L1 and L∞ Approximation of Vector Fields in the Plane

L1 and L∞ Approximation of Vector Fields in the Plane

Lecture Notes in Num. Appl. Anal., 5 , 273-288 (1982) Nonlinear PDE in Applied Science. i7.S.-Japan Seminar, Tokvo, 1982 L1 and Approximation of Ve...

625KB Sizes 0 Downloads 64 Views

Lecture Notes in Num. Appl. Anal., 5 , 273-288 (1982) Nonlinear PDE in Applied Science. i7.S.-Japan Seminar, Tokvo, 1982

L1

and

Approximation of Vector F i e l d s i n t h e Plane

L"

Gilbert Strang Massachusetts i n s t i t u t e of Technology

ABSTRACT

We s t u d y f o u r problems, two i n whose analogues i n

L2

L1

and two i n

a r e t h e f a m i l i a r minimum

p r i n c i p l e s which l e a d t o t h e Laplace equation.

One

p o s s i b i l i t y is t o be given t h e boundary v a l u e

6 = Q

and t o minimize point

(x,y)

IIVJrlll

in

Cl

Lmr

or

llV@~lrn;

i s measured by

the gradient a t a lVJrI2

2 = f,

+ Q Y2 '

In t h e o t h e r problems we a r e given a v e c t o r f i e l d v: R

+

R2,

and minimize e i t h e r

IIVw-vlll

or

~IoW-v!lm.

i n each c a s e we use t h e d u a l i t y t h e o r y of convex a n a l y s i s t o g i v e e q u i v a l e n t s t a t e m e n t s of t h e problem, o f t e n with an i n t e r p r e t a t i o n i n mechanics and o f t e n partly solved.

Nevertheless some q u e s t i o n s s t i l l

remain open.

213

274

Gilbert S T R A N G

L2 norm l e a d s t o l i n e a r equations

Approximation i n t h e

(which a r e forbidden a t t h i s c o n f e r e n c e ) .

In

<

LP, 1

P

<

(0,

t h e equations become n o n l i n e a r but much of t h e a n a l y s i s continues t o apply.

In

i s entirely different:

L1

and

Lm, however,

the s i t u a t i o n

it i s not t h e d i f f e r e n t i a l equation

b u t t h e underlying v a r i a t i o n a l p r i n c i p l e t h a t l e a d s t o an e x i s t e n c e theory, and suggests how t o c o n s t r u c t t h e optimal solution. This note s t u d i e s f o u r t y p i c a l problems for s c a l a r valued f u n c t i o n s on a simply connected domain

r.

s u f f i c i e n t l y smooth boundary

fl

C

R2

with

Each of t h e problems has

a dual--a maximization i n s t e a d of a minimization--and a p p l i c a t i o n s t h e dual i s of equal importance.

i n the

Where one

v a r i a t i o n a l statement i s t h e " s t a t i c " formulation of a problem i n mechanics, with s t r e s s e s a s t h e unknown, t h e o t h e r i s t h e "kinematic" form i n terms of v e l o c i t i e s .

We

w i l l study s e v e r a l combinations of boundary c o n d i t i o n s and

inhomogeneous terms, b u t n o t every p o s s i b l e combination, because a l r e a d y we ask t h e r e a d e r ' s consent about one more thing.

In a d d i t i o n t o t h e dual of each problem, t h e r e i s

another p a i r of optimizatlons ( e q u i v a l e n t t o the given one) c r e a t e d by a s p e c i a l s i t u a t i o n i n s o l u t i o n of

div n

= 0

is

T

=

($

R2,

t h a t the general

- $ x ) for some

Y9

4.

Therefore it w i l l happen t h a t each of our problems has four e q u i v a l e n t forms, and t h a t one of them i s simpler t o s o l v e than t h e o t h e r s .

(For t h e o t h e r s we may l e a r n only t h e value

of t h e maximum o r minimum, by d u a l i t y , without f i n d i n g t h e f u n c t i o n which achieves t h a t v a l u e . )

Some q u e s t i o n s w i l l

remain unsolved even w i t h four a l t e r n a t i v e s .

L' and L" Approximation of Vector Fields

275

The problems arise i n t h e s t u d y of p l a s t i c i t y and optimal p l a s t i c design, and elsewhere; we w i l l g i v e r e f e r e n c e s r a t h e r t h a n a complete d e s c r i p t i o n of t h e s e a p p l i c a t i o n s .

And we do

t h e same f o r t h e proofs of d u a l i t y ; i n our problems t h e y come d i r e c t l y from t h e techniques of Ekeland-Temam [ll, who a p p l i e d t h e Moreau-Rockafellar t h e o r y t o a sequence of important examples i n p a r t i a l d i f f e r e n t i a l e q u a t i o n s .

Our c h i e f purpose

i s t o c o n t r i b u t e some a d d i t i o n a l examples, and t h e y have

developed from our j o i n t work w i t h Robert Kohn and Roger Temam. We mention t h a t optimal d e s i g n l e a d s t o more complicated v a r i a t i o n a l problems ([2-31

i s p a r t of a l a r g e l i t e r a t u r e ) ,

and a l s o t h a t p e r f e c t p l a s t i c i t y i n

has r e q u i r e d a new

R3

space of vector-valued displacements and a corresponding analysis

[4-51. The problems i n

t h i s note a r e e a s i e r , b u t

t h e y have n a t u r a l i n t e r e s t and it may be u s e f u l t o organize them more s y s t e m a t i c a l l y . A t t h e end we d i s c u s s some a p p l i c a t i o n s i n optimal d e s i g n

and t h e nonconvex problems t o which t h e y l e a d .

1. The minimum of

l/Vt!!m

w i t h Dirichlet data

It i s t h i s form which can be solved d i r e c t l y , b u t we

begin w i t h t h e f o u r e q u i v a l e n t problems: 1A.

M I N I!n(lm s u b j e c t t o

1B.

MAX

1C.

MIN

1D.

MAX

r

uf

j1VdrIlrn

subject t o subject t o

div o = 0 JslVul 0

rlr = g

=

and

1

on

r

o.n = f

on

r

216

Gilbert S I R A N G

The conversion between 1 A and 1C i s by r o t a t i o n through f = n.n = V $ . t

Therefore

=

of

s/2

It follows t h a t

VQ.

&/&, t h e t a n g e n t i a l d e r i v a t i v e of

6 = g = s f ds

assumed t h a t

a

fl = ( l y J - ? b x ) ,

Jf ds

= 0

on t h e c l o s e d curve

S i m i l a r l y 1B and 1 D a r e connected by i n t e g r a t i o n by p a r t s on

rj r.

up t o a c o n s t a n t on

r.

1B

7

1.

it i s

= (uy,-ux),

and

i s dual t o lA, and 1D t o 1C.

The s o l u t i o n of 1 C comes from an e x t e n s i o n lemma proved independently by McShane and Kirszbraun f o r I d p s c h i t z f u n c t i o n s on a metric space.

Their construction applies

e q u a l l y t o Hblder continuous f u n c t i o n s , and was followed by deeper r e s u l t s of Whitney and Calderon.

In our case t h e

metric i s t h e s h o r t e s t d i s t a n c e w i t h i n

0; i t is Euclidean

distance, i f

Q

i s convex.

Then t h e q u a n t i t y

minimized i s t h e Lipschitz c o n s t a n t f o r g

on

to

l on

Ca

1.

t o be

IIVJIII,

The lemma extends

w i t h no i n c r e a s e i n t h e L i p s c h i t z

c o n s t a n t , by t h e simple c o n s t r u c t i o n

Therefore t h e minimum in 1C i s immediate: Lipschitz c o n s t a n t f o r

it e q u a l s t h e

g, and Problem 1 i s solved.

T h i s provides a n a t u r a l analogue f o r continuous flows of

t h e max flow-min c u t theorem of Ford and Fulkerson.

Instead

of a f i n i t e network with c a p a c i t y c o n s t r a i n t s on t h e edges, t h e flow through i t s c a p a c i t y by

capacity

In1

5

0

i s described by a v e c t o r f i e l d

la1

c(x,y)

fl a r e included i n

0

and

1. The p o s s i b i l i t i e s of varying and nonzero sources

div u

=

F

[6]. I r i c r e a t e d a s i m i l a r t h e o r y

n e a t a p p l i c a t i o n t o t r a f f i c i n Tokyo [ 7 ] .

within

with a

L' and L' Approximation of Vector Fields

211

We g i v e a b r i e f b u t very informal d e r i v a t i o n of t h e o p t i m a l i t y c o n d i t i o n s t h a t connect 1A t o lB, w i t h Lagrange m u l t i p l i e r for t h e c o n s t r a i n t

u(x,y)

as

div n

=

0.

The saddle-

SSIVuI

>

1, and otherwise

p o i n t ( k g r a n g i a n ) form i s

The f i n a l minimum over

it i s

Suf

as i n 1 B .

TT

is

if

-m

The o p t i m a l i t y c o n d i t i o n s are

which gives an i n t e r e s t i n g form f o r

u.

It i s the character-

i s t i c f u n c t on, or more e x a c t l y a m u l t i p l e

of t h e

l//P-Q

c h a r a c t e r i s t i c function, of t h e s e t bounded by t h e l i n e between

and

P

Q

on

I-

--where t h e s e a r e t h e p o i n t s ( n o t

n e c e s s a r i l y unique) a t which Thus

Vu

=

0

g

except a c r o s s t h i s l i n e ; on t h e l i n e ,

s i n g u l a r measure of mass one and magnitude

>

Q = (0,-r).

0

i s t h e normal v e c t o r of

on t h e c i r c l e

The Lipschitz c o n s t a n t i s

x

n

and

1/2r

c1

$,J -trx)

An optimal

u

and

n

r

<

1/2.

P = (0,r)

is zero i n the semicircle

i n t h e complement

= (l/r,O),

of r a d i u s

l/r, between t h e p o i n t s

x

1. 0.

( n o t t h e same as McShane's e x t e n s i o n ) i s =

is a

Vu

Iluli,.

Example 1: g = s i n 0

and

a t t a i n s i t s Lipschitz constant

1

An optimal =

y/r,

t

with

i s normal t o t h e diameter

FQ.

A l e s s t r i v i a l example, with more uniqueness, would s t a r t w i t h an e l l i p t i c a l

n.

278

Gilbert STRANG

2.

The minimum of

with D i r i c h l e t d a t a

\lVllrlll

Again w e g i v e t h e f o u r e q u i v a l e n t extremal p r i n c i p l e s :

SsIflI

PA.

MIN

2B.

MAX s r u f

2C.

MIN J S l V S l

2D.

MAX

n

subject t o div subject t o

and

n = 0

a-n

=

f

1 1 V ~ := ) ~1

subject t o subject t o

1

div

T

r

on

g

=

= 0

and

!\T'la

= 1.

The connections among 2A-2D a r e t h e same a s f o r 1A-1D.

I n t h i s case i t i s a g a i n 2 C ( t h e least g r a d i e n t problem

181) t h a t can be solved most d i r e c t l y , using t h e coarea formula f o r a function

where

yt

length.

4(x,y)

of bounded v a r i a t i o n :

is t h e l e v e l s e t where More p r e c i s e l y , s i n c e

1b

s e t of p o s i t i v e area, we c o n s t r u c t

and then

yt = a E t \ r .

Jr = t

and

is its

IYtl

could be c o n s t a n t over a E~ = ( ( x , y ) E Q: llr(x,y)

This coarea formula and i t s g e n e r a l i z a -

t i o n s a r e a v a l u a b l e t o o l i n geometric measure t h e o r y for a smooth f u n c t i o n

t]

$,

[9-lo];

or a piecewise l i n e a r f u n c t i o n , t h e

proof is s t r a i g h t f o r w a r d . To minimize

of

Yt,

llV@\\l

i s t o minimize f o r each

s u b j e c t t o t h e requirement t h a t

boundary p o i n t s a t which

g

may be required; t h e s e t

Et

g

2

t.

We note t h a t f o r

g

in

L1(r), t h e f u n c t i o n

t

and is i n t e g r a b l e . )

$

=

t.

Yt

t

the length

connects t h e

(Again a more p r e c i s e form

must c o n t a i n t h e s e t on which of bounded v a r i a t i o n , w i t h t r a c e IYtl

i s d e f i n e d for almost a l l

L’ and L L Approximation of Vector Fields

Example 2 .

0. The L2 norm i s s m a l l e s t f o r t h e harmonic f u n c t i o n 6 = r 2 cos 20,

of

g = cos 28

279

on t h e u n i t c i r c l e

z e r o o n l y on t h e f o u r r a y s t o

0 =

norm i s minimized by a f u n c t i o n whole i n s c r i b e d square of s i d e diagonals.

2

\b

J=’

g =

cOS

=

L1

w i t h t h e s e r a y s as

Between t h e s q u a r e and t h e c i r c l e , t h e l e v e l l i n e s

of t h e square, f o r example,

x

But t h e

which v a n i s h e s over t h e

4 = c o n s t a n t a r e s t r a i g h t , t o minimize

lines

2 3s/4.

IT/&,

$ =

To t h e r i g h t

lYt(.

2x2-1:

c o n s t a n t on v e r t i c a l

r

c o n s t a n t , and a g r e e i n g a t t h e boundary

=

1 with

28 = 2 cos2 0 - 1 .

I n t h e d u a l i t y with 2B, t h e o p t i m a l i t y c o n d i t i o n i m i t a t e s

1B above t o g i v e

Therefore

Vu

i s a u n i t v e c t o r i n t h e d i r e c t i o n of

n

# 0, and elsewhere

llr

= 2x2-1

circle. fx u =-

and

~y

< 1.

n = (0,-4x)

Therefore

or

IVul

I n o u r example we had

i n the section

Vu = ( 0 , l )

and

The

L’

x

u = -y.

2

l/n

of t h e

Similarly

i n t h e f o u r q u a r t e r s of t h e c i r c l e - - b u t n o t

uniquely so i n t h e i n s c r i b e d s q u a r e where

3.

where

0

$ = 0

and

CT =

0.

approximation of a v e c t o r f i e l d by a g r a d i e n t

The given v e c t o r f i e l d i s

i s i t s e l f a gradient i f

F

=

v = (v,(x,y),v2(x,y)),

dvl/dy

-

&,/ax

= 0.

and i t

Otherwise

t h e maxima and minima w i l l exceed z e r o i n o u r f o u r e q u i v a l e n t problems :

3A.

280

Gilbert STRANC

3s.

MIN ~ ~ I V w - v I

3C.

MAX JJFb

3D.

MIN

c1

In 3 D ,

subject t o

iSl1-1 s u b j e c t

Cl

-F. through

~ / 2 ;t h e

i s a u t o m a t i c a l l y zero, s o t h a t

Again we use a p r o p e r t y s p e c i a l t o

-F.

=

=

7

Ow-v

= (-wy,wx)

Ow'

-aiv v

7 =

div

i s t h e r o t a t i o n of

7

divergence of div

to

T, lv~lrl 5 1 i n

on

= 0

1C

R2.

In t h i s c a s e it i s 3 C which can be solved a t s i g h t , provided we assume i s t o maximize lvllll

5

F

0.

To make

as l a r g e a s p o s s i b l e

//Fib

among f u n c t i o n s v a n i s h i n g on

$

1. The extremal f u n c t i o n i s

with

r,

Q = distance t o

and

t h i s choice g i v e s t h e optimal values i n 3 A - 3 D . of varying s i g n t h e problem i s much more d i f f i c u l t

F

For

and i n t e r e s t i n g ; we b e l i e v e it t o be unsolved. in

t h e optimal

R1

Q

has

1lr1

On an i n t e r v a l

-

= +1, and t h e "breakpoints"

can be determined. A c o n s t r u c t i o n of t h e optimal

w

(assuming

F

1. 0 )

was

given by Mosolov [U].The computation i s more d e l i c a t e t h a n t h a t of

and i s guided by t h e o p t i m a l i t y c o n d i t i o n

111,

n =

vw-v , F a t every p o i n t

Example 3 .

v

t h i s domain n =

( ey'

-$x)

=

and

F = 2

Vw

# v.

on t h e u n i t c i r c l e .

Ib = I-r, t h e d i s t a n c e t o t h e boundary.

On

Therefore

i s t h e u n i t v e c t o r f i e l d t a n g e n t t o t h e con-

centric circles instance

y,-x)

where

w c 0.

i s s a t i s f i e d by

r = constant.

It happens t h a t i n t h i s

The o p t i m a l i t y c o n d i t i o n d i s p l a y e d above

u

=

-v/IvI,

and t h e r e f o r e

"CaMOt be approximated by a g r a d i e n t . I' mation i s null..

v = (y,-x)

The c l o s e s t approxi-

28 I

L ' and L' Approximation of Vector Fields T h i s choice of

c y l i n d r i c a l rod. -slv.o

The v e c t o r

gives t h e shearing s t r e s s and

d

is t h e a s s o c i a t e d moment r e s i s t i n g an e x t e r n a l f o r c e

t h a t t w i s t s the bar. tion

a r i s e s n a t u r a l l y i n t h e t o r s i o n of a

v

161

5

1

The maximum i n 3A, s u b j e c t t o t h e l i m i t a -

f o r a p l a s t i c m a t e r i a l , i s t h e l i m i t moment of a

b ar w i t h cross-section

61.

T h i s i s t h e l a r g e s t torque the b a r

can resist; t h e angle of t w i s t approaches i n f i n i t y and t h e bar becomes f u l l y p l a s t i c The d u a l v a r i a b l e

( I n 1 = 1 throughout

w(x,y)

Q).

measures t h e "warping" of each

c r o s s - s e c t i o n out of i t s o r i g i n a l plane--and

f o r the circular

b a r of Example 3 each c r o s s - s e c t i o n remains plane and

w = 0.

The minimization 3D has a f u r t h e r mechanical i n t e r p r e t a tion.

It a g a i n r e f e r s t o a b a r w i t h c r o s s - s e c t i o n

subject t o the axial force

F(x,y) .

r e s i s t e d by s h e a r s t r e s s e s

T

expresses e q u i l i b r i u m .

= (7

ss

Then

This body f o r c e i s T

xz' yz

1

17

0 , b u t now

), and

div

7

=

-F

is proportional t o the

minimum weight of a b a r which can withstand t h e load

It

F.

i s a s p e c i a l i z a t i o n of t h e Michell-Prager t h e o r y of optimal design t o t h e c a s e of pure s h e a r [12].

4.

The

Lm

For given

approximation of a v e c t o r f i e l d by a g r a d i e n t

v, w i t h

F = -div v'

and

T

as

= (OW-v)'

before, t h e e q u i v a l e n t problems a r e

4A. MAX - s s d , v 4B.

subject t o

d i v n = 0, n.n

=

0

on

M I N IIVw-v/lrn

4 ~ .MAX

JJF@ s u b j e c t

4D. MIN

/\7/Irn

to

$ =

o

subject t o

div

7

on =

-F.

r, IIv$Il,

= 1

r,

IIulll = 1

Gilbert STRANG

282

Our method i s t o apply t h e coarea formula t o 4 C . show t h a t t h e o p t i m a l function

i s a m u l t i p l e of t h e c h a r a c t e r i s t i c

Q

of some s u b s e t

C

We want t o

E

C

The coarea formula can be

Q.

written as m

where

Et = [ $

is t h e c h a r a c t e r i s t i c f u n c t i o n of

Ct

2. t l .

It i s n o t d i f f i c u l t [ 6 ] t o show t h a t a l s o m

JJF$

n

Suppose

= ,m

(JSFCt) d t .

n

i s t h e maximum i n QC,

M

and suppose t h a t

f o r every c h a r a c t e r i s t i c f u n c t i o n

f o r t h e optimal

t

C.

Then choosing

( o r more p r e c i s e l y

C = Cnt

C = Ct

for a

t n ) w e would c o n t r a d i c t t h e

maximizing sequence of f u n c t i o n s

t.

previous e q u a t i o n s by i n t e g r a t i n g over

Therefore t h e

maximum ( o r supremum) i s a t t a i n e d i n 4C by a normalized characteris tic function

~

= C/\\VC\ll.

I n o t h e r words, Problem 4 C i s e q u i v a l e n t t o t h e s i m p l e r problem

Whenever

F

i s c o n s t a n t , we have an i s o p e r i m e t r i c problem:

n.

maximize area/perirneter w i t h i n weighted i s o p e r i m e t r i c problem.

For

And f o r

F

> F

0

it i s a

of varying s i g n ,

I t i s a g e n e r a l i z e d i s o p e r i m e t r i c problem which i s new t o We have not mentioned t h e boundary c o n d l t i o n seems t o be v i o l a t e d i f

aC

n

r #

0.

JI

US.

= 0, which

Nevertheless t h e a n a l y s i s

L ' and L ' Approximation of Vector Fields

c a n be j u s t i f i e d ;

it i s the condition

t

283

which must be

= 0

r e l a x e d [13], and t h e c o r r e c t form of 4 C i s

S i m i l a r l y Problem 2 C can be r e l a x e d by t h e boundary i n t e g r a l The e f f e c t i n Problem 4 C i s t h a t t h e l e n g t h of

I$-gI.

i s i n c l u d e d i n t h e p e r i m e t e r of

aC

n

r

and we r e a c h t h e i s o p e r i -

C,

m e t r i c problem d e s c r i b e d above. We show by example t h a t t h e o p t i m a l

(at least for

can be computed

~

F = 1 and f o r simple domains).

Since

is

Q

piecewise c o n s t a n t , changing o n l y a t t h e boundary of t h e o p t i m a l set

i n t h e i s o p e r i m e t r i c problem,

C

a C --a

s i n g u l a r measure supported on

= ($

CT

Y' " l i n e of

The o p t i m a l i t y c o n d i t i o n c o n n e c t i n g it t o

T

-$x)

is a

& - f u n c t i o n s .I '

gives only

moderate i n f o r m a t i o n :

We have no method f o r computing Example 4:

v = (y,-x)

and

n.

in

T

n.

on t h e u n i t c i r c l e

F = 2

T h i s i s t h e o l d e s t of a l l i s o p e r i m e t r i c problems, and t h e s u b s e t which maximizes a r e a / p e r i m e t e r i s field

T

is radial, w i t h

gradient t o Example 5 :

v

is

Ow =

v = (y,-x)

with v e r t i c e s a t

div

T

=

-2,

C =

a.

The v e c t o r

and a g a i n t h e n e a r e s t

0.

and

(+ 1/2,+- 1 / 2 ) .

n,

on t h e u n i t s q u a r e

F = 2

The o p t i m a l s u b s e t

n e i t h e r t h e whole square n o r t h e i n s c r i b e d c i r c l e .

C

Instead

it i s a compromise [6,14] whose boundary c o i n c i d e s w i t h except f o r q u a r t e r c i r c l e s of r a d i u s

(2

f

fi)"

is

r

i n the four

284

Gilbert

c o r n e r s of t h e s q u a r e . i s smooth.)

STRANG

(They a r e t a n g e n t t o t h e square, s o

aC

We have s o f a r been u n s u c c e s s f u l i n determining

a corresponding v e c t o r f i e l d

with

T

div

7

= (2

+

fi)!lT\lm.

It e x i s t s , by d u a l i t y t h e o r y , and we have o f f e r e d a modest

p r i z e (10,000 Yen a t t h e U.S.-Japan Seminar) f o r i t s d i s c o v e r y .

L1

It would be i n t e r e s t i n g t o compare t h e s e

and

L”

o p t i m i z a t i o n s with t h e corresponding d i s c r e t e problems i n and

a”.

4’

There t h e o p t i m a l i t y c o n d i t i o n s a r e c l a s s i c a l , and

t h e b e s t approximations must approach o u r s o l u t i o n s ( i n c l u d i n g t h e c h a r a c t e r i s t i c f u n c t i o n s ) i n an i r r e g u l a r b u t c o n s i s t e n t way.

The r a t e of convergence, and t h e p a t t e r n of error i n t h e

d i s c r e t e problems, should be v i s i b l e from numerical experiments-s i n c e this i s a c l a s s of d i s c r e t e problems i n which t h e cont i n u o u s l i m i t can be s o l v e d .

We h e s i t a t e t o propose a more complete l i s t of d u a l v a r i a t i o n a l problems of t h e same t y p e . appear f o r o p t i m i z a t i o n i n

L2,

Harmonic f u n c t i o n s w i l l

and t h e s p e c i a l p r o p e r t y of two

dimensions (which produced a l l t h e second p a i r s of e q u i v a l e n t problems) i n t r o d u c e s t h e conjugate harmonic.

Within t h e l i s t

above t h e r e a r e combinations of c o n d i t i o n s t h a t e a r l i e r e n t e r e d only s e p a r a t e l y , f o r example t h e combination MAX JJF$ s u b j e c t t o

P = g

on

f

and

! l V $ ! l w = 1.

This corresponds t o a p p l y i n g both s h e a r and t o r s i o n t o a c y l i n d r i c a l rod, and it i s solved ( i f t h e c o n s t r a i n t s a r e compatible and

F

>

0) by t h e maximal f u n c t i o n

3i(P) = min [ g ( Q ) + d ( P , Q ) I . A r e l a t e d problem mixes

L2 and

Lm, arid has become a

fundamental example i n t h e t h e o r y of v a r i a t i o n a l i n e q u a l i t i e s :

L’ and L* Approximation of Vector Fields

285

The d u a l minimizes a combined norm

This seems a p p r o p r i a t e a l s o f o r ” r o b u s t s t a t i s t i c s , “ i n which t h e l e a s t squares model (Gauss-Markov l i n e a r r e g r e s s i o n ) i s

natural--except t h a t it a s s i g n s t o o much weight t o o b s e r v a t i o n s t h a t l i e f a y o u t s i d e t h e normal range. 1

significant i n

L

, and

These o u t l i e r s a r e l e s s

a mixed norm i s more r e a l i s t i c .

F i n a l l y we mention optimal design, which i s s u b j e c t t o a l l t h e s e c o n s t r a i n t s and one more:

it begins a s a nonconvex

problem, t o minimize t h e support of

A. t y p i c a l case, f o r

n.

longitudinal shear i n a p l a s t i c cylinder, i s

The i n t e g r a n d jumps from to

at

00

(01

= 1

0

to

1 at

>

(since

u = 0, and from

1 i s inadmissible).

1

The

e q u i v a l e n t “ r e l a x e d problem” r e p l a c e s t h i s i n t e g r a n d by the l a r g e s t convex f u n c t i o n which does n o t exceed it:

10)

for MIN

lul

SJ’IUI

5

1 and

subject t o

m

for div

Id1

CI =

0,

>

1.

n-n

it e q u a l s

I n t h i s new problem = f,

11U11,

2

1

t h e r e e x i s t s an optimal s o l u t i o n (which i s a weak l i m i t

Of

t h e h i g h l y o s c i l l a t o r y minimizing sequences i n t h e o r i g i n a l problem).

The s o l u t i o n can a c t u a l l y be computed by modifying

t h e c o n s t r u c t i o n i n 2 C t o account f o r t h e new c o n s t r a i n t

101

= (V$(

2

1.

It g i v e s t h e admissible s t r u c t u r e of minimum

weight. There i s a l s o a more d e l i c a t e c l a s s of nonconvex problems,

Gilbert STRANC

286

whose relaxed form f a i l s t o be convex:

i n s t e a d i t i s polyconvex.

In a forthcoming paper w i t h Kohn w e s t u d y e l a s t i c design s u b j e c t t o two loads, l e a d i n g t o t h e new minimum p r i n c i p l e

I n t h i s case

n , ~ represents a

loads It would be

2

by

n.

2

by

2

matrix; with

Only t h e c a s e of a s i n g l e l o a d

l e a d s t o an e q u i v a l e n t convex problem; for

n = 2

the

relaxed integrand i s polyconvex--a convex f u n c t i o n of and t h e i r determinant

D =

n

d.7.

a,~,

The underlying theory was

developed a b s t r a c t i y by Morrey [ 1 5 ] , and more r e c e n t l y b y

Ball [16] and Dacorogna [ 1 7 ] .

Perhaps our example i s t h e

f i r s t involving a l l t h r e e arguments i n which t h i s polyconvexif i c a t i o n has been found.

ACKNOWLEDGEMENT W e g r a t e f u l l y acknowledge t h e support of t h e National

Science Foundation (MCS 81-02371 and INT 81-00464) and t h e Army Research Off i c e (DAAG 29-8O-KO033).

L ' and L' Approximation of Vector Fields

287

REFERENCES Ekeland, I . and Temam, R . , Convex Analysis and V a r i a t i o n a l Problems (North-Holland, Amsterdam, 1976) . Kohn, R . and S t r a n g , G., S t r u c t u r a l d e s i g n o p t i m i z a t i o n , homogenization, and r e l a x a t i o n of v a r i a t i o n a l p r o b l e m , i n : Papanicolaou, G . ( e d . ) , Disordered Media, Lecture Notes i n physics 1 5 4 (Springer-Verlag, New York, 1 9 8 2 ) . Rozvany, G . I . N . , Optimal Design of F l e x u r a l Systems (Pergamon, Oxford, 1 9 ' 7 6 ) . Matthies, H . , S t r a n g , G . and C h r i s t i a n s e n , E . , The s a d d l e p o i n t of a d i f f e r e n t i a l program, i n : Glowinski, R . , Rodin, E . , and Zienkiewicz, O . C . ( e d s . ) , Energy Methods i n F i n i t e Element Analysis (John Wiley, New York, 1 9 7 9 ) . Temam, R . and S t r a n g , G . , Functions of bounded deformat i o n , Arch. Rat. Mech. Anal. 75 (1980) 7-21. S t r a n g , G . , Maximal flow through a domain, Mathematical Programming ( t o a p p e a r ) . T r i , M . , Theory of flows i n c o n t i n u a a s approximation t o flows on networks, i n : Prekopa, A . ( e d . ) Survey of Mathematical Programming (North-Holland, Amsterdam, 1978) .

Bombieri, E., DeGiorgi, E . and G i u s t i , E . , Minimal cones and t h e B e r n s t e i n problem, I n v e n t i o n e s Math. 7 (1969) 243-268. Fleming, W . and R i s h e l , R . , An i n t e g r a l formula f o r t o t a l g r a d i e n t v a r i a t i o n , Archiv d e r Mathematik 11 (1960) 218-222. Federer, H., Geometric Measure Theory (Springer-Verlag, New York, 1 9 6 9 ) . M o s O ~ O V J P.P.,

On t h e t o r s i o n of a r i g i d - p l a s t i c c y l i n d e r ,

PMM 4 1 (1977) 344-353.

S t r a n g , G . and Kohn, R . , Optimal d e s i g n of c y l i n d e r s i n s h e a r , i n : Whiteman, J . ( e d . ) , The Hathematics of F i n i t e Elemcnts and n p p l i c a t i o n s TV (Academic Press, Iondon, lU8?). S t r a n g , G . , A f a m i l y of model problems i n p l a s t i c i t y , i n : Glowinski, R . , Lions, J . L. ( e d s . ) , Proceedings of t h e Symposium on Computing Methods i n Applied S c i e n c e s , Lecture Notes i n Mathematics 704 (Springer-Verlag, New York, 1 9 7 9 ) . S t r a n g , G . , A minimax problem i n p l a s t i c i t y theory, i n : Nashed, Z . ( e d . ) , J?unctional Analysis Methods i n Numerical Analysis, Lecture Notes i n Mathematics 701 (Springer-Verlag, New York, 1 9 7 9 ) .

Gilbert STRANC

288

[15] Morrey, C.B., Multiple Integrals in the Calculus of Variations (Springer-Verlag, Berlin, 1966). [16] Ball, J.M., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rat. Nech. Anal. 63 (1977)

337-403.

[17] Dacoro$na, B., Weak Continuity and Weak b w e r Semi-

continuity of Nonlinear Functionals, Springer Lecture Notes in Mathematics 922 (Springer-Verlag, Berlin, 1982)