Inverse photoemission from Cu(001)

Inverse photoemission from Cu(001)

~ Solid State Communications, Printed in Great Britain. Vol.47,No.5, INVERSE pp.329-332, 1983. PHOTOEMISSION G. T h ~ r n e r Fachbereich Physi...

NAN Sizes 1 Downloads 168 Views

~

Solid State Communications, Printed in Great Britain.

Vol.47,No.5,

INVERSE

pp.329-332, 1983.

PHOTOEMISSION

G. T h ~ r n e r Fachbereich

Physik,

Universit~t (Received

and G.

Osnabr~ck,

FROM CU(001) Borstel

D-4500

28 F e b r u a r y 1 9 8 3

OO38-1098/83 $3.00 + .OO Pergamon Press Ltd.

OsnabrHck, Fed.

Republic

of Germany

by M. Cardona)

B r e m s s t r a h l u n g u l t r a v i o l e t spectra for Cu(001) are calculated for a photon e n e r g y ~ = 9 . 7 eV w i t h i n the framework of an inverse o n e - s t e p model of p h o t o e m i s s i o n for several angles of incidence of the e l e c t r o n beam. The c o m p a r i s o n with r e c e n t l y r e p o r t e d e x p e r i m e n t a l data shows that both the c a l c u l a t e d e n e r g y d i s p e r s i o n of the peak in the spectra and the v a r i a t i o n of the peak i n t e n s i t y are in reasonable a g r e e m e n t with the experiment.

B r e m s s t r a h l u n g i s o c h r o m a t i c spect r o s c o p y in the v a c u u m u l t r a v i o l e t t s p e c t r a l region (UBIS) so far has been used to probe the d e n s i t y of u n o c c u p i e d e l e c t r o n i c states in solids I-3. Applying i m p r o v e d e x p e r i m e n t a l t e c h n i q u e s 5 W o o d r u f f and Smith 4 and D e n n l n g e r et al. r e c e n t l y were able to i n t e r p r e t UBIS data on Cu, Ni and Pt single c r y s t a l s in terms of d i r e c t optical interband t r a n s i t i o n s b e t w e e n u n o c c u p i e d states w i t h i n the g r o u n d state bulk band structure. A similar c o n c l u s i o n has been d r a w n in the o b s e r v a t i o n of an u n o c c u pied surface state on ~d 6 and in spinp o l a r i z e d UBIS from Nil. Since bremss t r a h l u n g is the t i m e - r e v e r s e d process of p h o t o e m i s s i o n 8,9, the p h o t o e m i t t e d e l e c t r o n current and the photon flux in UBIS are d i r e c t l y p r o p o r t i o n a l to each other9, 10. This fact allows for calculating UBIS spectra w i t h i n w e l l - k n o w n t h e o r i e s of p h o t Q ~ m i s s i o n like the t h r e e - s t e p m o d e l "-i or o n e - s t e p m o d e l s b a s e d on a t i m e - r e v e r s e d LEED formalism12, 13 Using an inverted t h r e e - s t e p model for d e s c r i b i n g the inverse p h o t o e m i s sion process, W o o d r u f f et al. 14 recently p e r f o r m e d c a l c u l a t i o n s for Cu and Ni with i n c l u s i o n of t r a n s i t i o n m a t r i x elements w h i c h were c a l c u l a t e d by a comb i n e d i n t e r p o l a t i o n scheme. In such a m odel l i f e t i m e effects may be a c c o u n t e d for o n l y in a crude way by c o n v o l u t i n g the final s p e c t r u m in form of a histog r a m m in some p l a u s i b l e way w i t h a L orent z i a n . As one of the c o n s e q u e n c e s , band gaps e x i s t i n g in the g r o u n d state band s t r u c t u r e will u s u a l l y show up c l e a r l y in the c a l c u l a t e d spectra, in c o n t r a s t to e x p e r i m e n t a l results and more r e a l i s t i c o n e - s t e p m o d e l s w h e r e such gaps may be w a s h e d out by the finite l i f e t i m e of the e l e c t r o n states 15. The fact that the inverted t h r e e - s t e p model does not a l l o w for the i n c i d e n t e l e c t r o n s to o c c u p y e v a n e s c e n t band gap states 16 r e p r e s e n t s a serious limita-

tion of the model. UBIS c a l c u l a t i o n s w i t h i n the framework of a o n e - s t e p model so far have been r e p o r t e d for (111) s u r f a c e s of Ni, Pd and Pt by L a r s s o n and N i l s s o n 17. The c o r r e s p o n d e n c e of their Pt(111) results to the s u b s e q u e n t e x p e r i m e n t a l spectra of D e n n i n g e r et al~ is not clear at the moment. This might be due to the c o m p l e t e n e g l e c t i o n of r e l a t i v i s t i c effects in the calculation, w h i c h for a material of high Z like Pt (Z=78) should be important. For the u n o c c u p i e d surface state Qn Pd(111) the a g r e e m e n t between theory 17,18 and a recent UBIS e x p e r i m e n t v seems to be reasonable, a l t h o u g h r e l a t i v i s t i c corrections have been n e g l e c t e d in these c a l c u l a t i o n s , too. In this c o n t r i b u t i o n we present a series of theoretical UBIS spectra for Cu(001), c a l c u l a t e d w i t h i n the inverse o n e - s t e p model of p h o t o e m i s s i o n I0, and c o m p @ r e them with recent e x p e r i m e n t a l data 4. Copper is well suited for comput a t i o n a l p u r p o s e s since reliable band s t r u c t u r e p o t e n t i a l s 19'20 exist in lit e r a t u r e and r e l a t i v i s t i c c o r r e c t i o n s are small. In c o m p a r i n g t h e o r e t i c a l results with the p u b l i s h e d e x p e r i m e n t a l UBIS data, one e n c o u n t e r s the p r o b l e m that the p u b l i s h e d e x p e r i m e n t a l spectra so far are angle integrated with respect to the o u t g o i n g p h o t o n flux. The s i m u l a t i o n of this e x p e r i m e n t a l situation w i t h i n the c o m p u t a t i o n a l scheme w o u l d be very time consuming. Fortunately in the case of Cu(001) the electric d i p o l e selection rules for d i r e c t i n t e r b a n d t r a n s i t i o n s b e t w e e n bulk states a l l o w for reducing the p r o b l e m to an e s s e n t i a l l y angle r e s o l v e d one: For a t r a n s i t i o n energy ~ = 9 . 7 eV and e l e c t r o n p r o p a g a t i o n along the [001] d i r e c t i o n in k - s p a c e there is only one t r a n s i t i o n of type AI~A1 e n e r g e t i c a l l y p o s s i b l e ~. In the n o n r e l a t i v i s t i c limit this t r a n s i t i o n is a l l o w e d for light p o l a r i z e d a l o n g the [001] direction, but f o r b i d d e n for all p o l a r i z a t i o n s p e r p e n 329

330

INVERSE PHOTOEMISSION

d i c u l a r to that direction. For e l e c t r o n s incident n o r m a l l y onto the (001) surface these s e l e c t i o n rules are in fact somewhat relaxed, since owing to the b r o k e n t r a n s l a t i o n a l s y m m e t r y a l o n g [001] and lifetime e f f e c t s the wave v e c t o r c o m p o nent k z p e r p e n d i c u l a r to the surface is no more a good q u a n t u m number. One thus expects for this c o n f i g u r a t i o n that the c o m p o n e n t s Ax,y of the v e c t o r p o t e n t i a l a s s o c i a t e d with the e m i t t e d e l e c t r o m a g netic r a d i a t i o n field will be nonzero, but much smaller than the c o m p o n e n t Az, and as a f u n c t i o n of the e l e c t r o n e n e r gy E will show e s s e n t i a l l y no structure. These e x p e c t a t i o n s are c o r r o b o r a t e d by our UBIS c a l c u l a t i o n s for e l e c t r o n s normally incident o n t o Cu(001) , as may be seen from Fig. I. R e l a t i v i s t i c effects, which are not i n c l u d e d in our c a l c u l a tions, may c a u s e a further r e l a x a t i o n of s i ~ l e - g r o u p dipole selection rules ='. But this e f f e c t will be neg-

Cu (001)[100] .

0:0 °

m

D

Az

>U9 Z UJ Z

I

I

I

I

I

0

1

2

3

&

ENERGY ABOVE EF (eV) Fig. I. UBIS c o n t r i b u t i o n s (~w=9.7 eV, normal e l e c t r o n incidence) for light polarization p e r p e n d i c u l a r (Az) and parallel (Ax,y) to the Cu(001) surface. ligible in the p r e s e n t case, since the bands of interest are well s e p a r a t e d in e n e r g y from each o t h e r and their h y b r i d i z a t i o n due to s p i n - o r b i t i n t e r a c t i o n 21 will t h e r e f o r e be very small. F r o m the results of Fig. 1 it follows, that a primary UBIS spectrum, w h i c h is a n g l e i n t e g r a t e d with r e s p e c t to the d i r e c tion of p h o t o n flux, will be d o m i n a t e d by that c o n t r i b u t i o n w h i c h is a s s o c i a t e d with A z. The c o n t r i b u t i o n s from A x will p r o d u c e a smooth b a c k g r o u n d o~ low intensity in the p r i m a r y spectrum, which p r e s u m a b l y will be c o m p l e t e l y o v e r r i d d e n by the inelastic b a c k g r o u n d o r i g i n a t i n g from second an d h i g h e r o r d e r b r e m s s t r a h lung p r o c e s s e s j. Since the latter processes are not t a k e n into a c c o u n t in our c a l c u l a t i o n s , w h i c h focuse u p o n the e l a s t i c d i r e c t c o n t r i b u t i o n s , the in-

FROM CU(OOI)

Vol. 47, No. 5

fluence of A~ ,, s h o u l d be n e g l i g i b l e for a c o m p a r ~ 6 n with the e x p e r i m e n t a l UBIS data. Note, h o w e v e r , that A x , v ~ 0 as well as the fact that the d i e l e c t r i c c o n s t a n t ¢I for c o p p e r is less than u n i t y for h ~ = 9 . 7 e V 22 allows the emitted e l e c t r o m a g n e t i c r a d i a t i o n to leave the sample and b e c o m e d e t e c t a b l e . These a r g u m e n t s s h o w that for a m e a n i n g f u l c o m p a r i s o n w i t h the e x p e r i m e n t a l Cu(001) data it is not n e c e s s a ry to c a l c u l a t e an angle i n t e g r a t e d spectrum, but it is s u f f i c i e n t to take into a c c o u n t the c o n t r i b u t i o n from A_ only, at least in the case of n o r m a l ~ y i n c i d e n t electrons. For o f f - n o r m a l l y i n c i d e n t e l e c t r o n s up to an a n g l e of i n c i d e n c e e=29 o, the s i t u a t i o n turns out to be b a s i c a l l y the same, since owing to the d i f f r a c t i o n of the electron b e a m at the surface the i n t e r i o r angle with respect to the surface n o r m a l is smaller than 8. Due to the fact that the e x p e r i m e n t a l data r e f e r to a fixed p h o t o n energy ~ = 9 . 7 eV, s c r e e n i n q of the p h o t o n field inside the m e t a l 23 can safely be n e g l e c t e d in the p r e s e n t case. In Fig. 2 we show the c a l c u l a t e d v a r i a t i o n of the 9.7 eV i s o c h r o m a t spectra from Cu(001) with angle of e l e c t r o n incidence 8 and c o m p a r e it with the exp e r i m e n t a l data of W o o d r u f f and S m i t h 4. The t h e o r e t i c a l spectra in Fig. 2b are those a s s o c i a t e d with the c o m p o n e n t A z of the e l e c t r o m a g n e t i c v e c t o r p o t e n t i a l p e r p e n d i c u l a r to the surface. For the c a l c u l a t i o n s we used the Cu p o t e n t i a l as g i v e n by Burdick 19 since it turned out to be superior to that of M o r u z z i et al. 20 with respect to the e n e r g e t i c p o s i t i o n s of the o c c u p i e d bands obtained in angle r e s o l v e d U V - p h o t o e m i s sion 24. The a b s o r p t i v e part V i of the p o t e n t i a l was -0.4 eV for the lower uno c c u p i e d band states and -1.0 eV for the upper ones. The full w i d t h at half m a x i m u m F W H M = 2 * V i for those band states lying about 10-12 eV above the Fermi level E F then c o r r e s p o n d s a p p r o x i m a t e l y to that d e r i v e d from angle r e s o l v e d p h o t o e m i s s i o n data 25. For s i m p l i c i t y we have i n c o r p o r a t e d the e f f e c t of instrumental b r o a d e n i n g into the value of V i for the lower u n o c c u p i e d bands 12 This p r o c e d u r e will o v e r e s t i m a t e the b a c k g r o u n d signal for EE F. The surface b a r r i e r ~=4.59 eV 26 was at 0.8 i n t e r l a y e r d i s t a n c e s outside the o u t e r m o s t atomic layer. The c o m p a rison between the e x p e r i m e n t a l and t h e o r e t i c a l spectra in Fig. 2 r e v e a l s a good overall agreement. The c a l c u l a ted peak positions show a shift &E towards lower e n e r g i e s w h i c h i n c r e a s e s up to 0.5-0.6 eV for i n c r e a s i n g a n g l e 8. Part of this d i s c r e p a n c y m a y be exp l a i n e d by the n e g l e c t i o n of second and h i g h e r order b r e m s s t r a h l u n g p r o c e s s e s 3 in the calculation. If one takes into a c c o u n t c o n t r i b u t i o n s from these processes a p p r o x i m a t e l y by a d d i n g to the pri-

VoI. 47, No. 5

INVERSE PHOTOEMISSION FROM CU(OOI)

331

Cu(O01)[lOO]

Cu(O01)[lOO]~

e = 29 °

>-

Z UJ I--

Z

I

0123/.

5

,

I

.

I

i

I

i

I

i

0 1 2 3 4 5

ENERGY ABOVE EF(eV) ENERGY ABOVE EF(eV) Fig. 2. V a r i a t i o n of the ~ = 9 . 7 eV i s o c h r o m a t spectra from Cu(001) as a f u n c t i o n of angle of e l e c t r o n incidence e, a) : e x p e r i m e n t a c c o r d i n g to Ref. 4, b) : p r e s e n t theory.

mary spectra in Fig. 2b the c o r r e s p o n d i n g 8 i n t e g r a l of the p r i m a r y c o n t r i b u tion all peak p o s i t i o n s will shift to s l i g h t l y h i g h e r energies. This is dem o n s t r a t e d for e=O ° in Fig. 3. In o r d e r to o b t a i n a good a d j u s t m e n t to the exp e r i m e n t a l s p e c t r u m (c) it turned out to be n e c e s s a r y to add the integral of the p r i m a r y s p e c t r u m (a) with a factor of five to the s p e c t r u m (a). Note, however, that this e f f e c t m a y not a c c o u n t for e n e r g e t i c shifts of the order of 0.5 eV. The ratio of the c a l c u l a t e d peak h e i g h t and the h e i g h t of the backg r o u n d signal varies from nearly 7 for 8=0 ° to n e a r l y I for e=29 ° , w h i c h is c l e a r l y not in a g r e e m e n t with the e ~ p e rimental data of W o o d r u f f and Smith ~. Since more recent e x p e r i m e n t a l UBIS data on Cu(001) due to Dose et al. 27 differ s i g n i f i c a n t l y from those given in Ref. 4, we p o s t p o n e a more d e t a i l e d d i s c u s s i o n of these points until the e x p e r i m e n t a l s i t u a t i o n has become more clear. W i t h i n the o n e - s t e p model of inverse p h o t o e m i s s i o n we arrive at a sim ilar i n t e r p r e t a t i o n in terms of transitions b e t w e e n u n o c c u p i e d states in the band s t r u c t u r e as in the inverted t h r e e - s t e p model 14 . In the n o t a t i o n of Ref. 14 one t r a n s i t i o n &1~&1 from band No. 7 to band No. 6 c o n t r i b u t e s to the s p e c t r u m for 8=O °. For o f f - n o r m a l l y incident e l e c t r o n s the initial state wave function must show even p a r i t y with respect to the FKWX m i r r o r plane. This c o n d i t i o n allows for one a d d i t i o n a l transition, if e i n c r e a s e s towards 29 ° .

Cu (001)[100] e:0 °

ul "4--"

E :3 C

>I-tO Z LLI I-Z

I

0

,

J

1

,

I

2

ENERGY ABOVE

,

I

,

I

3

Z.

EF

(eV)

,

5

Fig. 3. UBIS c o n t r i b u t i o n s ( ~ = 9 . 7 eV, normal e l e c t r o n incidence) from Cu(001), a) : c a l c u l a t e d p r i m a r y spectrum, b) :calc u l a t e d s p e c t r u m with h i g h e r order proc e s s e s included, c): e x p e r i m e n t according to Ref. 4.

332

INVERSE PHOTOEMISSION FROM CU(O01)

Owing to final state lifetime effects and i n s t r u m e n t a l b r o a d e n i n g these two t r a n s i t i o n s are not r e s o l v e d in the spectra of Fig. 2. In summary we have found that an inverted o n e - s t e p m o d e l of p h o t o e m i s sion d e s c r i b e s UBIS s p e c t r a of Cu(001) r e a s o n a b l y well both w i t h regard to the

Vo[. 47, No. 5

e n e r g e t i c p o s i t i o n and the i n t e n s i t y of the o b s e r v e d peaks. Since UBIS probes the u n o c c u p i e d band states, it m a y be used as a c r i t i c a l test for band structure c a l c u l a t i o n s just above the Fermi level, a r e g i o n not a c c e s s i b l e in ordinary photoemlssion.

REFERENCES I. 2. 3. 4. 5. 6. 7.

8.

9. 10. 11.

12. 13.

14.

V. Dose, Appl. Phys. 14, 117 (1977) G. Denninger, V. Dose and H. Scheidt, Appl. Phys. 18, 375 (1979) V. Dose and G. Reusing, Appl. Phys. 23, 131 (1980) D.P. W o o d r u f f and N.V. Smith, Phys. Rev. Lett. 48, 283 (1982) G. Denninger, V. Dose and H.P. Bonzel, Phys. Rev. Lett. 48, 279 (1982) P.D. J o h n s o n and N.V. Smith, Phys. Rev. Left. 49, 290 (1982) J. Unguris, A. Seller, R.J. Celotta, D.T. Pierce, P.D. J o h n s o n and N.V. Smith, Phys. Rev. Lett. 49, 1047 (1982) P.O. Nilsson and C.G. Larsson, Japan J. Appl. Phys. 17, Suppl. 17-2, 144 (1978) J.B. Pendry, Phys. Rev. Lett. 45, 1356 (1980) J.B. Pendry, J. Phys. C 14, 1381 (1981) C.N. B e r g l u n d and W.E. Spicer, Phys. Rev. 136, AI030 and AI044 (1964) J.B. Pendry, Surf. Sci. 57, 679 (1976) J.F.L. Hopkinson, J.B. Pendry and D.J. T i t t e r i n g t o n , Comput. Phys. Commun. 19, 69 (1980) D.P. Woodruff, N.V. Smith, P.D. J o h n s o n and W.A. Royer, Phys. Rev. B 26, 2943 (1982)

15. 16. 17. 18. 19. 20.

21.

22. 23. 24.

25.

26.

27.

P.O. N i l s s o n and N. Dahlb~ck, Solid State Commun. 29, 303 (1979) E. Dietz and F.J. Himpsel, S o l i d State Commun. 30, 235 (1979) C.G. L a r s s o n and P.O. Nilsson, Phys. Lett. 85A, 393 (1981) S.G. Louie, Phys. Rev. Lett. 40, 1525 (1978) G.A. Burdick, Phys. Rev. 129, 138 (1963) V.L. Moruzzi, J.F. Janakand A.R. Williams, C a l c u l a t e d E l e c t r o n i c P r o p e r t i e s of M e t a l s , P e r g a m o n Press, New York(1978) G. Borstel, H. P r z y b y l s k i , M. Neumann and M. w ~ h l e c k e , Phys. Rev. B 25, 2006 (1982) H.J. Hagemann, W. G u d a t and C. Kunz, J. Opt. Soc. Am. 65, 742 (1975) N. B a r b e r a n and J.E. I n g l e s f i e l d , J. Phys. C 14, 3114 (1981) R. Courths, V. Bachelier, B. Cord and S. Hdfner, Solid State Commun. 40, 1059 (1981) J.A. Knapp, F.J. Himpsel and D.E. Eastman, Phys. Rev. B 19, 4952 (1979) P.O. Gartland, S. Berge and B.J. Slagsvold, Phys. Rev. Letters 28, 738 (1972) V. Dose, p r i v a t e c o m m u n i c a t i o n