miao et al.,
ACCEPTED MANUSCRIPT 2008; Xiao et al., 2003, 2009). To resolve the timing of these events, we studied the volcanic rocks of the Dashizhai Formation, which are exposed along the northwestern margin of the
IP
T
Songnen terrane. The Dashizhai Formation was first recognized in central–eastern Inner Mongolia (BGMRIM, 1965), and the outcropping strata contain basic to acid
SC R
volcanic rocks and tuffs intercalated with marine sedimentary rocks (Figs. 1a and b; BGMRIM, 1991). These volcanic rocks play an important role to reveal the tectonic evolution of the Songnen terrane during the late Paleozoic, but their geochronology
NU
and geochemistry are poorly understood. We measured a stratigraphic section of the Dashizhai Formation (Fig. 2) from N46°21'19.6", E121°23'19.6" to N46°17'21.0",
MA
E121°21'3.3" (Fig. 1b), and confirmed that it consists mainly of rhyolitic tuffs, rhyolites, dacites, andesites, basalts, and sedimentary rocks. The formation is
D
conformably overlain by the neritic-facies Zhesi Formation that consists mainly of
TE
clastic rocks and limestone (Fig. 2; BGMRIM, 1991). Granitoids in the study area were emplaced mainly during the middle–late Triassic, early–middle Jurassic, and
CE P
early Cretaceous (Ge et al., 2005).
The analyzed samples from the Dashizhai Formation include rhyolite tuff, rhyolite, dacite, andesite, basaltic andesite, basaltic trachyandesite, and basalt. The
AC
rhyolitic tuff is gray–white and contains ~60% volcanic ash, ~30% rhyolite detritus, and ~10% crystal fragments (including plagioclase, alkali feldspar, and quartz) (Fig. 3a). The rhyolite is gray–white and has a porphyritic texture and flow structures; it contains phenocrysts (~10%) of alkali feldspar and quartz in aphanitic and felsitic groundmass (Fig. 3b). The dacite is massive and gray, and contains ~5% phenocrysts of plagioclase and minor quartz. The andesite is massive and dark gray, containing phenocrysts (dominated by plagioclase and amphibole) that make up ~30% of the rock; the groundmass is pilotaxitic (Fig. 3c). The basaltic andesite is also dark gray in color, and is massive or vesicular; it contains phenocrysts (mainly plagioclase and pyroxene) that make up ~15% of the rock, with an intersertal groundmass texture. The basaltic trachyandesite is dark gray, porphyritic, and massive, containing alkali feldspar and pyroxene phenocrysts that make up ~30% of the rock, and the
ACCEPTED MANUSCRIPT groundmass has an intergranular texture. The basalt is dark gray and is either aphyric or porphyritic, and either massive or vesicular; pyroxene phenocrysts make up ~5% of
IP
T
the rock, and the groundmass has an intersertal texture (Fig. 3d).
SC R
3. Analytical methods
3.1. Zircon U–Pb dating
NU
Zircons from five volcanic rocks were extracted using a combination of magnetic and heavy liquid methods, and then handpicked under a binocular microscope at the
MA
Langfang Regional Geological Survey, Hebei Province, China. The selected zircons were examined under transmitted and reflected light with an optical microscope, and
D
cathodoluminescence (CL) images (Fig. 4) were collected on a CAMECA SX51
TE
under conditions of 50 kV and 15 nA at the Institute of Geology and Geophysics, Chinese Academy of Sciences (Beijing), China. The CL images were used to examine
CE P
the internal textures and choose potential targets for U–Pb dating. To avoid any impact on the dating results from inherited material and other mineral inclusions, homogeneous zircons with no bright cores, inclusions, or fissures were chosen for
AC
analysis, based on their CL images (Fig. 4). Samples were analyzed for geochronology on an Agilent 7500 ICP–MS (inductively coupled plasma–mass spectrometer) equipped with a 193 nm laser (New Wave Research Inc.), and housed at the Institute of Geology and Geophysics, Chinese Academy of Sciences (Beijing). Zircon 91500 was used as the external standard, and a standard silicate glass Nist 610 was used to optimize the instrument. The zircon standard TEMORA (417 Ma) from Australia (Black et al., 2003) was also used as a secondary standard when examining the deviations in age measurements and calculations. The diameter of the laser spot was 60 m throughout the analyses. Isotopic ratios and element contents were calculated using the GLITTER program (ver. 4.4, Macquarie University). Correction for common Pb was made following Andersen (2002). The age calculations and concordia plots were made using Isoplot (ver. 3.0) (Ludwig, 2003). Errors on
ACCEPTED MANUSCRIPT individual analyses by laser ablation (LA)–ICP–MS are quoted at the 1level, while errors on pooled ages are quoted at the 95% confidence level. The U–Pb dating results for the zircons from the volcanic rocks of the Dashizhai Formation are presented in
SC R
IP
T
Table 1.
3.2. Major and trace element analysis
NU
For geochemical analyses, altered rock surfaces were first removed, then whole–rock samples were crushed in an agate mill to ~200 mesh. An X–ray
MA
fluorescence spectrometer (XRF; Rigaku RIX 2000) using fused glass beads and an ICP–MS (PerkinElmer Sciex ELAN 6000) were used to measure the major and trace element compositions, respectively, at the Institute of Geochemistry, Chinese
D
Academy of Sciences (Guangzhou), China. A set of USGS and Chinese national rock
TE
standards, including BHVO–1, W–2, AGV–1, G–2, GSR–1, and GSR–3, was chosen for calibrating element concentrations of unknowns. Analytical precision was better
CE P
than 5% for major elements and 10% for trace elements (Rudnick et al., 2004). The results of the geochemical analyses are listed in Table 2.
AC
3.3. Hf isotope analysis
In situ zircon Hf isotopic analyses were carried out on a Neptune multi-collector ICP–MS equipped with a 193 nm laser at the Institute of Geology and Geophysics, Chinese Academy of Sciences (Beijing), China. Hf isotopic analyses were performed using a spot diameter of 63 m, a laser repetition rate of 10 Hz, and a laser beam energy density of 10 J/cm2. For details of the analytical procedure, see Wu et al. (2006). Correction for the isobaric interference of measuring the intensity of the interference-free
176
175
Lu on
176
Hf was performed by
Lu isotope plus a recommended
176
Lu/175Lu ratio of 0.02655 (Machado and Simonetti, 2001) to calculate the
176
Lu/177Hf ratios. Isobaric interference of
176
Yb on 176Hf was corrected by measuring
ACCEPTED MANUSCRIPT an interference-free
172
Yb isotope and using a
2006). During the analyses, the measured
176
176
Lu/172Yb ratio of 0.5886 (Wu et al.,
Hf/177Hf ratio of the standard zircon
91500 was 0.282295 ± 0.000027, which agrees well with the low peaks of the Hf/177Hf ratio of 0.282284 ± 0.000022 measured by Griffin et al. (2006). Measured
176
Hf/177Hf and
Lu/177Hf ratios were used to calculate initial
IP
176
T
176
176
Hf/177Hf ratios,
present-day chondritic ratios of
176
SC R
taking the decay constant for 176Lu as 1.865 × 10−11 year−1 (Scherer et al., 2001). The Hf/177Hf = 0.282772 and
176
Lu/177Hf = 0.0332
(Blichert–Toft and Albarède, 1997) were adopted to calculate εHf(t) values. Hf model
NU
ages were calculated as described by Amelin et al. (2000), Griffin et al. (2000), and
MA
Nowell et al. (1998). The results of our Hf isotope analyses are presented in Table 3.
D
4. Analytical results
TE
4.1. Zircon U–Pb ages
CE P
Five representative volcanic samples were collected from the Dashizhai Formation for zircon U–Pb dating by LA–ICP–MS. CL images of the representative zircons are presented in Fig. 4 and concordia plots are shown in Fig. 5.
AC
Sample DS005 is a rhyolitic tuff that consists mainly of plagioclase, alkali–feldspar, and quartz. The zircons are mostly euhedral to subhedral elongate prisms of 110–150 m in length, with length: width ratios of 1.5:1 to 2:1. These zircons show oscillatory growth zoning and have high Th/U ratios (0.7–1.6), indicating a magmatic origin (Koschek, 1993). The 206Pb/238U ages from 24 analytical spots range from 300 to 275 Ma (Table 1), most of which are concordant, and they gave a weighted mean
206
Pb/238U age of 292 ± 2 Ma (n = 18, MSWD = 0.55) that is
interpreted to be the time of eruption of the rhyolitic tuff (Fig. 5a). Zircons from sample DS019, a rhyolite, are mostly stubby to elongate euhedral prismatic crystals of 70–130 m in length, with length: width ratios of 1.1:1–2:1. They display clear oscillatory zoning and high Th/U ratios (0.4–1.4), indicating a magmatic origin. The
206
Pb/238U ages from 22 spots vary from 290 to 275 Ma (Table
ACCEPTED MANUSCRIPT 1). They yielded a weighted mean
206
Pb/238U age of 284 ± 3 Ma (n = 21, MSWD =
0.39), which is interpreted to be the timing of rhyolite eruption (Fig. 5b). Sample DS042, also a rhyolite, contains euhedral to subhedral zircons with a
IP
T
long prismatic habit. Their lengths vary from 100 to 150 m, and length: width ratios are 1.1:1 to 2:1. In CL images, most of the zircons show oscillatory zoning, typical of
206
SC R
an igneous origin. Twenty-one analyses yielded high Th/U ratios of 0.5 to 1.1, Pb/238U ages between 307 and 281 Ma (Table 1), and a weighted mean
206
Pb/238U
age of 290 ± 2 Ma (n = 20, MSWD = 2.5), interpreted to represent the time of
NU
formation of the rhyolite (Fig. 5c).
Sample DS070 is a rhyolitic tuff, and it consists mainly of rhyolite detritus,
MA
crystal fragments, and volcanic ash. Zircons are mostly euhedral to subhedral, 110–150 m in length, and with aspect ratios of 1.1:1 to 2.5:1. These zircons are
D
characterized by oscillatory zoning and high Th/U ratios (0.2–1.6), indicative of a 206
Pb/238U ages of 330 to 271
TE
magmatic origin. Twenty-two analytical spots yielded
Ma (Table 1), with age populations at 330 ± 11 Ma (n = 1) and 283 ± 3 Ma (n = 21,
CE P
MSWD = 3.5) (Fig. 5d). The younger age is considered as the time of eruption of the rhyolitic tuff, whereas the older age is interpreted to be the age of crystallization of inherited or captured zircons entrained by the rhyolitic tuff.
AC
Zircons in sample DS079, a rhyolite, are mostly euhedral and elongate prisms, 130–160 m in length and with aspect ratios of 2:1 to 3:1. These zircons show oscillatory growth zoning and yield high Th/U ratios (0.2–1.0), indicating a magmatic origin. Twenty-three analyses produced a
206
Pb/238U age range of 922 to 279 Ma
(Table 1), and yielded two concordant groups of ages at 909 ± 34 Ma (n = 5) and 295 ± 4 Ma (n = 18, MSWD = 3.9) (Figs. 5e and f). These data indicate that the rhyolite formed at 295 ± 4 Ma, with the older age representing inherited or captured zircons entrained by the rhyolite.
4.2. Geochemistry
4.2.1. Major and trace elements
ACCEPTED MANUSCRIPT
The major and trace element geochemistry of forty-three late Paleozoic volcanic samples is given in Table 2. Lithologically, the rocks consist of rhyolite, dacite,
IP
T
andesite, basaltic andesite, basaltic trachyandesite, and basalt (Fig. 6a; Peccerillo and Taylor, 1976). They plot within the subalkaline series on the TAS chemical
SC R
classification diagram (Fig. 6a), and mainly fall in the field of mid–K to high–K calc-alkaline volcanic rocks on the K2O versus SiO2 diagram (Fig. 6b; Richwood, 1989).
NU
As shown in Table 2, the basalts are high in SiO2 (49.68–51.50 wt.%) and contain 6.49–8.28 wt.% MgO, 16.20–17.03 wt.% Al2O3, and 6.81–8.93 wt.% CaO.
MA
They are low in TiO2 (1.40–1.91 wt.%), P2O5 (0.17–0.25 wt.%), Na2O (2.51–3.27 wt.%), and K2O (0.28–0.93 wt.%), with quite low K2O/Na2O ratios of 0.10–0.31. In
D
the chondrite-normalized REE diagram (Fig. 7a; Boynton, 1984), these basalts show
TE
smooth chondrite-normalized REE patterns, with slight enrichments in light rare earth elements (LREEs) (LaN/YbN = 2.19–3.49) and weak positive Eu anomalies (Eu/Eu* =
CE P
1.06–1.23). In the PM (primitive mantle)–normalized trace element diagram (Fig. 7b; Sun and McDonough, 1989), they show a depletion in high field strength elements (HFSEs; e.g., Th, U, Nb, Ta, Zr, and P) and an enrichment in large ion lithophile
AC
elements (LILEs; e.g., Ba, K, and Sr). The basaltic trachyandesites, basaltic andesites, and andesites have variable SiO2 (51.07–59.68 wt.%), MgO (0.49–6.30 wt.%), Al2O3 (14.96–18.69 wt.%), CaO (1.96–10.33 wt.%), and Ti2O (0.88–2.00 wt.%) contents, with K2O/Na2O = 0.05–0.50 (1.74 and 2.46 for individual andesites). These samples have relatively flat REE patterns (Fig. 7c), an enrichment in LREEs (LaN/YbN = 3.48–10.53), and weak Eu anomalies (Eu/Eu* = 0.79–1.29). In addition, they are enriched in LILEs (e.g., Rb, Ba, and K) and depleted in HFSEs (e.g., Nb, Ta, and Ti) (Fig. 7d). The dacites have SiO2 = 63.86–69.30 wt.%, MgO = 1.16–2.58 wt.%, TiO2 = 0.53–0.63 wt.%, Al2O3 = 14.72–15.63 wt.%, and K2O/Na2O = 0.09–0.93. Additionally, these samples are characterized by a depletion in HFSEs (e.g., Nb, Ta, and Ti), an enrichment in LILEs (e.g., Rb, Ba, and K) (Fig. 7e), and minor negative or positive
ACCEPTED MANUSCRIPT Eu anomalies (Eu/Eu* = 0.85–1.26). The LaN/YbN ratios of the samples vary from 4.24 to 6.75 (Fig. 7f). The rhyolites have SiO2 = 74.36–88.43 wt.%, MgO = 0.05–0.62 wt.%, TiO2 =
IP
T
0.06–0.29 wt.%, Al2O3 = 7.32–13.96 wt.%, and CaO = 0.03–1.38 wt.%. These rhyolites are enriched in LREEs and LILEs (e.g., Rb, Ba, U, and K) and depleted in
SC R
HREEs and HFSEs (e.g., Nb, Ta, Sr, P, and Ti) (Figs. 7e and f). Their LaN/YbN ratios and Eu/Eu* values vary from 4.15 to 20.29 and from 0.24 to 0.81, respectively. On a Harker diagram (Fig. 8), Al2O3, CaO, Fe2O3, MgO, P2O5, and TiO2 show
NU
negative linear correlations with SiO2 (Figs. 8a–c, f–h), whereas K2O shows a positive correlation (Fig. 8d); Na2O shows large variations without a clear trend (Fig. 8e). The
MA
strong correlations between SiO2 and the other major elements suggest that fractional
D
crystallization played an important role in the magmatic process.
TE
4.2.2. In situ zircon Hf isotopic compositions
CE P
All the zircon U–Pb spots used for dating the rhyolites (DS005, DS019, DS042, DS070, and DS079) were chosen for in situ zircon Hf isotopic analysis (Table 3). Zircons from the early Permian rhyolites possess relatively homogeneous Hf isotopic
AC
compositions. Their initial 176Hf/177Hf ratios vary from 0.282714 to 0.282981. At 280 Ma, the calculated εHf(t) values range from +3.65 to +13.0 and the two-stage model ages (TDM2) vary from 1396 to 551 Ma. All the analyzed zircon spots plot between depleted mantle and the CHUR line on the εHf(t) versus age diagram (except for six points for inherited or captured zircons; Fig. 9), and they have similar Hf isotopic compositions to zircons from the Phanerozoic igneous rocks of the CAOB (Chen et al., 2009; Xiao et al., 2004).
5. Discussion
5.1. Ages of the volcanic rocks from the Dashizhai Formation
ACCEPTED MANUSCRIPT The volcanic rocks of the Dashizhai Formation are widely distributed along the northwestern margin of the Songnen terrane. Previous geochronological data indicate that these volcanics formed in the early or middle Permian (BGMRIM, 1965, 1991;
IP
T
Liu, 2009; Tao et al., 2003; Wang, 1987). However, most studies have focused on the volcanics of central Inner Mongolia. The volcanic rocks of eastern Inner Mongolia
SC R
have been dated based on stratigraphic relationships and fossils (Zhao, 2008), but their ages have not been well constrained by zircon age data.
For this study, only zircons from the acidic volcanic rocks were collected for
NU
U–Pb dating, since it was too difficult to obtain zircons from the basic to intermediate rocks. All the zircons from the analyzed samples of the Dashizhai Formation display
MA
typical oscillatory growth zoning, and have high Th/U ratios (0.2–1.6), indicating a magmatic origin. We conclude, therefore, that the LA–ICP–MS U–Pb ages for these 206
Pb/238U
D
zircons represent the eruption ages of the magmas. The weighted mean
TE
ages for 5 rhyolite and rhyolitic tuff samples are in the range 295 ± 4 to 283 ± 3 Ma (Figs. 10 and 11a). As shown in the measured stratigraphic section (Fig. 2), the
CE P
Dashizhai Formation consists mainly of acidic volcanic rocks interlayered with minor basic to intermediate volcanic rocks, and the rock sequence mostly ranges from acidic to basic volcanics in ascending stratigraphic order. Moreover, precise radiometric age
AC
data for the Dashizhai Formation in central Inner Mongolia yield early Permian ages for the basic to intermediate volcanic rocks (Gao and Jiang, 1998; Tao et al., 2003; Zhu et al., 2001; Zhang et al., 2008). Based on the above, we consider that the basic to intermediate volcanic rocks formed coevally with the acidic volcanic rocks. This conclusion is also consistent with paleontological evidence (BGMRIM, 1965, 1991). To understand the spatial and temporal distribution of the Dashizhai Formation, we compiled the results of geochronological studies from other regions, which are summarized as follows. (1) Wang (1987) suggested that volcanic rocks from the Dashizhai Formation in the Huanggangliang region, in the southern segment of Daxing’anling, formed at 280 Ma according to whole-rock K–Ar isotope ages (Fig. 11f); (2) Tao et al. (2003) discovered 285 Ma basic to intermediate volcanics in the Dashizhai Formation of the Mandula area, in the middle part of Inner Mongolia (Fig.
ACCEPTED MANUSCRIPT 11g); (3) Gao and Jiang (1998) reported a 281 Ma andesite from the Dashizhai Formation of the Sonid Left Banner area, using Rb–Sr isotope dating (Fig. 11h); (4) Zhu et al. (2001) documented early Permian magmatic activity in the Mongolian
IP
T
orogenic zone, based on Rb–Sr isochron dating of the basic to intermediate volcanic rocks (Fig. 11e); (5) Zhang et al. (2008) suggested that basaltic andesite and rhyolite,
SC R
collected from the Dashizhai Formation in Xilinhot, formed at 281 Ma and 279 Ma, respectively (Figs. 11b and d); (6) Liu (2009) reported an age of 271 Ma for a rhyolite from the Dashizhai Formation in the Xiwuqi area (Fig. 11c). Taken together, these
NU
dating results for volcanic rocks from the Dashizhai Formation lead us to conclude that an important magmatic event occurred in central–eastern Inner Mongolia along
MA
the northwestern margin of the Songnen terrane during the early Permian.
TE
D
5.2. Petrogenesis of volcanic rocks from the Dashizhai Formation
CE P
5.2.1. Origin of the basic–intermediate volcanic rocks
The early Permian basalts of the Dashizhai Formation have retained their primary minerals, have low LOI values, and have consistent variations in both
AC
immobile and mobile elements in PM-normalized trace element patterns (Fig. 7b), all of which indicate no significant alteration or change to their original chemical compositions. Therefore, we assume that the analytical data for major and trace elements in the basalts preserve the primary compositions. As mentioned above, the distinctive features of the basalts (e.g., negative Nb–Ta anomalies; Fig. 7) might have resulted from continental contamination or have been derived from their subduction-related sources (Davidson and Arculus, 2006; Rudnick and Gao, 2003). Nevertheless, all of the studied basalts are also characterized by negative Zr–Hf anomalies (Fig. 7b), whereas rocks affected by continental contamination do not display such anomalies for the reason that crustal materials are relatively rich in these two elements. Therefore, we conclude that crustal
ACCEPTED MANUSCRIPT contamination did not play a significant role during the evolution of the magma. The basalts of the Dashizhai Formation are high in SiO2 (49.68–51.50 wt%) and low in MgO (6.49–8.28 wt%), Cr (189–324 ppm), Co (36.8–42.4 ppm), and Ni
IP
T
(99.4–142 ppm), relative to primitive-mantle-derived magmas, suggesting they were derived from relatively evolved melts (Frey and Prinz, 1978). The Harker diagrams
SC R
(Fig. 8) show that the basic to intermediate volcanics possess a fractional crystallization trend, indicating varying degrees of fractional crystallization, as also supported by the fractional crystallization trend shown in the Cr versus Th diagram
NU
(Fig. 12a).
The basic to intermediate volcanic rocks of the Dashizhai Formation belong to
MA
the subalkaline series, and mainly plot within the mid-K calc-alkaline fields on the K2O versus SiO2 diagram (Fig. 6). Furthermore, they are characterized by selective
D
enrichment in LREEs and LILEs, and depletion in HFSEs, with relatively high La/Nb
TE
(1.58–2.02) and low La/Ba (0.02–0.07) values (Fig. 12b). These features are similar to those of volcanic rocks from an active continental margin (Eiler et al., 2000; Gill,
CE P
1981; Grove and Kinzler, 1986; Grove et al., 2003), suggesting that their mantle source could be a depleted mantle wedge that had been metasomatized before partial melting. This view is also consistent with the previous published Sr-Nd-Hf isotopic
AC
data for the early Permian volcanic rocks and plutons of the central Inner Mongolia, e.g., the mafic samples of the volcanic-plutonic sequence in the Mandula area have high (143Nd/144Nd)i (0.51262–0.51270) and positive εNd(t) (+3.4–+8.0), implying that they were likely derived from the depleted mantle source (Chen et al., 2012); and the diabase dikes from the Linxi area display low (87Sr/86Sr)i (0.70315–0.70362), positive εNd(t) (+6.8–+7.4) and positive zircon εHf(t) (+14.7–+19.1), suggesting their generation from a depleted mantle (Li et al., 2015). Meanwhile, the Sr-Nd-Hf isotopic evidence leads to a scenario that a highly depleted mantle source once existed in the central Inner Mongolia through the late Paleozoic as the incompatible elements depleting progressively, due to the extraction of juvenile continental crust during the evolution of CAOB (Sengör et al. 1993; Wu et al. 2011; Li et al., 2015). Sediment and altered oceanic crust of a subducted slab are the most potential
ACCEPTED MANUSCRIPT materials, which would be introduced into the mantle wedge through partial melting and/or dehydration in subduction zones. Generally, both slab-derived fluids and hydrous melts from the subducted sediments or the altered oceanic crust will modify
IP
T
the overlying mantle wedge. Slab-derived fluids commonly have a high capacity to transport water-soluble elements but are low in water-insoluble elements, whereas
SC R
hydrous melts have the capacity to transport both (Zheng, 2012). Hence, the Ba content and Rb/Y ratio will be sensitive to slab dehydration fluids, and the Nb/Y ratio is indicative of hydrous melts. In Figure 13a, the basalts exhibit high Ba
NU
concentrations coupled with constant Nb/Y ratios, which is consistent with fluid-induced enrichment. Also, the increase in Rb/Y ratios with generally low Nb/Y
MA
ratios, which is consistent with increasing slab dehydration fluids metasomatism, is shown in Figure 13b. These trace element characteristics are commonly interpreted as
D
a slab-derived fluid addition to a sub-arc mantle source (Kepezhinskas et al., 1997).
TE
Taken together, it is likely that the basic to intermediate volcanic magma originated from the partial melting of a depleted mantle wedge that had been metasomatized by
CE P
subduction-related fluids. Moreover, the basaltic trachyandesites, basaltic andesites, and andesites were produced by fractional crystallization of the basaltic magma.
AC
5.2.2. Origin of the dacites and rhyolites
As shown by the zircon U–Pb dating results, the Dashizhai Formation basalts, basaltic trachyandesites, basaltic andesites, andesites, dacites, and rhyolites possess similar early Permian ages, indicating that they all formed nearly coevally. It is important to determine whether the acidic rocks were derived from the basaltic magma. First, considering the much greater abundance of exposed acidic volcanic than basic to intermediate volcanic rocks (Fig. 2), we infer that the acidic volcanics were unlikely to have been directly derived from basic magma. Moreover, Fig. 7 shows that LREE abundance and geochemical features are similar between the acidic and basic to intermediate volcanic rocks, further indicating that the acidic volcanics
ACCEPTED MANUSCRIPT have an origin that is independent of the basic magma. Considering characteristics of the acidic rocks from the Dashizhai Formation, which are marked by high SiO2, low MgO, Cr, and Ni contents, significant negative
IP
T
Nb, Ta, P, and Ti anomalies, positive Th, Zr, and Hf anomalies, and pronounced moderate negative Eu anomalies, we infer that the felsic lava may derive from the
SC R
continental crust produced by chemical differentiation of arc-derived magmas (Guo et al., 2014). Combine with the nature of calc-alkaline shown in the K2O versus SiO2 diagram (Fig. 6b), these acidic volcanic rocks probably define an arc volcanic rocks
NU
that related to subduction, and were produced by partial melting of arc-type crustal rocks with the enrichment of plagioclase but absence of garnet in the residual phase
176
MA
(Rapp and Watson, 1995). Isotopically, the rhyolites have relatively high initial Hf/177Hf ratios of 0.282714 to 0.282981 and positive εHf(t) values of +3.65 to +13.0,
D
with Hf two-stage model ages of 551 Ma to 1396 Ma. Most magmatic zircons of the
TE
rhyolites plot between the depleted mantle and CHUR line (Fig. 9), indicating that the primary magma could have originated from the partial melting of dominantly juvenile
CE P
crustal materials and Cambrian–Mesoproterozoic was a major period of crust growth in the Songnen terrane. In addition, the captured or inherited zircons of rhyolites from the Dashizhai Formation have low εHf(t) values of -0.4 to -17. Five analytical spots of
AC
them possess εHf(t) values of -16 to -17 at a weighted age of 909 Ma, while the other spot shows εHf(t) value of -0.4 at the age of 330 Ma, suggesting a contribution from “old” crust components involved in the source region of the felsic lavas. In summary, we conclude that the primary magma of the acidic rocks probably originated from the partial melting of dominantly juvenile crustal components with a possible addition of “old” materials, induced by the heat provided by the passage of contemporaneous basaltic magma derived from the underlying mantle wedge.
5.3. Tectonic implications
The Songnen and Xing’an terranes are considered as part of the eastern CAOB, but the timing of their collision, as well as their tectonic setting during the late
ACCEPTED MANUSCRIPT Paleozoic, remains controversial. Geochronological studies of the Hegenshan suture indicate that the terminal collision occurred during the middle Paleozoic and caused lithospheric extension of the northwestern Songnen terrane in the late Paleozoic (Bao
IP
T
et al., 1994; Nozaka and Liu, 2002; Robinson et al., 1999; Tang, 1990). However, recent SHRIMP age data obtained from gabbros and mafic dikes in the Hegenshan
SC R
suture indicate that the final amalgamation took place in the latest Permian to earliest Triassic (Miao et al., 2008). Therefore, the late Paleozoic volcanic rocks along the
Paleozoic tectonic evolution of this area.
NU
northwestern margin of the Songnen terrane provide important insights into the late
The geochemical data presented in this paper show that the early Permian
MA
volcanic rocks from the Dashizhai Formation, which consist mainly of rhyolites, dacites, andesites, basaltic andesites, basaltic trachyandesites, and basalts, belong to
D
the mid–K or high–K calc-alkaline series. All of the analyzed samples are
TE
characterized by enrichment in LREEs and LILEs, and depletion in HREEs and HFSEs (e.g., Nb, Ta, and Ti), with positive εHf(t) values. Such geochemical features
CE P
indicate that the early Permian volcanic rocks formed in an active continental margin setting (Gill, 1981; Grove and Kinzler, 1986; Grove et al., 2003; Pearce, 1982). This conclusion is also supported by the following observations.
AC
(1) The acidic volcanic rocks, which are widely distributed throughout the Dashizhai Formation, display enrichment in LILEs and depletion in HFSEs, with prominent Nb, Ta, Sr, P, and Ti troughs. These geochemical features indicate a subduction setting of the northwestern Songnen terrane similar to that of the modern Andes. All of the basalt samples from the Dashizhai Formation plot within the calc-alkaline basalt field in the tectonic setting discrimination diagrams of Ti/100–Zr–Sr/2 (Fig. 14a; Pearce and Cann, 1973) and TiO2–10MnO–10P2O5 (Fig. 14b; Mullen, 1983). (2) The Permian strata in this region are characteristic of regressive sequences, shifting from marine to continental facies and indicating that deposition occurred in a remnant sea or along an active continental margin (BGMRIM, 1991; Li, 2006). (3) Finally, late Paleozoic igneous rocks in central Inner Mongolia also have
ACCEPTED MANUSCRIPT geochemical affinities to active continental margin volcanics. Tao et al. (2003) considered the rocks from the Dashizhai Formation in the Mandula region to have been derived from island arc magma, based on a study of their petrology,
IP
T
petrochemistry, and geochemistry. In addition, Zhao (2008) proposed that volcanic rocks from the Dashizhai Formation in the Dashizhai district formed along an active
SC R
continental margin.
Taken together, we propose that the late Paleozoic Dashizhai Formation formed along an active continental margin, closely related to the southward subduction of the
NU
remnant Paleo-Asian oceanic plate beneath the Songnen terrane. This conclusion also
occur before the early Permian.
MA
indicates that the terminal collision between the Songnen and Xing’an terranes did not
Based on the discussion above, we reconstruct the late Paleozoic tectonic
D
evolution of the eastern segment of CAOB in the Inner Mongolia section. During the
TE
Carboniferous to early Permian, a large scale of continental arc volcanic rocks (e.g. Dashizhai Formation), I-type granites, island arc magmatic rocks, and some
CE P
subduction-accretion complexes exposed in the Xing’an and Songnen terranes (Blight et al., 2008, 2010; Chen et al., 2000, 2009; Liu et al., 2013). In the late Permian to earliest Triassic, the final collision between the Xing’an and Songnen terrane occurred
AC
with formation of the Hegenshan granodiorite dike (Miao et al., 2008). The granodiorite dike has LREE-enriched, chondrite-normalized REE patterns with high εNd(t) values (+6.3 to +6.8) and low (87Sr/86Sr)i (0.70412 to 0.70450), suggesting a derivation from partial melting of thickened oceanic crust (Miao et al., 2008). Thus, the volcanic association of our study, together with the previous researches reflects a tectonic transition from a subduction-related island-arc setting to an extension-related syn- and/or post-collisional setting occurred between late Permian and earliest Triassic.
6. Conclusions
Based on whole-rock geochemistry, zircon U–Pb dating, and in situ Hf isotopic
ACCEPTED MANUSCRIPT analyses of volcanic rocks from the Dashizhai Formation, combined with geological field investigations, we draw the following conclusions. 1. LA–ICP–MS zircon U–Pb dating indicates that volcanic rocks of the Dashizhai
IP
T
Formation in eastern Inner Mongolia formed in the early Permian (295–283 Ma). 2. The primary magma for the basic to intermediate volcanic rocks was derived from
SC R
the partial melting of a depleted mantle wedge that had been metasomatized by subduction-related fluids, whereas the acidic rocks were generated by the partial melting of dominantly juvenile crustal components with a possible addition of
NU
“old” materials.
3. The volcanic rocks of the Dashizhai Formation formed along an active continental
MA
margin related to the southward subduction of the Paleo–Asian Oceanic plate, indicating that the terminal collision between the Songnen and Xing’an terranes did
Acknowledgements
TE
D
not occur before the early Permian.
CE P
We thank the staff of the Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China, for their advice and assistance during zircon U-Pb dating by LA–ICP–MS and in situ zircon Hf isotopic data. We also appreciate the Institute of
AC
Geochemistry, Chinese Academy of Sciences, Guangzhou, China, for their assistance in the major and trace element analysis. This work was financially supported by the National Natural Science Foundation of China (41272076), Research Fund for the Doctoral Program of Higher Education of China (20120061110050), and Graduate Innovation Fund of Jilin University (Project 2015136).
References Amelin, Y., Lee, D.C., Halliday, A.N., 2000. Early-middle Archaean crustal evolution deduced from Lu–Hf and U–Pb isotopic studies of single zircon grains. Geochimica et Cosmochimica Acta 64, 4205–4225. Andersen, T., 2002. Correction of common Lead in U–Pb analyses that do not report 204
Pb. Chemical Geology 192 (1–2), 59–79.
ACCEPTED MANUSCRIPT Badarch, G., Cunningham, W.D., Windley, B.F., 2002. A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia. Journal of Asian Earth Sciences 21, 87–110.
IP
T
Bao, Z.W., Chen, S.H., Zhang, Z.T., 1994. A study on REE and Sm-Nd isotopes of Hegenshan ophiolite, Inner Mongolia. Geochemica 23, 339–349 (in Chinese with
SC R
English abstract).
Black, L.P., Kamo, S.L., Allen, C.M., Aleinikoff, J.N., Davis, D.W., Korsch, R.J., Foudoulis, C., 2003. TEMORA 1: A new zircon standard for Phanerozoic U-Pb
NU
geochronology. Chemical Geology 200 (1–2), 155–170.
Blichert-Toft, J., Albarède, F., 1997. The Lu–Hf geochemistry of chondrites and the
MA
evolution of the mantle-crust system. Earth and Planetary Science Letters 148, 243–258 (Erratum: Earth and Planetary Science Letters 154, 349).
D
Blight, J.H.S., Cunning, D., Petterson, M.G., 2008. Crustal evolution of the
TE
Saykhandulaan Inlier, Mongolia: Implications for Palaeozoic arc magmatism, polyphase deformation and terrane accretion in the Southeast Gobi Mineral Belt.
CE P
Journal of Asian Earth Sciences 32, 142–164. Blight, J.H.S., Crowley, Q.G., Petterson, M.G., Cunningham, D., 2010. Granites of the Southern Mongolia Carboniferous Arc: New geochronological and geochemical
AC
constraints. Lithos 116, 35–52. Boynton, W.V., 1984. Geochemistry of the rare earth elements: Meteorite studies. In: Henderson P. (Ed.). Rare Earth Element Geochemistry. Elsevier, 63–114. Bureau of Geology Mineral Resources of Nei Mongol Autonomous Region (BGMRIM), 1965. Regional geological survey report of 1:200000–scale Erenhot NaiDabusienTala quadrangle (unpublished; in Chinese with English abstract). Bureau of Geology Mineral Resources of Nei Mongol Autonomous Region (BGMRIM), 1991. Regional Geology of Inner Mongolia Autonomous Region. Beijing: Geological Publishing House, 1–725 (in Chinese with English abstract). Cawood, P.A., Kröner, A., Collins, W.J., Kusky, T.M., Mooney, W.D., Windley, B.F., 2009. Earth accretionary orogens through Earth history. In: Cawood, P.A., Kröner, A. (Eds.), Earth Accretionary Systems in Space and Time. The
ACCEPTED MANUSCRIPT Geological Society, London Special Publications, 318, pp. 1–36. Chen, B., Jahn, B.M., Wilde, S.A., Xu, B., 2000. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China: Petrogenesis and tectonic
IP
T
implications. Tectonophysics 328 (1–2), 157–182.
Chen, B., Jahn, B.M., Tian, W., 2009. Evolution of the Solonker suture zone:
SC R
Constraints from zircon U–Pb ages, Hf isotopic ratios and whole-rock Sr–Nd isotope compositions of subduction– and collision–related magmas and forearc sediments. Journal of Asian Earth Sciences 34, 245–257.
NU
Chen, B., Zhang, Z.C., Guo, Z.J., Li, J.F., Feng, Z.S., Tang, W.H., 2012. Geochronology, geochemistry, and its geological significance of the Permian
MA
Mandula mafic rocks in Damaoqi, Inner Mongolia. Science China Earth Science 55, 39–52.
D
Coleman, R.G., 1989. Continental growth of northwest China. Tectonics 8, 621–635.
TE
Davidson, J.P., Arculus, R.J., 2006. The significance of Phanerozoic arc magmatism in generating continental crust. In: Brown, M., Rushmer, T. (Eds.), Evolution and
CE P
Differentiation of the Continental Crust. Cambridge University Press, Cambridge, pp. 135–172.
Eiler, J.M., Crawford, A., Elliott, T., Farley, K.A., Valley, J.W., Stolper, E.M., 2000.
AC
Oxygen isotope geochemistry of oceanic arc lavas. Journal of Petrology 41, 229–256.
Eizenhöfer, P.R., Zhao, G.C., Zhang, J., Sun, M., 2014. Final closure of the Paleo-Asian Ocean along the Solonker Suture Zone: Constraints from geochronological and geochemical data of Permian volcanic and sedimentary rocks. Tectonics 33, 441–463. Frey, F.A., Prinz, M., 1978. Ultramafic inclusions from San Carlos, Arizona: Petrologic and geochemical data bearing on their petrogenesis. Earth and Planetary Science Letters 38, 129–176. Gao, D.Z., Jiang, G.Q., 1998. Revision of the stratigraphic division of the Permian and tectonic evolution in the Sonid Left Banner, Inner Mongolia. Regional Geology of China 17 (4), 403–411 (in Chinese with English abstract).
ACCEPTED MANUSCRIPT Ge, W.C., Wu, F.Y., Zhou, C.Y., Zhang, J.H., 2005. Zircon U–Pb ages and its significance of the Mesozoic granites in the Wulanhaote region, central Da Hinggan Mountain. Acta Petrologica Sinica 21 (3), 749–762 (in Chinese with
IP
T
English abstract).
Gill, J.B., 1981. Orogenic Andesites and Plate Tectonics. Springer Verlag, New York,
SC R
385.
Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., van Achterbergh, E., O’Reilly, S.Y., Shee, S.R., 2000. The Hf isotope composition of cratonic mantle:
Cosmochimica Acta 64, 133–147.
NU
LAM–MC–ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et
MA
Griffin, W.L., Pearson, N.J., Belousova, E.A., Saeed, A., 2006. Comment: Hf–isotope heterogeneity in zircon 91500. Chemical Geology 233, 358–363.
D
Grove, T.L., Kinzler, R.J., 1986. Petrogenesis of Andesites. Annual Review of Earth
TE
and Planetary Sciences 14, 417–454. Grove, T.L., Elkins Tanton, L.T., Parman, S.W., Cartterjee, N., Muntener, O., Gaetani.
CE P
G.A., 2003. Fractional crystallization and mantle-melting controls on calk-alkaline differentiation trends. Contributions to Mineralogy and Petrology 145 (5), 515–533.
AC
Guo, Q., Xiao, W., Hou, Q., Windley, B.F., Han, C., Tian, Z., Song, D., 2014. Construction of Late Devonian Dundunshan arc in the Beishan orogen and its implication for tectonics of southern Central Asian Orogenic Belt. Lithos 184–187, 361–378. Han, J., Zhou, J.B., Wang, B., Cao, J.L., 2015. The final collision of the CAOB: Constraint from the zircon U–Pb dating of the Linxi Formation, Inner Mongolia. Geoscience Frontiers 6 (2), 211–225. Huang, B.H., 1983. On Late Paleozoic palaeophytogergraphic regions of eastern Tianshan-Hingan foldbelt and its geological significance. In: Tang K.D. (Ed.), Contributions for the Project of Plate Tectonics in Northern China (No. 1): Geological Publishing House, Beijing, pp. 138–155 (in Chinese). Jahn, B.M., Wu, F.Y., Chen, B., 2000. Massive granitoid generation in Central Asia:
ACCEPTED MANUSCRIPT Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes 23, 82–92. Jian, P., Liu, D.Y., Kröner, A., Windley, B.F., Shi, Y.R., Zhang, F.Q., Shi, G.H., Miao,
IP
T
L.C., Zhang, W., Zhang, Q., Zhang, L.Q., Ren, J.S., 2008. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt,
SC R
Inner Mongolia of China: Implications for continental growth. Lithos 101, 233–259.
Jian, P., Liu, D.Y., Kröner, A., Windley, B.F., Shi, Y.R., Zhang, W., Zhang, F.Q., Miao,
NU
L.C., Zhang, L.Q., Tomurhuu, D., 2010. Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt,
MA
China and Mongolia. Lithos 118, 169–190.
Jian, P., Kröner, A., Windley, B.F., Shi, Y.R., Zhang, W., Zhang, L.Q., Yang, W.R.,
D
2012. Carboniferous and Cretaceous mafic-ultramafic massifs in Inner Mongolia
TE
(China): A SHRIMP zircon and geochemical study of the previously presumed integral “Hegenshan ophiolite”. Lithos 142–143, 48–66.
CE P
Kepezhinskas, P., McDermott, F., Defant, M.J., Hochstaedter, A., Drummond, M.S., Hawkesworth, C.J., Koloskov, A., Maury, R.C., Bellon, H., 1997. Trace element and Sr–Nd–Pb isotope constraints on a three-component model of Kamchatka
AC
arc petrogenesis. Geochimica et Cosmochimica Acta 61, 577–600. Koschek, G., 1993. Origin and significance of the SEM cathodoluminescence from zircon. Journal of Microscopy 171, 223–232. Kovalenko, V.I., Yarmolyuk, V.V., Kovach, V.P., Kotov, A.B., Kozakov, I.K., Salnikova, E.B., 1996. Sources of Phanerozoic Granitoids in Central Asia: Sm–Nd Isotope Data. Geochemistry International 34, 628–640. Kovalenko, V.I., Yarmolyuk, V.V., Kovach, V.P., Kotov, A.B., Kozakov, I.K., Salnikova, E.B., Larin, A.M., 2004. Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian mobile belt: geological and isotopic evidence. Journal of Asian Earth Sciences 23, 605–627. Kröner, A., Windley, B.F., Badarch, G., Tomurtogoo, O., Hegner, E., Jahn, B.M., Gruschka, S., Khain, E.V., Demoux, A., Wingate, M.T.D., 2007. Accretionary
ACCEPTED MANUSCRIPT growth and crust formation in the Central Asian orogenic belt and comparison with the Arabian–Nubian shield. In: Hatcher, R.D., Carlson, M.P., McBride, J.H., Martínez Catalán, J.R. (Eds.), 4–D Framework of Continental Crust Geological
IP
T
Society of America Memoirs 200, 181–209.
Kröner, A., Kovach, V., Belousova, E., Hegner, E., Armstrong, R., Dolgopolova, A.,
SC R
Seltmann, R., Alexeiev, D.V., Hoffmann, J.E., Wong, J., Sun, M., Cai, K.D., Wang, T., Tong, Y., Wilde, S.A., Degtyarev, K.E., Rytsk, E., 2014. Reassessment of continental growth during the accretionary history of the Central Asian
NU
Orogenic Belt. Gondwana Research 25, 103–125.
Li, C.Y., Wang, Q., 1983. The paleo-plate tectonics of northern China and adjacent
MA
regions and the origin of Eurasia. In: Tang, K.D. (Ed.), Contributions for the Project of Plate Tectonics in Northern China (No. 1): Geological Publishing
D
House, Beijing, pp. 3–17 (in Chinese).
TE
Li, J.Y., 2006. Permian geodynamic setting of northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific plate.
CE P
Journal of Asian Earth Sciences 26, 207–224. Li, J.Y., Guo, F., Li, C.W., Zhao, L., Huang, M.W., 2015. Permian back-arc extension in central Inner Mongolia, NE China: Elemental and Sr-Nd-Pb-Hf-O isotopic
AC
constraints from the Linxi high-MgO diabase dikes. Island Arc 24, 404–424. Liu, J.F., 2009. Late Paleozoic magmatism and its constraints on regional tectonic evolution in Linxi–Dongwuqi area, Inner Mongolia: [D]. Changchun: Jilin University, pp. 1–142 (in Chinese with English abstract). Liu, J., Li, J., Chi, X., Qu, J., Hu, Z., Fang, S., Zhang, Z., 2013. A late-Carboniferous to early-Permian subduction-accretion complex in Daqing pasture, southeastern Inner Mongolia: Evidence of northward subduction beneath the Siberian paleoplate southern margin. Lithos 177, 285–296. Ludwig, K.R., 2003. User's Manual for Isoplot 3.0: a Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 4, 1–70. Machado, N., Simonetti, A., 2001. U–Pb dating and Hf isotopic composition of zircons by laser ablation–MC–ICP–MS. In: Sylvester, P. (Ed.), Laser Ablation
ACCEPTED MANUSCRIPT ICPMS in the Earth Sciences: Principles and Applications: Short Course, Mineralogical Association of Canada, 29, pp. 121–146. Miao, L.C., Zhang, F.Q., Fan, W.M., Liu, D.Y., 2007. Phanerozoic evolution of the
IP
T
Inner Mongolia-Daxinganling orogenic belt in North China: Constraints from geochronology of ophiolites and associated formations. Geological Society 280,
SC R
223–237.
Miao, L.C., Fan, W.M., Liu, D.Y., Zhang, E., Shi, Y.R., Guo, F., 2008. Geochronology and geochemistry of the Hegenshan ophiolitic complex: Implications for
NU
late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China. Journal of Asian Earth Sciences 32, 348–370.
MA
Mossakovsky, A.A., Ruzhentsov, S.V., Samygin, S.G., Kheraskova, T.N., 1993. Central Asian Fold Belt: geodynamic evolution and formation history.
D
Geotectonics 26, 445–473.
TE
McKenzie, D., O’Nions, R.K., 1991. Partial melt distributions from inversion of rare earth element concentrations. Journal of Petrology 32, 1021-1091.
CE P
Mullen, E.D., 1983. Earth and Planetary Science Letters 62, 53–62. Nowell, G.M., Kempton, P.D., Noble, S.R., Fitton, J.G., Saunders, A.D., Mahoney, J.J., Taylor, R.N., 1998. High precision Hf isotope measurements of MORB and OIB
AC
by thermal ionisation mass spectrometry: insights into the depleted mantle. Chemical Geology 149, 211–233. Nozaka, T., Liu, Y., 2002. Petrology of the Hegenshan ophiolite and its implication for the tectonic evolution of northern China. Earth and Planetary Science Letters 202, 89–104. Pearce, J.A., Cann, J.R., 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters 19, 290–300. Pearce, J.A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. In: Thorpe, R.S., (Ed.), Orogenic andesites and related rocks, Chichester, England: John Wiley and Sons, pp. 528–548. Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy
ACCEPTED MANUSCRIPT and Petrology 58, 63–81. Rapp, R.P., Watson, E.B., 1995. Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust–mantle recycling. Journal of
IP
T
Petrology 36, 891–931.
Richwood, P.C., 1989. Boundary lines within petrologic diagrams which use oxides
SC R
of major and minor elements. Lithos 22, 247–263.
Robinson, P.T., Zhou, M.F., Hu, X.F., Reynolds, P., Bai, W.J., Yang, J.S., 1999. Geochemical constraints on the origin of the Hegenshan ophiolite, Inner
NU
Mongolia, China. Journal of Asian Earth Sciences 17, 423–442. Rudnick, R.L., Gao, S., 2003. Composition of the continental crust. In: Heinrich, D.H.,
MA
Karl, K.T., (Eds.), Treatise on Geochemistry. Pergamon, Oxford, pp. 1–64. Rudnick, R.L., Gao, S., Ling, W.L., Liu, Y.S., McDonough, W.F., 2004. Petrology and
D
geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North
TE
China craton. Lithos 77, 609–637. Rytsk, E.Y., Kovach, V.P., Kovalenko, V.I., Yarmolyuk, V.V., 2007. Structure and
CE P
evolution of the continental crust in the Baikal Fold Region. Geotectonics 41, 440–464.
Saunders, A.D., Storey, M., Kent, R.W., Norry, M.J., 1992. Consequences of
AC
plume-lithosphere interactions, Magmatism and the Cause of Continental Breakup. Geological Society of Special Publication, London, pp. 41–60. Scheltens,
M.,
Zhang,
L.F.,
Xiao,
W.J.,
Zhang,
J.J.,
2015.
Northward
subduction-related orogenesis of the southern Altaids: Constraints from structural and metamorphic analysis of the HP/UHP accretionary complex in Chinese southwestern Tianshan, NW China. Geoscience Frontiers 6 (2), 191–209. Scherer, E.E., Munker, C., Mezger, K., 2001. Calibration of the Lutetium-Hafnium clock. Science 293, 683–687. Sengör, A.M.C., 1992. The Palaeo-Tethyan suture: A line of demarcation between two fundamentally different architectural styles in the structure of Asia. Island Arc 1, 78–91. Sengör, A.M.C., Naial’in, B.A., Burtman, V.S., 1993. Evolution of the Altaid tectonic
ACCEPTED MANUSCRIPT collage and Paleozoic crustal growth in Eurasia. Nature 364, 299–307. Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D.,
IP
T
Norry, M.J. (Eds.), Magmatism in ocean basins. Geological Society of Special Publication, London, pp. 313–345.
SC R
Tang, K.D., 1990. Tectonic development of Paleozoic fold belts at the northern margin of the Sino-Korean Craton. Tectonics 9, 249–260.
Tao, J.X., Bai, L.B., Bao, Y.W.L.J., Zheng, W.J., Su, R.M., 2003. Rock record of
NU
Permian subducting orogenic process in Mandula, Inner Mongolia. Geological Survey and Research 26 (4), 241–249 (in Chinese with English abstract).
MA
Wang, Q., Liu, X.Y., 1986. Paleoplate tectonics between Cathaysia and Angaraland in Inner Mongolia of China. Tectonics 5, 1073–1088.
D
Wang, R.J., 1987. A discussion of K–Ar ages of the lower Permian Dashizhai
TE
Formation in the south segment of the Daxinganling. Acta Petrologica Sinica 2, 80–90 (in Chinese with English abstract).
CE P
Wang, Q., Liu, X.Y., Li, J.Y., 1991. Plate Tectonics between Cathaysia and Angaraland in China. Peking University Publishing House, Beijing, pp. 1–151 (in Chinese with English abstract).
AC
Windley, B.F., Alexeiev, D., Xiao, W.J., Kröner, A., Badarch, G., 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of Geological Society, London 164, 31–47. Wu, F.Y., Yang, Y.H., Xie, L.W., Yang, J.H., Xu, P., 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology. Chemical Geology 234, 105–126. Wu, F.Y., Yang, J.H., Lo, C.H., Wilde, S.A., Sun, D.Y., Jahn, B.M., 2007. The Heilongjiang Group: A Jurassic accretionary complex in the Jiamusi Massif at the western Pacific margin of northeastern China. Island Arc 16, 156–172. Wu, F.Y., Sun, D.Y., Ge, W.C., Zhang, Y.B., Grant, M.L., Wilde, S.A., Jahn, B.M., 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences 41, 1–30.
ACCEPTED MANUSCRIPT Xiao, W.J., Windley, B.F., Hao, J., Zhai, M.G., 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics 22, 1069–1089.
IP
T
Xiao, W.J., Zhang, L.C., Qin, K.Z., Sun, S., Li, J.L., 2004. Paleozoic accretionary and collisional tectonics of the eastern Tianshan (China): Implications for the
SC R
continental growth of Central Asia. American Journal of Science 304, 370–395. Xiao, W.J., Windley, B.F., Huang, B.C., Han, C.M., Yuan, C., Chen, H.L., Sun, M., Sun, S., Li, J.L., 2009. End-Permian to mid-Triassic termination of the
NU
accretionary processes of the southern Altaids: Implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia.
MA
International Journal of Earth Science 98, 1189–1287. Xiao, W.J., Windley, B.F., Allen, M.B., Han, C.M., 2013. Paleozoic multiple
D
accretionary and collisional tectonics of the Chinese Tianshan orogenic collage.
TE
Gondwana Research 23, 1316–1341. Xiao, W.J., Santosh, M., 2014. The western Central Asian Orogenic Belt: A window
CE P
to accretionary orogenesis and continental growth. Gondwana Research 25, 1429–1444.
Xiao, W.J., Han, C.M., Liu, W., Wan, B., Zhang, J.E., Ao, S.J., Zhang, Z.Y., Song,
AC
D.F., Tian, Z.H., Luo, J., 2014. How many sutures in the southern Central Asian Orogenic Belt: Insights from East Xinjiang–West Gansu (NW China)? Geoscience Frontiers 5, 525–536. Xu, W.L., Ji, W.Q., Pei, F.P., Meng, E., Yu, Y., Yang, D.B., Zhang, X.Z., 2009. Triassic volcanism in eastern Heilongjiang and Jilin Provinces, NE China: chronology, geochemistry, and tectonic implications. Journal of Asian Earth Sciences 34, 392–402. Yang, J.H., Wu, F.Y., Shao, J.A., Wilde, S.A., Xie, L.W., Liu, X.M., 2006. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China. Earth and Planetary Science Letters 246, 336–352. Yu, J.J., Wang, F., Xu, W.L., Gao, F.H., Pei, F.P., 2012. Early Jurassic mafic magmatism in the Lesser Xing'an-Zhangguangcai Range, NE China, and its
ACCEPTED MANUSCRIPT tectonic
implications:
Constraints
from
zircon
U–Pb
chronology
and
geochemistry. Lithos 142–143, 256–266. Zhang, X.H., Zhang, H.F., Tang, Y.J., Wilde, S.A., Hu, Z.C., 2008. Geochemistry of
IP
T
Permian bimodal volcanic rocks from central Inner Mongolia, North China: Implication for tectonic setting and Phanerozoic continental growth in Central
SC R
Asian Orogenic Belt. Chemical Geology 249, 262–281.
Zhang, Z.C., Li, K., Li, J.F., Tang, W.H., Chen, Y., Luo, Z.W., 2015. Geochronology and geochemistry of the Eastern Erenhot ophiolitic complex: Implications for the
NU
tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt. Journal of Asian Sciences 97, 279–293.
MA
Zhao, Z., 2008. Geochemistry and tectonic setting of the volcanic rocks of Early Permian Dashizhai Formation in Dashizhai area, Inner Mongolia: [D].
D
Changchun: Jilin University, pp. 1–49 (in Chinese).
TE
Zheng, Y.F., 2012. Metamorphic chemical geodynamics in continental subduction zones. Chemical Geology 328, 5–48.
CE P
Zonenshain, L.P., Kuzmin, M.I., Natapov, L.M., 1990. Geology of the USSR: a plate tectonic synthesis. Geodynamic Series, vol. 21. American Geophysical Union, Washington, D.C. pp. 242.
AC
Zhu, Y.F., Sun, S.H., Gu, L.B., Ogasawara, Y., Jiang, N., Honma, H., 2001. Permian volcanism in the Mongolian orogenic zone, northeast China: geochemistry, magma sources and petrogenesis. Geological magazine 138, 101–115.
Figure captions Figure 1. (a) Tectonic sketch map of northeastern (NE) China (after Wu et al., 2011); (b) Geological sketch map of the studied area (after BGMRIM, 1991). Abbreviations: F1 = Xiguitu-Tayuan Fault; F2 = Hegenshan–Heihe Fault; F3 = Solonker–Xar Moron–Changchun zone; F4 = Chifeng–Bayan Fault; F5 = Dunhua-Mishan Fault; F6 = Yitong-Yilan Fault; F7 = Jiayin-Mudanjiang Fault. Figure 2. Measured section for the volcanic rocks from the Dashizhai Formation in eastern Inner Mongolia.
ACCEPTED MANUSCRIPT Figure 3. Representative photomicrographs for the volcanic rocks from the Dashizhai Formation in eastern Inner Mongolia; (a) rhyolitic tuff, cross polarized light; (b) rhyolite, cross polarized light; (c) andesite, cross polarized light; (d) basalt, cross
IP
T
polarized light. Cpx = clinopyroxene; Hb = hornblende; Or = orthoclase; Pl = plagioclase; Q = quartz.
SC R
Figure 4. Representative cathodoluminescence (CL) images of zircons for the volcanic rocks from the Dashizhai Formation. White circles show the locations of LA–ICP–MS U–Pb analyses, and the scale bar in all CL images is 60 μm in length.
NU
Figure 5. Zircon LA–ICP–MS U–Pb concordia diagrams for the volcanic rocks from the Dashizhai Formation. The weighted mean age and MSWD are shown in each
MA
figure (including samples of DS005, DS019, DS042, DS070, and DS079). Figure 6. (a) Plots of TAS chemical classification diagram (after Peccerillo and Taylor,
D
1976); (b) Plots of K2O versus SiO2 diagram (after Richwood, 1989).
TE
Figure 7. Chondrite-normalized REE patterns (a, c and e), and primitive mantle (PM) normalized trace element patterns (b, d and f) for the volcanic rocks from the
CE P
Dashizhai Formation in eastern Inner Mongolia. Chondrite-normalized and primitive mantle-normalized values are from Boynton (1984) and Sun and McDonough (1989), respectively.
AC
Figure 8. Harker variation diagrams for major oxides vs. SiO2 content for the volcanic rocks from the Dashizhai Formation in eastern Inner Mongolia. Figure 9. εHf(t) vs. t diagram of the volcanic rocks from the Dashizhai Formation in eastern Inner Mongolia. CAOB = the Central Asian Orogenic Belt; YFTB = the Yanshan Fold and Thrust Belt (after Yang et al., 2006). Figure 10. Relative probability diagram for the forming time of the volcanic rocks from the Dashizhai Formation. Figure 11. The sketch map for the distribution of the volcanic rocks from the Dashizhai Formation in central-eastern Inner Mongolia (a, after this article; b and d, after Zhang et al., 2008; c, after Liu, 2009; e, after Zhu et al., 2001; f, after Wang, 1987; g, after Tao et al., 2003; h, after Gao and Jiang, 1998). Figure 12. (a) Plots of Cr contents versus Th contents diagram; (b) Plots of La/Ba
ACCEPTED MANUSCRIPT versus La/Nb diagram. CLM = continental lithospheric mantle and the reference fields for OIB, MORB and high U/Pb mantle source (HIMU) are from (Saunders et al.,
IP
Figure 13. (a) Plots of Ba vs. Nb/Y; (b) Plots of Rb/Y vs. Nb/Y.
T
1992), DM are from (McKenzie and O’Nions, 1991).
Figure 14. (a) Zr–Ti–Sr discrimination diagram (after Pearce and Cann, 1973). OFB =
SC R
ocean floor basalts; CAB = calc-alkaline basalts; IAB = island arc basalts. (b) MnO–TiO2–P2O5 discrimination diagram (after Mullen, 1983). CAB = calc-alkaline basalts; IAT = island arc tholeiites; MORB = mid ocean ridge basalts; OIT = ocean
AC
CE P
TE
D
MA
NU
island tholeiites; OIA = ocean island alkaline basalts.
AC
CE P
TE
D
MA
NU
SC R
IP
T
ACCEPTED MANUSCRIPT
Figure 1
TE
D
MA
NU
SC R
IP
T
ACCEPTED MANUSCRIPT
AC
CE P
Figure 2
D
MA
NU
SC R
IP
T
ACCEPTED MANUSCRIPT
AC
CE P
TE
Figure 3
MA
NU
SC R
IP
T
ACCEPTED MANUSCRIPT
AC
CE P
TE
D
Figure 4
AC
CE P
TE
D
MA
NU
SC R
IP
T
ACCEPTED MANUSCRIPT
Figure 5
SC R
IP
T
ACCEPTED MANUSCRIPT
AC
CE P
TE
D
MA
NU
Figure 6
CE P
AC
Figure 7
TE
D
MA
NU
SC R
IP
T
ACCEPTED MANUSCRIPT
AC
CE P
TE
D
MA
NU
SC R
IP
T
ACCEPTED MANUSCRIPT
Figure 8
NU
SC R
IP
T
ACCEPTED MANUSCRIPT
AC
CE P
TE
D
MA
Figure 9
NU
SC R
IP
T
ACCEPTED MANUSCRIPT
AC
CE P
TE
D
MA
Figure 10
NU
SC R
IP
T
ACCEPTED MANUSCRIPT
AC
CE P
TE
D
MA
Figure 11
NU
SC R
IP
T
ACCEPTED MANUSCRIPT
AC
CE P
TE
D
MA
Figure 12
SC R
IP
T
ACCEPTED MANUSCRIPT
AC
CE P
TE
D
MA
NU
Figure 13
MA
NU
SC R
IP
T
ACCEPTED MANUSCRIPT
AC
CE P
TE
D
Figure 14
ACCEPTED MANUSCRIPT Table 1. LA-ICP-MS zircon U-Pb dating data for the volcanic rocks from the Dashizhai Formation in eastern Inner Mongolia Isotopic ratios
Sample No.
Th
U
Pb Th/U
Pb/ Pb
207
235
Pb/ U
206
238
Pb/ U
207
Pb/206Pb
207
Pb/235U
206
Pb/238U
Ratio
1σ
Ratio
1σ
Ratio
1σ
Ages
1σ
Ages
1σ
Ages
1σ
34
268
7
284
7
DS005-01
481.3 415.0 24.3
0.9
0.0487
0.00165
0.30241
0.00953
0.04504
T
ppm ppm
Ages (Ma)
206
133
DS005-02
340.9 318.2 18.5
0.9
0.0521
0.00159
0.32359
0.0092
0.04504
0.00109
290
29
285
7
284
7
DS005-03
156.5 152.1 8.7
1.0
0.05315
0.002
0.33584
0.01169
0.04583
0.00119
335
37
294
9
289
7
DS005-04
590.1 492.5 29.3
0.8
0.07025
0.00174
0.42229
DS005-05
138.4 164.9 9.6
1.2
0.05491
0.00128
0.35729
DS005-06
147.9 166.8 9.7
1.1
0.05259
0.00153
0.33643
DS005-07
261.4 242.7 14.5
0.9
0.063
0.00165
0.39128
DS005-08
617.7 469.1 28.7
0.8
0.05197
0.0014
0.32536
SC R
ppm
207
DS005-09
506.5 340.1 22.1
0.7
0.05433
0.0015
DS005-10
107.1 171.6 9.4
1.6
0.05471
0.00141
DS005-11
172.8 196.6 11.6
1.1
0.05332
0.00113
DS005-12
214.3 228.1 13.4
1.1
0.06373
DS005-13
202.1 222.5 13.1
1.1
0.05156
DS005-14
165.1 186.7 10.8
1.1
0.05493
DS005-15
285.1 249.1 15.4
0.9
0.05422
DS005-16
250.8 240.0 14.5
1.0
DS005-17
166.9 177.0 10.1
DS005-18
296.9 279.2 17.0
DS005-19
326.6 258.5 17.0
DS005-20
IP
0.00112
0.0436
0.00102
936
22
358
7
275
6
0.00791
0.04719
0.00106
409
23
310
6
297
7
0.00913
0.0464
0.00111
311
28
294
7
292
7
0.00948
0.04505
0.00106
708
23
335
7
284
7
0.00818
0.04541
0.00106
284
26
286
6
286
7
0.34742
0.00895
0.04638
0.0011
385
26
303
7
292
7
0.35271
0.00856
0.04676
0.00108
400
24
307
6
295
7
0.34827
0.00703
0.04738
0.00105
342
22
303
5
298
6
0.00112
0.40511
0.00683
0.04611
0.00101
733
22
345
5
291
6
0.0011
0.33829
0.00688
0.04759
0.00106
266
23
296
5
300
7
0.00121
0.3511
0.00734
0.04636
0.00104
409
22
306
6
292
6
0.00105
0.35501
0.00657
0.04749
0.00104
380
22
308
5
299
6
0.05372
0.00104
0.34751
0.00646
0.04692
0.00103
359
22
303
5
296
6
1.1
0.0547
0.00164
0.34645
0.00968
0.04594
0.00111
400
28
302
7
290
7
0.9
0.05542
0.00107
0.36003
0.00666
0.04712
0.00104
429
22
312
5
297
6
0.8
0.06894
0.00579
0.42907
0.0342
0.04514
0.00119
897
179
363
24
285
7
193.6 188.7 11.3
1.0
0.05588
0.00146
0.35977
0.0088
0.0467
0.0011
448
24
312
7
294
7
DS005-21
188.0 174.8 10.6
0.9
0.06376
0.00219
0.40498
0.01271
0.04607
0.00119
734
30
345
9
290
7
DS005-22
250.5 216.5 13.4
0.9
0.06372
0.00234
0.4012
0.01347
0.04567
0.00122
732
33
343
10
288
8
MA
D
TE
CE P
AC
NU
0.00958
DS005-23
174.4 203.5 11.6
1.2
0.0564
0.00209
0.36349
0.01242
0.04675
0.00122
468
35
315
9
295
8
DS005-24
293.7 248.6 15.2
0.8
0.05628
0.00121
0.36144
0.00732
0.04658
0.00105
463
22
313
5
293
6
DS019-01
281.1 482.8 25.0
0.6
0.05309
0.00132
0.33309
0.00778
0.04549
0.00106
333
24
292
6
287
7
DS019-02
248.4 506.7 25.7
0.5
0.05076
0.00116
0.32112
0.00697
0.04587
0.00104
230
24
283
5
289
6
DS019-03
200.4 461.8 23.2
0.4
0.05232
0.00144
0.32958
0.00849
0.04568
0.00109
299
26
289
6
288
7
DS019-04
183.8 438.5 21.6
0.4
0.05102
0.00107
0.3192
0.0064
0.04537
0.00102
242
23
281
5
286
6
DS019-06
363.1 595.2 30.3
0.6
0.05374
0.0013
0.33189
0.00753
0.04478
0.00104
360
24
291
6
282
6
DS019-07
309.8 553.8 28.3
0.6
0.05489
0.00106
0.34238
0.0063
0.04523
0.00101
408
23
299
5
285
6
DS019-08
171.2 333.8 17.1
0.5
0.05254
0.00154
0.3327
0.00907
0.04592
0.00111
309
28
292
7
289
7
DS019-09
196.9 446.7 22.2
0.4
0.05332
0.00111
0.33306
0.00661
0.04529
0.00102
342
23
292
5
286
6
DS019-10
426.8 621.0 33.0
0.7
0.05744
0.00113
0.35925
0.00671
0.04536
0.00102
508
22
312
5
286
6
DS019-11
169.8 350.0 17.3
0.5
0.05274
0.00191
0.32637
0.01096
0.04488
0.00116
318
36
287
8
283
7
DS019-12
626.1 688.2 37.2
0.9
0.05927
0.00134
0.36015
0.00766
0.04407
0.00101
577
22
312
6
278
6
DS019-13
235.1 428.9 21.6
0.5
0.05348
0.00146
0.33133
0.00843
0.04493
0.00107
349
26
291
6
283
7
DS019-14
330.4 596.0 30.0
0.6
0.05885
0.00119
0.35902
0.00689
0.04424
0.001
562
22
311
5
279
6
DS019-15
228.7 277.3 15.1
0.8
0.05713
0.00268
0.35636
0.01527
0.04523
0.00133
497
47
309
11
285
8
DS019-16
348.1 417.9 22.3
0.8
0.05278
0.00147
0.33038
0.00859
0.04539
0.00108
319
26
290
7
286
7
DS019-17
345.2 355.1 19.9
1.0
0.06186
0.00232
0.37515
0.01283
0.04398
0.00119
669
34
323
9
277
7
DS019-18
1990
1453 87.3
1.4
0.06851
0.00096
0.42116
0.0058
0.04458
0.00096
884
23
357
4
281
6
DS019-19
389.4 606.6 31.2
0.6
0.05422
0.00133
0.33576
0.00776
0.04491
0.00104
380
24
294
6
283
6
DS019-20
576.9 608.4 33.5
0.9
0.05356
0.00175
0.34017
0.0103
0.04606
0.00115
353
31
297
8
290
7
DS019-22
219.1 395.5 19.8
0.6
0.05479
0.00212
0.33838
0.01207
0.04478
T
404
38
296
9
282
7
DS019-23
302.7 495.7 24.1
0.6
0.05314
0.00263
0.31977
0.01454
0.04363
0.0013
335
53
282
11
275
8
DS019-24
350.7 515.5 26.7
0.7
0.05196
0.00142
0.32927
0.00846
0.04596
0.00109
284
26
289
6
290
7
DS042-01
547.5 753.2 40.3
0.7
0.04631
0.00082
0.29464
DS042-02
186.0 266.6 14.1
0.7
0.05149
0.00144
0.32267
DS042-04
171.4 263.0 14.0
0.7
0.05196
0.00427
0.33218
DS042-05
347.0 407.5 22.6
0.9
0.05301
0.00116
0.33715
DS042-06
182.2 325.2 17.8
0.6
0.0479
0.00114
0.32203
SC R
ACCEPTED MANUSCRIPT
DS042-08
589.9 538.6 28.5
1.1
0.06172
0.0013
DS042-09
184.5 337.9 17.5
0.5
0.05918
0.00204
DS042-10
187.6 346.4 18.1
0.5
0.0509
0.0012
DS042-11
205.8 314.8 16.6
0.7
0.05197
DS042-12
193.1 296.4 15.3
0.7
0.04839
DS042-13
158.9 205.9 11.1
0.8
0.05388
DS042-14
455.7 691.1 35.9
0.7
0.04967
DS042-15
144.2 189.5 10.2
0.8
DS042-16
198.8 268.1 14.7
DS042-17
187.1 295.9 17.3
DS042-18
162.3 322.1 16.3
DS042-19
IP
0.0012
0.04615
0.00103
14
23
262
4
291
6
0.00835
0.04545
0.00111
263
27
284
6
287
7
0.02493
0.04636
0.00193
284
98
291
19
292
12
0.00689
0.04613
0.00106
329
23
295
5
291
7
0.00719
0.04875
0.00113
94
25
283
6
307
7
0.36215
0.00707
0.04255
0.00098
664
22
314
5
269
6
0.37046
0.01164
0.04539
0.00119
574
31
320
9
286
7
0.33045
0.00727
0.04708
0.00109
236
24
290
6
297
7
0.00133
0.33326
0.00795
0.04649
0.0011
284
25
292
6
293
7
0.00134
0.30282
0.00784
0.04537
0.00108
118
27
269
6
286
7
0.00174
0.33829
0.01004
0.04553
0.00115
366
30
296
8
287
7
0.00094
0.31441
0.00568
0.0459
0.00103
180
24
278
4
289
6
0.05648
0.0029
0.35587
0.0166
0.04569
0.00143
471
52
309
12
288
9
0.7
0.05329
0.00372
0.34483
0.02193
0.04692
0.00177
341
79
301
17
296
11
0.6
0.07295
0.00524
0.45591
0.03019
0.04533
0.00126
1012
150
381
21
286
8
0.5
0.05865
0.00185
0.36058
0.01047
0.04458
0.00112
554
28
313
8
281
7
304.2 356.7 18.8
0.9
0.05689
0.00166
0.35162
0.00945
0.04482
0.0011
487
26
306
7
283
7
DS042-20
290.7 394.8 21.3
0.7
0.052
0.0012
0.33686
0.0073
0.04697
0.00108
285
24
295
6
296
7
DS042-21
323.9 407.8 22.4
0.8
0.05169
0.00122
0.33244
0.00736
0.04664
0.00107
272
24
291
6
294
7
MA
D
TE
CE P
AC
NU
0.00498
DS042-22
451.2 414.7 22.9
1.1
0.05642
0.00178
0.34636
0.01008
0.04452
0.00112
469
29
302
8
281
7
DS042-23
256.9 377.0 19.7
0.7
0.05431
0.00224
0.33441
0.01267
0.04466
0.00123
384
41
293
10
282
8
DS042-24
112.4 179.3 9.5
0.6
0.05314
0.00192
0.34004
0.01132
0.0464
0.00121
335
35
297
9
292
7
DS070-01
180.0 175.6 10.1
1.0
0.05558
0.00249
0.34699
0.01428
0.04527
0.00128
436
45
302
11
285
8
DS070-02
345.6 575.6 30.3
0.6
0.04865
0.00116
0.3104
0.00696
0.04627
0.00105
131
24
274
5
292
6
DS070-03
770.9 473.9 29.7
1.6
0.05735
0.00232
0.34409
0.01272
0.04351
0.00119
505
39
300
10
275
7
DS070-04
264.3 425.8 22.0
0.6
0.05277
0.00187
0.33366
0.01092
0.04585
0.00118
319
34
292
8
289
7
DS070-05
231.1 366.6 19.7
0.6
0.0508
0.00137
0.32136
0.0081
0.04587
0.00107
232
26
283
6
289
7
DS070-06
277.6 603.5 30.2
0.5
0.05098
0.00208
0.30767
0.01157
0.04376
0.00118
240
42
272
9
276
7
DS070-07
358.0 267.4 16.5
1.3
0.05228
0.00252
0.31811
0.01412
0.04412
0.00128
298
52
280
11
278
8
DS070-08
754.6 1043 55.7
0.7
0.05323
0.00104
0.33308
0.00617
0.04538
0.001
339
22
292
5
286
6
DS070-09
196.8 341.7 18.1
0.6
0.05341
0.00153
0.33728
0.00896
0.0458
0.00109
346
27
295
7
289
7
DS070-10
326.4 463.9 24.8
0.7
0.05384
0.00187
0.33961
0.01086
0.04574
0.00117
364
33
297
8
288
7
DS070-11
472.7 572.2 31.1
0.8
0.05429
0.00196
0.3332
0.0111
0.0445
0.00115
383
35
292
8
281
7
DS070-12
306.4 405.2 21.4
0.8
0.05508
0.00156
0.33408
0.00877
0.04399
0.00105
415
26
293
7
278
6
DS070-13
635.2 392.3 26.2
1.6
0.04936
0.00162
0.30908
0.00942
0.04541
0.00112
165
32
273
7
286
7
DS070-14
312.3 400.7 22.3
0.8
0.05355
0.00136
0.3393
0.00804
0.04595
0.00106
352
24
297
6
290
7
DS070-15
300.9 689.4 34.0
0.4
0.05241
0.00182
0.31979
0.01026
0.04425
0.00112
303
34
282
8
279
7
DS070-16
228.3 185.4 9.9
1.2
0.06419
0.00274
0.38363
0.01482
0.04334
0.00123
748
39
330
11
274
8
DS070-17
100.3 239.6 12.3
0.4
0.05087
0.00232
0.31367
0.01317
0.04471
0.00127
235
49
277
10
282
8
DS070-18
193.8 544.9 26.5
0.4
0.04867
0.00197
0.30045
0.01125
0.04476
0.00119
132
43
267
9
282
7
DS070-19
118.8 213.5 11.5
0.6
0.05098
0.00196
0.32427
0.01152
0.04613
T
240
39
285
9
291
7
DS070-20
328.6 428.5 22.4
0.8
0.06346
0.00185
0.37557
0.01003
0.04292
0.00105
724
25
324
7
271
6
DS070-21
264.7 569.1 28.9
0.5
0.05419
0.00142
0.33355
0.00812
0.04463
0.00104
379
25
292
6
281
6
DS070-22
205.5 311.2 16.8
0.7
0.05421
0.00143
0.34065
DS070-23
312.3 349.2 19.3
0.9
0.05541
0.00159
0.33365
DS070-24
54.1
0.2
0.05316
0.00221
0.38561
DS079-01
104
143
7.9
0.7
0.05252
0.00249
0.34639
DS079-02
147
214
11.3
0.7
0.05764
0.00256
0.36126
SC R
ACCEPTED MANUSCRIPT
DS079-03
88
130
7.1
0.7
0.05843
0.00284
DS079-04
88.7
155.0 8.3
0.6
0.06268
0.00068
DS079-05
244
1070 168
0.2
0.07183
0.00292
DS079-06
89.8
156.9 8.6
0.6
0.07042
DS079-07
82.6
145.1 7.6
0.6
0.07964
DS079-08
119.0 168.7 9.0
0.7
0.06482
DS079-09
192.6 229.7 13.7
0.8
0.07078
DS079-10
215.2 749.4 124
0.3
DS079-12
132.9 186.1 11.1
DS079-13
206.6 214.3 11.8
DS079-14
68.2
137.9 7.2
DS079-15
IP
0.00121
0.04557
0.00106
380
25
298
6
287
7
0.00887
0.04366
0.00105
429
26
292
7
275
6
0.01475
0.0526
0.00144
336
42
331
11
330
9
0.01509
0.04784
0.00142
308
50
302
11
301
9
0.01459
0.04546
0.00134
516
42
313
11
287
8
0.38205
0.01678
0.04742
0.00147
546
47
329
12
299
9
1.3183
0.01496
0.15254
0.00331
697
27
854
7
915
19
0.48419
0.01754
0.04889
0.00143
981
34
401
12
308
9
0.0031
0.46711
0.01852
0.0481
0.00144
941
38
389
13
303
9
0.00703
0.51461
0.04242
0.04686
0.00148
1188
181
422
28
295
9
0.00079
1.41335
0.01748
0.1581
0.00344
768
26
895
7
946
19
0.00215
0.47623
0.01315
0.04878
0.00125
951
25
395
9
307
8
0.05499
0.0021
0.35769
0.01257
0.04716
0.00127
412
37
310
9
297
8
0.7
0.05766
0.00248
0.36184
0.01422
0.04549
0.00129
517
42
314
11
287
8
1.0
0.07596
0.00097
1.52368
0.01959
0.14542
0.00316
1094
24
940
8
875
18
0.5
0.07441
0.00291
0.50397
0.01767
0.0491
0.0014
1053
32
414
12
309
9
524.2 1346 219
0.4
0.06691
0.00084
1.41941
0.01804
0.15379
0.00333
835
25
897
8
922
19
DS079-16
128.3 166.9 9.1
0.8
0.07096
0.00625
0.47066
0.03907
0.0481
0.00141
956
186
392
27
303
9
DS079-17
316.8 591.1 98.1
0.5
0.07318
0.0074
0.46439
0.04453
0.04602
0.00148
1019
213
387
31
290
9
AC
MA
D
TE
CE P
285.8 15.7
NU
0.00841
DS079-18
86.6
126.8 7.2
0.7
0.05673
0.00313
0.35377
0.01782
0.04522
0.00146
481
58
308
13
285
9
DS079-19
502.1 976.2 166
0.5
0.06791
0.00269
0.42934
0.01543
0.04585
0.00128
866
35
363
11
289
8
DS079-20
145.0 177.2 10.9
0.8
0.05408
0.00397
0.35254
0.02372
0.04727
0.00179
374
85
307
18
298
11
DS079-21
223.6 251.9 16.2
0.9
0.05872
0.0031
0.3691
0.0178
0.04559
0.00142
557
54
319
13
287
9
DS079-22
173.1 201.9 10.8
0.9
0.07747
0.00314
0.49592
0.01807
0.04643
0.00132
1133
34
409
12
293
8
DS079-23
137.6 166.4 9.2
0.8
0.07741
0.0009
1.58359
0.01895
0.1484
0.00316
1132
24
964
7
892
18
DS079-24
149.0 195.5 11.0
0.8
0.08014
0.00487
0.48917
0.02643
0.04428
0.00162
1200
53
404
18
279
10
ACCEPTED MANUSCRIPT Table 2. Major (wt.%), and trace (ppm) elements for the volcanic rocks sample JS012 DS125 DS139 DS118 JS011 SiO2
###
###
JS008
DS107 JS002
from the Dashizhai Formation in eastern Inner Mongolia
JS013
DS085 JS001
JS003
JS004
DS055 JS005
DS029 JS009
DS065 DS032 JS010
50.90
51.07
51.50
51.70
52.22
52.94
52.95
53.27
53.30
53.55
54.05
55.74
56.36
57.31
58.81
59.68
###
###
DS038 DS028 68.70
###
1.68
1.91
1.58
1.76
1.40
2.00
1.38
1.10
1.48
1.32
1.32
1.05
1.38
1.07
1.17
1.50
1.34
0.88
0.88
0.93
0.53
0.53
Al2O3
16.29
17.03
16.99
16.20
16.81
17.66
18.51
18.14
17.09
18.69
16.50
18.05
18.36
16.56
16.06
14.96
18.96
17.11
14.72
15.02
15.63
14.88
TFe2O3
10.81
11.06
10.26
10.76
9.69
11.00
10.07
9.71
9.54
8.59
9.66
9.34
9.13
10.20
11.28
8.56
6.29
7.26
5.81
3.78
3.46
MnO
0.14
0.16
0.14
0.14
0.13
0.16
0.21
0.14
0.14
0.12
0.15
0.10
MgO
8.28
7.51
6.87
8.13
6.49
4.50
4.99
5.69
6.30
5.24
4.77
4.14
CaO
8.93
8.18
8.48
6.81
8.82
5.02
6.74
7.55
6.82
4.30
Na2O
2.85
2.51
2.82
3.27
3.00
5.03
3.43
3.10
3.67
5.20
K2O
0.28
0.51
0.55
0.62
0.93
0.33
1.11
0.80
0.81
0.58
P2O5
0.19
0.23
0.17
0.25
0.17
0.21
0.45
0.19
0.20
0.14
LOI
0.57
0.75
0.95
0.71
0.77
2.12
0.58
0.34
0.72
2.30
T
TiO2
IP
7.35
0.16
7.41
9.14
4.08
6.45
8.89
4.71
1.96
10.33
4.39
3.09
2.17
2.24
3.76
3.54
4.26
2.74
3.12
4.15
2.28
0.81
3.29
5.14
3.52
3.61
1.07
0.17
2.15
0.82
1.28
0.99
3.98
2.00
0.99
0.47
2.10
3.37
0.35
0.19
0.28
0.11
0.18
0.21
0.10
0.12
0.15
0.10
0.12
0.10
1.42
0.44
0.91
2.47
0.89
1.17
2.31
1.93
1.89
0.43
1.98
1.00
0.17
0.17
0.05
0.13
0.12
0.12
0.06
0.07
4.94
3.43
4.24
3.28
1.43
0.49
2.19
2.58
1.35
1.16
NU
SC R
0.17
99.70
99.70
99.71
99.71
99.70
99.74
99.70
99.70
99.71
99.75
99.72
99.70
99.71
99.77
99.71
99.73
99.78
99.77
99.75
99.70
99.95
99.71
Sc
29.4
28.5
31.3
29.1
27.7
30.2
24.6
20.2
23.1
22.7
29.4
19.5
23.3
24.3
22.4
28.5
21.3
15.5
19.2
16.4
10.6
9.07
V
223
232
224
221
218
237
206
Cr
324
209
189
314
200
153
103
Co
42.4
41.6
38.6
41.9
36.8
34.0
29.7
Ni
142
122
102
140
99.4
100
67.8
Cu
35.1
31.4
36.5
59.3
26.6
61.3
Zn
87.1
95.6
91.9
91.9
74.6
142
Ga
18.8
19.5
19.7
18.5
18.0
Rb
4.97
9.63
15
10
19
Sr
551
590
Y
26.2
27.0
Nb
4.82
5.68
Ge
1.41
1.23
Cs
3.16
5.89
Ba
104.4
La
MA
Total
197
185
234
229
184
244
179
235
118
74.9
157
101
75.1
59.5
132
164
59.50
27
108
138
17.7
86.5
0.40
128
0.53
5.58
71.5
0.34
7.03
35.0
30.4
25.5
20.6
28.1
26.8
27.8
15.2
27.5
20.4
3.14
16.20
15.8
9.28
6.34
91.10
102
###
18.3
81.30
65.1
17.50
38.0
13.80
###
2.63
9.83
25.3
1.70
11.2
D
190
26.6
8.0
34.5
48.7
57.9
32.5
37.10
6.01
69.8
29.4
4.76
28.1
7.97
15.9
9.27
97.6
82.0
74.0
86.2
83.4
60.0
88.8
86.0
74.8
111
72.1
###
71.8
46.8
50.2
50.2
20.7
22.3
19.9
18.5
19.0
19.7
22.6
21.5
15.4
18.8
19.7
23.2
49.9
14.7
14.5
15.2
15.4
7.13
26
17
25
16
23
3.66
71
25
35
33
98
60
33
18
50
76
CE P
TE
35.7
501
597
252
1190
785
588
496
572
970
643
865
527
208
233
1563
638
337
483
335
26.8
26.5
20.5
23.6
27.4
12.5
20.1
16.2
21.5
14.0
16.4
18.2
24.4
22.5
40.8
34.0
18.9
13.1
19.2
18.3
4.43
4.71
3.81
4.92
7.37
2.12
3.98
5.63
6.95
2.11
7.28
2.29
6.61
3.93
8.88
6.36
3.10
3.08
4.61
5.07
1.36
1.44
1.41
1.57
1.60
1.22
1.17
1.25
1.55
1.65
0.20
1.32
1.46
0.99
1.17
4.69
1.05
1.96
1.49
1.01
11.0
7.92
3.17
3.78
6.31
6.01
24.3
2.44
3.15
1.47
20.6
2.2
7.29
4.19
11.3
3.84
2.52
8.64
2.10
3.64
153.4
199.6
168.5
###
108.8
717.4
###
164
173.1
543.3
140.2
###
306.7
###
295.9
###
###
313.4
80.9
743.2
805.3
7.61
9.43
8.23
8.63
7.68
11.7
30.0
8.63
11.2
16.0
17.0
9.38
27.7
10.8
28.7
15.1
40.5
24.2
14.0
9.31
19.7
20.9
Ce
21.2
25.3
21.9
23.1
20.4
27.6
65.6
20.2
26.6
35.2
45.1
21.7
58.5
25.2
61.8
34.2
89.1
52.9
31.1
19.8
41.7
42.8
Pr
3.41
3.85
3.44
3.56
3.07
4.02
8.54
2.74
3.67
4.62
7.13
3.01
7.31
3.64
7.88
4.82
11.45
6.97
4.37
2.60
5.18
5.11
Nd
16.7
18.8
16.9
17.5
14.6
18.3
34.7
12.1
15.9
18.6
31.7
13.9
28.4
16.2
30.9
21.3
47.5
29.1
18.1
11.0
20.1
19.1
Sm
4.35
4.65
4.48
4.44
3.74
4.19
6.64
2.66
3.58
3.66
6.58
3.08
4.75
3.66
5.79
4.83
9.15
6.24
3.85
2.34
3.93
3.64
Eu
1.52
1.71
1.58
1.63
1.35
1.67
1.95
0.99
1.38
1.29
1.87
1.12
1.83
1.15
2.30
1.36
2.43
1.56
1.12
0.95
1.04
0.99
Gd
4.29
4.6
4.48
4.40
3.63
3.98
5.70
2.35
3.39
3.15
5.06
2.75
3.80
3.27
4.89
4.13
7.93
5.7
3.31
2.18
3.38
3.01
Tb
0.76
0.82
0.79
0.77
0.66
0.68
0.90
0.37
0.61
0.50
0.78
0.42
0.53
0.56
0.81
0.69
1.29
0.9
0.54
0.38
0.53
0.52
Dy
4.60
4.93
4.73
4.66
3.78
4.16
4.97
2.16
3.44
2.84
4.07
2.43
2.85
3.29
4.44
4.09
7.36
5.70
3.15
2.29
3.26
3.05
Ho
0.93
0.97
0.96
0.94
0.76
0.85
0.98
0.42
0.70
0.57
0.78
0.46
0.57
0.68
0.85
0.83
1.50
1.17
0.63
0.47
0.67
0.63
Er
2.61
2.72
2.66
2.70
2.18
2.45
2.80
1.22
2.07
1.66
2.21
1.36
1.66
1.92
2.28
2.46
4.36
3.47
1.87
1.39
1.99
1.96
Tm
0.37
0.39
0.38
0.37
0.30
0.35
0.40
0.18
0.30
0.25
0.31
0.18
0.25
0.28
0.32
0.37
0.64
0.51
0.27
0.21
0.30
0.29
Yb
2.35
2.49
2.50
2.50
1.97
2.27
2.60
1.15
1.97
1.72
2.07
1.22
1.77
1.78
2.14
2.47
4.27
3.31
1.85
1.48
2.10
2.09
Lu
0.37
0.39
0.38
0.37
0.30
0.35
0.41
0.17
0.31
0.27
0.32
0.19
0.28
0.28
0.33
0.38
0.67
0.54
0.29
0.22
0.34
0.35
AC
491
ACCEPTED MANUSCRIPT 0.32
0.40
0.30
0.33
0.28
0.35
0.47
0.14
0.27
0.37
0.45
0.14
0.47
0.15
0.40
0.27
0.65
0.46
0.21
0.21
0.38
0.42
Pb
3.62
4.3
4.2
3.52
4.59
13.0
11.0
5.4
7.19
5.44
8.92
7.74
14.80
10.7
12.8
7.87
12.50
###
10.6
7.21
13.7
13.6
Th
0.45
0.64
0.57
0.63
0.63
0.49
2.94
1.26
1.48
2.53
3.43
1.30
2.58
2.21
2.33
3.43
5.77
7.38
3.25
1.65
6.28
7.22
U
0.14
0.18
0.16
0.17
0.18
0.13
0.83
0.38
0.45
0.73
1.20
0.48
0.62
0.67
0.72
1.05
1.91
2.21
0.97
0.48
1.57
1.98
Zr
164
184
153
170
139
175
247
85.2
152
192
242.5
83.7
234
80.1
222
132
277
227
114
132
130
152
Hf
3.47
3.81
3.28
3.55
3.15
3.49
5.22
2.00
3.29
4.11
6.15
1.95
5.00
2.12
3.39
6.49
5.56
2.76
2.71
3.44
4.00
T
Ta
IP
4.42
sample DS111 DS079 DS134 DS133 DS017 DS050 DS057 DS115 DS021 DS039 DS022 DS042 DS069 DS054 DS019 DS044 DS043 DS040 DS046 DS031 DS052 74.36
75.51
76.34
76.60
76.86
76.94
77.47
77.80
77.84
78.24
TiO2
0.29
0.25
0.06
0.06
0.27
0.13
0.14
0.13
0.13
0.09
Al2O3
13.82
13.61
13.95
13.84
13.96
12.84
12.61
12.77
12.38
12.35
TFe2O3
1.52
1.47
0.46
0.19
1.29
0.92
0.91
0.47
0.61
0.53
MnO
0.02
0.02
0.02
0.01
0.02
0.03
0.03
0.00
0.01
0.03
MgO
0.39
0.05
0.22
0.16
0.62
0.20
0.34
0.07
0.17
0.12
CaO
0.33
0.48
0.24
0.20
0.04
0.55
0.37
0.08
0.11
Na2O
3.64
4.32
4.00
4.52
0.10
3.27
2.61
3.25
2.48
K2O
3.96
3.25
3.67
3.58
4.51
4.10
4.22
P2O5
0.07
0.07
0.07
0.07
0.07
0.06
0.07
LOI
1.30
0.67
0.67
0.44
2.21
0.66
0.96
Total
99.70
99.70
99.70
###
99.85
99.70
99.71
Sc
2.51
7.07
2.02
1.99
4.13
2.23
V
24.9
7.20
5.96
7.45
25.7
6.71
Cr
0.10
0.08
0.22
0.50
0.56
Co
2.69
0.45
0.32
0.42
0.57
Ni
2.85
0.19
Cu
2.29
2.85
Zn
28.5
39.3
Ga
17.9
10.9
Rb
107
62.4
Sr
257
Y
79.12
79.70
80.12
80.18
SC R
SiO2
###
###
83.74
84.65
85.49
86.55
###
0.10
0.09
0.14
0.14
0.08
0.08
0.11
0.06
0.13
0.07
11.93
11.19
11.47
11.83
11.38
12.04
9.42
8.96
9.64
7.53
7.32
0.21
0.89
0.43
0.76
0.42
0.28
0.29
0.19
0.14
0.58
0.38
0.01
0.03
0.02
0.01
0.01
0.02
0.02
0.02
0.02
0.01
0.02
0.20
0.09
0.18
0.29
0.15
0.17
0.07
0.07
0.16
0.22
0.16
0.78
0.08
1.38
0.09
0.32
0.08
0.03
0.08
0.28
0.03
0.09
0.03
2.86
1.76
2.22
1.83
3.34
2.18
0.10
2.13
2.90
0.10
1.03
0.10
MA
NU
0.11
5.10
4.04
5.56
3.38
4.27
1.74
3.71
4.95
3.13
1.84
2.88
2.69
2.21
0.07
0.06
0.06
0.06
0.06
0.07
0.08
0.06
0.07
0.06
0.07
0.06
0.07
0.07
0.83
0.84
0.59
0.68
0.70
1.09
1.02
0.91
1.35
0.67
0.60
1.35
0.79
1.15
99.70
99.71
99.71
99.72
99.73
99.67
99.71
99.74
99.79
99.70
###
###
99.70
###
D
4.22
1.09
2.76
1.85
2.33
1.83
1.84
2.34
2.65
2.07
1.43
1.11
1.46
1.25
2.13
9.36
15.9
8.39
5.27
6.19
9.98
9.89
7.67
8.98
3.68
9.02
6.80
1.41
8.09
22.8
0.26
0.80
0.16
833
8.12
0.22
0.24
0.76
0.25
0.86
0.65
0.95
0.41
0.48
0.07
0.07
0.59
0.63
0.62
0.20
0.21
0.21
0.42
0.35
0.19
0.43
0.08
0.49
0.21
0.00
0.03
0.58
CE P
TE
1.85
0.13
0.76
0.56
0.55
0.01
1.42
0.62
5.29
0.99
0.02
0.91
2.41
0.41
0.49
0.20
0.92
0.22
0.87
6.81
5.52
5.78
3.10
1.94
1.75
1.67
2.27
0.99
1.05
1.64
2.85
2.43
1.16
1.61
2.20
0.78
0.88
1.58
16.7
14.6
22.8
24.3
26.4
15.5
18.3
12.8
12.4
11.9
13.0
12.8
14.0
23.1
10.8
29.1
5.49
7.65
14.2
15.8
16.0
16.9
10.4
12.3
15.1
10.2
8.79
10.5
9.33
8.66
9.42
10.5
12.9
5.94
5.93
11.5
7.49
7.64
79.4
75.0
148.7
99.4
117
127
130
81.7
148
84.3
123
55.2
110
152
79.1
40.4
110
81.7
69.0
213
72.5
67.6
22.4
126
117
101.8
71.4
222
93.6
362
58.8
55.0
86.3
26.6
68.2
99.2
2.7
33.1
4.9
6.63
20.8
11.8
14.3
15.8
11.2
12.1
3.17
14.6
13.6
13.1
8.89
14.0
7.18
14.4
15.4
5.41
6.46
11.4
7.76
8.26
Nb
4.46
10.0
10.3
11.0
7.15
5.24
5.37
3.01
6.99
5.84
5.53
3.70
6.16
4.16
6.62
6.30
3.23
3.51
5.31
3.45
3.00
Ge
1.03
0.93
1.33
1.60
1.85
0.87
1.18
0.85
0.76
0.68
0.80
0.95
0.75
0.64
0.87
0.68
0.64
0.72
0.81
0.73
0.78
Cs
4.24
3.03
4.05
4.52
25.2
2.94
3.83
3.92
6.25
1.87
6.32
1.77
4.86
4.44
3.85
6.83
2.19
0.95
4.84
2.94
3.65
Ba
513
1514
390
358
990
830
784
288
936
865
989
666
634
424
755
550
743
679
98.2
419
273
La
15.0
25.7
14.9
16.2
31.7
20.8
27.1
13.1
15.4
27.0
16.9
26.7
23.2
9.20
30.1
13.7
13.5
12.9
8.44
9.20
14.8
Ce
30.4
53.4
32.5
34.5
64.3
38.9
48.9
22.8
31.9
51.8
34.6
42.5
45.7
17.7
56.5
28.8
26.1
23.4
18.2
19.5
27.7
Pr
3.44
6.67
3.99
4.35
7.41
4.09
5.08
2.32
3.80
5.54
3.97
4.06
4.93
2.00
6.00
3.41
2.89
2.57
2.26
2.30
2.98
Nd
12.0
25.3
14.0
15.4
25.9
13.3
16.2
7.51
13.0
18.5
13.6
12.7
16.9
6.74
20.1
11.7
9.78
8.56
7.86
8.36
10.0
Sm
1.97
4.70
2.77
3.06
4.09
2.06
2.35
1.16
2.36
2.88
2.34
1.72
2.69
1.18
3.17
2.44
1.49
1.33
1.73
1.50
1.67
Eu
0.43
1.16
0.45
0.51
0.65
0.36
0.41
0.24
0.33
0.41
0.29
0.31
0.26
0.21
0.36
0.21
0.24
0.28
0.13
0.26
0.26
Gd
1.52
3.77
2.03
2.43
2.60
1.82
1.97
0.87
2.03
2.37
1.93
1.46
2.04
1.02
2.49
2.06
1.10
1.12
1.59
1.22
1.34
Tb
0.21
0.64
0.35
0.44
0.42
0.29
0.32
0.11
0.36
0.36
0.32
0.21
0.35
0.17
0.39
0.39
0.16
0.18
0.29
0.20
0.23
Dy
1.12
3.75
2.06
2.47
2.64
1.79
1.93
0.52
2.34
2.07
1.97
1.22
2.20
1.11
2.30
2.44
0.95
1.04
1.84
1.31
1.36
AC
3.53
ACCEPTED MANUSCRIPT 0.20
0.80
0.40
0.49
0.54
0.39
0.40
0.10
0.51
0.44
0.45
0.28
0.48
0.26
0.48
0.54
0.20
0.22
0.39
0.29
0.28
Er
0.62
2.44
1.21
1.42
1.68
1.28
1.33
0.33
1.68
1.38
1.39
0.92
1.52
0.86
1.51
1.67
0.67
0.75
1.20
0.94
0.83
Tm
0.10
0.39
0.19
0.22
0.27
0.22
0.22
0.05
0.28
0.23
0.22
0.15
0.26
0.15
0.25
0.28
0.12
0.12
0.19
0.16
0.13
Yb
0.70
2.67
1.26
1.48
1.82
1.60
1.65
0.43
2.06
1.68
1.74
1.19
1.87
1.16
1.86
1.97
0.92
0.88
1.37
1.14
0.96
Lu
0.12
0.44
0.18
0.21
0.29
0.27
0.27
0.08
0.35
0.27
0.29
0.20
0.30
0.20
0.30
0.31
0.16
0.15
0.21
0.18
0.14
Ta
0.54
0.77
0.93
1.01
0.61
0.58
0.58
0.34
0.79
0.62
0.62
0.40
0.66
0.46
0.68
0.37
0.37
0.59
0.34
0.33
Pb
9.01
16.7
3.88
6.93
7.85
22.7
22.6
8.06
10.0
11.7
8.53
12.4
5.87
9.06
9.83
13.2
12.6
13.9
9.87
4.15
6.93
Th
12.9
8.67
8.89
10.9
14.1
11.2
10.5
12.8
11.2
10.5
9.03
8.12
11.9
8.22
10.1
8.22
6.23
6.11
6.72
5.79
5.21
U
2.86
2.20
1.26
1.60
3.84
2.57
2.62
1.86
2.94
2.38
Zr
127
266
64.8
71.0
156
94.8
97.9
75.1
92.7
75.0
Hf
3.72
6.78
2.67
2.94
4.40
2.97
2.98
2.69
3.08
2.45
SC R
IP
0.68
2.80
1.96
3.20
1.96
2.74
2.84
1.15
1.81
2.44
1.41
2.70
74.1
76.0
70.2
65.8
81.2
61.1
67.6
63.7
49.8
67.6
35.3
2.52
2.17
2.32
2.13
2.51
2.23
2.06
1.86
1.73
1.91
1.13
NU MA D TE CE P AC
T
Ho
ACCEPTED MANUSCRIPT Table 3. In situ zircon Hf isotopic data for the volcanic rocks from the Dashizhai Formation in eastern Inner Mongolia 176
Lu/177Hf(corr)
176
Hf/177Hf
Hf(0) Hf(t) TDM1(Hf)
DS005-01
280
0.040
0.0018
0.282917 0.000024
5.14
11.0 0.85
485
734
-0.95
DS005-02
280
0.056
0.0025
0.282914 0.000024
5.02
10.7 0.84
499
755
-0.93
DS005-03
280
0.046
0.0020
0.282918 0.000033
5.15
10.9 1.18
487
736
-0.94
DS005-04
280
0.053
0.0022
0.282864 0.000022
T
Yb/177Hf(corr)
t (Ma)
9.01 0.79
568
910
-0.93
DS005-05
280
0.025
0.0011
0.282842 0.000022
2.47
8.41 0.79
584
964
-0.97
DS005-06
280
0.044
0.0019
0.282936 0.000028
5.81
11.6 0.99
459
675
-0.94
DS005-07
280
0.050
0.0022
0.282859 0.000026
3.09
8.83 0.91
576
927
-0.93
DS005-08
280
0.041
0.0018
0.282881 0.000023
3.87
9.69 0.81
537
849
-0.95
DS005-09
280
0.046
0.0020
0.282830 0.000027
2.05
7.83 0.96
616
1018
-0.94
DS005-10
280
0.020
0.0009
0.282840 0.000027
2.39
8.38 0.95
584
968
-0.97
DS005-11
280
0.029
0.0013
SC R
176
Sample
0.282917 0.000024
5.14
11.1 0.85
478
725
-0.96
DS005-12
280
0.028
0.0012
0.282839 0.000025
2.38
8.31 0.89
589
974
-0.96
DS005-13
280
0.031
0.0014
0.282824 0.000026
1.85
7.75 0.92
613
1024
-0.96
DS005-14
280
0.037
0.0018
0.282943 0.000034
6.03
11.9 1.22
448
652
-0.95
DS005-15
280
0.064
0.0028
0.282895 0.000030
4.36
10.0 1.05
531
821
-0.92
DS005-16
280
0.052
0.0023
0.282870 0.000030
3.46
9.18 1.05
562
895
-0.93
DS005-17
280
0.026
0.0012
0.282861 0.000022
3.15
9.09 0.78
557
903
-0.97
DS005-18
280
0.048
0.0021
0.282947 0.000033
6.18
12.0 1.18
445
643
-0.94
DS005-19
280
0.065
0.0028
0.282954 0.000025
6.44
12.1 0.88
443
632
-0.92
DS005-20
280
0.049
0.0021
0.282906 0.000028
4.74
10.5 1.00
506
776
-0.94
DS005-21
280
0.040
0.0017
0.282961 0.000027
6.70
12.5 0.95
421
591
-0.95
DS005-22
280
0.043
0.0019
0.282924 0.000028
5.39
11.2 0.99
476
712
-0.94
DS005-23
280
0.049
0.0021
0.282913 0.000025
4.98
10.7 0.90
496
753
-0.94
DS005-24
280
0.063
0.0027
0.282907 0.000029
4.77
10.4 1.03
513
782
-0.92
DS019-01
280
0.057
0.0022
0.282841
0.000020
2.44
8.19 0.72
602
985
-0.93
3.27
IP
NU
MA D
TE
CE P
AC
2m
TDM2(Hf) fLu/Hf
DS019-02
280
0.041
0.0018
0.282835
0.000013
2.22
8.05 0.48
604
998
-0.95
DS019-03
280
0.033
0.0014
0.282840
0.000016
2.40
8.29 0.56
591
976
-0.96
DS019-04
280
0.039
0.0017
0.282849
0.000014
2.73
8.56 0.48
583
952
-0.95
DS019-06
280
0.050
0.0021
0.282832
0.000015
2.11
7.87 0.53
615
1014
-0.94
DS019-07
280
0.047
0.0021
0.282821
0.000015
1.72
7.49 0.53
630
1049
-0.94
DS019-08
280
0.051
0.0022
0.282847
0.000019
2.64
8.38 0.67
594
967
-0.93
DS019-09
280
0.043
0.0019
0.282828
0.000018
1.97
7.78 0.64
616
1022
-0.94
DS019-10
280
0.055
0.0024
0.282874
0.000019
3.59
9.31 0.69
557
883
-0.93
DS019-11
280
0.043
0.0019
0.282850
0.000015
2.77
8.56 0.55
584
951
-0.94
DS019-12
280
0.050
0.0022
0.282895
0.000017
4.35
10.1 0.60
523
812
-0.93
DS019-13
280
0.041
0.0018
0.282825
0.000016
1.86
7.68 0.56
619
1031
-0.95
DS019-14
280
0.055
0.0024
0.282835
0.000015
2.22
7.94 0.53
614
1008
-0.93
DS019-15
280
0.047
0.0021
0.282834
0.000017
2.20
7.97 0.60
610
1005
-0.94
DS019-16
280
0.064
0.0028
0.282812
0.000020
1.41
7.05 0.72
655
1088
-0.92
DS019-17
280
0.048
0.0021
0.282844
0.000018
2.54
8.30 0.65
597
975
-0.94
DS019-18
280
0.192
0.0076
0.282948
0.000026
6.23
11.0 0.91
523
732
-0.77
ACCEPTED MANUSCRIPT 280
0.076
0.0033
0.282901
0.000022
4.55
10.1 0.77
531
812
-0.90
DS019-20
280
0.064
0.0027
0.282838
0.000019
2.32
7.97 0.66
616
1004
-0.92
DS019-22
280
0.057
0.0022
0.282863
0.000023
3.20
8.94 0.81
571
917
-0.93
DS019-23
280
0.049
0.0021
0.282846
0.000018
2.62
8.38 0.64
594
968
-0.94
DS019-24
280
0.062
0.0026
0.282871
0.000020
3.49
9.16 0.70
565
897
-0.92
DS042-01
280
0.048
0.0021
0.282858
0.000016
DS042-02
280
0.033
0.0014
0.282806
0.000016
DS042-04
280
0.048
0.0022
0.282835
0.000036
DS042-05
280
0.062
0.0027
0.282832
DS042-06
280
0.030
0.0013
DS042-08
280
0.059
DS042-09
280
DS042-10
8.80 0.58
576
930
-0.94
1.19
IP
7.08 0.58
640
1085
-0.96
2.23
7.98 1.28
611
1004
-0.93
0.000019
2.13
7.78 0.66
624
1022
-0.92
0.282817
0.000016
1.58
7.48 0.58
623
1049
-0.96
0.0026
0.282858
0.000020
3.04
8.71 0.70
584
938
-0.92
0.036
0.0016
0.282820
0.000016
1.68
7.53 0.56
624
1044
-0.95
280
0.033
0.0015
0.282833
0.000016
2.14
8.01 0.58
603
1001
-0.95
DS042-11
280
0.032
0.0014
0.282823
0.000016
1.82
7.70 0.56
615
1029
-0.96
DS042-12
280
0.040
0.0018
0.282856
0.000018
2.97
8.80 0.64
574
930
-0.95
DS042-13
280
0.040
0.0017
0.282858
0.000020
3.03
8.86 0.69
571
924
-0.95
DS042-14
280
0.058
0.0026
0.282840
0.000019
2.42
8.09 0.66
609
993
-0.92
DS042-16
280
0.039
0.0018
0.282873
0.000020
3.57
9.39 0.72
549
876
-0.95
DS042-17
280
0.031
0.0014
0.282849
0.000016
2.71
8.60 0.56
579
948
-0.96
DS042-18
280
0.035
0.0016
0.282818
0.000017
1.63
7.49 0.59
625
1048
-0.95
DS042-19
280
0.049
0.0022
0.282902
0.000020
4.59
10.3 0.72
514
791
-0.93
DS042-20
280
0.053
0.0024
0.282823
0.000021
1.82
7.53 0.75
631
1044
-0.93
DS042-21
280
0.054
0.0024
0.282842
0.000018
2.46
8.16 0.63
606
988
-0.93
DS042-22
280
0.046
0.0021
0.282881
0.000018
3.84
9.61 0.62
542
856
-0.94
DS042-23
280
0.053
0.0024
0.282858
0.000020
3.04
8.76 0.72
580
933
-0.93
DS042-24
280
0.031
0.0014
0.282819
0.000016
1.65
7.55 0.56
621
1043
-0.96
DS070-01
280
0.076
0.0033
0.282905
0.000037
4.70
10.2 1.30
525
799
-0.90
MA D
TE
CE P
AC
SC R
3.04
NU
T
DS019-19
DS070-02
280
0.065
0.0029
0.282845
0.000023
2.57
8.18 0.83
609
986
-0.91
DS070-03
280
0.093
0.0038
0.282950
0.000031
6.28
11.7 1.10
464
665
-0.88
DS070-04
280
0.057
0.0025
0.282908
0.000024
4.81
10.5 0.86
508
775
-0.92
DS070-05
280
0.040
0.0019
0.282869
0.000023
3.42
9.22 0.81
557
892
-0.94
DS070-06
280
0.052
0.0024
0.282837
0.000022
2.31
8.02 0.77
611
1000
-0.93
DS070-07
280
0.070
0.0030
0.282946
0.000027
6.14
11.7 0.96
459
663
-0.91
DS070-08
280
0.082
0.0036
0.282899
0.000028
4.47
9.96 1.01
539
824
-0.89
DS070-09
280
0.037
0.0018
0.282868
0.000021
3.38
9.21 0.76
557
893
-0.95
DS070-10
280
0.041
0.0018
0.282890
0.000025
4.16
9.98 0.88
526
823
-0.95
DS070-11
280
0.052
0.0023
0.282932
0.000019
5.67
11.4 0.68
470
694
-0.93
DS070-12
280
0.065
0.0030
0.282921
0.000023
5.27
10.9 0.80
495
741
-0.91
DS070-13
280
0.105
0.0044
0.282883
0.000028
3.91
9.25 0.99
576
889
-0.87
DS070-14
280
0.061
0.0028
0.282907
0.000028
4.78
10.4 0.98
514
783
-0.92
DS070-15
280
0.056
0.0026
0.282896
0.000022
4.38
10.1 0.79
528
816
-0.92
DS070-16
280
0.055
0.0025
0.282832
0.000030
2.11
7.81 1.05
621
1019
-0.93
DS070-17
280
0.036
0.0016
0.282878
0.000026
3.74
9.59 0.94
540
858
-0.95
ACCEPTED MANUSCRIPT 280
0.051
0.0024
0.282887
0.000019
4.07
9.79 0.69
537
840
-0.93
DS070-19
280
0.028
0.0013
0.282890
0.000026
4.18
10.1 0.91
518
813
-0.96
DS070-20
280
0.040
0.0018
0.282897
0.000022
4.43
10.2 0.78
515
799
-0.95
DS070-21
280
0.052
0.0024
0.282913
0.000020
4.98
10.7 0.72
499
758
-0.93
DS070-22
280
0.076
0.0033
0.282832
0.000026
2.12
7.66 0.93
635
1033
-0.90
DS070-23
280
0.074
0.0031
0.282981
0.000024
DS070-24
330
0.029
0.0013
0.282593
0.000023
DS079-01
280
0.065
0.0026
0.282739
0.000029
DS079-02
280
0.052
0.0021
0.282769
DS079-03
280
0.037
0.0015
DS079-04
909
0.040
DS079-05
280
DS079-06
13.0 0.85
407
551
-0.91
-6.33
IP
-0.4 0.83
941
1762
-0.96
-1.15
4.52 1.03
759
1317
-0.92
0.000027
-0.10
5.66 0.96
706
1214
-0.94
0.282802
0.000030
1.08
6.95 1.05
647
1097
-0.95
0.0016
0.282135
0.000022
-22.5
-17
0.77
1602
3217
-0.95
0.037
0.0015
0.282889
0.000031
4.14
10.0 1.11
522
820
-0.95
280
0.029
0.0012
0.282870
0.000029
3.47
9.40 1.03
545
875
-0.96
DS079-07
280
0.055
0.0022
0.282741
0.000030
-1.09
4.65 1.04
749
1305
-0.93
DS079-08
909
0.031
0.0013
0.282163
0.000022
-21.5
-16
0.78
1548
3123
-0.96
DS079-09
280
0.058
0.0024
0.282714
0.000023
-2.07
3.65 0.81
792
1396
-0.93
DS079-10
280
0.031
0.0013
0.282730
0.000020
-1.47
4.43 0.70
747
1325
-0.96
DS079-12
280
0.041
0.0017
0.282774
0.000023
0.06
5.90 0.80
691
1192
-0.95
DS079-13
909
0.030
0.0012
0.282144
0.000020
-22.2
-16
0.70
1572
3182
-0.96
DS079-14
280
0.055
0.0023
0.282837
0.000029
2.30
8.02 1.04
610
1000
-0.93
DS079-15
909
0.059
0.0023
0.282155
0.000025
-21.8
-16
0.87
1602
3164
-0.93
DS079-16
280
0.042
0.0017
0.282803
0.000023
1.11
6.94 0.82
649
1098
-0.95
DS079-17
280
0.079
0.0031
0.282791
0.000030
0.66
6.24 1.06
693
1162
-0.91
DS079-18
280
0.060
0.0024
0.282775
0.000035
0.12
5.82 1.24
703
1199
-0.93
DS079-19
280
0.070
0.0028
0.282784
0.000034
0.41
6.05 1.21
697
1178
-0.92
DS079-20
280
0.033
0.0014
0.282718
0.000025
-1.92
3.97 0.88
766
1367
-0.96
DS079-21
280
0.050
0.0021
0.282808
0.000034
1.27
7.04 1.19
648
1089
-0.94
MA D
TE
CE P
AC
SC R
7.39
NU
T
DS070-18
DS079-22
280
0.044
0.0018
0.282758
0.000033
-0.51
5.30 1.18
717
1246
-0.95
DS079-23
909
0.043
0.0018
0.282140
0.000029
-22.4
-17
1601
3205
-0.95
1.03
IP
T
ACCEPTED MANUSCRIPT
AC
CE P
TE
D
MA
NU
SC R
Graphical abstract
ACCEPTED MANUSCRIPT Highlights 1. The volcanics along northwestern margin of Songnen terrane formed in 295–283
AC
CE P
TE
D
MA
NU
SC R
IP
T
Ma. 2. The volcanic rocks formed in an active continental margin setting. 3. The terminal collision did not occur before the early Permian.