Indole alkaloid evolution in Aspidosperma

Indole alkaloid evolution in Aspidosperma

BiochemicalSystematicsand Ecology,Vol. 15, No. 2, pp. 187-200, Printed in Great Britain. 0305-1979/87 $3.00+0.00 0 1997 Pergamon Journals Ltd. 1987...

814KB Sizes 8 Downloads 203 Views

BiochemicalSystematicsand Ecology,Vol. 15, No. 2, pp. 187-200, Printed in Great Britain.

0305-1979/87 $3.00+0.00 0 1997 Pergamon Journals Ltd.

1987.

lndole Alkaloid Evolution in Aspidosperma* VANDERLAN

DA S. BOLZANH,

LEILA M. SERUR, FRANCISCO J. DE A. MATOS* and OlTO R. GOlTLIEBS

tlnstituto de Quimica, Universidade Estadual Paulista Jlilio de Mesquita Filho, 14800 Araraquara, SP, Brazil; $Departamento de Quimica Orglnica e Inorgsnica, Universidade Federal do Cear& Fortaleza, Brazil CE; Ilnstituto de Quimica, Universidade de SBo Paulo, 05508 SBo Paulo, SP, Brazil

Key Word Index-Aspidosperma;

Apocynaceae;

indole alkaloids;

biochemical

evolution;

biochemical

systematics.

Abstract-lndole alkaloid evolution in the genus Aspidosperma (family Apocynaceae) involves diversification of basic corynanthe over aspidosperma to rearranged plumerane types. The most general and hence possibly primitive oxidation pattern characterizes the species of the series Nitida and Rigida. Development of oxidation-reduction of the tryptophan or secologanin derived moieties occurs in three trends towards the series Pyricolla, Quebrachines and Nobilis. Such considerations lead to dendrograms encompassing all seven series of Aspirosperma species.

Introduction The genus Aspidosperma is distinguished chemically by the frequent occurrence of indole alkaloids, a characteristic which it shares not only with other Apocynaceae, but also with Loganiaceae and Rubiaceae. Up to mid 1983,46 out of about 57 Aspidosperma species, belonging to all seven series, had been shown to contain such compounds (Tables 1 and 2). The general value of indole alkaloids as systematic markers having been demonstrated [2] it was deemed important to examine their structural changes with respect to the evolution of Aspidosperma species.

skeletal types of indoles ex Aspidosperma with the complete biogenetic scheme of indole types [2] indicates that only strychnane and iboga types characteristic respectively of Loganiaceae and Apocynaceae (chiefly genus Tabernaemontana) are missing. The other parameter concerns the oxidation pattern of the tryptophane derived part of the molecules (Tables 3 and 4). Representatives of the basic skeletal types frequently (but by no means always) lack oxy-functions on the indole moiety. The opposite is true for representatives of the rearranged skeletal types which commonly (but again not always) carry such functions.

Results The structural types of indole alkaloids can be classified according to two parameters. One concerns progressive changes in the iridoid (secologanin) derived part of the skeletons. These determine particular positions on a biogenetic scheme (Fig. 1) of basic corynanthe (ll.lll.5), aspidosperma (IV+IV.6) and uleine (IV.7, IV.8 and Vl.2) types and rearranged plumerane (VII, VIII), including copsanone (Vlll.2.1) and eburnane (X), types (Fig. 2). Comparison of this outlay of

Discussion The fact that both main alkaloid types, corynantheanes and plumeranes, exist with and without oxy-functions indicates that the observed trend towards stronger oxygenation of the rearranged types is not a biosynthetic determinant of the destiny of the precursor. This point is stressed also by the comparison of the oxidation states (O-values) of all known indole alkaloids of Aspidosperma species. The spread of such values is only slightly larger for plumeranes than for corynantheanes and the mean values for all types are very close. Thus oxidation states of compounds are independent of the respective skeletal specializations and any correlation of mean 0- and S-values for all

*Part XXIX in the series “Plant Phylogeny”. Part XXVIII see ref. [l].

Chemosystematics

and

(Received 20 May 1986) 187

188

VANDERLAN

TABLE

1. OCCURRENCE

SERIES

(se/w

Woodson

OF

INDOLE

ALKALOIDS

CLASSIFIED

LEILA

ACCORDING

M. SERUR.

TO

FRANCISCO

SKELETAL

TYPE

J. DE A

MATOS

IN ASPIDOSPFRMA

AND

OTTO

SPECIES

R GOTTLIEB

GROUPED

INTO

[5]) lndole

SWIIZS

DA S. BOLZANI,

Species

alkaloids

Skeletal

type/compound

number

(Table

2) -__-

Rigida

II 51/126

Nitida

II/82 II/El;

ll.3/104

11185. 11.4/110.111.113,155 II 21123,125;

ll.2.1/130

II 3.1/117 W81;

II 31102;

VIII/13

lW33.89.9O.91.92,93,94,95,96,97,98,99,lOO; 11181.82.83.85; ll.4/110; chakenvs

Polyneura

Pyr1colla

Nobilis

Macrocarpa

VII/l;

11.3/103;

Vlll/6.7;

11.3/103.105,106.107.108,190;

11.4/110,116;

11.3.3/118;

Vl.2/163;

IV.7.1/167

lV.7/155;

V111/6,7,11,21;

Ii 4/110.111.116,

VW13

Vlll.4/66

vlll/l7,18

quebracho-blanco

II 21121;

ses9hflorum

v111112

ll.4/110;

11.2.11129;

ll.4/110;

VII/l;

IV.6/137,139.140,141,148;

peroba

II 21124;

pOl~“WrO”

11.2/119,124;

cykndocarpon

Vlll/32.33.34,35.36,37,38,39,41,42,43.44

drspermum

v111.8/29.30

ll.4/110;

11186; v111/14; v111.2.1177.78

qwandy

v111/12

pyr~collum

II 41110.114.116;

mult&7rum

IV 7/155.160;

pyrlfolium

VlllIl5;

tomentosum

lV6/143;

refracturn

V111.2148.53.54.55

populifolwm

lV.6/14%

austrait?

lV.7055;

IV.7.1/167,169

gO”X?sl~“““l

IV 71155;

VI 2/163

olwaceum

IV 71155;

Vl.21163;

rhombeostgnatum

VIII 5/12,21,25;

V/135;

lV.71155; Vlll.2.1/58

V111.2/49,50,51.52.53,54,58

IV 7.1/169.171

IV 7/155;

IV.81166;

subrxwwm

IV 7055.160;

sa”dwth/anum

VII/l (VIII

lV.7.1/168,169

VIII 4/61,&I VlllI31;

obscwnerwum

Vlll/l3.22;

nebknae

V111/6,12.13.15,16,45.46;

IKnae

V111/13.20,22.23,24.26.27;

enalatum

V111/7.12.20,21; lW36.88; Vlll.2.1/79

IV.7.1/167

t VIII)/173

fend/en

verbasc~fokum

VIII/l2

lV.8/164

1\/.8/164.165,166;

sprucean*m

album

stereoisomers);

IV.7 11167:

&I

VIII 4161

(two

Vlll.4/60.62

lV.8/166

v111/14;

Vlll/7,12

IV7055

lV.8/166;

desmanthum

Vl.2/163;

Vlll.2/56,57

vargaso

VIII/l3

Vlll.4/61,62

v111/8,12.19

VI 2/163;

parvifokum

megalocarpon

V111/8,9,10,12,15,26,27;

VIII/12 VII/l;

cuspa

mela”ocalyx

V11/1,2,3,4;

V111.4/59.60,62 VIII 5171.72.73.74

VIII 2 1177.78

ducka

VIII 2 l/77.78.80

Vlll.4/63

Vlll.4/67,68,70

IV.61147.150;

macrocarpon

Vlll.5/75

(two

VII/l:

V111/12,13,14,24.26.27.28.131:

stereowarners),

compounds in a taxon, should it exist, must be determined by phylogeny. In spite of the phyletic importance of the position and number of oxy-groups on the

V111.4/61.62.63.64,65.67.76;

X/154

79

aromatic part of the indole alkaloids (Table 3) the EA, values for all Aspidosperma series show only small variations. A trend towards oxidation of the aromatic part must thus be compensated

INDOLE ALKALOIDS

TABLE

2.

SKELETAL

TRYPTOPHANE

IN ASPIDOSPERMA

SPECIALIZATION

DERIVED

MOIETY

169

VALUES

(S)

AND

(Dt), THE SECOLOGANIN

OXIDATION DERIVED

VALUES

MOIETY

CORRESPONDING

TO

(OS) OF INDOLE ALKALOIDS

THE

ENTIRE

CLASSIFIED

MOLECULE

ACCORDING

THE

@I.

TO SKELETAL

TYPES Skeletal olpes II

Refs

0

ot

OS

S

16-epi-isositsirikine

7

-0.61

-0.41

-0.90

0.14’

1Omethoxygeissoschizine

2.8

-0.71

-0.25

-1.10

0.14

81

dihydrocotynantheol

6.9-l

1

-0.78

-0.41

-1.33

0.27

82

10methoxydehydrocory”a”theol

6,12,13

-0.68

-0.25

-1.33

0.21

83

19,2Odehydro-lO-methoxycorynantheol

9,13,14

-0.57

-0.25

-1.11

0.21

85

IO-methoxygeissoschizol

2.12.14

-0.57

-0.25

-1.11

0.21

89

aspidosperma

base II/296

15,16

-0.73

-0.41

-1.22

0.21

90

aspidosperma

base 111298

15,16

-0.73

-0.41

-1.44

0.21

91

aspidosperma

base II/326

15.16

-0.63

-0.25

-1.22

0.21

92

aspidosperma

base II/328

15.16

-0.68

-0.25

-1.44

0.21

93

aspidosperma

base III/352

15.16

-0.61

-0.41

-1 .oo

0.14

94

aspidosperma

base 1111354

15,16

-0.66

-0.41

-1.33

0.14

95

aspidosperma

base III/382

15.16

-0.52

-0.25

-1.00

0.14

96

aspidosperma

base Ill/384

15.16

-0.57

-0.25

-1.20

0.14

97

aspidosperma

base III/354

15.16

-0.57

-0.41

-1.30

0.14

98

corynantheol

15.16

-0.71

-0.41

-1 A0

0.21

99

aspidosperma

base IV/384

2,15,16

-0.57

-0.25

-1.30

0.14

100

aspidosperma

base IV/386

15.16

-0.71

-0.25

-1.40

0.14

Compounds 86 101

Compound

names

86

sitsirikine

17

-0.71

-0.41

-0.90

0.14

88

isositsirikine

17

-0.61

-0.41

-0.90

0.14

119

polyneuridine

18

-0.61

-0.33

-1.10

0.23

120

normacusine-B

14,18

-0.52

-0.33

-0.90

0.21

123

N,,,-methylakuammldlne

19

-0.61

-0.33

-1.10

0.23

125

spegatrine

2

-0.47

-0.16

-0.90

0.31

121

akuammidine

19

-0.61

-0.33

-1.10

0.23

103

reserpiline

6.8.15

-0.33

-0.08

-1.00

0.23

103

isoreserpiline

6.8.15

-0.33

-0.08

-1 .OO

0.23

102

aricine

11.20

-0.42

-0.25

-1 .@I

0.23

105

aspidosperma

base l/352

15.16

-0.47

-0.41

-1.00

0.23

106

aspidosperma

base l/382 A

15.16

-0.38

-0.25

-1.00

0.23

107

aspidosperma

base 11382 B

15,16

-0.38

-0.25

-1.00

0.23

108

aspidosperma

base l/412 A

15,16

-0.28

-0.25

-1.00

0.23

109

aspidosperma

base II412

15.16

-0.28

-0.08

-1.00

0.23

reserpine

15.21

-0.42

-0.25

-1.00

0.23

110

yohimbine

6.8.14.15.22-25

-0.71

-0.41

-1.20

0.23

114

19dehYdroyohimbine

15.25

-0.47

-0.41

-1 .w

0.23

116

Pyohimbine

8.12.14.18

-0.71

-0.41

-1.20

0.23

111

10methoxyyohimbine

14.26

-0.61

-0.25

-1.20

0.23

113

0-acetylyohimbine

23

-0.61

-0.25

-1.20

0.23

115

excelsinine

15.23

-0.61

-0.25

-1.20

0.23

112

11-methoxyyohimbine

22

-0.61

-0.25

-1.20

0.23

130

ajmaline

15,27

-0.52

-0.25

-0.88

0.42

120

quebrachidine

15.27

-0.61

-0.33

-1.00

0.33

11.3.1

117

carapanaubine

15.28

-0.23

f0.08

-0.88

0.42

11.3.3

118

isoreserpiline-pseudoindoxyl

6,15

-0.33

f0.08

-0.77

0.42

11.5.1

126

picraline

7,;o

-0.52

-0.16

-1.10

0.33

V

135

stemmadenine

7

-0.68

-0.41

-1.10

0.36

IV.6

143

limatinine

29

-0.44

-0.08

-1.12

0.38

148

11-methoxy-14,1%dehYdrocondYlocarpine

9

-0.55

-0.08

-1.37

0.56

137

aspidospermatine

22,30

-0.44

-0.08

-1.12

0.38

139

demethoxyaspidospermatine

30

-0.55

-0.25

-1.12

0.55

140

aspidospermatine

30

-0.72

-0.50

-1.12

0.66

141

A(.,-methylaspidospermatine

30

-0.66

-0.41

-1.12

0.66

II.2

II.3

104 II.4

11.2.1

-.

B

190

VANDERLAN

DA S BOLZANI,

LEILA M SERUR,

FRANCISCO

J DE A MATOS AND OTTO R GOTTLIEB

TABLE 2~CONTINUED Skeletal types

IV 7

IV 8

lV.7.1

VII

VI.2 VIII

Compounds

Compound

names

Refs

0

ot

OS

S

m-l.37

0.38

149

14.19.dehydroaspidospermatine

15.31

-0.70

-0.08

150

tubotaiwine

17.29

PO.75

PO.41

147

condylocarpine

17

-0.72

0.41

-1

1 33

0.38

10

0.55 0 76

155

uleine

9.10.21.32-35

-0.58

-0.18

m-l.25

160

dasycarpidone

6,9

PO.37

018

-0.85

0.87

155

3-epiuleine

7

--0.58

0.18

ml.25

0 76

160

3-epidasycarpidone

7

-0.37

m-O.18

-0.85

087

164

elypticlne

32.33

PO.29

-0.54

0.00

083

166

N,,;methyltetrahydroelypticine

32,35

PO.47

0.54

~0.75

165

1.2.dehydroelypticine

36

PO.41

-0.54

167

olivacine

9.32

_~0.29

-0 30

169

N,, -methyltetrahydrolivacine

22.32

PO.41

0.30

PO.88

0.58

171

9-methoxyolivacine

8

~0.23

0.30

~025

0.58

168

-. 0.30

PO.50

0.58

0.58

1.50

0.47

083

-0.25

0 58

dihydroolivacine

32

PO.41

1

quebrachamine

17.32

-1 .oo

2

rhazidigenine

19

~0 78

-0.33

3

rhazidine

19

--0.78

-0.25

1 50

4

rhazidigemne-Woxide

37

-0

-0 16

ml.50

(

9. 11

~0.61

aspldospermlne

17,30x39

-0

0-demethylaspidospermine

6.7,9,25,38

~0.63

163 12 7

I-aparone

73

63

-0.27

083

-0.28

ml.50

-1.10

047 0.47 047 0 63

-0.08

-1 40

0 73

~0.08

ml.40

0 73

13

aspidocarpine

7,9,10,20,39

-0.52

-140

0.61

15

pyrifolidine

15,39,41-43

-0.52

+0.08

-1.40

0.61

25

limaspermidine

38

-m0.62

~-0.25

~1 20

0 73

aspidospermidine

38

- 0.73

0 50

1.40

demethoxypalosine

32

-0.73

0.25

5 21 a

0 08

desacetylaspidospermine

30.44

-0.78

-0.33

12

I--)-aspidospermine

32.38.39

~0.63

-0.08

19

palosine

32

~0.63 ~0.52

14

0-demethylaspidocarpine

20.45.46

32

cyhndrocarlne

37

33

~:,,-methylcylindrocarine

37

34

~,,-formylcylindrocarine

35

~~,-benzoylcylindrocarine

36

12.demethoxy-N,,,-acetylcylindrocarine

-1.40 1.40 -1.40

0.08

0 73 0 73 0 73 0.73

1 40

0 73 0 73

0.08

1.40

-0.33

0.90

0 73

~0.42

m-O.25

0.90

0 73

37

PO.31

PO.08

~090

0.73

37

PO.31

~0.08

0.90

0.73

37

PO.36

-0 25

-0 90

0.73

~0.66

~-070

0 73

-008

m-070

0 73

0.47

37

19.hydroxycyhndrocarine

37

-0.36

38

4, -formyl-19.cylindrocarine

37

PO.21

39

y, -aceh/l-19.hydroxycylindrocarine

37

0.21

0 08

0.60

0 73

40

N,, -benzoyl-19.hydroxycylindrocarine

37

--0.21

0.08

m-0 60

0 73

41

N,,;cinnamoyl-19.hydroxycylindrocarlne

37

- 0.21

0.08

~-0.60

0 73

42

N, -dehydrocinnamoyl-Whydroxycylindrocarine

37

-0 21

~~008

0 60

0 73

43

N.;formylcylindrocarpinol

37

PO.47

-0 08

1.10

0 73

44

N,;acetylcylindrocarpinol

37

PO.47

~0 33

1.10

0 73

N.;acetylaspidospermidine

6.9.39

-073

~0 25

140

0 73

demethoxyvallesine

21

PO.73

~0 25

1 40

0 73

N,,;methyldesacetylaspidospermine

30

PO.73

0.25

-1 40

0.73

10

N,,;methyldesaceh/ldemethon/aspidospermine

30

~0.52

PO.41

-1

40

26

4, -acetyl-/$(, -depropionyllimaspermine

47

-0.63

PO.08

-1

20

0.61

27

aspidollmidinol

8.47

-0

-008

1.20

061

ml.20

0.61

6 11 9

47

0.08

0.73

17

spegazzinine

48

-0.52

18

spegazzimidine

48

~0.42

31

fendlispermine

37

-0.78

22

aspidohmlne

22,29.40

m-O.52

CO.08

24

11-methoxylimaspermine

47

-0.47

to.08

PI.20

0.73

26

llmapodine

8,49

-0.63

+ 0.08

-1

0 73

28

No,,-acetyl-N,,

17.49

-0.31

t0

PI.20

-depropionylaspidoalbinol

-0.08 0.50

25

-1 20

061

m-1 20

0.86

~1 40

0.73

20

0 73

INDOLE

ALKALOIDS

191

IN ASP/DOS/‘ERM4

TABLE Z-CONTINUED Skeletal types

VIII.2

VIII.4

VIII.5

VIII.8

Vlll.2.1

Compounds

Compound

names

Refs

ot

0

OS

S

20

D-demethylpalosine

17

-0.73

-0.08

-1.40

0.73

16

desacetylpyrifolidine

22.39

-0.68

-0.16

-1.40

0.61

45

1,2-dehydroaspidospermidine

15.39

-0.78

-0.33

46

1,2-dehydrodesacetylpyrifolidine

39

-0.68

27

1 I-hydroxylymapodine

49

-0.47

66

aspidofiline

50

57

pyrifoline

41.51

48

aspidofractinine

9

-0.66

0.00

0.73 0.76

-1.20

0.73

-0.52

0.00

-1.83

0.63

-0.42

0.00

-0.90

0.63

-0.16

-1.00

0.63

-0.41

-1.20

0.63

53

aspidofractine

9

-0.78

54

refractine

9.41

-0.57

55

refractidine

51

-0.52

49

17.methoxyaspidofractine

9.21

50

16,17-dimethoxyaspidofractinine

9

51

N,,,-formyl-17.methoxyaspidofractine

9

-0.52

52

N,,,-formyl-16.17-dimethovaspidofractinine

9

-0.52

58

kopsinine

9

69

lO,ll.lZ-trimethoxylE-oxoaspidoalbidine

+0.08

-1.33 -1.44

0.00

-1.00

0.63

-0.16

-1.00

0.63

-0.68

-0.25

-1.20

0.66

-0.68

-0.08

-1.20

0.66

-1.20

0.66

+0.16

-1.20

0.66

-0.80

-0.41

-1.10

0.66

29

-0.21

+0.08

-1.00

0.84

-0.42

0.00

-0.08

-1.00

0.84

+0.25

-1.00

0.84

-0.68

+0.08

-1.00

0.84

52

-0.68

-0.50

-1.00

0.84

aspidofendlerine

52

-0.42

+0.08

-1.00

0.84

N,.,acetyl-N,,,despropionylaspidoalbine

17.20

-0.21

+0.25

-1.00

0.84

65

O-methylaspidoalbine

20

-0.21

+0.25

-1.00

0.84

76

alakinine

17

-0.05

+0.08

-0.55

0.84

68

Zl-oxomethylaspidoalbine

7.15

-0.15

+0.25

-0.55

0.84

70

cimicine

7.15

-0.21

-0.08

-0.55

0.84

63

aspidolimidine

17,46

-0.36

f0.08

-1.00

0.84

61

Ddemethylaspidolimidine

17

-0.21

+o.c@

-1.00

0.84

71

dehydroobscurinervine

40

-0.15

+0.08

-0.55

0.76

72

dehydroobscurinervidine

40

-0.15

+0.08

-0.55

0.76

73

obscurinervine

40

-0.05

+0.08

-0.33

0.76

74

obscurinewidine

40

-0.05

+o.cm

-0.33

0.76

75

neblinine

40

-0.10

-0.08

-0.33

0.76

29

aspidodispermine

54

-0.43

-0.08

-0.77

0.88

30

desoxyaspidodispermine

54

-0.47

-0.25

-0.77

0.88

77

kopsanone

7,15,55

-0.57

-0.33

-1.00

0.85

78

kopsanol

15.55

-0.68

-0.33

-1.20

0.85

-0.33

66

haplocidine

38

67

21 -oxoaspidoalbine

56

62

fendlerine

17,47.52

59

fendleridine

60 64

0.00

78

epikopsanol

7.15,55

-0.68

80

lo-lactamaepikopsanol

15.55

-0.42

79

N,.,-formylkopsanol

37

-0.52

A5

-1.20

0.85

-1.20

0.85

-0.08

-1.20

0.85

f0.47

+0.08

-1.10

0.73

0.00

(VIII + VIII)

173

dimeric

X

151

eburnamenine

56

-0.68

-0.33

-1.20

0.68

152

eburnamonine

7

-0.68

-0.33

-1.00

0.68

alkaloid

by a trend towards reduction of the aliphatic part. In order to verify the validity of this supposition, two O-values, one for the tryptophan derived moiety (Ot) and one for the secologanin derived moiety (OS), were calculated separately for each molecule (Table 2). The correlation of the two respective E&, and EA,,

parameters (Table 4) indicates indeed compensation in oxidation states to take place in five of the seven series (Fig. 2). Maximal deviation from this trend occurs in the series Nobilis, the indole alkaloids of which show aromatic moieties of unusually high oxidation state, and in the series Quebrachines, the indole alkaloids of which

192

VANDERLAN

DA S. BOLZANI,

LEILA M. SEAUR,

FRANCISCO

J. DE A. MATOS

AND OTTO

R. GOTTLIEB

193

INDOLEALKALOIDSIN ASPIDOSPFRMA

I

I

I

OUE

- 1.3 -0.3

m,

-0.2

I - 0.1

I 0.0

EAot FIG. 2. CORRELATION OF INDOLE ALKALOID BASED E&/E& PARAMETERSFOR SERIES (INDICATEDBY THE INITIAL LEITERS OF THEIR NAMES ACCORDINGTO TABLE3) OF ASPKXXPERMA SPECIES.

show aliphatic moieties of unusually low oxidation state. While Fig. 2 thus justifies the necessity of considering the oxidation states of the two biosynthetically different moieties separately, it does not allow the deduction of the evolutionary direction of oxidation-reduction in indole alkaloids of Aspidosperma. To achieve this objective it is necessary to descend in hierarchic level and to analyse the correlation of the E&/E&, parameters for species (Fig. 3). This shows a dense central cluster of points. It seems reasonable to assume that its E&, and E&, spreads are primitive features of indole alkaloid chemistry within the genus. While all seven series are represented in this cluster, the species of Nitida and Rigida are practically restricted to it. Development of oxidation-reduction of the alkaloids occurs from here on according to three trends. One, typical of Pyricolla, involves the oxidation of the secologanin derived moiety and the reduction of the tryptophane derived moiety; another one, typical of Nobilis, involves the oxidation of the tryptophan derived moiety plus oxidation or reduction of the secologanin derived moiety; and a third one, typical of Quebrachines, involves the reduction of the secologanin derived moiety. The generality of indole alkaloidal features in

Rigida and Nitida extends to the molecular skeletons. These are biosynthetically much simpler than in other series, as can be gauged by examining correlations of EA, with EA, (Fig. 4) and with E&, (Fig. 5) for all seven series. Among the analogous diagrams on the species level, chiefly the one for EAJEA,,, (Fig. 6) evidences again the distinct routes of alkaloid development within the different series. The special position of the species of Quebrachines, caused by the low oxidation state of the secologanin moieties, is of course not apparent on this diagram. The corynanthe types of Nitida have mostly unoxygenated or C-10 oxygenated indole nuclei. A few are oxygenated at C-IO and C-II. Oxygenation at C-12 is very rare. The plumerane theme makes its appearance, but remains substantially restricted to its nearly ubiquitous representative VIII without diversification. Aspidosperma eburneum is an exception in Nitida and chemically would fit better into the series Pyricolla, since it contains uleanes. The chemistry of the species of the series Polyneura remains closest to the chemistry of Nitida with the particularity that many compounds are mono-oxygenated at C-12. Aspidosperma cuspa is an exception and chemically would fit better into the series Macrocarpa since it contains copsanones without indole oxygenation. As in Macrocarpa, the indole alkaloids of the remaining three series are also highly specialized: in Pyricolla through their 11,12-dioxygenated uleane types, in Quebrachines and Nobilis through their 10,11,12trioxygenated dimeric plumerane and eburnane types.

Conclusion Consideration of the cumulative appearance of all the mentioned characteristics leads to two dendrograms encompassing the seven series (Figs. 7 and 8). The major difficulty expressed in these alternatives concerns the position of Macrocarpa. The absence of oxygenation and of variation of the corynanthe theme are suggestive of derivation from a remote ancestor (Fig. 7) or of suppression of characters at an evolved stage (Fig. 8). The relatively high EA, value for Macrocarpa favours the latter hypothesis.

194

TABLE 3. NUMBERS

VANDERLAN

OF INDOLE

ALKALOIDS

DA S BOLZANI,

CLASSIFIED

ACCORDING

LEILA M SERUR,

TO OXYGENATION Oxygenation

Series

Species

Rigida

“gtdum

Nltida

nitidum

0

9

10

11

12

1

_

_

_

_ -

_

auriculatum

1

_

1 _

excelsum

2

_

3

spegamnl,

2

_ _

1

_

1

_

11

_

8

discolor

6

_

eburneum

6

_

3 _

2 _

13

_

_

1

-

carapanauba

oblongurn

_

quebracho-blanco chakensis

Polyneura

pattern 10.11

11.12

10.11.12

_ _ _ _

_ _ _ _ _ _

_ _ _

1 _ 2

1 1 _

_ _ _ _ _

2

3 _

_

6

_

3

-

_

1

_

1

1 _

_

_

-

_

1

_

_

_

_

_

_

1

_

_

_.

pOly"eUrO"

4

_

_

_

3

_

_

dispermum

1

_

_

_

1

_

c ylindrocarpon

1

-

_

-

_

4

_

_

-

12 -

_

_

_

1

-

_

_

2

_

_

_

-

_

_

_

_

_

_

2

_

qwandy

_

p yr~coiium

6

multiflorum

4 ._

-

AND

OTTO R G07TLIEB

RING

Number

of

isolated

alkaloids

2 5 3

_

-

_

4 7

-.

2

_

_

13

_

1

_

5

_

_

_ 8

1

_

4

_

3

tome”tos”“l

1

_

_

_

1

_

_

_

2

refracturn

3

_

_

._

1

_

_

_

4

populifolium

2

-

_

-

4

_

8

4

_

_

_

1

_

2 _

-

australe

-.

5

gomesianum

3

_

_

_

_

_

_

_

3

olivaceum

4

_

_

_

_

rhombeos!g”atum

3

_

_

_

6

parvifolium

1

_

_

_

_

vargasii

2

_

_

_

Ul.9/

4

1 _

_

_

subincanum

7

_

_

_

sandwithlanum

1

_

__

_

megalocarpon

_

_

melanocalyx

_

_

desmanthum

_

spruceanunl

_

fendle” obscurinervium

1 _

neblinae lima.2

Macrocarpa

OF THE AROMATIC

3

sessiliflorum

pyrlfolium

Nobilis

_

_ _ _ _

PATERNS

J DE A MATOS

peroba

CUSpa Pyricolla

_

1 _

marcgra”,a”“”

Quebrachines

1 _

FRANCISCO

2 _

_

1

_

_

_

2 _

_

_

_

3

_

_

_

_

4

-

_

_

_

_

_

_

1

5 ._

_

_

_

1

_

_

-

_

_

1

_

-

-

_

_

1 _

_

_

_

_

_

_

_

_

_

-

2 _

_

_

_

_

_

4

_

-

_

2

-

_

_

_

3

_

1 _ 2

2

1

.5%3/aturn

1

_

_

4

_

album

7

_

_

_

3

_

verbascifokum

1

_

_

_

_

_

_

_

macrocarpon

4

-

_

_

_

_

_

_

4

duckei

4

_

_

-

_

_

_

-

4

6

22

INDOLE

ALKALOIDSIN

ASHJOSPERMA

195

TABLE4.NUMBERSOFlNDOLEALKALOIDS,CLASSlFlEDACCORMNGTOSTRUCTURALTYPE,FROMASPlWSPERMASPEClESGROUPEDlNTO SERIES.EVOLUTlONARYADVANCEMENTPARAMETERSBASEDONMEANOt,OsandSVALUESWlTHSTANDARDDEVlATlONS(SD) DATAOF

TABLES

1 AND

2) ARE ALSO

(SEE

GIVEN.cor, con/nanthe; asp, aspidosperma; plu,plumerane; ule,uleine;ebu,ebumane. Structuraltype

Series Rigida Nitida

Species

Polyneura

PlU

ule

ebu

-

5

_ -

2

3

_ -

13 -

-

discolor

9

eburneum

1

_ -

quebracho-blanco

3

5

1

rigidum nitidum

1

auriculatum

2

excelsum

5

speganmr

3

carapanauba

1

marcgravianum

2

oblongurn

Quebrachines

asp

23

1 1

SD

EAo,,;

SD

E&;

SD

-0.16;

0.0

-1.10;

0.0

0.33;

0.0

-0.25;

0.0

-1.33;

0.0

0.21;

0.0

-0.33;

0.10

-1.16;

0.20

0.22;

0.01

-0.2%;

0.07

-1.18;

0.04

0.21;

0.04

-0.24; +0.08;

-0.96;

0.10

0.32;

0.09

0.08; 0.0

-0.88;

0.0

0.42;

0.0

E%,;

-0.24;

0.10

-1.24;

0.20

0.39;

0.30

-0.28;

0.10

-1.18;

0.16

0.21;

0.10

-0.19;

0.10

-1.18;

0.20

0.42;

0.25

-0.22;

0.10

-1.10;

0.40

0.61;

0.19

-0.23;

0.15

-1.25;

0.18

0.56;

0.17

-

2 -

-0.19;

0.30

-1.30;

0.17

0.56;

0.08

chakensis

_

3

sessiliflorum

-

-

-

_

-0.08;

0.0

-1.40;

0.0

0.73;

0.0

peroba

2

-

-

-

-0.35;

0.20

-1.25;

0.26

0.43;

0.20

polyneuron

3

-

-

-

-0.33;

0.17

-1.27;

0.20

0.49;

0.20

dispermum

-

_

_

-

-0.16;

0.10

-0.77;

0.0

0.88;

0.00

cylidrocarpon

_

-

-

-

-0.18;

0.17

-0.80;

0.18

0.73;

0.0

-

-

-

-0.20;

0.1

-1.14;

0.19

0.68;

0.3

1

cuspa quirandy

3

-

1

-

-

-0.08;

0.0

-1.40;

0.0

0.73;

0.0

2

2

-

-0.46;

0.20

-1.20;

0.10

0.48;

0.20

1

-

-0.26;

0.10

-1.07;

0.16

0.73;

0.10

3

3 -

-

+0.02;

0.04

-1.37;

0.50

0.62;

0.01

-

-0.13;

0.07

-1.18;

0.09

0.57;

0.25

4

1 -

-

-0.18;

0.18

-1.05;

0.10

0.63;

0.0

7

-

-

-0.14;

0.10

-1.15;

0.10

0.64;

0.03

1

4

-

-0.23;

0.10

-0.93;

0.40

0.64;

0.09

muit#lorum

-

1 -

p yrifolium

-

-

tomentosum

-

refracturn

-

1 -

populifolium

_

australe

_

1 -

gomesienum

-

-

1

2

-

-0.23;

0.04

-1.25;

0.15

0.70;

0.06

olivaceum

_

_

1

-

-0.27;

0.17

-0.80;

0.60

0.68;

0.10

rhombeosignatum

-

-

6

4 -

-

-0.20;

0.18

-1.20;

0.36

0.78;

0.05

parvifolium

-

_

_

1

-

-0.54;

0.0

-0.75;

0.0

0.83;

0.0

vargasii

-

-

-

3

-

-0.38;

0.16

-0.62;

0.30

0.66;

0.10

ulei

-

-

-

4

-

-0.33;

0.15

-0.83;

0.30

0.68;

0.10

subincanum

-

-

-

7

-

-0.35;

0.18

-0.66;

0.50

0.78;

0.09

sandwithianum

_

_

1

_

_

-0.58;

0.0

-1.50;

0.0

0.47;

0.0

megalocarpon

-

-

1

-

-

+0.08;

0.0

-1.40;

0.0

0.73;

0.0

melanocalyx

-

-

2

-

-

+0.08;

0.0

-1.25;

0.2

0.75;

0.0

desmanthum

_

_

1

_

_

+0.25;

0.0

-1.00;

0.0

0.84;

0.0

spruceanurn

-

-

2

-

f0.25;

0.0

-1.00;

0.0

0.84;

0.0

fendleri

-

_

4

_

_

-0.21;

0.25

-1.05;

0.10

0.85;

0.02

obscurinervium

-

-

6

-

-

+0.08;

0.0

-0.78;

0.50

0.75;

0.01

neblinae

-

-

8

-

_

-0.09;

0.10

-1.23;

0.38

0.68;

0.07

limae

-

-

8

-

-

+0.02;

0.0

-1.25;

0.15

0.74;

0.04

exalatum

-

-

7

_

_

-0.01:

0.17

-1.03;

0.45

0.77;

0.06

album

3

2

16

_

1

-0.11;

0.30

-1.10;

0.25

0.64;

0.20

verbascifolium

-

-

1

-

-

-0.08:

0.0

-1.20;

0.0

-

0.0

macrocarpon

-

0.85;

4

-

-

-0.24;

0.10

-1.15;

0.10

-

0.85;

0.0

duckei

-

4

_

-

-0.24;

0.10

-1.15;

0.10

0.85;

0.0

p yricollum

-

,-

196

VANDERLAN

DA S. BOLZANI,

LEILA M. SERUR.

FRANCISCO

J. DE A. MATOS

AND

OTTO A GOTTLIEB

PYRICOLLA

- 1.3

.CHA ANIT *PYR

- 1.4

Q”I + (SES1

OUEBRA

*MEG

i

CHINES

-1.5L -0.7

FIG. 3. CORRELATION OF THEIR NAMES

, _SAN , - 0.6 -0.5

OF INDOLE ALKALOID

ACCORDING

BASED

I 0.3

I - 0.4

E&,/E&,

PARAMETERS

TO TABLE 3). For symbolism

0.0

I

1 - 0.2

I 0.0

I - 0.1

FOR A.SPlDOSf’fRMA

I 0.1

1 0.2

SPECIES (INDICATED

0.3

BY THE INITIAL

see Fig. 2.

I

I

I

I

l NOB

I

EAOt -0.1

_ ORIG

-0.2

-0.31

QUE

*NIT

I

0.2

0.3

I 0.4

I

0.5

POL + APYR

I

I

I

0.6

0.7

0.8

0 19 EAS

FIG. 4. CORRELATION

OF INDOLE ALKALOID

BASED

EA&A,

PARAMETERS

FOR SERIES OF ASPIOOSPERMA

SPECIES.

LETTERS

INDOLE ALKALOIDS

IN ASPIDOSPERMA

197

-1.0

I

I

I

I

I

I

*PYF!

EAOS

+POL ANIT

0

NOB 0

MAC

.PUE

I 0.3

-1.3 0.2

I

I

I

I

I

0.4

0.5

0.6

0.7

0.8

( 3 EAS

FIG. 5. CORRELATION

OF INDOLE ALKALOID

BASED E&/En,

PARAMETERS

FOR SERIES OF A.W/LlCCPERMA

SPECIES.

CL3.SPR

EAOt

1 DES)

0 1. 2-

0 1.1 ACAR

A

0 I.0 -

-0

.

WR

LIM

l EX*

-

.l-

q RIG

-0 .2ASPE

ANIT

-0 .3-

,CHA

AOIS

AMAR

D

+CYL

AREF

AWO

,EGU @US

OFI

AGOM

O%L

AatC (OBL 1

+cus +PER

+mL

&lLE &Sue AVAR

- 0,.4-

-0 .5-

- 0.6

01

FIG. 6. CORRELATION SYMBOLISM

0~

SEE FIG. 21.

INDOLE

SAN

I 0.2

ALKALOID

I

I

0.3

0.4

BASED

E~,I&

0

,

0.5

PARAMETERS

MR

I

I

I

0.6

0.7

0.6

AsHOO=~~.~~

SPECIES

CLASSIFIED

IWO

SERIES

(FOR

VANDERLAN

198

E&t EAO‘

-0

I6

-021

-I

IO

-1

DA S BOLZANI.

13

LEILA M SERUR.

FRANCISCO

J. DE A. MATOS

AND

OTTO R. GOTTLIEB

-0

23

-0.25

-0

21

-0

18

-1

IO

-1.03

-I

.28

-I

16

EAs 033

0 30

0.65

t. r

F

066 F‘YF

0.56

0.65

f

hdAC

t91

Cl01 Cl II

IV 6.7.6

VIII 5

II 5

CI0.I II

VI 2

VIII+VIII

VIII

6

(-II

C-11 2.4)

3)

VIII 2 I

t 10,11,121 t-11 2)VIII

II. 3

2

IV 6/VIII

I

I

C123~11.121

11.2.4

-r

I -

FIG. 7. DENDROGRAM BY A -

E&t

-0.16

EAos

-I

EAS

FOR SERIES OF AWDOSPERMA

SIGN) OF SKELETAL

IO

TYPES (FIG. 1) AND

SPECIES BASED

OF AROMATIC

ON THE CUMULATIVE

OXYGENATION

21

-0

23

-0

-I

I3

-I

IO

-1.03

0 30

fIG

hIIT

co1 VIII

II

-0

0 33

0.65

PATTERNS

25

L

II

I6

-I

(INDICATED

-0

20

-I

I

14

N

3 t-11.2.4)

I

I

02

0 73

0 IUE 2.3.4)

VIII.2

2

I

II.121

VIII.5

I. I21

VIII +VIII

3

2.4/-VIII

11

FOR SERIES OF ASPlDOSPERMA TYPES (FIG. 1) AND

SUPPRESSION

0 56

t-11

VI 2

II

-

t_

SIGN) OF SKELETAL

-I

IV.6.7.9

CO3 II

FIG. 8. DENDROGRAM

-0.2

k tAC

VIII

BY A -

16

t-11.3)

CI0.I

AND

-0

0 65

PYR

Cl II

INTRODUCTION

(IN BRACKETS).

0 66

1.91 1:I 5

4/:

SPECIES BASED

OF AROMATIC

ON THE CUMULATIVE

OXYGENATTON

PATTERNS

INTRODUCTION

(IN BRACKETS).

AND

SUPPRESSION

(INDICATED

INDOLE ALKALOIDS

IN ASf/DOSPfR/Wl

199

Experimental

14. Nunes, S. D., Koike, L., Taveira, J. J. and Reis, F. A. M.

The skeletal specialization(s) of a compound (per carbon, C) with respect to the general precursor of the strictosidine type I (Fig. 1) is determined by counting the number of bonds (to C) broken and the number of bonds (to C, or to a heteroatom if this involves formation of a new cycle) formed for each carbon of the compound; the total counts obtained are then divided by the number of C-atoms in the compound. The oxidation state of a compound or of a moiety thereof (again per carbon) is determined by counting, for each carbon of the compound or moiety, -1 for each bond to H and +l for each bond to a heteroatom; again these counts are added and divided by the number of C-atoms of the compound or moiety. Loss of a C-group is considered to operate through a carboxylated intermediate and for each severed C-C bond which results in the loss of a molecular unit (in comparison with the precursor) 3 points are added to the count. Examples of such determinations are given in previous publications [3,

(1986) CZnc. Cult. (Siio Paula) 32, Supl. 466. 15. Raffauf, R. F. (1970) Handbook of Alkaloids and AlkaloidContaining Plants. John Wiley, New York. 16. Spiteller, G. and Spiteller-Friedmann, M. (1963) Monatsh. Chem. 94, 779. 17. Urrea, M., Ahond, A., Jacquemin, H., Khan, S. K., Poupat, C., Potier, P. and Janot, M. M. (1978) Compt. Rend. Hebd. Seances Acad Sci. Ser. C. 287, 63. 18. Antonaccio, L. D., Pereira, N. A., Gilbert, B., Vorbrueggen, H., Budzikiewicz, H., Wilson, J. M., Durham, L. J. and Djerassi, C. (1962) J. Am. Chem. Sot. 84, 2161. 19. Markey, S., Biemann, K. and Witkop, B. (1967) Tetrahedron Letters 2, 157. 20. Ferrari, C., McLean, S., Marion, L. and Palmer, K. (1963) Can. J. Chem. 41, 1531. 21. Gilbert, B. (1963) in The Alkaloids (Manske, R. H. F., ed.) Vol. VIII, p. 335. Academic Press, New York. 22. Hesse. M. (1964) Indolalkaloide in Tabellen. Springer, Berlin. 23. Janot, M.-M., Goutarel, R., Warnhoff, E. M. and Le Hir, A. (1961) Bull. Sot. Chim. FI: 637. 24. Relyveld, P. (1963) Pharm. Weekblad98, 175. 25. Arndt, R. R. and Djerassi, C. (1965) Experientia 21, 566. 26. Relweld, P. W64) Pharm. Weekb/ad99,921. 27. Gorman, M., Burlingame, A. L. and Biemann, K. (1963) Tetrahedron: Letters 39. 28. Gilbert, B., Brissolese, J. A., Finch, N., Taylor, W. I,, Budzikiewicz, H., Wilson, J. M. and Djerassi, C. (1963) J. Am. Chem. Sot. 85, 1523. 29. Pinar, M., Phillipsborn, M. von, Vetter, W. and Schmid, H. (1962) He/v. Chim. Acta 45, 2260. 30. Biemann, K., Spiteller-Friedmann, M. and Spiteller, G. (1961) Tetrahedron Letters 14, 485. 31. Djerassi, C., Antonaccio, L. D., Budzikiewicz, H., Wilson, J. M. and Gilbert, B. (1962) Tetrahedron Letters 1001. 32. Schutz, J. (1961) Pharm. Acta He/K 38, 103. 33. Woodward, R. B., lacobucci, G. A. and Hochstein, F. A. (1959) J. Am. Chem. Sot. 81,4434. 34. Garcia, M. and Brown, K. S., Jr. (1976) PhytochemistrylS, 1093. 35. Joule, L. A., Ohashi, M., Gilbert, B. and Djerassi, C. (1965) Tetrahedron 21, 1717. 36. Buchi, G., Mayo, D. W. and Hochstein, F. A. (1961) Tetrahedron 15, 167. 37. Cordell, G. A. (1979) in The Alkaloids (Manske, R. H. F., ed.) p. 200. Academic Press, New York. 38. Medina, J. and Di Genova, L. (1979) Planta Med. 37, 165. 39. Thomas, D. W., Schnoss, H. K. and Biemann, K. (1969) Experientia 25, 678.

41. A species may contain several indole alkaloids (Table 1) each present in one or more species and each characterized by S and 0 values, the latter referring to the entire compounds (0) or their tryptophane derived (Ot) and secologanin derived (OS) moieties (Table 2). The averages of these values for the constituents of a species are considered to represent the evolutionary advancement parameters (respectively EA,, EA_,, E&,, E&J with respect to indole alkaloids of that species (Tables 3 and 4). The averages of the EA parameters for the species of a series are considered to represent the EA parameters of that series (Table 4).

References 1. Gottlieb, 0. R., Ribeiro, M. N. de P. and Lins, A. P. (1985) Anais Acad. BrasiL Ci&c. 57, 105. 2. Bolzani, V. da S., Silva, M. F. das G. F. da, Rocha, A. I. da and Gottlieb, 0. FL (1984) Biochem. Syst EcoL 12, 159. 3. Silva, M. F. das G. F. da, Gottlieb, 0. R. and Dreyer, D. L. (1984) Biochem. Syst. EcoL 12, 299. 4. Emerenciano, V. de P., Kaplan, M. A. C. and Gottlieb, 0. R. (1985) Biochem. Syst. EcoL 13, 145. 5. Woodson, R. E., Jr. (1951) Ann. MO. Bot. Gard 38, 119. 6. Ferreira, J. M., Gilbert, B., Owellen, R. J. and Djerassi, C. (1963) Experientia 19, 583. 7. Phillipson, J. D. and Zenk, M. H. (1980) lndole and Biogenetically Related Alkaloids. Academic Press, London. 8. Hesse, M. (1968) lndolalkaloide in Tabellen, Erginzungswerk. Springer, Berlin. 9. Gilbert, B., Duarte. A. P., Nakagawa, Y., Joule, J. A., Flores, S. E., Brissolese, J. A., Campello, J. de P., Carrazzoni, E. P., Owellen, R. J., Blossey, E. C., Brown, K. S., Jr. and Djerassi, C. (1965) Tetrahedron 21, 1141. 10. Arndt, R. R., Brown, S. H., Ling, N. C., Roller, P., Djerassi, C.. Ferreira, J. M., Gilbert, B., Miranda, E. C., Flores, S. E., Duarte, A. P. and Carrazzoni, E. P. (1967) Phtiochemistrv6. I 1653. 11. Gilbert, B., Antonaccio, L. D. and Djerassi, C. (1962) J. Org. Chem. 27,4702. 12 Dastoor, N. J., Gorman, A. A. and Schmid, H. (1967) He/u Chim. Acta 50, 213. 13. Dastoor, N. J. and Schmid, H. (1963) Experientia 19, 297.

40. Brown, K. S., Jr. and Djerassi, C. (1964) J. Am. Chem. Sot. 86, 2451. 41. Gilbert, B., Antonaccio, L. D., Archer, A. A. P. G. and Djerassi, C. (1960) Experientia 16, 61. 42. Djerassi, C., Gilbert, B., Shoolery, J. N., Johnson, L. F. and Biemann, K. (1961) Experientia 17, 162. 43. Djerassi, C., Archer, A. A. P. G., George, T., Gilbert, 8. and Antonaccio, L. D. (1961) Tetrahedron 16, 212. 44. Paladine, A. C., Ruveda, E. A., Corral, R. A. and Orazi, 0. 0. (1962) Anales Asoc. Quim. Ar.q. 50, 352. 45. Miranda, E. C. and Gilbert, Br(1969) Experientia 25, 575. 46. Burnell, R. H. and Medina, J. D. (1968) Phytochemistry 7, 2045.

200

VANDERLAN

DA S BOLZANI,

47. Ferrari, C. and Marion, L. (1964) Can. J. Chem. 42, 2706. 48. Orazi, 0. 0.. Corral, R. A., Holker, J. S. E. and Djerassi, C. (1956) J. Org. Chem. 21, 979. 49. Pinar, M. and Schmid, H. (1963) Ann. A/en. 668, 97. 50. Djerassi, C., Owellen, Ft. J., Ferreira, J. M. and Antonaccio, L. D. (1962) Experientia 18, 397. 51. Gilbert, 6.. Ferreira, J. M.. Owellen, R. J.. Swanholm, C. E., Budzikiewicz, H., Dunham, L. J. and Djerassi, C. (1962) Tetrahedron Letters 2, 59.

LEILA M. SERUR, FRANCISCO

J DE A. MATOS

AND OTTO

R GOTTLIEB

52. Burnell, R. H. and Medina, J. D. (1966) Can. 1 Chem. 44, 28. 53. Djerassi, C., Antonaccio, L. D., Budzikiewicz, H., Wilson, J. M. and Gilbert, B. (1962) Tetrahedron Letters 1001. 54. Ikeda, M. and Djerassi, C. (1969) Tetrahedron Letters 5837. 55. Ferreira, J. M., Gilbert, B., Kitagawa, M., Paes Leme, L. A. and Durham, L. J. (1966) 1 Chem. Sot. 1260. 56. Schnoss, H. K., Burlingame, A. L. and Biemann, K. (1962) Tetrahedron Letters 993.