Coordination Chemistry Reviews, 4 5 ( 1 9 8 2 ) 3 6 7 - - 3 8 7
367
Elsevier S c i e n t i f i c P u b l i s h i n g C o m p a n y , A m s t e r d a m - - P r i n t e d i n T h e N e t h e r l a n d s
13.
MERCURY
E.C.
CONSTABLE
CONTENTS
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.1 Mercury(I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.1.1 Halide complexes . . . . . . . . . . . . . . . . . . . . . . . . 13.1.2 Other complexes . . . . . . . . . . . . . . . . . . . . . . . . 13.2 Mercury(II) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.2.1 Halide oomplexes . . . . . . . . . . . . . . . . . . . . . . . . 13.2.2 Pseudohalide complexes . . . . . . . . . . . . . . . . . . . . . 13.2.3 Complexes with oxygen donor ligands . . . . . . . . . . . . . . 13.2.4 Complexes with sulphur or selenium donor ligands . . . . . . . . 13.2.5 Complexes with nitrogen donor ligands . . . . . . . . . . . . . 13.2.6 Complexes with phosphine or arsine ligands . . . . . . . . . . . 13.2.7 Complexes with macrocyclic ligands . . . . . . . . . . . . . . . 13.2.8 Miscellaneous complexes . . . . . . . . . . . . . . . . . . . . 13.2.9 Alkylmercury(II) complexes . . . . . . . . . . . . . . . . . . . 13.2.10 Aqueous chemistry of mercury(II) . . . . . . . . . . . . . . . . 13.2.11 Mercury compounds in organic synthesis . . . . . . . . . . . . . 13.2.12 199Hg NMR s p e c t r o s c o p i c studies . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
INTRG)[L~rI(N The format adopted for this review is described in the introduction to the reviews for zinc and cadmi~n in this voltmle.
13.1
13. I. 1
IVY(I) Halide complexes
An ab initio study of the molecules [Hg2F2] and [HK2CI2] has demonstrated
that, although the polar Hg-X bond favours a head-to-tall orientation in the dimer, the moderately strong Hg-Hg bond dictates a linear structure; [Hg2CI2] was calculated to be ca. 0.6 eV more stable than equimolar smounts of Hg and HgCI2 [I]. The electrochemical reduction of [Hg2X2] (X = C1 or Br) has been investigated, and the enhanced rates observed in the presence of V(III) interpreted in terms of the reaction scheme (i) [2]. Neutron and Rattan [3] and $5Ci NQR- [4] spectroscopic studies of [Hg2CI2] have been reported, and the chemistry of [Hg2F2] has been reviewed [5]. 0010-8545/82/0000--0000/$05.25
© 1 9 8 2 Elsevier S c i e n t i f i c P u b l i s h i n g C o m p a n y
367 367 367 368 388 368 369 370 371 373 375 376 377 377 379 380 382 383
V(II1) + e-
-
V(I1) (I)
V(II) + Hg(I)
-
V(II1) + Kg(O)
13.1.2 Other compZexes The mrcury(1) salt, [IIg~lIC10412, has been describedfor the first time, and its thermaldecanposition shown to give the air-stablebasic qund
has been preparedand is rHgz]rClO1,]2.Hgo 161. The cmplex [~g~(arrq)~][ClO~]~ thoughtto have a polymericstructurein the solid state [7]. It is claimedthat pulse-radiolysis of aqueoussolutionsof
[IIgL12+CL=
[14]at~1,4,8,11-N,,) producesthe mnonuclear mercury(I)cunplex,DwI+,
ulnich
reactsrapidlywith solventor startingmaterials[8]. 13.2 MK8CURY(II) 13.2.1 HaZide conpZexes The energy levelsin HgCl* and HgBr2 have been calculated,and the results discussedin relationto the developmentof HgX2 lasers [9]. The 35C1NQR spectrumof H&12 has been reportedand a Cl-Hg-Clbond angle of 177.2' calculated(cf. 177.8Ofrcm the crystalstructure)[lO,ll]. The thertmdyhamics (X = Cl or Br; n = 1 or 2) specieshas been of the fomation of [H~x~](~-~)+
discussed[12]. A numberof compoundsof fowla
M[Hg5Xn] (M = Tl, K, Rb, CS
or NH*; X = Cl or 8r) have been preparedand a crystalstructureof TlHg~C11 has been reported;the ccqounds are doublesalts of the type kEL5hgX~[13]. An intensivestudy of the electronicspectraof the mixed halidesHgClI,Hg%rI, and HgBrCl has been made [14] and the spectraof equtilar mixturesof &XZ. and HgY2 or HgX, and Y- ccmparedwith those calculatedfor the above species [15]. The mixed fluorohalides HgFX (X = Cl, Br or I> have been reportedfor the first time and their structuresestablished by vibrationalspectroscopy [=I. The coordination chemistryof rnercury(I1) halides [17] and of HgF2 [5] has
been reviewed. The halogenin neutraland anionicHg(I1) halideccnrplexes is readilydisplacedby nucleophiles and the stepwisereactionsof [cN]-with HgBr2 [18],or [HgBr,12-[19],have been investigated.Similarly,the exchange of Cl- or Br- for I- in a numberof iodanercury(I1) complexeshas been studied
[ml. Ramm spectrahave been reportedfor [NHI,][HgC13] [21] and a numberof bg~31- (X = Cl or Ew) salts [22]. It was shown that the latterc£s gave differentconfigurational isomers,with varyingnumbersof coordinated
solventmolecules(dma,dea, lxnpaor dmf), in coordinating solvents. Themixed haloacidsH[RgCls].2Et20, H[HgJ3r2C1].2Et~0, and H[HgIzC1].2.Et20 react with PhNH2 to produceccmplexeswhich have been fomlated as [P~NH~][(P~N&)H~c~~], [PhNH~][(PhNH2)HgRr#l] and [PhNH2...H...H2NPh][Hg12C1], respectively[23]. Ftamanstudiesof PC15-RgC12melts indicatethe presenceof the salts [PC141[HgC1,1 and
[p~1,1~[~gc1~11241. The complexions DI~C~SI-and DigC1~12-
may be extracted(the formerthe more readily)fran aqueousRCl by solutionsof Aliquat336 (tricaprylmethylaium chloride)in CIICIS[25,38]. The ion {L = (1)) [26] and in A~*[R~I~];the rHgU2- is presentin [H2L][HgC11,].2H20
(1)
latteris formedin a solid-statereactionat the surfaceof crystalsof AgI and Hg12 which are in contact [a].
35C1ZeemanNQR studiesof the ccmplexes
Co[HgCl~].4R20 and Co[RgClr].4D~0 have been made [28]. A rnnnber of alkylammoniumtetrachlommercurate(I1) salts, [CnH2n+JVH3]2[RgC14] (n = 6-16) have been described,the canpoundsbeing of interestfor the phase transitionsthey show in the solid state (whichare due to the organicpart of the crystal 'melting', whilst the inorganicportionremainsvirtuallyunchanged)[29]. The crystalstructuresof T1b[Hg16]1301 and [TlloHg3Cls] [31] have been reported;the formerRd
containscanpressedoctahedral {I&I61units. The
ions [(PhC=C)&I]- and [(PhC=C)&g12]2-have been proposedas intermediates in the protodemercuration of [(PhC=C)&] in aqueousdmf by [NR~~]I;it was claimedthat they were formedin a pre-kineticstep. These resultsobviously deservereexamination since they are atvariancewith the acceptedmechanisn for this, and similar,reactions[32]. 23.2.2 P6eudohaZide
coqdezes
which containsthe Thethermaldeccmposition of the salt [PhlI]2[Hg(QQb], tetrahedraltetracyananercurate(I1) anion,has been investigated and the products Of the various tricyananetallate(II) shown to includePhi, PhcN, and (CN)2 [33]. has been isolated ions which may be presentin aqueoussolution,only [Hg((XQ3]in the solid state (as its Cs salt). A study of the IR and Raman spectraof Cs[Hg(CN)3]has been made and the [Ham]-
unit shown to occupya site of Cl
symnetryin the solid [34]. The effectofhighpressures UpontheRaman spectrum of [Ran]
has been determinedand the resultsinterpretedin terme of
370
structuraldistortionwithin the crystal[35]. A nut&erof salts of the empiricalformla [hWg(CN)pX].nH~O (M = Na, K, Rb or
CS;
X = [IKO], [KS] or [N3])have been formedby the reactionof MX with
The ccmpouudswere formlated as doublesalts,and crystalstructures Hg(W2. were reportedfor NaHg(CN)2(NCO).2H20, KHg(UQ2(NcO) and CsHg(CN)2(NCO) [36]. 13.2.3 Complexes with ozyygendonor Zigands
13.2.3.1 CompZexeswith inorganicoxoanions A neutronand X-ray structuralstudy of [Hg(S&)(H20)]has showh the crystal to consistof discreteformulaunits,connectedby hydrogenbonds. The mercury with the oxygen atcxns is in au irregularoctahedralenvironment,interacting of four distant [SO,]tetrahedra[37]. The thermaldecmqmsitionof Hg[C104]2.3H20 leads to a basic salt,which has been characterised crystallographically [6]. Mercury(I1)dialkylphosphites [{(Ro)~Fo},H~] react with the metal(O) If the compounds[M(PPh3)3](M = Pd or Pt) to give [C(RO)2P012M(PPh3)~]. reactionwith [Pt(PPh,),] is conductedat -22 'C, the intermediate complex [((IpD)2a3}~(pPh,),CcIp(oR)2}] may be isolated[39]. 13.2.3.2 ConpZexes with carboxylates and relatedZiqands
This sectionincludescanplexeswith amino acids,even though,in many cases, it is probablethat the ligandsact as nitrogenratherthan oxygendonors. A nu&er of carboxylicacid canplexes,[Hg(O&R)z] (R = CnHm+l; n = 2-9), have been characterised and their vibrationalspectrastudied [40]. The phenoxyethanoate ca@exes
[H~LZ](HL = ArOCH&02H) have been preparedand
shown to involveoctahedralco-ordination at the metal,with bridgingCa??boxylate groups [411. Interestin Zaminoethanoatebased ligandscontinuesand mercury(II) ccmplexesof (HO&CH2)2NCH2CHOHCH2~[42], (H0&JCH2)pNCH2C02H 1433, (HO$CH~)~NC!H$H~OH[44] and DI&IOGH2)2NCH&H(C02H)N(CH&02H)2 [45] have been described. A lH NMR study of the mercury(II)/I(H02CCH2)2N~*CHZNHQ12}2 systemhas indicatedthat a tetrahedralcomplexis formed,in which the ligand acts as an
Nb
donor; the changesin configuration which OCCLW upon protonation
of the 1:l ccqlex were discussed[46]. The naturalabundance 15NNMR spectrum of [HglCl]3-CL = (z)1 has been reported[47].
N(CH ,CO,H), N(CH,CO,H), (2)
371
13.2.3.3 Complexeswith amides and relatedligands These ligandsmay act as eithernitrogen,oxygenor bidentatedonorsand, in many cases,
it is not clear which node of coordination is adopted.
The acid hydrasidecmplexes [HgL2C12]{L = (3) or (4))have been prepared
CONHNH, R
’
(3; R = H) (4; R = OH)
by the reactionof HgC12 with the appropriateligand. Roth ligandsappearto act as neutralmonodentatedonors,coordinating throughthe terminalamino group [aI. Other cmplexes which have been investigated include[RgI&].H~O (L = PhCII=CECWWIz)[49], [Hg(tm)X~] (X = Cl or Br) [50] and [Hg(dma)Cl~] [51]. 13.2.3.4
Complexeswith ethers
The reactionof [Hg(tfa)z]with 1,4-dioxanproduces[HgL(tfa)][tfa] [52]. A numberof mercury(I1)halide-polyether cunplexeshave been investigated by %l, "Br or "1,NQR spectroscopy and shown to give [I&X,] dimers in solution,with non-equivalent Hg-X bonds [53]. 13.2.4 Complexeswith suZphm OP seleniumdonor ligands A spectroscopic study (IR, Raman and 'H NMR) has been made of the cmplexes [I+&] and [H~LX](RL = %mercaptcquinoline; X = Cl, Br, I or Me) [a].
The
reactionof Hg(OPCMe)~with (5) resulted,not in the expectedcoordination
(5)
(6)
cunpounds,but in the formationof cunplexesof the ring-openedccmpound(6): after treatmentwith HCl, [REICH]{HI.. = (6)) was isolated[55]. The canplex was thoughtto be tetrahedral, with the structureshown as (7). A crystal structureof an Hg(I1) cuaplexof the thiosteroid,(S), has been reported1561. A numberof cysteinecuuplexesof Hg(II),including[Hg(cys)Cl], [~g;!(cys)3], [Hg(cys)l]and [Rg~(cy~)~Cl],‘ have been characterised by IR and ESCA measurements. The 1:2 ccqlex is thoughtto have an S,S,O,Ocoordination sphereand the 2:2
.___ \~,,,~&-*$)-J SCH2CHNH2C02H \ Hg
/
\
ys -5
0 SCH2CHNH2CO2HgCl
& 9\ .
(9)
NH, ,’
(10)
and 3:2 canplexesto have structures(9)
and (IO) respectively1571.
The structureof [Hg(EtOCSz)~] has been reportedand the solid shown to consistof Mica-liketulp-dimensional sheets,with mtual bridgingof Hg(I1) and xanthate(11) [58].
OEt
I
A n&r
Et0
of alkanedithiobis(Zaminopropane) cmnplexesof Hg(II) have been
described,the ligandsgiving 1:l chelatesof canparablestabilityto the edta cmplexes [59]. The reactionof H&l, with sodiumN,N-diethyldithiocmbamate, Na[&CNEt2], produces [Hg(S&NEt~)~l~and [Hg,(SDTEt2)&12]. The trimetallic
373
cmpound has been shown to consistof polymericchains,with three different types of distortedtetrahedralmercurysites,as showh in (12) [60].
N Et,
NEt, A
,A “q lC[
“cl
‘Hs/ /
‘s
)g s Y NEt,
NEt, (12)
Stabilityconstantshave been reportedfor the mercury(I1)ccnplexesof a numberof sulphur-containing ligands, (includingDLpenicillamine,N-acetyl-I& penicillamine, 2,3_dimsrcaptopropanesulphonic acid and 2,3-di.mrcaptopropan-l-1) [61]. The formationof Hg(II) ccmplexeswith a range of mesoionicZmercapto1,3,Pthiadiazolesand 5-aercaptotetrasoles [62],Srnethyl-Wrcaptopurine [63], &NHCZ%W
[64],2-amine-5-methyl-1,3,4-thiadiazole [65],and ethylenethiourea
[66] has been investigated. Canplexesof other sulphur-containing ligands,which may or may not be Sbonded to the metal, describedthis year include:[H~LX~](L = MeEtC=NNHCSNH2; X = Cl, I or SCN) [67], [Hg,L].&O (HbL = W~Z~Z~(COZH)SCH(C~ZH)CH~C~~H) [681, b&X21 CL = P~NHNHCSNHNHPh;X = Cl, Br, I, [NON]or [SCN])[69], [Hg(BL)2X2] and [H~LZ](HL = 4,6-dimethylpyrimid2(1H)-thione;X = Cl, Br or I> [70,71],[HgL&l,] (L = 2-thiouracil) [72], [Hg(BL)3]X2(HL = 4,6-dimethylpyrimidine_2(1H)-thione; X = [C104],[BF+] or [tfa])[71], [HgL(tfa)][tfa] (L = Me2S or da-so)[73], [HgL2X2](L = 2-amino+%methyl-or 2-amino-G-chlorobenzothiazole; X = [O,CMe],[SCN]or Br) [74] and [HAL] (HL = H~NCZNHC!&H)[75]. The canplexes[Fe(NCE)2Hg(KN)2] (E = S or Se), in which the mercuryis, presumably,in an Es coordination sphere,react with variouso-donorligandsto give [L2Fe(NCE)2Hg(ECN)2] (L = d&o, py, py-3-CCNH2or PPh,) [76]. Anionic analcguesof these canpoundsare formedin the reactionof Pb(SCIQ2,M(S~T)Z (M = Ni or Co) and Hg(SCN)2,to give Pb[(SCN)2M(NCS),Hg(scrJ)2]; these cunpounds react with Lewis bases at eitherPb or M [77]. 13.2.5 Complexes with nitrogen donor ligands 13.2.5.1 Complexeswith antines and aliphatic ligands The natureof the speciespresentin Millon'sbase continuesto be of interest
and two studiesof the vibrationalspectraof the complexamino species,formed
374
frcm the reactionof NH3 with HgO, have been reported[78,79]. The reactionof [Hg(tfa)2] with Et3N produces[Hg(tfa)(EtgN)][tfa] [80]. The species [(I.B)Bg2Xs] (HL = N-benzylpiperazine; X = Cl or Br) and [(LH)Rg2Br3] have been isolatedfrom the reactionof [IH~]+with HgX2. A crystal structureof [(I.B)Hg2Cls] has been reportedand the crystalshown to consist of distorted{HgCZ,N}tetrahedra,formingchainswith chlorinebridges. The vibrationalspectraof the canpoundsare in accordwith this formulation[81]. Complexesof Hg(I1)with (13) have been described,in which the ligandacts as
(13)
a bidentateN,O donor [SZ]. The alcoholysisof Ph+NSiMe 3, in the presenceof nrtrcury(I1) halides,results in the formationof the ccfnplexes [&$_X2}2] (X = Cl or Br) or [Hg21kL3](L = Ph&%H). Structureswere proposedfor these novel complexes[83]. The unusual platinum-containing ligands,[(dppe)Pt(MeW~NR)~] (R = Me or cych),act as bidentateN,N donors and form the complexes[RgLC12](R = Me or cych) and [(H@&)L] (R = Me) [841. 13.2.5.2 CompZexeswith nitrogen heterocycZic Zigands Pyridinecomplexesof Hg(I1) continueto be of interest,and a numberof threecoordinatecanplexes[H~LX~](L = Zbenzylpyridine;X = [a]: L = 4-benzylpyridine;X = [SCN]),which are thoughtto possesstrigonalplanar symmetry also favour in the solid state,have been described[85]. Benzoylpyridines the formationof three-coordinate complexesand speciessuch as [HgL&] (L = 2,3 or Pbenzoylpyridine;X = Cl, Br, [CN] or [SCN])have been prepared[%I. The tetrahedralccxnplexes [HgL2X2](L = 4-benzylpyridine; X = [CSJ]: L =
3-
benzylpyridine; X = [a]: L = kbenzoylpyridine;X = Cl) are also known [85,8+31. Potenticmietric titrationsof solutionscontainingHg(I1) and L&
(I.& =
2,6-
pyridinedimethanol) indicatethe formationof [H~(LR~)~]"+, [Hg(LH)]+,and [HAL],and the complex [BgL].3H20 has been isolated[87]. The complex [HgLBr2](L = 2,4_dimethylpyridine) containsfive-coordinate mercuryatans, with brcminebridgesforminginfinitechains; [H~LC~~]is thoughtto have a similarstructure[88]. A "'NNQR study of the complex [Hg(py)Clp] has been reported[89]. A numberof pyridinecarboxylic acid canplexes[HgBr2L3]or [HgBr2L2]have been prepared,in which the ligandappearsto act as an N donor
[901.
375
A numberof other,apparentlythree-coordinate, canplexes[HgLXz](L = benzo(f)quinoline; X = [CN] or [SCN])have been described1911,and the thiocyanateligandsin [R~L(scN)~] have been shown to be S'bonded,in contrastto those in [ZI&(IVCS)~] [92]. The tetrahedralcanplex [11g(aaq)Cl2] has been described[93]: The carrplexes [R~LX~](L = bis(>pyridyl)ketone; X = Cl, Br or I) have been preparedand [RgIC12]shown to be dimericin solution;[RgIC12] is, thus, of interestas providingthe first exampleof a bridgingbis(2pyridyl)ketone ligand [94]. A crystalstructurehas been reportedfor [RgIC12] (L = nicotine)and the nicotineligandshown to coordinateto two adjacent mercuryatans,to give polymericchains. The mercuryis in a highly distorted tetrahedral&V2CZ2}coordination sphere [95]. Crystalstructureshave been reportedfor [Rg(phen),][CF,EQ]2, in which the cation is distortedfrcm octahedralsynmetrytowardsa trigonalprism 1961,and [Rg(bipy)2][NOs]2.2R20, in which the diiminenitrogenatans form a flattened tetrahedronabout the mercuryatan [97]. A nt&er of ccanplexes of Rg(I1)with 4,4'-bipyand its l,l'-dioxide have been reported[98]. A numberof nucleoside ccmplexesof Rg(I1) have been isolated,and investigated by 13CNMR and Reman spectroscopy[99]. 13.2.6 Complexeswith phosphine OP arvine Zigands The cunplex [Rg(PRs)(NOs)2] (R = 2,4,6trimethylphenyl) has been prepared by the reactionof [Rg(NO3)2] with PR3. The crystalstructurerevealsthat the bulky ligandforcesthe mercuryto adopt a three-coordinate structure,with nearly coplanarbonds from the metal to the phosphorusand two oxygenatcms. Weaker bonds to three more distantnitrategroupscanpletethe coordination sphere. The canpoundis of interestas it exhibitsthe largest '%g- 31P couplingconstantyet observed{6(31P)-1.81 p.p.m. (w.r.t.H&Q); J 1% dh,$izks
10 278 I-Ix) [loo]. In contrast,the reactionof [Hg(tfa)z] with the cunplex[Rg(PPh3)(tfa)][tfa] [loll.
The dimericccmplexes[Rg2X4(PBu3)2] (X = Br, I or Cl) have been investigated by n%g and 31PNM8 techniques. In the canplexeswith X = I or Br, it was shown that two specieswere presentin solution(chlorinated solvent)and the structures(14) and (15) were proposedfor these species [102]. Structure(15)
‘pR3\
/x\
/x
Hg
‘PR,
XAHgLx/ (14)
376
PR3\ /x\r/“\
/*\
/PR3
/Hg\x/Hg\X/~\X/Hg\PR3 PR3
(15)
with a pentacoordinate mercuryatom, is not entirelysatisfactory, and it my be relevantto these observationsthat a canpoundwhich was thoughtto be [Hg(PMenEt)nC12] has been shown to be a mixtureof this and A crystalstructureof the lattercanpound [IIgCl(P*zEt)~][HgCl~(P&Et)]. The cqlexes [H~LX~]and [BgL2X2](L = PPhB or has been reported[103]. P(cych)3;X = Cl, Br or I) have been investigated; their vibrationalspectra are canpatiblewith the formercanpoundbeing a centrc-synmetric dimer and the latterpossessingpseudetetrahedralsytnnetry [104]. The bidentateligand (N,N-dimethylaminoethyl)diphenylphosphine forms the complex [Hg(LL')C12], in which the mercuryatom is in a slightlydistorted tetrahedral(HgZWCZ2}coordination sphere (16)
[105].
(1‘3)
The reactionof Hg with h&PC1 gives the diphosphinecomplexC(I.JL)H@~~~ (LL = Me2PPMe2),which is polymericwith a high chemicalstability. The crystalstructureof the compoundrevealsthe structureto consistof infinite chainswith bridgingdiphosphineunits (i.e.-Hg-P-P-Hg-P-P-&heating,the ccnnplex gives very pure Me&l,
etc.).
On
whilst the reactionwith CCB]-
gives Me2PH [106]. A numberof 1:l complexesof I&Cl2 with 1-naphthylarsines have been described[107]. 13.2.7
Complexes
with mcrocycZic
tigands
The naturalabundance 1% N&N spectrumof [BgL][c101,]~ (L = c14]an*1,4,8,ll-Bl+) has been reported[108]. The templatereactionsof 6,6'-bishydrazino-2,2'-
377
bipyridinesor 2,9-bishydrazino-l,lO-phenanthrolines with 2,fkliacetylor diformylpyridinein the presenceof Hg(I1) resultsin the formationof macrocycles of type (17) and (18). These macrocycleswere isolatedas mercurycomplexesof the form [H~L]~[H&L+][109,~10,11l].
RNwNR
v
N'
'N
RN
NJR
‘N
R 1”;R
R’ (18; R,R' = R or Me;
(17; R,R' = H or Me) 13.2.8 MisceZZaneous cornptexes
The reactionof a numberof organoplatinum(I1) specieswith Hg(I1) salts has been investigated, and the productof the reactionof (19)with Hg(O$Me)l shown to be the novel bimetalliccanplex,(20). A crystalstructureof the
;e2
Me2
N
bt’ 1;
I’
66
/ OAc
(19) (20)
producthas confirmedthis formulation[112]. Anotherexampleof a species containingan Hg-Pt bond is given in Section13.2.3.1. The reactionof HgTe with excessHg(I1) in H2SOr gives a canplexcation h++Te16’,
which may be convertedto [HgsTeCle] on treatmentwith HCl [113].
13.2.9 AZkyhercury
(II)
complexes
13.2.9.1 HaZide and pseudohaZide The
cornpZexes
reactionof I&Cl2 with LiR (R = 2,4,Gtri-tert-butylphenyl) produces
378
[RR~c~],which is convertedto [RzRg]by the actionof Cu in pyridine[114]. An extensivestudy of the vibrationalspectraof [xR~(cY~)](X = Cl, Br or I; Y = H, F or Cl) system has been reportedand it has been shown that the group Y exertsan inductiveeffectupon the mercuryatan, throughthe o-frameworkof the mlecule [115]. The compounds[XI&R](R = C2H5 or C2D5; X = Cl, Br or I) have been similarlyinvestigated and the resultscmpared with those for [MeHgX][1161. The vibrationalspectraof [RRg(CN)](R = Cl& or CD3) in the solid state and in solutionhave been investigated.In benzene,a new Rman active band appears,which has been interpretedin term of the formationof a chargetransfercanplex [117]. Ah inconclusive13Cand 'H NMR study of partially oriented[MeHgX](X = Cl, Br or I) moleculeson Merck Phase IV has been reported [118]. The reactionof LiD with [RHgcl](R = Ph or Bz) has been investigated, a& numerousproductsisolated[119]. 13.2.9.2 Corqlexeswith oxygen donor Zigands The reactionof [~rHg(o~e)] with H202 producesthe peroxides[ArHg(O,)RgAr],
althoughwith excessH202 some [~rHg(oo~)] is formed;the chemistryof these novel peroxy cmpounds has been discussed[120]. A "C and 'H NMR spectral study of [~Hgl[No~] in the nematicand lyotropicphaseshas been made and, althoughthe structureappearssimilarin each, differencesin J("'Hg-H)were detected[121]. 13.2.9.3 Complexeswith suZphurdonor Zigands [RIQ]' has a high affinityfor thiolateligandsand severalcomplexesof this type have been reported. The formationof a numberof ccmplexesof
be&l+
and the dithiolateligands(211, (22)
(21)
and the structureof [&I&L]
(22)
and
(23)
has been investigated
(23)
{L = (21))reported. The ligandbridgesthe
[berg]units and one of the 8-Rg-Cbonds is greatlydistortedfrcm the linear czmnonlyobservedin [M~II~] cunplexes[122]. g-try The ccmplex [~rHgLl(Ar = 2-hydroxy-Snitrophenyl; HL = Zmercaptopyridine) has been formedfrom the reactionof [ArHgCl]with Z-mercaptopyridine [123].
379
13.2.9.4 CompZexes with nitrogen donor ligands The canplex [kHgL][NOs](L = 2-benzylpyridine) has been reportedand shown
to involvea linearN-Hg-C bond. There is a weak interactionthe methylmercury group and the phenyl 'ring,similarto those observedin [&Hg] cunplexesof tyrosineand 3,3'-!&bipy [124]. The crystalstructureof the ccmplex [M~H~L][NO~] (L = 6-amino-kthyl-9H-purine)has also been reported[125]. The canplexes[&HgL][NOB](L = 4,4',4"-Etsterpy or bis(2-pyridyl)methane) have been described. In the solid state,the terpy is tridentateand the bis(2pyridyl)methane bidentate,but NMR studieshave shown that both ligahdsare bidentatein solution[126]. A range of canplexesof the type [PhHgL],containingnitrogendonor ligands, have ken shown to reactwith SO*, in au insertionreaction,to give the corresponding phenylsulphinate cmplex, [PhSO&&] [127]. The phosphorescence spectraof benzimkia.mle and tryptophaucmplexes of [~k~g] have been repo?tedand a detailedanalysisdescribed[128]. Novel complexeshave been isolatedfrcm the reactionof aminesor pyridineswith [(ArE)HgPh](Ar = Pnitrophenyl;E = S or 0) [129]. The reactionof Li[MeNB&] with [&zHgCl]resultsin the form&ion of [HgNe(MeNEQ&)], whilstHgC12 reacts to give b-k(MeNBMe2)21.Roth these canpoundsare thermallystableand show no tendencyto polymerise[130]. 13.2.9.5 Miscelkzneous Althoughcarrplexes of [R&l
are unccemon,severaleqles
have been reported
this year. The reactionof [RzHg](R = 2-thienylor 2-furyl)with a numberof bidentatedonorswas investigated and, althoughno ccq&xes were isolatedwith bipy, dppe, PhsP or bkSCH,CH,SMe, the a-fury1canpoundgave cunplexeswith 2,4_Me2phenand 2,4,7,9-Me+phen whereasthe 2-thienylcanpoundonly gave canplexeswith the formerreagent [131]. A crystalstructureof [R&&I
(R =
l,l,Ztrichlorovinyl; L = 3,4,7,8-Mesphen) has been reported. The C-Hgx bond is non-linear,with an angle of 165' [132]. The tetrahedralcomplex[R$gL] (R = 3-chloropropynyl; L = phen) has been reportedand a crystalstructure described[133]. The rate of exchangeof mercurybetweenHg 2+and [&~g]+ in aqueoussolution has been studied,using 2D3Hg as a tracer [134]. 13.2.10 Aqueous chemistry of mercury(IIl It has long been known that the aquationof transitionmetal cunplexes[ldL5X12+ (M = Co, Rh, Cr or Ru; X = halogenor pseudohalogen; L = amine)is accelerated by Hg(I1) ions and a speciessuch ~s.[L~M-X-H~]~' has been proposedas the intermediate.Furtherexamplesof this phenaaenonhave been providedby the
380
equationof unsym-fuc-cis[Co(dien)L.&l] 2+ (L = amine) 11351,[C~(NH~)SC~]~+, trans-[Co(en)&12]+ and [ReC1612-,in the presenceof aqueousHg(I1) ions 11361. It was demonstrated that a significantdifferenceexistedbetween [~eCl~l~-and the other complexes[136]. The effectof [MeSO3]-and [PhSO3]-upon the Hg(II)catalysedequationof a numberof cO(II) cqplexes has been reported[l371. The aquationof the two isomericcomplexes(24)
and
(25)
(24)
has been studiedand the
(25)
rate shown to be cctnpatible with an I, mechanism[138]. Evidencefor the existenceof the postulatedLsM-X-Hgintermediates ~XXIES frun the isolationof the canplex [CcO(NH3)5(NcS)}21%][C101i]6 frcm the reaction of [Co(NH3)5(NcS)][C101,]2 with Hg[C10412in HCIO1,[139]. The Hg(II)-catalysed aquationof [Cr(CN)2(H20)3(NO)] has been studiedelectrochemically and [(NO)(H20)3Cr(NCHgCN)PCr.(H20)3(N0)]4+ proposedas an intermsdiate[140]. 2+
The natureof the ionic speciespresentin aqueoussolutionscontainingHg continuesto be of interest,and the ion [Hi]+
has been shown to be
involvedin the hydrolysisof Hg(I1) compoundsin aqueousperchlorate media r1411. This ion is also present,togetherwith aquatedHg2+, [Ham],
bwm3)1+,
in aqueoussolutionscontaining bIgc~3)(m)l- antihz(CO,)~1~-
e2+ and [COs12-[142]. 13.2.11 Mercurycompoundsin inorganicsynthesis Mercury(I1)compoundsare widelyused in organicsynthesisand many examples of such applications have been reportedthis year. The majorityof these are routine,and will not be describedin detailunless they provideexamplesof novel applications, routesto hithertoinaccessible canpounds,or insightinto the mechanismof the reaction. The reactionof alkeneswith a solutionof HgO in H[E%T~] in the presenceof amines leads directlyto the formationof 1,2-diamines, withoutthe need to isolateand demetallatethe organanercury intermediate.The reactionappears to offer considerable premiseas a new syntheticroute to these cunpounds[143]. A numberof other examplesof the acetoxymercuriation of alkenes'with Hg(O&le)p have been reported[144].
381
The mercuriationof arenescontinuesto be of interestand the reactionhas been extendedto ferrociniumand ethylferrocinium trichloroethauoates, which react with Hg(O2CMe)2in a reactionwhich is first order in ferrociniumsalt and in Hg(OZMe)~ [I45]. The mercuriationof axxnaticswith Hg(tfa)2or [Hg(tfa)(ODIe)]appearsto proceedvia a rapidlyformedcomplexand the mechanismof this reactionhas been investigated in considerable detail [146]. The formationof Hg(II)-arenecompoundsin liquidSo2 has been examined[147]. The mercuriationof PhCH=NNHPhwith Hg(O&Me)e in M&&H
occurs exclusively
at the ortho positionof the N-bondedphenyl group,via an interaction with the of the mercuriationreactions imino group [148]. Syntheticapplications includethe use of [RI&K](X = halide)as a carboniumion precursorin Friedel-Crafts reactions. Thus, anisolereactswith m
&IgFSr in the
presenceof a Lewis acid catalystto give a mixtureof ortho and para RoMMecHzderivatives[149]. A new route to the.preparation of arylpiperidines has been developed,based on the Na[Eh,]reductionof the organanercury(I1) cunpounds,(26),formedby
(26)
the reactionof 1,6_heptadienes with anilinesin the presenceof Hg(O&Me)2 rcurio[1501. In a relatedreaction,1,4-diaryl-trans-2,5-bis(bromme methyl)piperazines are formedby treatmentof allylarylamines with mercury(I1) halides [151]. The use of an oxymercuriation-demercuriation sequenceenabled2,6-dimethyl-
16-crown-6(27) to be preparedfran diallylether and tetraethylene glycol,by
(27)
reactionwith Hg(02CMe)2followedby Na[E&] [152]. Cyclopropylepoxidesare ring-openedby Hg(O2CMe)2to'producealkylmercury(I1) ethanoates(28),and a mechanisnhas ,beenproposedfor this reaction[ES]. In contrast,the reaction
382
Me0
(28)
of cyclopropanes with methanolicHg(O$Me)z resultsin the formationof 3methoxypropylmercury(I1) compounds,which may be demercuriated with Na[BHb]or is thoughtto involvealkyl radicals Na[BH(OMe)3].The reductive-demetallation and supportcomes for this fran the isolationof Ewnethoxypentane derivatives on treatmentwith complexhydridesin the presenceof an alkene [154]. Similarly, in AcCH the productis a 3-acetoxymercury(I1) compound,which may be demetallated in high yield by Na[BIL,][155]. The reactionof bis(trifluorcmethyl)ketenes or bis(trifluorcmethyl)ketimines with Hg(O$R)2 gives adductswhich may be deccmposedto give mixed trifluoroethanoyl anhydrides[156]. The conversionof diazoalkenes to acetalsmay be achievedby the use of [RR~X](X = halide). Thus, R'R"CN2reactsto produceRRgCClR'R",which may be thermolytically demetallatedto give R'R"C(OR"')2[157]. AlthoughMe2NNR2 reactswith HgO to give 1,1,4,4_tetramethyltetrazene, &$W=NNh&,
MeNRNH2
gives no MeNHN=NHNMeunder the same conditions[158]. The authorsof this paper stressthat this reaction,and presumablysane similarones, is potentially very hazardous,since 5-1CFJ of Me&
is formed. Organanetallic tribrammethyl
canpoundsact as dibromocarbene precursors,and PhHgCBr3is no exception, reactingwith carbonylcompoundsto producespirooxiranes and PhRgl3r[159]. The alkylchrcmium complex,[~([15]ane-1,4,~12-N4)(H20)]2+, is dealkylated by aqueoussolutionsof Hg2+ or [M~II~]+ [160]. 13.2.22 "'Hg NMR spectroscopic studies The increasingavailability of multinuclear NMR machines,the relatively high naturalabundanceof ?Ig with a nuclearspin I = +,(16.84%)and a receptivitysimilarto that of naturalabundance %, all favourthe use of '%g NMR in the investigation of mercurycunpounds. n%g is observableat 17.9 MHz on a 100 MHz machine,and is thereforewithin the range of most modern multinuclear machines. The quadrupolarnucleus,20'Rg(I = 3/2) is less readily observed(13.2% abundance,receptivitysimilarto 13C,6.60 MHz) and offers no advantageover the more simplystudied '%g nucleus. The canpounds[HgX2](X = Cl, Br, I or CaJ)and [xR~~N]have been investigated and the positionof the ?Ig resonancefound to be very sensitiveto the
383
and the solvent;it was shawn that mere polar temperature, the concentration, solventscauseddecreasedshieldingof the mercurynucleus [161]. The mixed cyanocunplexes [IIH~CN] (X = Cl, Br, I, OAc, 3CN, SPh, SEt, Ph or CF3sO3)have been shown to behave in a similarmanner [162]. The chemicalshift S(?Ig), of Hg(C'N)2 in a wide range of solventshas been investigated[162]. 'l'he %g
NM spectraof a numberof [MeHgL][NOa] (L = substitutedpyridine)
cunplexeshave been reported,and the authorspoint out that, although6('99Hg) is of littlehelp in structureanalysis,the couplingccnstant,J(?Ig-H), may be of more use [163]. The use of ?-IgNW& in determiningthe structureof a numberof phosphine
ccmplexesin solution[102,164]has been discussedearlier. REFERENCES
23 24 25
D.A. Kleier and W.R. Wadt, J. Am. Chem. Sot., 102 (1980) 6909. K. Takahashi and K. Matsuda, Denki Kagaku Oyobi Kogyu Rutsuri Kagaku, 47 (1979) 564. J.P. Benoit, G. Hauret and Y. Luspin, Ferroelectrics, 25 (1980) 1. A.A. Kaplyanskii, S.N. Popov and C. Barta, Magn. Reson. Relat. Phenom.. Proc. Congr. Ampere 20th, (1978,1979) 383. D.T. Meshri, Kirk-Othmer Encycl. Chem. Technol., 3rd Ed., 10 (1980) 763. A. Moraru, I. Julean and F. Pirvu, Timisoara, Ser. Chim., 23 (1978) 80. A. Furuhashi and II. Yokota, Bull. Chem. Sot. Jpn.. 52 (1979) 3753. J.K. Weddell, A.L. Alfred and D. Meyer-stein, J. Inorg. Nucl. Chem., 42 (1980) 219. W.R. Wadt, J. Chem. Phys., 72 (1980) 2469. V.H. Subramanian and P.T. Narasimhan, J. Mol. Struct., 58 (1980) 193. 8. Sengupta and D. Giezendanner, J. Magn. Reson., 38 (1980) 553. V.P. Vasil'ev, E.V. Kozlovskii and A.A. Mokeev, Zh. Neorg. Khim., 25 (1980) 1765. K. Brodersen, K.P. Jensen and G. Thiele, 2. Naturforsch., Teil B: Anorg. Chem., Org. Chem., 35 (1980) 253. T.R. Griffiths and R.A. Anderson, J. Chem. Sot. Dalton Trans., (1980) 209. T.R. Griffiths and R.A. Anderson, J. Chem. Sot. Dalton Trans., (1980) 205.. A. Givan and A. Loewenschuss, J. Chem. Phys., 72 (1980) 3809. P.A.W. Dean, Prog. Inorg. Chem., 24 (1978) 109. V.I. Belevantsev and.B.1. Peshchevitskii, IZV. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, (1979) 1. Zh. Neorg. Khim., 25 (1980) 668. V.I. Belevantsev and B.I. Peshchevitskii, V.I. Belevantsev and I.V. Mironov, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, (1979) 77. II. Poulet and J.P. Mathieu, J. Phys. (Orsay, Fr.), 40 (1979) 1079. 2. Kantarci, N.N. Rahman and D.N. Waters, Proc. Int. Conf. Raman Spectrosc., &th, 2 C1978) 280. A.G. Galinos and P.S. Perlepes, Bull. SOC. Chim. Fr., (1979) 46. A.F. Demiray and W. Brockner, Z. Naturforsch., Teil A, 35 (1980) 103. R.W. Cattrall and H. Daud, J. Inorg. Nucl. Chem., 41 (1979) 1037.
26
II. Sakaguchi,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
H. Ansai
and K. Furuhata,
Fukusokan Kagaku Toronkai Koen
Yoshishu, Igth, (1979) 306. 27
I.Kh. Akopyan
and B.V. Novikov,
Fiz. Tverd. Tela (Leningrad),22 (1980)
590. 28
V. Ramakrishna and G. Satyanandam, Sci., 89 (1980) 49.
Proc.,
Indian Acad. Sci., (Ser.): Chem.
384 29
30 31
32 33
V. Busico and V. Salerno, &z_z. Chim. Ital., 109 (1979) 581. H.J. Berthold, D. Baas, R. Tamme and K. Brodersen, Z. Anorg. AZlg. Chem., 456 (1979) 29. K. Brodersen, K.P. Jensen and G. Thiele, 2. Naturforsch., Teil B: Anorg. Chem., Org. &em., 35 (1980) 259. G.Ya. Okhlobystin, N.T. Berberova and V.B. Panov, Dokl. Akad. Nauk SSSR, 248 (1979) 885. K. Gyoryova and B. Mohai, Zb. CeZostatnej Konf. Term. Anal., 8th, (1979)
235. 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55
B.M. Chadwick, D.A. Long and S.U. Qureshi, J. Mol. Strwt., 63 (1980) 167. P.T.T. Wang, J. Chem. Phys., 72 (1980) 6721. G. Thiele and P. Hifrich, Z. Anorg. AZZg. Chem., 461 (1980) 109. C. Staalhandske, Acta CrystalZogr., Sect. B, 36 (1980) 23. J.M. Singh and S.N. Tandon, J. Inorg. Nucl. Chem., 41 (1979) 897. V.I. Sokolov, A.A. Musaev and G.Z. Suleimanov, IZV. Akad. Nauk SSSR, Ser. Khim., (1980) 1177. V.V. Panevchik and I.A. Shingel, Tezisy DokZ.-Resp. Konf. MoZodykh Uch.Khim., 2nd, 2 (1977) 40. C. Natarajan and R. Rengasamy, Indian J. Chem., Sect. A, 18 (1979) 356. J. Majer, E. Riecanska and Z. Pikulikova, Chem. ZVeSti, 34 (1980) 93. V.I. Korner and V.A. Valyaeva, Koord. Khim., 6 (1980) 996. V.I. Korner and V.A. Valyaeva, Koord. Khim. 6 (1980) 48. Yu.M. Kozlov and V.A. Babich, Zh. Obsch. Khim., 50 (1980) 1116. L. Latos-Grazynski, PoZ. J. Chem., 53 (1979) 2189. R.R. Curson, N. Herron and P. Moore, J. Chem. Sot., Dalton Trans., (1980) 721. I.J. Sallomi and A.M. Al-Daher, J. Inorg. NueZ. Chem., 41 (1979) 1608. M.M. Mostafa, S.M. Hassan and A.A. El-Asmy, J. Indian Chem. SOC., 57 (1980) 127. C. Airoldi, A.P. Chagas and F.P. Assuncao, J. Chem. Sot., Dalton Trans., (1980) 1823. J:de A. Simoni, C. Airoldi and A.P. Chagas, J. Chem. Sot., Dalton Trans., (1980) 156. V.I. Boev and A.V. Dombrovskii, Zh. Obshch. Khim., 49 (1979) 2505. G. Wulfsberg and A. Weiss, Ber. Bunsenges. Phys. Chem., 84 (1980) 474. I. Zuika, Yu.A. Bankovskii and Yu.G. Borodkin, Koord. Khim., 5 (1979) 1765. F. Capitan, F. Salinas and L.F. Capitan-Vallvey, Bull. See. Chim. Fr.,
(1979) 185. 56 57 58 59 60 61 62 63 64 65 66 67 68 69
70 71
A. Tersis, J.B. Faught and G. Ponskoulelis, Inorg. Chem., 19 (1980) 1060. P. Llopiz and J.C. Maire, Bull. See. Chim. Fr., (1979) 457. C. Chieh and K.J. Moynihan, Acta CrystaZlogr., Sect. B, 36 (1980) 1367. V. Novak, M. Svicekova, E. Dvorakova and J. Majer, Chem. Zvesti, 34 (1980) 73. L. Book and C. Chieh, Acta Crysta'Ylogr., Sect. B, 36 (1980) 300. J.S. Casas and M.M. Jones, J. Inorg. NucZ. Chem., 42 (1980) 99. A.M. Kiwan, A.Y. Kassim and H.M. Maarafi, Cim. Spee. Vol., (1979) 21. N.B. Behrens and D.M.L. Goodgame, Inorg. Chim. Acta, 46 (1980) 45. H.O. Desseyn, A.J. Aarts and E. Esmans, Spectrochim. Acta, Part A, 35 (1979) 1203. A.C. Fabretti and G.C. Franchini, Speetroehim. Aeta, Part A, 35 (1979) 1009. 8. Singh and D.K. Sharma, J. Indian Chem. Sot., 56 (1979) 764. B.B. Mahaptra, A. Panda and M.C. Yisra, J. Inst. Chem. (India), 52 (1980) 121. S.K. Tiwari and D.P.S. Rathore, Natl. Acad. Sei. Lett. (India), 2 (1979) 293. B.B. Mahaptra, A. Panda and S.S. Dash, J. Indian Chem. Soc., 57 (1980) 341. D.M.L. Goodgame, I. Jeeves and G.A. Leach, Inorg. Chim. Aeta, 38 (1980) 247. R. Battistueai and G. Peyronel, Spectrochim. Acta, Part A, 36 (1980) 113.
385
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 so 91 92 93 94 95
96 97 98 99
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
D.M.L. Goodgame and G.A. Leach, Inorg. Chim. Acta, 37 (1979) L505. V.I. Boev and A.V. Dombrovskii, Zh. Obshch. Khim., 49 (1979) 2505. R.P. Wisra, B.B. Mohapatra and S. Guru, J. India?xChem. SOC., 56 (1979) 832. G. Gattow and B. Sturm, 2. Anorg. Allg. Chem., 463 (1980) 167. P.P. Singh and S.K. Srivastava, Indian J. Chem., Sect. A, 18 (1979) 448. P.P. Singh and N. Singh, J. Coo&. Chem., 9 (1979) 197. II.Weber, Reel. Trav. Chim. Pays-Bas., 99 (1980) 237. R. Weber, 2. Anorg. Allg. Chem., 466 (1980) 237. V.I. Boev and A.V. Dombrovskii, Zh. Obshch. Khim., 49 (1979) 2505. A. Albinati, S.V. Yeille and F. Cariati, Inorg. Chim. Acta, 38 (1980) 221. A.M. Shallaby, M.M. Mostafa and H.Y. Bekheit, Indian J. Chem., Sect. A, 17 (1979) 516. E.W. Abel and S.A. Mucklejohn, Inorg. Chim. Acta, 37 (1979) 107. 0. Bandifelli and A.L. Bandini, Synth. React. Inorg. Met.-Org. Chem., 9 (1979) 539. 1.8. Ahuja and R. Singh, Indian J. Chem., Part. A, 19 (1980) 174. I.S. Ahuja, R. Singh and R. Sriramulu, Spectrochim. Acta, Part A, 36 (1980) 383. J.L. Colin and J. Pinart, Bull. SOC. Chim. Fr.. (1979) 7. N.A. Bell, M. Goldstein and T. Jones, Acta Crystallogr., Sect. B, 36 (1980) 710. G.V. Rubenacker and T.L. Brown, Inorg. Chem., 19 (1980) 392. M.K. Alyavirya and R.S. Rpepaeva, Uzb. Khim. Zh., (1979) 57. 1.8. Ahuja and R. Singh, Inorg. Chim. Acta, 44 (1980) L179. R. Singh and 1.9. Ahuja, Transition Met. Chem., (Veinheim, Ger.), 5 (1980) 206. A. Furuhashi and II.Yokota, Bull. Chem. Sot. Jpn., 52 (1979) 3753. J.D. Ortego, 5. Upalawanna and 8. Amanollahi, J. Inorg. Nud. Chem.;41 (1979) 593. M.R. Udupa and 8. Krebs, Inorg. Chim. Acta, 40 (1980) 161. G.B. Deacon, C.L. Raston and D. Tunaley, Aust. J. Chem., 32 (1979) 2195. D. Grdenic, B. Kamenar and A. Hergold-Brundic, Croat. Chem. Acta. 52 (1979) 339. I.S. Ahuja, R. Sriramulu and R. Singh, Indian J. Chem., Sect. A, 18 (1979) 188. L.G. Marzilla, B. de Castro, J.P. Caradonna, R.C. Stewart and C.P. Van Vuuren, J. Am. Chem. Sot., 102 (1980) 916. E.C. Alyea, S.A. Dias and G. Ferguson, Inorg. Chim. Acta, 37 (1979) 45. V.I. Boev and A.V. Dombrovskii, Zh. Obshch. Ifhim.,49 (1979) 2505. P.L. Goggin, R.J. Goodfellow and D.M. McEwan, Inorg. Chim. Acta, 44 (1980) Llll. N.A. Bell, M. Goldstein and T. Jones, Acta Crystallogr., Sect. B, 36 (198b) 708. T. Allman, R.G. Goel and P. Pilon, Spectrochim. Acta, Part A, 35 (1979) 923. P.K. Sen Gupta, L.W. Houk and D. Van der Helm, Inorg. Chim. Acta, 44 (1980) L235. F. See1 and H.W. Heyer, 2. Anorg. Allg. Chem., 456 (1979) 217. R.D. Gigauri and B.D. Chernok'alskii,Soobshch. Akad. Nauk Gruz. SSR, 95 (1979) 329. R.H. Curzon, N. Herron and P. Moore, J. Chem. Sot., Dalton Trans., (1980) 271. J. Lewis and T.D. O'Donoghue, J. Chem. Sot., Dalton Trans., (1980) 741. J. Lewis and T.D. O'Donoghue, J. Chem. Sot., Dalton Trans., (1980) 736. J. Lewis, T.D. O'Donoghue, Z.P. Hague and P.A. Tasker, J. Chem. Sot.,. Dalton Trans., (1980) 1664. A.F.M.J. Van der Ploeg, 0. Van Koten, K. Vrieae, A.L. Spek and A.J.H. Duisenberg, J. Chem. Sot., Chem. Commun.,(1980) 469. G. Aravamudan and P.N. Venkatasubramanian,Z. Anorg. Allg. Chem., 457 (1979) 238. J.C. Huffmann, W.A. Hugent and J.K. Eochi, Inorg. Chem.. 19 (1980) 2749. _
386 115 116 117 118 119 120 121 122 123 124 125 126 127
Y. Rase, An. Acad. Bras. Cienc.,-51 (1979) 623. J. Mink and P.L. Goggin, J. Organomet. Ckem., 185 (1980) 129. Y. Imai and K. Aida, J. Inorg. NucZ. Ckem., 41 (1979) 963. K. Raisanen, J. Kuonanoja and J. Jokisaari, Mot. PhyS., 38 (1079) 1307. L.I. Lyadkova-Kacheva and A.A. Lavrent'ev, Kkim. Elementoorg. Soedin., (1978) 23. S.D. Lyshenko, O.S. Morosov and Yu.A. Aleksandrov, DOkl. Akad. Nauk SSSR, 248 (1979) 883. J. Jokisaari, K. Raisanen, J. Kuonanoja and P. Pyykko, Mol. Pkys., 39 (1980) 715. N.W. Alcock, P.A. Lampe and P. Moore, J. Ckem. Sot., Dalton Trans., (1980) 607. S.B. Baines and K. Brocklehurst, Biockem. J., 179 (1979) 701. A.J. Carty and N. Chaichit, Acta Crystallogr., Sect. B, 36 (1980) 786. hi. J. Olivier and A.L. Beauchamp, Inorg, Ckem., 19 (1980) 1064. A.J. Carty, G. Hayhurst, N. Chaichit and B.M. Gatehouse, J. Ckem. SOC., Ckem. ConomLn., (1980) 316. S.K. Pandit, S. Gopinathan and C. Gopinathan, J. Less-Common Met., 65
(1979) 229. 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
R.R. Anderson and A.H. Maki, J. Am. Ckem. SOC., 102 (1980) 163. V.L. Beloboradov, Deposited Doe., (1978) VINITI 1805-78,247. H. Fussstetter and H. Noeth, Ckem. Ber., 113 (1980) 791. N.A. Bell and R.M. King, J. Organomet. Ckem., 179 (1979) 133. N.A. Bell and I.W. Nowell, Acta Crystazlogr., Sect.B, 36 (1980) 447. E. Gutierrez-Puebla, A. Vegas and S. Garcia-Blanco, CrySt. Struck. COt?mtUn Commun., 8 (1979) 861. C.H. Gast and H.A. Das, J. Radioanal. Ckem., 57 (1980) 401. F.C. Ha and D.A. House, Inorg. Ckim. Acta, 38 (1980) 167. M.J. Blandamer, J. Burgess and R.I. Iiaines, J. Ckem. Sot., Dalton Trans., (1980) 607. hf. Iida and H. Yamatera, Ckem. Lett., (1980) 693. A.C. Dash, M.S. Dash and S.K. Mohapatra, J. Ckem. Res., $p’zOp., (1979) 354. A. Pfeil, T.P. Dasgupta, D.A. Palmer and Ii. Kelm, Inorg. Ckim. Acta,
44 (1980) L23. M. Rievaj, D. Bustin, J. 7tk, (1978) 203.
Mocak
and J. Labuda,
Proc. Conf. Coord. Ckem.,
L. Ciavatta, D. Ferri and M. Grimaldi, Ann. Ckim. (Rome), 69 (1979) 463. H. Bilinski, M. Markovic and hi. Gessner, Inorg. Ckem., 19 (1980) 3440. J. Barluenga and L. Alonso-Cires, Synthesis, (1979) 962. S.A. Lermontov, Deposited Doe., (1978) VINITI 1805-78,43. B. Floris and G. Illuminati, Gazz. Ckim. Ital., 109 (1979) 335. C.W. Fung and M. Khorramdel-Vahed, J. Ckem. Sot;, Perkin Trans. 2, (1980) 267. L.C. Damude and P.A.W. Dean, J. Gryanomet. Ckem., 181 (1979) 1. R.N. Butler and A.M. O'Donohue, J. Ckem. Sot., Perkin Trans. 2, (1979)
1387. 149 150 151 152 153 154 155 156 157 158
A.M. Mastral and J. Barluenga, Afinidad, 36 (1979) 401. J. Barluenga and C. Najera, Synthesis, (1979) 896. J. Barluenga, C. Najera and I.M. Yus, J. HeteroeycZ. Ckem., 16 (1979) 1017. A.J. Bloodworth, D.J. Lapham and R.A. Savva, J. Chem. Sot., Ckem. Connun., (1980) 925. J.A. Donelly, J.M. Fox and J.G. Iioey, J. Ckem. Sot., Perkin Trans. I, (1979) 2629. B. Giese and W. Zwick, Ckem. Ber., 112 (1979) 3766. Yu.S. Shabarov, S.G. Bandaev and Z.A. Kobilov, Zk. Org. Kkim., 16 (1980) 886. I.L. Knunyants, E.M. Rokhlin and A.Yu. Volkonskii, IZV. Akad. Nauk SSSR, Ser. Kkim., (1979) 1831. J. Barluenga and P.J. Csmpos, Synthesis, (1979) 893. H.H. Sisler, M.A. Mathur and S.R. Jain, J. Org. Ckem., 45 (1980) 1329.
381 159 160 161 162 163 164
J. Iqbal and I. Rahmau, Chem. Ind. ILondon), (1980) 198. G.J. Samuel6 and J.H. Espenson, IYZorg. Chem., 19 (1980) 233. p. peringer, Inorg. Chim. Acta, 39 (1980) 67. P. peringer, Inorg. NucZ. Chem. Lett., 16 (1980) 205. A.J. Carty, J. Organomet. Chem., 179 (1979) 447. R. Colton and D. Dakternieks, Aust. J. Chem., 33 (1980) 955.