Jets and Plumes in Crossflow

Jets and Plumes in Crossflow

273 C H A P T E R 11 JETS AND PLUMES IN CROSSFLOW W h e n a j e t or forced p l u m e is injected transverse stream, a very complicated three-dim...

2MB Sizes 34 Downloads 92 Views

273

C H A P T E R 11 JETS AND PLUMES IN CROSSFLOW

W h e n a j e t or forced p l u m e is injected transverse stream,

a

very

complicated three-dimensional

to a

flowfield

flowing results,

(Coelhoe a n d Hunt, 1989). T h e external stream is deflected a r o u n d

the

j e t creating a p r e s s u r e field w h i c h forces the j e t to b e n d

the

in

s t r e a m w i s e d i r e c t i o n . T h e m i x i n g o f t h e t w o fluids a n d t h e e x c h a n g e o f m o m e n t a a l s o r e s u l t i n flow d e f l e c t i o n , o u t w a r d for t h e fluid

a n d s t r e a m w i s e for t h e j e t

fluid.

external

In technical applications,

the

penetration depth is the m e a s u r e of the lateral distance from the j e t e x i t t o t h e m a x i m u m r e a c h o f t h e j e t fluid. S u c h a m a x i m u m ( i n a n a s y m p t o t i c s e n s e ) c a n b e d e f i n e d o n l y for a n o n b u o y a n t j e t . W i t h b u o y a n c y t h e j e t fluid w i l l c o n t i n u e t o r i s e , a l t h o u g h i n t h e f o r m o f a bent plume, while b e i n g carried d o w n s t r e a m with the velocity of the main

flow.

For this late bent-over stage, simple similarity solutions

exist w h i c h c a n b e u s e d to estimate p l u m e rise a n d rate of dilution. M a n y practical

problems

concerned with safety and

pollution

i n v o l v e j e t s or forced p l u m e s . T h e n e a r field, w i t h its c o m p l i c a t e d three-dimensional

flow

structure, will d e p e n d on the ratio of jet to

f r e e - s t r e a m m o m e n t u m . W h e n t h e fluids h a v e n e a r e q u a l d e n s i t y , t h e i m p o r t a n t flow p a r a m e t e r i s s i m p l y t h e v e l o c i t y r a t i o , j e t - e x i t t o f r e e s t r e a m v a l u e . A large b o d y o f e x p e r i m e n t a l i n f o r m a t i o n exists, for m o r e d e t a i l s s e e S c h e t z ( 1 9 8 0 ) a n d H e n d e r s o n - S e l l e r s ( 1 9 8 7 ) . It i s a c o m m o n experience that the initially round jet, develops a kidneyshaped

cross-section

counter rotating phenomenon

can

vortices

and

eventually

aligned

with

bifurcates

the

b e explained in terms

main

into

stream.

two This

of vortex dynamics,

see

Eskinazi (1975). For the b u o y a n t jet, the ratio o f inertia force to b u o y a n c y force (i.e. the densimetric F r o u d e n u m b e r ) , b e c o m e s a s e c o n d parameter and, at large distances from the exit, the m o r e important one. Negative well

as

positive buoyancy

involve most releases

are

is

of interest.

P r o b l e m s in

as

pollution

often positive b u o y a n c y w h e r e a s negatively b u o y a n t of frequent

interest

in safety w o r k . A s the

buoyant

r e l e a s e , far f r o m t h e e x i t , h a s a d e n s i t y n e a r l y e q u a l t o t h a t o f t h e ambient, d u e to entrainment,

the further

spread will b e passive, i.e.

driven b y the external turbulence. T h e methods discussed in Chapter 9 are then applicable. I n w h a t f o l l o w s w e w i l l first d i s c u s s t h e p a r a m e t e r s w h i c h c o n t r o l

274

Chapter 11

t h e flow i n t h e n e a r and the external

field,

flow

w h e r e the angle b e t w e e n the buoyant jet

i s l a r g e . W e w i l l t h e n c o n s i d e r t h e far

field,

w h e r e m o m e n t u m and b u o y a n c y both are important, but w h e r e the a n g l e b e t w e e n t h e t w o s t r e a m s i s s m a l l . H e r e it i s p o s s i b l e t o o b t a i n simple similarity solutions. T h e s e solutions will b e applicable also to negatively buoyant p l u m e s until such time as the p l u m e touches

the

g r o u n d . F r o m t h i s t i m e o n it w i l l s p r e a d a s a h e a v y c l o u d , a t o p i c t o b e discussed in Chapter 13. W e will deal primarily w i t h the case of a b u o y a n t release, i s s u i n g from a tall s t a c k in the f o r m o f a j e t

and

later developing into a p u r e p l u m e aligned w i t h the crossflow. T h e effects

of w i n d

shear

indirectly through entrainment.

and

turbulence

will

be

considered

only

t h e e m p i r i c a l r e s u l t s q u o t e d for p l u m e r i s e

and

T h e results are p r e s u m e d applicable also to a m o v i n g

source (such as a ship b u r n i n g refuse on the high seas). T h e actual source speed will b e important only in the near

11.1 The

field.

T h e Rise and Dilution of Forced P l u m e s f r o m Tall physical

problem,

the

coordinate

system

and

Stacks velocity

components used in the analysis, are illustrated in Fig. 11-1. This curvilinear coordinate system, w i t h s = length coordinate along the centerline

and

6

=

centerline

slope

relative

to

the

horizontal

d i r e c t i o n , w a s first p r o p o s e d b y Prof. F a y a n d c o w o r k e r s i n a s e r i e s o f p a p e r s ( 1 9 6 9 , 1 9 7 0 , 1 9 7 1 ) . It h a s b e e n a d o p t e d l a t e r i n H e n d e r s o n Sellers' computerized m o d e l (1987) as well as b y others. The system w a s proposed in the h o p e that interesting solutions could b e found in t e r m s o f t h e c u r v i l i n e a r d i s t a n c e s, b y e x t e n s i o n s o f t h e i d e a s

and

c o n c e p t s u s e d for p l u m e s i n still air. T h e e x t e n d e d a n a l y s i s is v a l i d o n l y for tall s t a c k s for w h i c h the

ambient

is relatively c a l m

and

unaffected b y m e c h a n i c a l turbulence d u e to vegetation, buildings etc. A rule of thumb states that the stack should b e two-and-a-half times taller t h a n the highest n e a r - b y building. (One' s faith in the validity o f t h i s "rule" i s s o m e w h a t s h a k e n b y S c o r e r ' s ( 1 9 7 8 , p . 3 8 2 ) r e v e l a t i o n t h a t it i s b a s e d o n o b s e r v a t i o n s o f b a l l o o n t r a j e c t o r i e s o v e r a h i l l . ) It a p p e a r s t h a t w i n d s h e a r a n d a t m o s p h e r i c t u r b u l e n c e h a v e little effect o n t h e r i s e a n d d i l u t i o n o f f o r c e d p l u m e s r e l e a s e d f r o m stacks,

and

this m a k e s

it e a s i e r

to conduct

relevant

tall

laboratory

experiments*. In these experiments the crossflow is uniform, laminar

A negatively buoyant plume approaching the ground, will be more influenced by wind shear and turbulence than the rising plume, as found by Schatzman et al. (1993).

Jets and Plumes in Cross/low

275

Pa

U

2b

t

,w , (

p

(

H Stack

Fig.

and

11-1:

most

Coordinate system in crossjlow.

often

of constant

and

velocity

density.

components,

In order

buoyant

to c o m p a r e

jet

such

e x p e r i m e n t s w i t h field o b s e r v a t i o n , it i s i m p o r t a n t t o u s e t h e c o r r e c t (nondimensional) scaling parameters

(see d i s c u s s i o n b y F a y et al.,

1 9 7 0 ) . T h e p r i m a r y " u n k n o w n s " a r e t h e height (z ) c

a n d t h e p l u m e radius

of the p l u m e centerline

(b) a s f u n c t i o n o f distance

The relevant scaling parameters

will be the lengths

d o w n w i n d (x). characterizing

e i t h e r t h e flow i n t h e m o m e n t u m - d o m i n a t e d r e g i o n c l o s e t o t h e s t a c k or

in

the

buoyancy-dominated

regions

further

downwind.

Stratification, w h e n present, introduces an additional length scale as discussed in Chapter 2.

11.1.1

Flow

Parameters

The geometric lengths,

stack height and

exit diameter,

would

a p p e a r a t first t o b e l e n g t h s c a l e s o f r e l e v a n c e . E x p e r i e n c e i n d i c a t e s t h a t t h e s t a c k h e i g h t i s i m p o r t a n t o n l y w h e n it i s s m a l l r e l a t i v e t o s c a l e s c h a r a c t e r i z i n g t h e flow a r o u n d it. A s l o n g a s t h e s t a c k r e a c h e s above a certain m i n i m u m height, the stack height as such has

no

Chapter 11

276

further

significance. T h e external stack

characteristics

diameter defines the w a k e

(vortex shedding etc.), but w h e n the velocity of the

upward-directed jet is sufficiently high, n o interaction

(downwash)

b e t w e e n t h e j e t flow a n d t h e w a k e o c c u r s . W e w i l l a s s u m e t h i s t o b e the case. T h e internal stack diameter 2 b defines the initial crosst

section of the j e t a n d also the exit R e y n o l d s number; R e = w b/ v . W e t

t

will a s s u m e that this R e y n o l d s n u m b e r is h i g h a n d that the

f

flow

in

the j e t a n d p l u m e is turbulent. T h e R e y n o l d s n u m b e r h a s otherwise n o direct importance. T h e exit diameter is important zone-of-flow

establishment

a l s o for

of the jet, i.e. a region a s s u m e d

the

to b e

small in comparison w i t h the heights of interest. The

ratio

of the jet m o m e n t u m

to that

of the

free

stream

is

o b v i o u s l y i m p o r t a n t for t h e j e t d e f l e c t i o n . T h i s r a t i o i s g i v e n b y

Pjbj

w

2

where £ When £

m

2 m

2

c h a r a c t e r i z e s a c h o s e n c r o s s - s e c t i o n o f the free

stream.

is c h o s e n so that the ratio o f m o m e n t a is unity a n d p « p {

a

we

have i £ ^ b ~ m U w

(11-1)

1 t

This is the m o m e n t u m

length, the relevant scaling length in

momentum-dominated

region.

As

the

vertical

m o m e n t a acting o n the j e t are equal at the height z = /

and m

the

horizontal

, w e expect the

j e t slope at this height to b e a b o u t 4 5 ° . T h e velocity ratio i R = -77 w

is

often

used

as

an

independent

(11-2)

parameter,

in

correlations

of

penetration depths, so that m

= bR

(11-3)

t

A t large distances from the source, b u o y a n c y , rather t h a n initial momentum,

is the m o r e i m p o r t a n t

parameter.

p a r a m e t e r F, at the source, is defined b y

The buoyancy

flux

Jets and Plumes in Crossflow

Pa - Pi

2

jtF = Jtb t

277

wg

t

(11-4)

t

Pa

and can b e considered constant in the absence of stratification thermochemical processes. The second important

parameter

is

and the

c r o s s f l o w v e l o c i t y U. T h e t w o parameters F a n d U can b e c o m b i n e d to give a quantity of f

dimension length. F r o m the dimensional equation

=

FIT

w e find q = 1 a n d p = - 3 . T h e scaling length

is d e n o t e d t h e b u o y a n c y

length and is defined b y

i

F

b

For an

i d e a l g a s , p /p t

i

b

2

U

w

i9

Pa

= T /T ,

a

[Pa-Pi]

U

a

and

t

by

using

the

Boussinesq

approximation, w e find

Pa-Pi Pa

JI- a T T

a

For plumes from thermal power plants,

the heat

flux

Q

t

rather

t h a n F is g i v e n t

9t = * b

2 t

p w c [T T ) t

t

p

r

(11-6)

a

It f o l l o w s t h a t

b

3

p

A physical interpretation

of

(11-7)

*PiC T U a

i s g i v e n b y F a y e t a l . ( 1 9 7 0 ) ; it i s a

m e a s u r e o f the radius o f curvature o f the p l u m e trajectory near

the

e x i t for a p u r e p l u m e o f n e g l i g i b l e i n i t i a l m o m e n t u m . A

characteristic

nondimensional

flow

parameter

of interest,

addition to the R e y n o l d s n u m b e r , is the densimetric F r o u d e

in

number

Fd defined b y the square root of the ratio of inertia force to b u o y a n c y force, per unit v o l u m e in the p l u m e , i.e.

Chapter 11

278

Pi

i ' 9{Pa-Pi) i

O

F=

,

2

d

d

W

(11-8)

b

Just as the Reynolds number

serves to characterize the

flow

state

(laminar, turbulent), the Froude n u m b e r characterizes the nature of t h e b u o y a n t j e t o r p l u m e . T h e v a l u e s for F

d

F = oo d

(pure jet)

range from

to

F =0 d

W e can also express £ in terms of R and F . D

(pure plume)

B y combining (11-2),

d

(11-5) and (11-8) w e obtain b

/

t

d

3

=



(

H

-

9

)

F

I n c o r r e l a t i n g d a t a a n d i n o u r t h e o r e t i c a l w o r k , w e w i l l s e a r c h for scaling laws of the type

where z

c

is the height of the p l u m e centerline, x

distance and / represents £

m

or

the

downwind

d e p e n d i n g o n flow r e g i m e .

T h e p r e s e n c e o f s t r a t i f i c a t i o n , dps/dz

* 0 m a k e s the b u o y a n c y

flux

F a f u n c t i o n o f h e i g h t , b u t it a l s o i n t r o d u c e s a n e w l e n g t h . W e c o u l d define this length as the height over w h i c h p

e

changes b y a specified

f r a c t i o n . It i s m o r e u s u a l t o m a k e u s e o f t h e B r u n t - V a i s a l a f r e q u e n c y (see Chapter 2 ) defined b y Pe

dz

T h e r a t i o o f c r o s s f l o w v e l o c i t y U a n d f r e q u e n c y co r e p r e s e n t s a l e n g t h , U/co.

W h e n this length is m a d e n o n d i m e n s i o n a l w i t h the

important

buoyancy parameter

the result is the

second

stratification

p a r a m e t e r S, S =- ^ co / o This parameter

defines

the

range

(11-11)

of validity of many

empirical

correlations o f the form Eq. ( 1 1 - 1 0 ) . S i n c e w " is a m e a s u r e o f the 1

Jets and Plumes in Crossflow

279

t i m e for the p l u m e o s c i l l a t i o n i n a stratified e n v i r o n m e n t , S c a n b e c o n s i d e r e d t h e r a t i o o f t h e f l o w t i m e r e q u i r e d for a p l u m e e l e m e n t t o r e a c h i t s f i n a l h e i g h t ( o r a m p l i t u d e ) t o t h e f l o w t i m e r e q u i r e d for t h e p l u m e to b e n d in the direction of the crossflow. For m a n y p l u m e s of practical interest, S will b e m u c h greater than unity.

11.1.2

Flow

Equations

The analysis of curved (bent-over) forced plumes represents extension

of the

integral

method

(with

entrainment)

an

of Morton,

T a y l o r a n d T u r n e r ( 1 9 5 6 ) , d i s c u s s e d i n C h a p t e r 10. T h e p r e s s u r e d r a g is not included, a n d as the p l u m e cross-section (circular) as well as t h e f l o w p r o f i l e s ( t o p h a t ) a r e s p e c i f i e d , it c a n n o t a c c o u n t complicated phenomena

(kidney-shaped cross-section,

for

the

bifurcation)

o b s e r v e d for r e a l p l u m e s . W e will follow here the analysis of Hoult a n d Weil (1972), but only the

unstratified

case will b e considered. T h e key element in

the

analysis, is the entrainment a s s u m p t i o n . M a s s is entrained d u e to the velocity difference b e t w e e n the p l u m e flow a n d the external flow b o t h for t h e a x i a l c o m p o n e n t ( a n a l o g o u s t o t h e c l a s s i c a l c a s e ) a n d for t h e component

normal

entrainment

to

the

parameters

plume

centerline.

On

denoting

the

a (classical) and p (new), w e can write the

e q u a t i o n for c o n s e r v a t i o n o f m a s s a l o n g the p l u m e c e n t e r l i n e ( s e e Fig. 11-1) ^

[jtb

u) = 2 Jtb a\u

2

- [ / c o s 0\ + 2 Tib p\Usin

0\

(11-12)

In accord with the Boussinesq approximation, the density does not appear in this equation. T w o m o m e n t u m equations are required, one a l o n g t h e p l u m e t r a j e c t o r y a n d o n e n o r m a l t o it. A l o n g t h e t r a j e c t o r y we

find

that

controlled

the

by

rate

the

of change

force

of momentum

associated

with

the

in

rate

plume

is

of change

the

of

m o m e n t u m entrained a n d b y the b u o y a n c y force:

4- [u ds

2

v

Jtb ) 2

'

= Ucose4-(u ds

nb ) 2

v

In the normal direction, the curvature

J

+J t b

2

g ^ — P

sin 6

(11-13)

a

dO/ds

implies a

centripetal

force w h i c h enters into the d y n a m i c balance b e t w e e n rate o f c h a n g e of m o m e n t u m a n d b u o y a n c y force

Chapter 11

280

u

2

Jtb

^ = - U s i n o4- ( " nb ) + ; r b g ds ds '

2

2

W i t h the a s s u m p t i o n

of constant

cos 0

2

K

P

(11-14)

a

a m b i e n t d e n s i t y p , there is n o a

change in b u o y a n c y along the p l u m e trajectory

* [

u

*

b

9

- p r r °

(

i

l

-

(The general integral equations, w i t h o u t profile assumptions,

l

5

)

and

w i t h a l l o w a n c e for s t r a t i f i c a t i o n , a r e g i v e n b y H e w e t t et al., 1 9 7 1 . ) T h e relations b e t w e e n the variables o f p r i m a r y interest, i.e. x a n d z , and the variables s and 0 are given b y c

=j

x

cos dds

z

c

=j

sin 0 d s

It a p p e a r s t h a t , e v e n w i t h t h e s i m p l i f i c a t i o n i n t r o d u c e d ,

(ll-16a,b)

Equations

(11-12) through (11-16) can b e solved only b y numerical integration. Following Hoult a n d Weil, w e will consider the region close to the stack w h e r e 6

jt/2

a n d the flow has the character of a pure jet, see

Fig. 1 1 - 1 . W e c a n linearize the equations w i t h reference to the initial conditions u = w

if

p =p

if

b = b , t o o b t a i n a n e q u a t i o n for t h e r a t e o f t

c h a n g e o f 0. F r o m ( 1 1 - 1 4 ) ,

w

2 1

Jtb

2 1

^ ds

= -u4-{u ds

nb ) 2

v

7

(11-17)

The right-hand side can b e approximated using (11-12)

[jtb

2

u) = 2 jcb

t

{aw

t

+ p U)

(11-18)

O n i n t e g r a t i n g a n d u s i n g 0 = jt/2, w e o b t a i n f

jt (aR + 6\ s 0/ = 7 7 - 2 — = - H - r 2 \ R J £ 1

(11-19)

Jets and Plumes in Cross/low

w h e r e R = Wi/U a n d £

m

281

= b R. t

F r o m ( l l - 1 6 a , b ) w e find and

from w h i c h w e w r i t e the e q u a t i o n for the trajectory in the f o r m ( 1 1 10), (11-20)

T h i s e q u a t i o n i s o b v i o u s l y v a l i d o n l y w h e n t h e flow is d o m i n a t e d b y t h e fluxes o f m a s s a n d m o m e n t u m a t t h e e x i t . T h e v a l u e o f a i s w e l l e s t a b l i s h e d for b o t h j e t s a n d p l u m e s ( s e e 10) b u t the n e w p a r a m e t e r p m u s t b e a s s i g n e d a n u m e r i c a l

Chapter value.

Hoult and

Weil suggest

p = 0.6

laboratory (nonstratified) whereas the

field

from experiments in

the

data e x a m i n e d b y F a y et

al. ( 1 9 7 0 ) i n d i c a t e p = 0 . 8 1 . For the r e g i o n s farther f r o m the source, w h e r e the p l u m e is n e a r l y aligned w i t h the w i n d , the flow m o d e l o f C h u a n d Goldberg ( 1 9 7 4 ) is a d v a n t a g e o u s a s it g i v e s a u n i f i e d s o l u t i o n for t h e m o m e n t u m -

and

buoyancy-dominated

and

coworkers,

it

does

flow regimes. Unlike the not

introduce

between a rising bent plume and

model of Fay

new parameters. a line thermal

The

analogy

(Fig. 11-3),

first

noticed b y Scorer (1978), can b e incorporated in this model, as s h o w n in the next section.

11.1.3 Plume Model It i s a s s u m e d

of Chu and

Goldberg

here that the horizontal velocity component of the

p l u m e i s n e a r l y e q u a l to t h e c r o s s f l o w v e l o c i t y a n d t h a t t h e p r e s s u r e drag* is s m a l l in c o m p a r i s o n w i t h that associated w i t h The

first

assumption

entrainment.

is m o r e restrictive t h a n the s e c o n d , b u t

both

require that the r e g i o n n e a r the exit b e e x c l u d e d . T h e effects o f the complex processes near the source could b e taken into account

by

r e p l a c i n g t h e r e a l efflux b y a v i r t u a l s o u r c e s u i t a b l y l o c a t e d n e a r t h e

* A pressure drag, as for a bluff body, has been introduced empirically by some investigators to give agreement with experiments. The idea is controversial; for a discussion see Coelhoe and Hunt (1989).

Chapter 11

282

exit, b u t

the a u t h o r s give n o information o n h o w to estimate

the

location

of this virtual

the

source

w h i c h is

also

the

origin of

c o o r d i n a t e s y s t e m ( s e e F i g . 11-2). W e consider a forced p l u m e of density p

t

and velocity w

which

t

enters vertically into a crossflow of velocity U and density p . T h e a

initial m o m e n t u m a n d b u o y a n c y atmosphere of constant

fluxes

M and F are given. For an t

t

density a n d in the absence of losses,

b u o y a n c y flux t h r o u g h e a c h v e r t i c a l c r o s s - s e c t i o n A r e m a i n s

the

constant

(11-21)

w h e r e p i s t h e p l u m e d e n s i t y a n d u t h e p l u m e v e l o c i t y , h e r e u = U. W h e n pressure

drag in the direction n o r m a l to the p l u m e axis is

n e g l e c t e d , t h e c h a n g e i n v e r t i c a l m o m e n t u m o v e r a d i s t a n c e dx

must

equal the b u o y a n c y force acting o n a p l u m e element of this length

O n c o m b i n i n g t h i s e x p r e s s i o n w i t h (11-21), w e o b t a i n

U

Pa

Fig.

11-2:

Flow geometry

for

Chu and Goldberg's

model

Jets and Plumes in Crossflow

dx

I puwdA

283

= -r, 1/

I

(11-22)

and upon integration wdA

JA

Ft

= JJX + M

(11-23)

t

A t t h i s p o i n t t h e p l u m e p r o f i l e s f o r p , u, I U , a s w e l l a s t h e p l u m e geometry, m u s t b e specified. W e a s s u m e a circular cross-section of radius b, and uniform velocity and s e c t i o n , i . e . u = U, w = W a n d p = p

a

density over the p l u m e

cross-

(Boussinesq approximation).

W e define the radius b so that

puwdA

= Jtp b UW

(11-24)

2

a

From geometric considerations w e have

^ dx

= 77 U

(11-25)

The entrainment assumption can best be introduced b y making use of the line-plume analogy. ( W e depart here from C h u a n d As

s h o w n in Fig. 11-3

three

cross-sections

Goldberg.)

( p o s i t i o n s x \ , *2» * 3 )

projected onto a vertical plane, can b e seen as sections of a line t h e r m a l a t s u c c e s s i v e t i m e s T\, t2, £3 w h e r e T\ = X\/U

etc. T h e line

t h e r m a l h a s s e l f s i m i l a r c h a r a c t e r a n d g r o w s a s db = f} dz

c

t h e e n t r a i n m e n t r a t e . A s dz

c

w h e r e j8 i s

- (W/ U) dx w e o b t a i n

(11-26) dx which

is

the

entrainment

'

U

relation

1

proposed

also

by

Chu

and

Goldberg. O n c o m b i n i n g ( 1 1 - 2 5 ) a n d ( 1 1 - 2 6 ) a n d a s s u m i n g /J t o b e a c o n s t a n t b = /3z

c

O n substituting (11-24), (11-25) a n d (11-27) into (11-23), w e get

(11-27)

Chapter 11

284

dz

F

(

(11-28)

W e integrate to obtain the p l u m e trajectory 1/3

1/ 2

4F

["Pa" } 3

f

\

(

1/3

4M,

(11-29)

[*P U

+

2

a

D e n o t i n g t h e o b v i o u s s c a l i n g l e n g t h s £B a n d fa w e h a v e 1/3

1/3

(11-30) 4 ^

where /

2

_ ^ _ 4 ^ V ^ _ ^

2

(11-31)

Jets and Plumes til Cross/low

4F

285

_ Ajtb?g[p -p^W

(

a

_ = 4

t

Jtp U"

(11-32)

a

and where the n e w scaling lengths are compared with those defined in Section 11.1.1. T h e p l u m e r a d i u s is g i v e n b y

b =

3 0

1/3

1 2

2

V

2 +

/

M

1

1/3

(11-33) *

B a s e d o n these results, C h u and Goldberg also define a

dilution

ratio Sd Pa~ Pi

(11-34)

Pa'P w h e r e the local "averaged" density difference is defined b y

f g(p -p)udA A

= gft~~p-)jib U

D e n o t i n g a s b e f o r e R = Wi/U, 4n/R = 4f/2R,

R

(36

= 4

=F

(11-35)

= (b/bj) /R

and, with b =

2

a

w e obtain

2\l/3

f)

R

2

MVM

£

M

t

2/3

t_X_

1 2

i

(11-36)

M

A distinct advantage o f the Chu-Goldberg results, is that they are valid over the w h o l e range of interest; the m o m e n t u m - d o m i n a t e d well

as

the

buoyancy-dominated

transition distance x

t r

regimes.

W e can

determine

w h e n the contributions from b u o y a n c y

as a and

m o m e n t u m are equal, from Eq. (11 -30), 2

x ^ - f for w h i c h

V B

(11-37)

Chapter 11

286

M

(11-38)

F o r x < Xfr w e c a n a p p r o x i m a t e 1/3 /

\l/3

v

(11-39) a n d for

x> x

tr

x I \HZf 3

Z„

5

For the entrainment parameter

(11-40)

v\2/3

C h u a n d G o l d b e r g s u g g e s t )S = 0.5

b a s e d o n their o w n e x p e r i m e n t s . E q u a t i o n s (11 -39) a n d (11 -40) are in a g r e e m e n t w i t h k n o w n c o r r e l a t i o n s f o r t h e n e a r f i e l d a n d far

field

respectively. There exist a large n u m b e r

of such correlations, based on

field

t e s t s a n d e x p e r i m e n t s . F a y e t al. ( 1 9 7 0 ) s u g g e s t \2/3

when

^ = 1 . 3 2 ' *

s

= 2.27

2/3,

l4

S

i< 1.55

(11-41)

i> 1.55

when

(11-42)

'ult

b

T h e s e c o r r e l a t i o n s i n c l u d e t h e e f f e c t s o f s t r a t i f i c a t i o n ; t h e i n d e x "ult" indicates

ultimate

plume

include wind shear and

rise.

Further

atmospheric

discussions,

turbulence,

which

C s a n a d y ( 1 9 7 3 ) w h o , w i t h S l a w s o n , first s h o w e d t h a t t h e x consistent with entrainment Prediction penetrating

methods

for

also

will be found 2 / 3

in

- l a w is

theory. ultimate

plume

rise

and

plumes

inversion layers, etc., are m a i n l y empirical, b a s e d

on

o b s e r v a t i o n s from tall s t a c k s a n d

high buoyancy fluxes. Attempts

have

in

been

advances

made in

our

to

incorporate

understanding

the

correlations

of atmospheric

the

recent

boundary-layer

physics, as discussed in Chapter 9. Weil (1985) suggests t w o models b y Briggs

(1984),

one

for

strong

convection

and

convection/strong winds. These models require

one

for

weak

knowledge of

the

Jets and Plumes in Crossflow

287

d e p t h o f t h e a t m o s p h e r i c b o u n d a r y l a y e r h, o f t h e v e l o c i t y s c a l e s for convection

a n d g r o u n d s h e a r u*. T h e y a r e t h e r e f o r e n o t s o e a s i l y

applied as the rise m o d e l s presented herein.

11.2

Negatively Buoyant Plumes from Tall

Stacks

N o s i m p l e a n a l y t i c m o d e l is k n o w n for the c a s e w h e n F < 0. It t

should b e possible to extend the m o d e l of C h u a n d Goldberg to include this case.

One would have

to consider

changes sign and that the entrainment modified

that the

vertical velocity

equation (11-26) should

be

to

The m a x i m u m height is o b t a i n e d from ( 1 1 - 2 8 ) , MU ='~iFf

Mz cMAX

V

From

this

height

the

(11-43)

F

,z

t

(negative)

plume

rise

can

be

calculated

c o n s i d e r i n g t h e effect o f t h e ( n e g a t i v e ) b u o y a n c y o n l y . B y c a l c u l a t i n g z

c

from (11-29) with x from (11-43), w e can estimate the highest point

of the plume, MAX

=

Z

H

+

cMAX

(11-44)

z

w h e r e H is the stack height. On substituting z

c

=z ^ x

i n t o (11 - 4 0 ) w e c a n e s t i m a t e t h e d i s t a n c e

Ax r e q u i r e d f o r t h e p l u m e t o fall, u n d e r i t s n e g a t i v e b u o y a n c y , h e i g h t ZMAX-

the

T h e point w h e r e the p l u m e touches the g r o u n d is located

at a d o w n w i n d d i s t a n c e f r o m t h e s t a c k e q u a l t o ( s e e F i g . 11 - 4 ) x

=(xL C

V

+Ax

(11-45)

cMAX

JZ

This ad hoc approach does not take into account the early history of the p l u m e . T h i s c o u l d b e rectified s o m e w h a t b y i n t r o d u c i n g

a

v i r t u a l s o u r c e w i t h h o r i z o n t a l m o m e n t u m (jet flow) u p s t r e a m o f t h e stack

at

height

z

M

A

X

-

The

location

and

initial

(streamwise)

m o m e n t u m at the virtual source, should b e c h o s e n to m a t c h the real p l u m e at x - x

Z c M A X

. Scorer h a s p r o p o s e d a different m o d e l (Fig. 11-5)

Chapter 11

288

Fig.

11-4:

Geometry negative

for plume buoyancy.

with

w i t h a virtual source at height z - 2 z

positive

c

M

A

X

-

T

initial

h

velocity

and

plume width

e

thereby b e matched, b u t the n e w p l u m e from the higher source

can has

m u c h too high d o w n w a r d velocity. The

virtual

specification

source

of an

with

additional

an

initial

entrainment

jet

flow

requires

parameter,

the

associated

with the axial velocity component. A l t h o u g h the entrainment

near

the high point of the trajectory will b e m a i n l y due to crossflow, an axial component will also be present,

for t a l l s t a c k s ,

as the

plume

falls t o w a r d s t h e g r o u n d . N u m e r i c a l m o d e l s for d e n s e p l u m e s h a v e b e e n d e v e l o p e d b y O o m s e t al. ( 1 9 7 4 ) , b y L i e t a l . ( 1 9 8 6 ) a n d b y H e n d e r s o n - S e l l e r s ( 1 9 8 7 ) . T h e m o s t comprehensive study of negatively b u o y a n t p l u m e s is that of S c h a t z m a n et al. ( 1 9 9 3 ) . T h i s s t u d y includes a c o m p l e t e d i m e n s i o n a l (similarity) analysis o f the p r o b l e m w h e r e all relevant are

included.

The

important

nondimensional

parameters parameters

(densimetric Froude number, velocity ratio, source height, discharge angle etc.) w e r e v a r i e d systematically in a series of w i n d experiments Substantial

including

turbulent

as

well

as

laminar

differences were observed between

the

laminar

turbulent cases w i t h regard to m a x i m u m p l u m e height, distance

and

concentration

level at

these

points

tunnel

crossflow. and

touchdown

of interest.

The

differences have practical implications as current regulatory m o d e l s

Jets and Plumes in Crossflow

Virtual origin of

Fig.

11-5:

289

plume

with negative

buoyancy

Model proposed plumes.

by Scorer

(1978) for

negatively

are b a s e d o n the laminar crossflow data of H o o t et al. ( 1 9 7 3 ) .

Special

Nomenclature

b

r a d i u s (jet o r p l u m e )

F

buoyancy

H

stack height

flux

buoyancy length, i s - ^ ^ b m o m e n t u m l e n g t h , £M - 2 l M

momentum

9

heat

m

flux

flux

R

velocity ratio, R =

s

curvilinear coordinate aligned with plume axis

w /U t

S

stratification parameter, Eq. ( 1 1 - 1 1 )

s

dilution ratio, Eq. (11-34)

U

d

velocity ( c o m p o n e n t in s-direction)

U

wind velocity

w

velocity ( z - c o m p o n e n t )

W

rise velocity (plume)

buoyant

Chapter 11

290

x

downwind distance

Xfr

point of transition, m o m e n t u m - to b u o y a n c y - d o m i n a t e d regime

z

vertical coordinate

z

height of plume centerline

a, /3

entrainment coefficients

6

slope of plume centerline

c

Indices a

ambient (atmospheric)

i

initial (stack exit)

REFERENCES B r i g g s , G . A . ( 1 9 8 4 ) P l u m e r i s e a n d b u o y a n c y effects. I n Science

and

Power

Prediction,

Chapter

Atmospheric

8, p p 3 1 7 - 3 6 6

(Ed D.

Randerson). U.S. Department of Energy, D O E / T I C - 2 7 6 0 1 . Chu, V . H . and Goldberg, M . B . (1974) B u o y a n t forced p l u m e s in cross flow. A.S.CE.

J. Hydraulics

Div. 100, N o H Y 9 .

Coelhoe, S.L.V. a n d Hunt, J.C.R. (1989) T h e dynamics of the near o f s t r o n g j e t s i n c r o s s f l o w s . J. Fluid C s a n a d y , G . T . ( 1 9 7 3 ) Turbulent

field

Mech. 2 0 0 , p p 9 5 - 1 2 0 .

Diffusion

in the Environment.

D . Reidel

Publ. Co. E s k i n a z i , S. ( 1 9 7 5 ) Fluid Environment

Mechanics

and

Fay, J.A., Escudier,

of

our

M . , H o u l t , D . P . ( 1 9 7 0 ) A correlation o f field

o b s e r v a t i o n s o f p l u m e r i s e . APCA

Journal

H e n d e r s o n - S e l l e r s , B . ( 1 9 8 7 ) Modeling The

Thermodynamics

Academic Press.

University

of

Salford

2 0 , N o 6, p p 3 9 1 - 3 9 7 .

of Plume

Model:

U.S.P.R.,

Rise

and

Dispersion

Lecture

Notes

in

Engineering, Springer Verlag. Hewett, T.A., Fay, J.A. and Hoult, D.P. (1971) Laboratory experiments o f s m o k e s t a c k p l u m e s i n a s t a b l e a t m o s p h e r e . Atm.

Environment

5,

pp 767-789. Hoot, T . G . , Meroney, R . N . and Peterka, J.A. (1973) W i n d tunnel tests of negatively

buoyant

Environmental 27711, USA.

plumes.

Report

Protection Agency,

No

EPA-65013-74-003.

Research Triangle Park,

NC

Jets and Plumes in Crossflow

291

Hoult, D.P., Fay, J.A., Farney, L.J. (1969) A theory of plume c o m p a r e d w i t h field o b s e r v a t i o n s . A P C A Journal

rise

19, N o 8, p p 5 8 5 -

590. Hoult, D.P. and Weil, J.C. (1972) Turbulent p l u m e in a laminar flow. Atm. Environment

cross

6, p p 5 1 3 - 5 9 0 .

Li, X . - Y . , L e j d e n s , H . a n d O o m s , G . ( 1 9 8 6 ) A n e x p e r i m e n t a l v e r i f i c a t i o n o f a t h e o r e t i c a l m o d e l for t h e d i s p e r s i o n o f a s t a c k p l u m e h e a v i e r t h a n air. Atm. Environment Morton,

B.R., Taylor,

gravitational

20, N o 6, p p

G.I. and

convection

from

1087-1094.

Turner,

J.S.

maintained

s o u r c e s . Proc. Roy. Soc. A 2 3 4 , p p

(1956) and

Turbulent

instantaneous

1-23.

O o m s , G., Mahieu, A . P . and Zelio, F. (1974) T h e p l u m e path of vent g a s e s h e a v i e r t h a n air. First Safety

Promotion

Schatzman,

Int. Symposium

in the Process

Industries.

on Loss

Prevention

and

The Hague.

M . , Snyder, W . H . and Lawson, R.E. (1993)

Experiments

with heavy gas jets in laminar and turbulent cross flows. A c c e p t e d for p u b l i c a t i o n , Atm.

Environment.

S c h e t z , J . A . ( 1 9 8 0 ) I n j e c t i o n a n d m i x i n g i n t u r b u l e n t f l o w . Progress Astronautics

and Aeronautics

S c o r e r , R . S . ( 1 9 7 8 ) Environmental

Aerodynamics.

Ellis H o r w o o d Ltd.

W e i l , J . C . ( 1 9 8 5 ) U p d a t i n g a p p l i e d d i f f u s i o n m o d e l s . J. Clim. Appl. 24, p p 1 1 1 1 - 1 1 3 0 .

in

68. Publ. ALAA, N e w Y o r k .

Met.

Chapter 11

292

PROBLEMS

P r o b l e m 1. A ship burning chemical waste products, travels at 10 knots (5 m/s) on the high seas under "no wind" conditions. It produces hot emission products (T = 250°C) at a rate of 5 m / s and an initial velocity of 10 m / s from a stack of 30 m height. Determine the rate of dilution of the resulting plume under the assumption of ideal gas and no chemical reactions. 3

g

P r o b l e m 2. Consider the same emission source as in Problem 1, but in this case the source is stationary in a wind of 5 m/s. (Neutral conditions m a y be assumed.) Consider next the moving source (10 knots) heading into a wind of equal strength. H o w would you solve this problem? Compare the answers for the three different conditions considered. P r o b l e m 3 . In the sketch an experiment is illustrated where a moving source in a stratified medium is used to simulate a rising plume in the atmosphere. Thefluidsare salt /water solutions and the concentration in the receiver varies as indicated. The heavy (source) flow is colored for visualization. Determine the relevant nondimensional parameters for this experiment. Find the analytic solution for the plume trajectory in terms of the flow parameters shown. W h y is this experiment not a realistic simulation (irrespective of scale) for a real (gaseous) plume rising in the atmosphere? u Pi

p(z)-

P r o b l e m 4. A tall stack (150 m ) emits hot exhaust (200°C) at a rate of 10 m / s and with initial velocity 15 m / s into an isothermal atmosphere of windspeed 7 m/s. Determine the plume trajectory 3

Jets and Plumes In Crossflow

293

b a s e d o n t h e m o d e l o f C h u a n d G o l d b e r g a s w e l l a s t h a t o f F a y et al., a n d c o m p a r e the results. T h e effluent c a n b e c o n s i d e r e d to h a v e the p r o p e r t i e s o f ( h o t ) air.