II. Reduced SU(3) matrix elements

II. Reduced SU(3) matrix elements

Computer Physics Communications 15 (1978) 259—273 © North-Holland Publishing Company II. REDUCED SU(3) MATRIX ELEMENTS D. BRAUNSCHWEIG * ** Dept. ...

849KB Sizes 0 Downloads 46 Views

Computer Physics Communications 15 (1978) 259—273 © North-Holland Publishing Company

II. REDUCED SU(3) MATRIX ELEMENTS D. BRAUNSCHWEIG

*

**

Dept. of Physics, University ofMichigan, Ann Arbor, Michigan 48109, USA Received 8 February 1978

PROGRAM SUMMARY Title of program: REDUCED SU(3) MATRIX ELEMENTS Catalogue number: ABKH Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland (see application form in this issue) Computer: AMDAHL 470V/6, IBM 360/370;Installation: Univ. of Michigan, Ann Arbor, Mich. Operating system: MTS Program language used: FORTRAN High speed storage required: 212 kwords No. of bits in a word: 32 Overlay structure: none No. of magnetic tapes required: none Other peripherals used: card reader, line printer (card punch) No. of cards of combined program and test deck: 907 Card punching code: EBCDIC CPC library programs used: Catalogue number: ABKG Title: REDUCED SU(3) CFPS Ref in CPC: 14 (1978) 109 Catalogue number: AAC* Title: DATA FOR ABKG Ref in CPC: 14 (1978) 109 * **

Work supported by the U.S. National Science Foundation. Present address: Goddard Space Flight Center, Seabrook, MD, USA. 259

260

D. Braunschweig /Reduced SU(3) matrix elements

Keywords: Nuclear physics, SU(3), SU(4), shell model, matrix elements, nuclear structure, pseudo-SU(3), one-body operators, two-body operators, theoretical methods Nature of physical problem Reduced SU(3) matrix elements (RME) are calculated for a general one or two body tensor operator, between arbitrary shell model states in an SU(3) X SU(4) or SU(3) X SU(2) scheme. Matrix elements in the angular momentum scheme can then be obtained by multiplying these RME with the appropriate SU(3) D R(3) coupling coefficients available through the code of ref. [2]. Method of solution One and two body tensor operators are explicitly constructed in terms of fermion creation operators. Since the (BRA I and I KET> states obtained by using the appropriate routines of the code of ref. [1] are also written in terms of fermion creation operators, the overlap can be calculated directly. This method is typically 2—3 orders or magnitude faster than the usual CFP expansion. Restrictions on the complexity of the problem The
LONG WRITE-UP 1. Introduction Conventional computer codes [3] for shell model calculations are limited to the/—i coupling scheme, and even though these can handle matrices of very large size the types of problems which can be tackled are very limited. To date detailed calculations [4] have been carried out only for many nucleon systems in the P1/2P3/2 and sl/2d3/2d5/2 (or p112p312f512) shells with no excitations out of the “valence” shell. Often an underlying symmetry can be used to reduce the size of the shell model matrix. For some nuclei SU(3) symmetry [5] (or pseudo SU(3) symmetry) [6] may make a severe truncation of the shell model matrix physically meaningful. In a nucleus of good SU(3) symmetry the low-lying nuclear states may be approximated very well in terms of a small number (typically 3—6) of irreducible representations of SU(3). In such a nucleus therefore a shell model calculation in the SU(3) scheme may be characterized by a small basis. The main difficulty in performing SU(3) shell model calculations is then concentrated in the calculation of matrix elements of one and two body operators in this basis. We describe below a FORTRAN program which calculates reduced matrix elements (RME) directly, that is, without using the usual coefficient of fractional parentage (CFP) expansion (see eqs. (16) and (17) of ref. [7]). This results in a speed increase of 2—3 orders of magnitude. The full matrix element can then be obtained by multiplying the RME by the appropriate SU(3) ~ R(3) and R(3) D R(2) Wigner coefficients available through the code of ref. [2]. Although the present program is restricted to the calculation of RME for many-particle shell model states with particles of the same shell only; the combination of the codes for RME’s of one-body operators with the CFP code of ref. [1] and straightforward recoupling techniquesmake it possible to calculate matrix elements which involve

D. Braunschweig /Reduced SU(3) matrix elements

261

particle—hole excitations. However, the CFP expansion needed for this purpose is simple, since a two-body operator can involve at most 2-particle excitations even if the basis includes complicated core excitations. The RME program calls several routines from the codes ABKG [1] and ACRM [2] henceforth called CFP PROGRAM and SU(3) PACKAGE respectively. Familiarity with the CFP PROGRAM is assumed. Care has been exercised to maintain the naming and dimensioning conventions adopted for the CFP PROGRAM. Generality is preserved as well, in that the RME program allows calculations to be performed in: 1) Any major oscillator shell. 2) Both neutron-proton formalism (NPF) or full spin—isospin formalism (FSIF) are acceptable. 3) Optimization available for the prolate or oblate limit is obtained by calculating the RME from the highest weight state or lowest weight state, respectively. 4) No SU(4) coupling coefficients are needed since both (BRA I and I KET) states can be lowered in SU(4) according to the needs of a particular user. 5) Arbitrary one and two body tensor operators of good SU(3) symmetry in either the NPF or FSIF are acceptable.

2. Method of calculation Throughout this section we will use the notation introduced in ref. [1]; furthermore we will illustrate our method using the full spin—isospin formalism. The calculation of the RIvIE proceeds in the following order: I) Explicit construction of the many-particle states in terms of fermion creation operators. 2) Explicit construction of the desired tensor operators in terms of fermion creation and destruction operators. 3) The tensor operators constructed in 2) are allowed the act on the I KET) states and the result is overlapped with the (BRA I states. 4) Finally the SU(3) D SU(2) X U(1) and SU(2) D U(l) dependence is factored out from the overlap by using the appropriate Wigner coefficients. 2.1. Construction of the may-particle states The many-particle states are classified according to the JR of SU(3) X SU(4). The subgroup chains used are SU(3) D SU(2) X U(1) and SU(4) D [SU(2) X SU(2)1. Since the many-particle states are highest weight in SU(3) and [SU(2) X SU(2)] they can be denoted by:

In(Xp) a(PP’P”) lIST), where n

=

(?tji)

=

(1)

number of particles, SU(3) irreducible representation, a inner multiplicity label for SU(3) needed to distinguish multiple occurrence of (Xp) in a given space symmetry; a = 1, 2, amax, (PP’P”) = supermultiplet labels, S = spin, T = isospin, = inner multiplicity label for SU(4) needed to distinguish multiple occurrences of ST in a given super3max. multiplet;j3 1,2 l The method used to construct these many-particle states is spelled out in detail in sections 2.1 through 2.4 of sef. [1]. The highest weight states of (1) can be expressed in terms of fermion creation operators as: ...,

In(Xp) a(PP’P”) lIST) =

~ il<12<...
Z~~P)1~T 1 2 m

a~a~ a~ 10), ...

1

m

(2)

262

D. Braunschweig /Reduced SU(3) matrix elements

where i1 is an index which labels the single-particle levels (see fig. 1 of ref. [1]). The single-particle fermion creation operator have tensorial character given by: 11 1

1

=

~

(TI O)CAMA~MS-2MT

13

MAMSMT’

~ a

where i~is the number of oscillator quanta in the shell under consideration; similarly the tensorial character of the single-particle destruction operators is given by: aØ,,)E,.J,IAIMS!MT = ()hl+A _MA+~—M5+ ~—MT T~o)~MA—MS —MT (3b) 2.2. Construction of one and two body tensor operators In this section we illustrate the construction of two body tensor operators. One body operators are obtained in a similar fashion. We denote a two particle creation operator by: 1a’] (X!.L)CAMASMSTMT (4) [a where (Xj.s) = SU(3) IR, CAMA = subgroup labels of SU(3) belonging to SU(2) X U(l), S = spin, M 5 = Z-projection of S, T = isospin, MT = Z-projection of T. The square brackets [...] denote SU(3) as well as spin and isospin coupling. Then the two body operator of arbitrary tensorial chracter can be expressed as: [a+a+]~~1M1~1T1

~

~ e1A1A2 MA1MS1MT1

‘(p2_X2)+~e2_M~2+S2—M52+T2—M~2

((X11.i1) e1A1 (p2X2) e2A211(Xji) eA)~52(A!MA1A2MA2I AMA)(S1MS1S2MS2ISMS)(T1MT1 T2MT2I TMT), [a+a+]~1~1)n1

~

AIMA1S1MS1 T1MT1 [a a]~2I~2) 2’~2 MA252 —M52 T2—MT2

X

a~a

1T2x2)S2T2]P12

11121314

‘1 ‘2

a 3 ‘4

(5)

where the double barred coefficient is a reduced SU(3) D SU(2) X U(l) Wigner coefficient and the single barred coefficients are ordinary Clebsh—Gordan coefficients. P12 labels multiple occurrence of(?~p)in the Kronecker product (X~p1)X (/L2X2); this label is not needed for one body operators. The two particle operators of (2) need not be calculated since they are read in as input data from set A (see section 4.1.1).

2.3. Calculation of the overlap If we let the operator of eq. (5) act on the IKET) of eq. (1) we get: ~[aa~

~(X1~i)~i T1

=

j=2,m i1
[a a]~2X2)S2T2] ~

~

12E~’~’!ASMSTMT I n(XkIi~)ak(PkPkPk) lIkSk Tk)

~

i 2 34

263

D. Braunschweig I Reduced SU(3) matrix elements

6 3ji~6~ 4j ~‘

zkP~SkTk

a~’at ...a~’ a1 at ‘1 ~2 ‘f—I ‘1 ‘/+1

...a*,

a~a1

‘t—i ‘2 ‘1+1

...a1’ 10).

(6)

~m

Ifi 1 i÷1or ~2 ~ orE2 > i.~ we factor P. The final re:;ult can then be written as:

~II~

~Z~Pk

have to reorder

the fermion operators, this introduces a phase (7)

1 a~ ... a~’ , 1m a ~1 ‘2

we have replaced the quantum numbers associated with X by the superscript “o” and the quantum numbers associated with Z by a superscript “k”. We can now evaluate the overlap °Aas: where

=

(n(Xbpb) ab(PbPbPb) lIbSbTb [a+a+]~1!1i)~~1T1

In(Xkpk) =

~ ~‘ ~“

[a a]~2X2~2T2]pi2~~MSiMT

ak(PkPkPk) lIkSkTk)

Zb~ZkPk(0Ia.,,, ... ~ tm

11

a~~ ‘1

tm

I0)= i~ i~~ ZbZOZkPk ~

(8)

Since the (BRA I and I KET) states are highest weight in SU(3), the total number of admissible values of A is equal to Pmax, the number of times (Xbpb) is contained in the Kronecker product (XkMk) X(Xfz). The RME is then obtained by solving the system of linear equations: Pmax =

~

((X~ji~) ekAk; (~V.L)AII(Xbllb) CbAb)p(AkAkAMAIAbAb)(SkSkSMSISbSb)(TkTkTMTITbTb)

p= 1 (n(Xbpb) ab(PbP~P’~) i3bSb Tb III [a~a~ (X

3kSkTk)p

1 i1)S1T1 [a a ](X2~z2)S2T2](X~)p12ST1 II n(Xk11k) ak(PkPkPk) !

(9)

where =

2Xk

+11k,

Ak —Mk/2~

Cb —2Xb +/Jb

Ab

11b/2.

(10)

The triple barred quantity in eq. (9) is the RME.

3. Structure of the program The overall structure of the RME program is illustrated in the block diagram of fig. 1. Block I contains a MAIN routine as well as subroutine RME and subroutine TENSOR. These are the only routines provided as part of the RME program; their function is described in detail in comment statements at the beginning of each routine. In block 2 the explicit construction of the states of eq. (2) is performed. All the subroutines in block 2 are part of the CFP program; we therefore do not provide them as part of the RME code; they can be obtained from the CPC library (code number ABKG). The subroutines which are enclosed in dotted square in fig. I need only be included for calculations in the FSIF. In block 3 the SU(3) D SU(2) X U(l) and the SU(2) D U(1) Wigner coefficients are calculated. These are needed for eq. (5) and eq. (9). All the subroutines in block 3 are part of the SU(3) PACKAGE but for convenience they were repeated as part of the deck ABKG and can be obtained from it. Communication between different blocks is established through labelled COMMON blocks. The meaning of the variables in a given block is explained in comment cards at the beginning of those subroutines which need this common block for communication.

D. Braunschweig / Reduced SU(3) matrix elements

264

BLOCK I BLOCK2

-~

TASK TRIANG HOMEC BLOCK 3

ORTHO

SIMLEO

WIGSU3

H

_ __________

SU4LOW

~ilin.I IMULTU3E

PATH

:

CEWUISI IMULTHYI

OXYLOW

BETA

LOWER

Fig. 1. Flow diagram for program reduced SU(3) matrix elements.

the subroutines of block 3 it is I and 2 in the source deck.

Because of implicit dimensioning in those of block

important to have these routines follow

4. Input/output Input to the RME program is done exclusively in the MAIN routine. The structure of the input data deck is illustrated in fig. 2. The input data is of two types as we describe below.

CARD 6-N

CARD 4-5 (OPTIONAL) CARD 3 CARD 2 CARD I

DATA BLOCK FROM SET B

DATA BLOCK FROM SET A

Fig. 2. Structure of the input data deck.

D. Braunschweig / Reduced SU(3) matrix elements

265

Table 1

FSIF Operator

Shell

First card

Last card

1-body 2-body 1-body 2-body 1-body 2-body

p p sd sd fp fp

1 14 151 173 1876 1909

13 74 172 451 1908 2881

1-body

p

6045

2-body 1-body 2-body 1-body 2-body

p sd sd fp fp

6057 6082 6095 6165 6187

6056 6081 6094 6164 6186 6389

NPF

4.1. Input of type 1

This type of input allows the user to select a particular use of the RME program. By selecting appropriate data sets of type I the user may calculate reduced matrix elements for one or two body operators, in either the p, sd, or fp shells, in the FSIF or NPF [81. The input of type I needed for the RME program is identical to the input of type I used in the CFP program, and therefore should be obtained from the CPC library as data file AAC*. Input of type 1 consists of two blocks of input data, the first block to be selected from set A and the second block from set B. 4.4.1. Data setA

Data blocks of set A contain the necessary information to describe fully the one or two body tensor operators needed. Since a one (two) body operator is constructed by coupling a one (two) particle creation operator with a one (two) particle destruction operator we can take advantage of the fact that the one (two) particle creation operators are already described by data set A of the CFP program, and we can therefore avoid constructing a new data set A for the RME program. It should be pointed out that since a general two-body tensor operator may contain both symmetrically and antisymmetrically coupled pairs, both the symmetric and antisymmetric two-particle operators must be read in and stored. Table 1 gives the first and last card of data file AAC* which make up data set A for a particular application. The meaning of the quantities in set A is the same as in the CFP program and the reader is referred to ref. [1] for details. 4.1.2. Data setB Data blocks of set B contain a table for the reduction U(n) D SU(3) where n = 3 for the p shell, n = 6 for the sd shell and n = 10 for the fp shell. These tables are needed in the calculation of highest weight states.

Table 2 gives the first and last card of data file AAC* which make up data set B for a given shell. The meaning of the quantities in set B is the same as in the CFP program, and the reader is referred to ref. [11 for details.

D. Braunschweig / Reduced SU(3) matrix elements

266 Table 2 Space symmetry U(n)

Restrictions on SU(3) content

First card

Last card

U(3) U(6) U(l0)

none none ~max ~ 10

6390 6400 6526

6399 6525 7423

4.2. Input of

type 2

This data must be provided by the user. Cards 1—5 define the (BRA I and IKET) states desired. The meaning of the quantities read in as well as their use in identical with that of ref. [11 except for the following changes: Card 1: IPRST, IPRLVL, IPRTSK, MPUNCH FORMAT (1614) the variable MPUNCH was added to control punching or logical I/O unit 7 of the RME. Card 2: IREPMN, IREPMX, LOHI FORMAT (1614) the variables IREPMN and IREPMX are not used. Card 3: ((LINBUF(I,J), I = 1, IMAX), J = 1,2) FORMAT (1614) J = 2 is not used since we assume that the set of(BRAI states is the same as the set of IKET) states. Cards 4—5: same as in the CFP program. Cards 6—N: JMI(I), MU1(I), 151(1), IT1(I), JM2(1), MU2(I), 1S2(I), 1T2(I), JM3(I), MU3(I), 1S3(I), 1T3(I) referring to eq. (5) the meaning of the quantities in cards 6—N is: JM1(I) = X1

MU1(I)

,

1T2(I)= ~‘2

,

=

Pi

,

JM3(I)=X,

151(1) = S~

,

IT1(I) = T1

JM2 (I) = 112

,

MU3(I)=11, 1S3(I)=S,

If the NPF is being used one should set IT 1(I) = 1T2(I) = 1T3(I)

,

MU2(I)

=

,

152(1)

1T3(I)=T, =

=

S2

(11)

0.

4.3. Output

The output is controlled by the value of the variables read-in in card 1 as follows: IPRST = 0: no printing of the many-particle states, = 1: print the many-particle states. IPRLVL = 0: no printing of single particle levels = 1: print single particle levels, = 2: print both the single particle levels and the explicit forms of raising and lowering operators. IPRTSK = 0: no printing of summary of states, = 1: print a summary of states to be calculated. MPUNCH = 0: no punching of the RME, = 1: punch-out the RME as well as the many-particle states on logical I/O unit 7. 5. Program modifications The size of arrays needed to calculate the (BRA I and IKET) states depend strongly on the nuclear shell under consideration as well as the number of particles involved. Therefore provision is made for easy adjustment of

D. Braunschweig/ReducedSU(3) matrix elements

267

Table 3 CSECT

Oscillator shell

Parameter

p

CTOP RME

sd

fp

NP21 NS7

50 66

100 276

200 780

NS8 NP22 NP23

12 500 500

24 1500 1000

40 3750 2000

dimensions in accordance with the needs of a particular user.

Instructions for the proper dimensioning of arrays needed in subroutines of blocks 2 and 3 can be found in ref. [1] and ref. [2], respectively. The procedure for dimensioning the arrays which appear in the subroutines of block 1 is similar to the one adopted in the CFP program. Table 3 gives the suggested value for the parameters which determine the size of arrays in those labelled COMMON blocks which do not appear in the CFP program. In the event that the dimension is insufficient a relevant message will be printed asking the user to increase its value and execution is stopped. As with the CFP program, considerable saving of high speed storage (up to 35%) can be achieved by using half-length words for all integer arrays which begin with the letter “L”. In IBM 360/370 or similar operating systems this can be done by simply inserting as the first statement of each subroutine IMPLICIT INTEGER*2(L).

6. Test run The RME program has been extensively tested by checking against RME sum rules. We reproduce below a test run, as well as, the necessary input data required. In this test run we calculate RME in the FSIF for two-body operators in the fp shell. The set of (BRA I and I KET) states are all the states of the form: In = 6(Xp)a(PP’P”)@S=P TP’) with 2X

+p

=

30 and 2X + p

=

27 the two-body tensor operators are:

[a+a+](60)20

[aa]

6)20J(00)00

[a+a+](41)22

[aa](22)20](25)42,

22~2O[aa](22)02](22)22

[a+a+](

[a+af](03)22[aa](14)22](17)44.

The input deck required for this run is: DATA SET A: 2-body fp shell CARDS 1909—288 1 DATA SET B: U(l0) D SU(3) CARDS 6526—7423 CARD 1: 1 1 1 0 FORMAT (1614) CARD 2: 0 0 0 FORMAT (1614) CARD3: 6—222—lll—lll—-111—lll—333—333 FORMAT(16I4) CARD 4: 23027 FORMAT (2014) CARDS: 662006200000 FORMAT(1614) CARD6:222022022222 FORMAT(l6I4) CARD 7: 4 1 2 2 2 2 2 0 2 5 4 2 FORMAT (1614) CARD 8: 0 3 2 2 1 4 2 2 1 7 4 4 FORMAT (1614)

D. Braunschweig / Reduced SU(3) matrix elements

268

Acknowledgements It is a pleasure to acknowledge numerous enlightening discussions with Prof. K.T. Hecht.

References [1] D. Braunschweig, Comput. Phys. Commun. 14 (1978) 109. [2] Y. Akiyama and J.P. Draayer, Comput. Phys. Commun. 5 (1973) 405. [3]J.B. French, E.C. Halbert, J.B. McGrory and S.S.M. Wong, Adv. in Nucl. Phys., vol. 3; R.R. Whitehead, A. Watt, B.J. Cole and I. Morrison, Adv. in Nucl. Phys., vol. 9; R. Gross and Y. Accad, Comput. Phys. Commun. 8 (1974) 101. [4]S. Cohen and D. Kurath, Nucl. Phys. 73 (1963) 1; [5] B.J. Cole, D. Kelvin, A. Watt and R.R. Whitehead, J. Phys. G3 (1977) 919; J.B. McGrory, Phys. Rev. 160 (1967) 915; i.E. Koops and P.W.W. Glausemans, Z. Physik (in print); A. Arima and D. Strottman, Oxford Univ., Nucl. Phys., Report No. 46; J.F. Van Hienen, W. Chung and B.H. Wildenthal, Nucl. Phys. A269 (1976) 159. [5] M. Harvey, Adv. in Nucl. Phys. 1(1968) 67; D.J. Millener, Proc. Seminar in nuclear theory, Queen’s Univ. Kingston, Canada (1976);M. Conze, H. Feldmeier and P. Manakos, Phys. Lett. 43B (1973) 101; Y. Akiyama, A. Arima and T. Sebe, Nucl. Phys. Al38 (1969) 273; P.J. Ellis and J. Engeland, NucI. Phys. A144 (1970) 161. [6] T. Inoue, Y. Akiyama and K. Shirai, Proc. of the Inst. of Nat. Sci. Nihon Univ. 12 (1977); K.T. Hecht, Phys. Lett. 58B (1975) 252; RD. Ratna Raju, M. Satyanarayana Reddi and V.K.B. Kota, J. Phys. G3 (1977) 1063. [7] R.D. Ratna Raju, J.P. Draayer and K.T. Hecht, Nod. Phys. A202 (1973) 433. [8] The code which calculates the input data of type 1 for higher shells will be made available soon.

D. Braunschweig / Reduced SU(3) matrix elements



en

N

0

N

0



N

IN

0

Cl

0

o

0

I I I I

I

I

I

I

I

I I

I

I

I I

I

77

I

0

I

I I

I

I

I

I

I I

I

I

I

I

0

N

I

I

77

I

0 0 NJ

I I I I

I

I

I

N

en

I I

0 .

269

I I I

I

I

77

I

I

I

I —

o

.J IN I

t I

NJ r’

I

C (‘J I I

I

I

N I

I I

I

I I I

I

0
UI

I

I en



en

Cl

en

-~

en

en I I I

I

— I’

I

I I I







I

U

I

I

I

I

N

.-

en

I en

I

I

I

en I

en



-. I

N

en

a-

ul

N

en

I I

I

en

in

(‘4 en I I I

I

en U—

,C en I I I I I I

flJ I

I

I I I

I U I I

I

I

I

U

I -

I

I

I —

U-.

-

— I

— I

El 1<

I

-. en

N

~

I

I

I

I I I I I

.1 I I I

I

I

$ I I

I

-.



.—

I

I

I en

I I

en

* * * * * * * *

en

I

.

et

I I I I I

I I I I -.. en

C

—. en I en I



I

I

—oI... I

en

0

en

,— U-.

IN I I I

aen

C en

ID c-i

N IN

I I

I

I I

I I

I I

I I

I

I

I I 1

I

I

a,

a-

0

~O

(N

,—

I

I I

I

I

.— I I

I I

I

I

I

I

I

I

en UI

I

C)

I I

I I I

I

en

en

en

a U-’ 0

en en

en

en

a

.. L



—. (N

— C-,

LI

(N

IN

IN

a-

* *

— U--

ii — I-.

II —. $-I

* *

UI —

In

ii — $— In

Cl

~

Li

O~

en

‘~

0 N





I”

01

In

N

en

a-

I

I I I

I

I I

I

I

I

I I

U

I

I I

I I

N

en

en

II

II

II

~

El Cl

U-’ Cl

Cl

~

c.J C

—4 C

—4 C

en

en II $4

C

II

1—

I I I

en I

I

N

C’

(N

en

en

e

II

II

II

II

II

II

1’ (4

Cl

1-’ ~.4

Cl

1-’ 4

El Cl

El UI

El Cl

.—I

..-4

.4

.J

Cl .4 .4

UI

In

C

C

C

C

C

C

en II

C’II

(-4 II

eN

en

en

II

(‘1 II

II

II

El Cl C

El Cl

El

El CC

El Cl

El Cl C

El Cl C

0 II C U-’

.4

..l

1

en

en

en oen

.-.~ (N en II

—. N II

— 0

C en

(4 U. (-4

CU U. N

~ El CI. —.

~ E-’~ CL

II El C

II $4 U.

(‘4

aIC-.

InN

U(0

InC Q.

In 0. ~-C

C

El C

(4 I)

r

Li

en

en

I II In A. (U

I II (II C CU

LI C ‘~

~

0

en

Li

en U

0

0

0

en

en

II U/) C

II Cl) 0.

II UI Ci

II U/I 0.

II CC)

1 (/1

II In

U,II

0. CU

0.

0.

C

oen

C

C

C

1..

1.4

C

C

C, IN

C

en I 1.4

UI

.

$4

II

1*~

U-’

I I I

IC-

p. ~

p.

0-

~(‘4 en C),-

C).-

1..

1..

C

270

D. Braunschweig /Reduced SU(3) matrix elements

CM

CI

0

C-I

II El

II

II

II

El

El

I-’

(N

(‘I

C

II I!)

‘I UI

II U)

El IL

El U-’

U-I U-I

Iv

0

en

en

0’

II (NIn 0.

(‘4 0’

IN

a-

H C-S.

U-

II U’

I

~-

IN

II ‘-‘

(!I

UI

El U-.

El “I

El

IN

(4

<1<

II

en

en

r-

-i

a-

(I II

UI

El CCL

0 r-’

N CI U

~‘ C

a-LI Jr CU

II NIOU)CWNU-Iu(o 0. ‘4 UI I/C ILl /1 U(

10 UI

~-‘

a- en

II(IQ 1/0 en I/I U’ a-

a- a-

H

(Na- 0’ C-I’ (N10N*LI ~.

a- a- a-

I.. CI (N en a- U’

(‘I (~ I (N In

111 0’

‘‘4 10 10CC- a a-

N II C C .4en

111 II C C 4en

II (N(.4 (N t-4 N IN en IN IN IN N II C C .4enenenenenen..-cIUenenenen

‘C

II.

a’

(-I

(I

UI Cfl

U

IN

II

$4

In

a

IN

LI U-

10

II (MI/l 0.

II

N

a r- a

C

IL flIp 0.

INICICICU0.

a- In

I~ *1-

0

= a-

II

en U’ U’

I’ -

1 (lID C

II (‘414’ 0—

‘4

a-

H

In (‘I

(U (fl

CI

(N N (-I (N N II C U. ..~.-enenen.-

N II C C Jen

a-

a

C”

C-

.c

- (-I

-S.

IN IN C-ElM

C-

I-

II II

C

C-I

C C en

C

a-

H

C U-

IL .uenen-—

IN

.-(en

C

N





en

en

en

II

II

II UI Qenen~enen 0000(40 CO Cl 000 0000000

II OC.I0000 C 00000

II UIen CO

(I 00000 C 04000

(I Clen C 0

(I Clen C Cl

C10UM1/Ien*0 en UN aII Ill III Ill r- I’~ C ID IC IC a-C $4CU’II.UU’W C C 00000

CO en 0

a-COCCI NNNenen en 10 1(10101 (I a- a- (1 IN C NC ID ID I.4IIIU(a-aC.... C 0 Cl 00

UI (-40 en 0 (I 0 ‘CO Lien C. C CC

(I NO en CC II Cl .C 0 I-len C. UI

C UI + UI /(0 en Cl II UI C 0 L1~ C S Cl

CO + 11/

a-C en 0 II C 0 ICC C.

C 0 (.4

+II+II+*++++

+++++

+ C

CC*41.4(U*4C(U1.I1.4CC

ena-rnNa-cNNr-r-C’oenen en IN (-4 CNN N NO 0 a- C CC II 1/( ~ IC I/l IC IC U- N C C (4 (-U .C IN N N N (-4 (‘400 00 a- a$4C’0I0(O.oenCqeIIulU( C C 00000 000 0000

~3II

II

II

I

I

II 0

C 0 LI CI C U

CCI

++++

..II

CC

+

I

~C

.-4

D. Braunschweig / Reduced SU(3) matrix elements

* *

00000 00 00000 Oen.-,.-en Cl 0 000 0000enoenoOenenenenen 00 0 00 000 0 000 +‘~++++ III II ++++ 1+ I .+ III

* * * * * * * * * * * * * * * * * * * * * * * * * * * * *

(.1 C 0.

(I

271

000 000enOenLICI000enO0enOenO 000 0400000 00 000 I++ +1 * I++*+* I ++ I

I

*

0000Oen.-..-OenOen,CCC 0 0000 I U-U- I II U- 1+11

.—NI000’NC.IStICC NCena-enC0a-NUIONIn01CC10in*00OI0L IC-I/CIA a-enutIDI’nUC,rN O’SflenOC00~Da-Ifl INIDIN 10OIDNI/CIDInIDen a-a-en a-a ena-NID Na-0’COCNCNC-,C,C oea-lomQCInena-o COW ~INNN000NI/IenNInID a-ena-en NOCNC’enInOClenNa-C OICIDNCOr0’Oa-Infl0’OIDNC’IPSOWCOU’tICenrIPOa-a-10NIDNAIDa-rv01C-I000NIN10NenID 0’ 10 (N NO (N .‘ en C 10 en ON IC- 10 0 01 en a- 0’ 10 0’ N C-’ 10 0’ N IC en en N C In N LII CI en U NO’ a- ICC 0’ 5(1 C en 01 1(1 10 ‘0 10 17 INenoenenen.01 LII lOenNenC-lenOlenNen N a- IN 01 en N en (N

a-Ca,or en,—IDIXI a-I’I0’

00000 III

0000 II

r

CIII

0

00

0 I

000 I

11111111

lIlt

1(1(1111

00 II

00000 II

C) 0 00000 I

CIII

11(1(1111(111(11(1(1

I

III

CI 000 (I

000000 I I I

1111

11111111

11-1111

00 II

(11111

A

AAAAAAAAAAAAAAAAAAl’.AAAAA~AAAAAAAICCAAA~AAAAAAA/IC’AA

El

C~l0 0 0 0 0

111

IN N IN (N (‘N C-, IN (‘IN

UI 0.

N00000000000INCNC-IININCNC-.0000000ININNCICNINIOONNI\.INN!’I0000000IDONIN

U-I 0.

N C 0 CO

Ill 0-

(‘ININC’ININNNIN

00

C 0

0

C 0

00

0

NN

INN

00

0

INNIUS

IN (N C-) NC--I N CI 0

0 00

C-i C-I IN (‘SIN INN

(MN N INN (NC-IN

0

0 0 C-I C-I IN Cl
C-I IN C-S N INC-IN

IN NO

0 CC’ -

0

INN

0 0 01 INN

C-II’4NC-ININNC-SC-I

CINC-INC’IIN

I

0 0 en a- en en 0 .— 0 0’ N 0’ U’ IC) rna-enenen ~ 00000 III

11111111111111(1(1

((II

(-S IN N C-I NC-I CU! C-IC-I C-I C-I 0 0

INC-IC-Ia-a-

Ci INN

000

CNN (NC-Ic-IN

a-Ca-NbC’ 105001010 -ON enlfl N01Q’0’Ifl

0 0 0

a- = c-N IN IN C-IN

IN IN N IN C-- IN IN C-I C-i ‘N C-I 0 0

-‘-IC-S INSa-C-c-NCNCUINc-N

0’I’~SC

C .14

IC-a-Na)7NCCCCCCCCNNNNN(Cflenfl,NNNCC(-NNNCCC1(-NNCCCIr( ene.-rnenenrenen NrnInC,I. en—enen.—enenenen.--en.—en—,—enen—en.—en—-enenenen.—~.-.-—en.—en,-—en.-——-.-.--en—-enen.--.-enen—.—en.—en.—-

(C-

In

IDOIDIC/Ca-

Ccl o U-’ C

U-I El I~I

~

C-I C-I

C, Nc-SN

N CC

U-I

0

enenenenIN.-’C-IenINenC-IenenenC-IenC-Ien

—-

=

Ira-

It

,.,-ta,

C~II~IC-C~~

,DICI--, 1flIt-CIOl0,ClCo

a

0 0

INCN(-ICNINI’SC!

Cl

INenenenenenenrenenenenen.—enenenen.--

1111(1

C~0 CC CO

* * * * * * * *

CNen(N

0 Cl II

III

CC’OID

I/la-C

Ca-a-CC

CICIDIDCCIC

‘01(1

a- IDa-C

0110’ DII’

fr-IICI’IC-lI’1LIIlCSN00HI-IIIElU-1’1-IH1-I~-IC4C-4I--I~lUI C4II’-lfr4$-IU-ElElEl1.I-ElIIfr-IElEl~UElU’S1.-II_IIHH

FIUINIIC1-CII(4FIIIIIICIS

(-IenC’CenN.’--

N,-enC-lenCSenC-,enenenen

C’I.-~C’I,-’ NenINenenN,—

CNenC’I.—IN

0 CCI Cl C) (.1 I N

en Oenen.—enenenen U’

C-. INNCC.-’-enen

IN’ I-I C!

C~ en en

en en en en N ‘N IN CC en

INC’IINN

II)

00

0

C-i N N IN N N 0’

Cl In

0

(/C (‘I C

.U

000NNNNNINN(NINOC’SNINNCINNNNINNNNCIC-IINNINININOC-SC-.NNNC-JCIINCICIN(-IC-SI\JCICJI-I’N

(N 14

CII U-I

00000

‘N C-INN

C-INO

ONINNI’JC--SNNN

CII

IN I/I

C-JIM NININ

0000

CON

N0000000000

0.

N 0

1.0 ‘CC IC (-IN

INN

C-) INN

141 C’ NI’)

(NC-INN

IN INN

IN c-I c-IC)

F

IN

000

N INC-i N NINe-I

ON

INN INN

N INN

IN1 NC-I

Ca-CNN

0000

0000000000004

INN

C-INN

0 C-i N INN

IN c-SN IN

ISiNI’I

en C-C —

ONN CC

0C-IINCININNINI’4INININININC-5

N ‘1

00

Cl 0 1/.

C--INC-i

en C-I ‘N en IN en

$-s

‘JIM C-S INC

C-S fillS

II N C-I 4

0 0 It! SI’ (‘S INN C%& N N 50 0 N C-I (‘SC-I ‘N C-I IN N C--SIN N (“SIC- C-i C-IN I’S

INC’S N (NON 00

NO

INlNSSr~IONNNNiNNNIN

C-. (‘11/I

‘40r4(-CC’IN

CNNINCN

00’

IN NC-I ‘N C, N CC a-C IN

(N IN C-I IN INS C-IN

C /!

IN C-S N -N Cl (N 1-fl fl 0 ~I

NJ IN N IN IN INN

(‘NC-IN

Nl(’IC

000

OOCSININ

0CC-I

NC-I

N NNIO

00-N

000000INNNO

C-IN IN

1911 NC-I

000

CC-IC

0

CC

Cl

INN

(‘IN

fiN

CNN C-I INC-IC” ID INN

CI NC-I

N NININ

ON

C-IN INC-I C-S INC--S ID INN

N INC-I INC-SN(N

NO

C-IN

INN

(-II’S N I’S

IN N Nc--I INC-i

-I

1-4 (I)

o

4(1 0’* * * * • * * *

• *

en El

In en

N NIN

CON

ON

N ININ (IS INN (MCMIV (‘S C-JCN NI-INN

0

000

(N NC-INN

000enenN(ISI’SNIM(Nen0IlJI~JCNIIIlIN(’5C-ICNII.ININen~lI,~

IN

IISI’I

CII.) ISO 11000000

INN 00

INN

IN C’IIN I’S C-INN

(N NC-I INN

c-IN C-IN

000

CC!

1) C’

NIl

c--Il-I

IVINenCCenNIIJCNIIS(lSINenrO)-INISIll(NII(’SIS

*1 r’ CC.

IOIOWD’NN(’IJINNNItIONEJNINNC-4),CIN

CI

1-4

C—I I-I I—I I—I I—I I-I I-I I—S U- I—Il-lI--I C-Il--I El 1.1(41.4 1.-Il-I C-I ‘-I I-I I-I I—I 1-4 1.-I I—I I—I I-, I’-~4—I I—I I-Il--I H C—I I—, 1-( (—I El I-I I-IC--I 4-1 —.1—I I—’ I—’ I—I El C-S (4(41.4 1-4 (4 1-4 I-lU I-I H 1-41-1 C.4I I, (4(41--I 1.11-4 I-I 1-4 1-4 I-I 1-1(41-I I-I 4-4 I-I 4-10114 1-11-I I-I H 1.1 4-4(41-1 I-I 1-4 I-I (4 C-ICC’S Il El 0 CI Ci I-I H I-I CI I-I 1I 1-11.1 — (44-4 Cl 1.41-I H I—I I-I 1-4 1.4 I-I H C-I I-I U-I H —4 C-I U-, 1.-I 1.1 1.11.1 I-I (-11.1 I-I I-I — I, .4 U-I (4 CI I-I 4-~1-i (4 1-4 _($4 —I I~I

I-I

N 0 0

CII

NN(IJNNUNNNN

EU

CIIINININa-IMININ(’.fl(Na-’.Oa-N(IC-’SININIIa-

4ICIICNCI1SN-NI-II-I

NUN Cl N N N N (N N N (N IN IN (N N N N N IN N C--I N C-I C-I (N N (-I IN N N IN IN 0 0 0 0 0 0 NC-I

NNC’JNNNN(Na-

a-a-a-a-a-a-a-a-a-a-a-a-a-

a-a-INN(NNCNIN

0 0 0 C-I C-SN N C-C C-i C-I N (VtSC-1IN

NNC-I

NNNIN

*

~ *

1-.

N

*

III

Nell N N N N N INN

Q

~

0 CNenenNenenenenenenenCenenenenen,-_en,-,-~,-~_enen~/CC-~

ON

N INN CNN INN INN

CNN CNN INN

(4 NUN IN NtIS N INN N INN

N N INN INN

NC-I

a- a-a-U’

a-

N N CNN INN 000000000

a-a-a- a-CU’ a-

a- a- a-

a-N

N (IN

N (‘-IN N INN N C-I

(4(14 N N Nc-IC NC--I N N N N CI

* * *

* *

~ *

C



V

1VV VVVVVVV

VV V VVVVVVVV

VVVV

VVV

VVV

VVVVVVVVVvV

VVVV

VVV

VVVV

D. Braunschweig / Reduced SU(3) matrix elements

272

000000000000000000000000000000000000CC 0000 C en 0 en 000 en en 00 N en 0000 en en 00 IN en C 00 0 Oenenen,-en , 0 OenenenOen I + I+++U 1+* U I++*+ I 1+4-Il + +++ +I III II U-U- CII + I+ (~1141-11-1414141(1-114141141(14141414(11141-11414141414141414 14(11141-tIll 144-1414141(1.114 50NNNN0a-OC(NN0CICNOCb0N0C’enIn0’CNN CenWen’0O’a-a-CINCCC enenNInO’O0’NINNO’NNNICO’C0’a-WNNNNCMa-O’enC!(N0In0’N0U’0’C’enNU’ —a-o’.-aU’ICC(OINCenNIN50CNCC0lC CaenbNNCa-en10C-. a-Q.Cen C-1N~QNNC IC50C50IA a-C N 0’00’NINIICOCNN CCC ICNaFCC ONIC-eneniflo 170’ 0Iflo~0en(N0 enN0’CCenCa-C!NC0NIN0’NCNNNCICCCCIIACNO’IACCCenenenO’(N 50NIC U’ben0’enenNa-enenIn50enU’enNena-NCICena-Na-ma-ICenenen

r-enenenrenena-enen 00000000 11411 II

IC

II

IC

II

C 00

IC

CI

II

C)

IC

I

C 0000 CIII

II

II

(I

CI

C Ccl II CC

Cl

IC

IC

0000 I

CI

II

IC

A A A A A A A (¼(¼A A A A A A A A A A A C-i IN IN N N 0 00

C 0 C C 00

CO

0000000000000000 I III I

(I (I

CI

I II

A

C-i N Cc C-C C-iN IN INN

IC

II

II

II

II

CI

II

(C

IC

II

CC

(I

I II

II

II

IC

I!

A A A A A A A A A A A A A A A A A A A N C-IC 0

CO

CO

C 0 0

0 0 INN

N NC-

N

N IN C-. IN INN N N c-I c--I
IN C’S INC-I c--I INC-S N N N (N N IN N C-I C-I N (‘SC-I INS INN

C-. (-SIN NO N N INN 0

C0 00

INC-INI’II”4ININC-ICI
I’SNC’SINNNNINC-IINNC-INNNNINNIN

enrlenCnINNc--IrvC-SNNClINNNC-SC-INNNNc-JNU,a--

1-4 I-i — I—I C—I I-I I-I I-I C--I El El 1-I I—I (4 CI en(IIen

NI’I

NenrllC-I.—C-IC1-

C—I I—I —4 h-I (4 I-I 1-11,7 1-I I—I I-’ El C—I i-I I—I 1,4 I—I IS El El I-I El

..-C-lIIlenenNenenINen.--

C-IC-

C.II~Cenen.— C-IC-IC-iClflI-,enen,--enc-IINCIScC

N (‘INN

N NI’S IN C-II’S IN

INNNINN

((INN

IN N IN (N N INN

INN

INN INN

INN

NNNC

NNNC-IIN

C)

0

INN

C-IN

IN IN-C N CNN 01’S

NICen,—enC--enen -N C-IC-bc-I

C-INC-IN

INNIN

N CISIN I’) C-I-N IN

NI’S INN

INN C-IN

C-I 000000000

NC-IN

C-IC-INC-IN

N INN N C-IN

0

C’i (N INN

C-I NC-I C I-IN

0000000000000

N N INN

c-i

“INC

en~NCC-enC-(enC-Ien

=

N N INN

Ca- =

IN N C-. N N N C CC N N INN IN IN IN C-I NIt!

N N C-IC-i IN IN N C-I INN

O 0

I—I —

a-enmenrnCIenC-1enenI’~menr.I

0 0 0

N INN

a-C-INN

C-INN

C-IC-IN

0 N N N N C-I c--I C-INN

0 C C 0 (70

0 0

0

0 0 0

0 0

INNC-1 Clen,—enen

0’N-NIINN

NINa-

Ill In IN N (‘IN

COlIC-I

N’N

N -‘400

Cc-IN

C-IC-4(NC-INNNN

0 IN IN N N 0

0000

INN

CC-IN

IN

C-IC-S INN

NN

C-i INN

IN C-I I’J IN INN

C-C

N Nc-Il

CCC

‘C

000

N IN(NN IN INN N

0 C 0 0 0 CI N C-” 0 0 N INN

N

a- C-IIN,NNCIIC-I

C-C N SIC- III N N N N (N N

NO

en C-I N INN INN

CS

NINCnCC

C-’ C-S INC--I C-I NC’) N INN

INc-I IN

IN N NC-I NC-- IN N N (N N INN IN N N c-N CNN C-I IN IN N NC-S IN INN

— I-I

NenC-SenNen

-INN C’S IN INC’S C-I NC-I IN INN

IN N NC-I INN

NO

IN”

(N

C 0

0

INN

(N

II1(NNINNC-IIN(NC-SINNINNIDNININNININININNC0’0’17INININNNINa-a-(VNNCNINN

H 1-I ElI-)

U-’

ElH

(40(44--I

1~lHI—lI-lI--I (‘1(41—I HI.) H (—lU-IS-I C-IC-I 1.-I HI--I 4.4 I-IH 1-III00I-IHO 1-4(4 HI-I HHH -.1(4 C-IHC.4 I-IS-I (-I (44-I H OH (4l-’SU-’I-.lU-I(4 CI 4-71-11-IC, (41-1 Cl H I-I (-I H H U-I Cl 5I 5-400 (-1 CI I) H I-I H I-I 1-40 1-1(41.4 (414(4 INN

N IN N CNN N N INN

INN

INN

lUll

N INN N INN

U

III

CNN INC-C (‘INN N INN

CCCI

N CNN INN

N IN N N N INN

111111

III

C-I INN INC-C I-IN

N N INN IN INN

(‘1 CCCI INN

(NC-l IN N C-S (N INN. N N N N INC-I N C-IN N N ~

N INN

C (‘ICC!

II

I

(N CNN N INN

(flm

(‘I CCC (‘iNN

CC

(~.1IN

INN”4

N IN N

(‘I N IN INC-C N C-IN IN INN IN N Cl N N ICI (N N N (N

III INN INN INN

N INN (N INN (N INN INN

elI N CNN INN

N (N

I—I 1-Il--Il--il--Il-I 1--I (41-Il-I I-I 01-40 (41-4 H H ElI-I H

mm

(‘iN

INN INN

INN

N N INN

INN

N

IN N INN N INN

C-IN INN

N N INN INN

INN

N

men IICICI

N (4 CNN N N CNN (IN

C CCCI INN

CCC

mm

m (~ CI

CCC

N CNN CNN N INN CNN N N N

___—___.._____.._____cl_ ID ID ID ID CO SD SO ID IC ID ID ID (C (0(0

IC ID SOIC IC ID IC (Q ID IC ID ID IA ID IDIA ID ID IA ID ID ID ID ID

VVVVVVVVV’~(11OOVOVVVVVVVVVVVVVVVOLI0S1

‘C

ID

‘I’.eV

D. Braunschweig / Reduced SU(3) matrix elements

273

O 0 0 0 C- en 0 0 NenOenenenen 0 00000000 0 0 en 000000000000000000000 en 0 0 (‘I C 0 Or 0 OenenenOenCII CO 0 0 *4* + C I I + + Cl U I + U I I I + + I I + + I I ++ + I ++ I I 1+1 I U + 4- + 000000000 (1- 14 (4141.! (5- 14 14 1-C (4 (11 111 III (4 (4 (4 (4 (4 14 (4 14 1414 1-1 (414 (4 14 14 14(4 14 1414 14 14 1-) (11 14 INC 17 Ala! ‘C a~N SC a-N Dl Cl C 0’ N CC-In o’ C en C en ID 010I a-N en 0’ 0’ 1110 CC-SD in DIN en C! 0 0 151 0 17 111 1(1N a- IA 0- (N N C- C SIC- en en a- 0 ‘~‘C N Al 1-! 0 0 01 N In It! C CI C (II en 10 0’ IN a-SO0InNenDInNDIU’rlnC!IMa-IA0’17N0’a-Na-U’enNCCSC1NOIAen(’(enen NIC I(1INOen0I’Iel~ea-IOIn-a~F00C!NItla-17Cen0~S5CAlIA0(’.0’NenDlenInNCC0It! 0’C!enIAO~ICFINCIDCa-I’CN CN0NenNenClIDlC-a-IASfla-a-CIIC-IbC.—IQC0C0N NenNen0’C’enen17 17enNenlOenenrena-enena-a-enNNIna-0’enCC”Ola-a-ena-0! 0000000000000000000000000000000000000000 I lUll I I I II III I (I

1

AC-IA

CC

l(

C!

CI

C! CI

(I

II CI

II

IC

Ij

II

IC

IC

(I

II

II

I

II

II

II II

CI II II

II

II IC

II

IC

IC

(C

AAAAAAAtIAtIAAAAAAAAAAAAAAAAAAAA

N CI N C 0 0 C 0 C-.

II

a- a- N N

0 CI 0

C C C C N IN Cl IN

C-I IN IN N N N IN INN

NO

0000000000000

NC-I

N 00

000

0

CO

0

00

0 INN

N a- a- INN

C-I N IN N N N IN C-IN IN INN

C ((1 C INN

IN INN

(I

¼OIDIOLOIOIOI.OIOI

INN

N INN

N N IN IN IN INN

II

IC

II

CC

N INN

IN INN

N

IN N IN N N N N

N (N N N C-. IN N N N N N C’) N N

N N’IN IN INN N INN IN NIN I CIII I 11(1 IN N N N (N (‘5 N C-) INN

IN INN

(N INN

N

C-IN IN

INN INN INN

(N

INN N INC-I N N

IN (N NC-C C-) INN

IN INN

N C-IN

N IN IN N IN (‘I N C-I

N N (‘5 C--i C-C -N N INC-i IN INN

IN INN

N (‘IN

N INN N N N C’S N

a-So IOICID

CI IN

Cl

AAAAAAA

(N N C-. N N N (N N N N INN

INN III

I

CC II

I0~0IO1C

01010141010111101001010

.01.0 lOlO’1010I0101C10

El I., U-I 4-I El II 5-4 El H 4-Il—I I—I 1-5 I—I (1 U--I H I—I ‘—4 4-4 H H I-I H HO I-I CCH Cl 1.11-I (.1 1-1 I—I 1.4 1.1 U-I I-I El I—I H H — I-I El I—I 1—I S—I I_-I I-I H H 1.1 I-I I—I H I—I I-S (—I 4—I 4—I 4-4 4-1 OH I—I H H H U--I I-I C-I H El 1-4 El H U--I I—I I-IH (-1 00 HII I--I U--I H (4 h-I 01-1(4 I-i C. H El H H 1-54”) (—I -4(4 1.11.11-I (4 5-4(4 1.4 El 4.7 5-1(4(44--I (-U en en IN en N

enenen

en

q—NC--en IN

(11

IN CenenNmen

C-en.— IN (‘I N C/C CC C/C en en —- .- .-- 0

N C I-

en C-I N (N CI! ~“I III .—enrenenren

a- INS N 1-IN N IN C-I N N c-Il (N N N N 0 N N C-i C.. N N IN a-a-

a-

C--IC-Ill INN

(NININ

NNN

NINN

a-aU’

CNN

NNINNNN

INN

NInItISfl

INc-IC-I IN INN

INN

IN CNN (NON

NO

0

INN

N 000000

-ININc-ININC-JIN

IN 000

000

‘N

CNN

C-I NC-IN

N NNNN INN

CNN-N

CNN N (‘100

N 111 en IN CO .-en(NC!

NC-INN

N INN

0000

N C .

N C1 C- IN

N c-I N C C CI C’-’ en

IN N 0 IN 14 N (N IN IN IN N N

a-

a-ON

(NNN

NNICCIS’!

IlION

INN

(N INNNCNINN

NIN

INN N INN N en en

INN

(N IIINNINIIS

C-IN

00

00

N IN

Nc--IN

INN

ON

C-J0000c-I1

00

INN N NO

NNN

NNU’U’

0000

N

-, N N N (N IN (‘I N N N N N IN N (4 IA IN N (‘I N IN N IN (N INN N IN JO IN IN N N C-I N N N N 17 enNN

C-IN NNNN

INN

N NNN

0(NN

N NN

INN

U’

NINa-a-

NIN’N(NN

0

.-

INN

NN(NOIN

INN

(NN

a-

N(NININen’

INN)N000000C000C’ICNN0000C.00000ININN0000000000NIN NNNNNNNNNINIINIINNNINININC.JININNINININC-INNC-(C-’C-INNN(NNINNNNIN

‘l’1enen(NINN)IICNI~4IIICNIrIenrenOINNClJ 017 17 NC-I NININ

Ill N IN N

a-

(15CC-I INI(IIN1-4-COIIJINNINNNCISNI!1(’IC

‘S a-SOC-N N IN

INN IN IN IN Na-

U’

a-

SO UN INN IN N (MN IN IN 0 0

HU-ICIU-IU.l(4HHI1’SHHU.IHHH(4(4HI-IH(4HHH(4H(4(41-IHHH(4ElHOHH 1-I(41-4HH1-I-4HHU4IUEl(44U-4k41-l1-II44.Il-4I-4H~IHP4l.IHHl.4U-IHHl.4l.4lIl.4 1-1(4 H I-I 1.1 1.-I I-I (4 I-I 1.-I 1.1 H I-I (4 I-I 1.-I U I—I 4.4 1.4 I-I I-I 1.-I (4 (4(41-I 1-41-I (4 I-I 1-4 H CI 1-4 Cl I-I 1-I H (4 NC-IN INN

(‘INN

INNN

INN

N NC-SN

Nfl

CNN

N N N N IN N N N N N III CI IN N N N N

N NNNN

NNN

INN

N fiN

NI N N IN IN N (N N N N IN INN

NC-IN

IISNNCNN(N(NINUNININNC-ICUSCNCN

NNNNNININNNNC-IINNUN

(INN

NINININNNNNNNINN

NI”JNNININI’SCNNN

(‘CNN

CNNNNNINNNCNCNNNNCNNN

I’4l’JN(I

IN INNINNIN

fiN

IN N N IN N N N N

NNNCN

INR4(NNCINU’J

INNNNNNCNI

INNCNNCNINNNININCNCNNCNINNNIISNNN

mmmmmmmmrnmmmmmmmmlnm

mmmmmmmmmmmmmmmmmmmmm

CNCNNNCNNCNINNNNNNNINNNNCN

NNelICNNNNNINUCNCNIIN

U’ICNNNNNCN

IDIDIAIDIDIAIDIA(0ICIDIAIAW(0ID(CIDIC

IDIA’DIAIOIDIDIAIDIOIAIDIAIA

ICIA(CIOICCC(0

VVVVVVVVVVVVVVVVVVVVVV’~VVVVVVVVVVVVVVVVV