Modeling the potential impact of climate change in northern Mexico using two environmental indicators

Modeling the potential impact of climate change in northern Mexico using two environmental indicators

Atmósfera 26(4), 479-498 (2013) Modeling the potential impact of climate change in northern Mexico using two environmental indicators A. LÓPEZ SANTOS...

2MB Sizes 0 Downloads 56 Views

Atmósfera 26(4), 479-498 (2013)

Modeling the potential impact of climate change in northern Mexico using two environmental indicators A. LÓPEZ SANTOS Unidad Regional Universitaria de Zonas Áridas, Universidad Autónoma Chapingo, Apartado Postal 8, 35230 Bermejillo, Durango, México Miembro de la Red Temática del Agua del CONACyT Corresponding author; e-mail: [email protected] J. PINTO ESPINOZA Instituto Tecnológico de Durango, Blvd. Felipe Pescador 1830 Ote., Col. Nueva Vizcaya, 34080 Durango, Durango, México E. M. RAMÍREZ LÓPEZ Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, 20131 Aguascalientes, Aguascalientes, México M. A. MARTÍNEZ PRADO Instituto Tecnológico de Durango, Blvd. Felipe Pescador 1830 Ote., Col. Nueva Vizcaya, 34080 Durango, Durango, México Received June 4, 2012; accepted May 28, 2013 RESUMEN La modelación de impactos locales, caracterizados por deterioro de los recursos naturales –especialmente agua y suelo– ante los efectos globales del cambio climático, se ha convertido en una poderosa herramienta en la búsqueda de medidas de mitigación y adaptación. Los objetivos de la presente investigación fueron: 1) evaluar mediante procesos de modelación el impacto potencial del cambio climático para el periodo 2010\ DGYHUWLUVREUHULHVJRVIXWXURVDSDUWLUGHODLGHQWL¿FDFLyQGHIRU]DQWHVUDGLDWLYRVORFDOHVRiUHDV críticas, considerando el índice de aridez (IA) y erosión laminar del suelo causada por el viento (ELV) como dos indicadores de calidad ambiental. Se usaron técnicas de evaluación de los recursos naturales empleadas por el Instituto Nacional de Ecología y Cambio Climático (INECC) para los estudios de ordenamiento ecológico territorial. Los insumos empleados comprenden información climática actual y futura, cubiertas GHVXHORV\SURSLHGDGHVHGi¿FDVDVRFLDGDVDOPXQLFLSLRGH*yPH]3DODFLR'XUDQJR0p[LFR ž1\ ž: /RVFiOFXORVUHDOL]DGRVDSDUWLUGHODVDQRPDOtDVSDUDORVSURPHGLRVDQXDOHVGHSUHFLSLWDFLyQ\ WHPSHUDWXUDLQGLFDQTXHHOWHUULWRULRPXQLFLSDOHQHOHVFHQDULR$SRGUtDWHQHUXQLPSDFWRSURPHGLRGH causado por la ELV, en tanto que el IA probablemente cambie su promedio histórico de 9.3 a 8.7; se estima TXHHOLPSDFWRSURPHGLRVREUHHVWHtQGLFHHQHOIXWXURVHUiGH“ ABSTRACT Modeling the deterioration of natural resources, especially water and soil that results from the global effects of climate change has become a powerful tool in the search for mitigation and adaptation measures. The objectives of this research were: (1) to model the potential impact of climate change for the period 20102039, and (2) to offer advice about future risks based on local radiative forcing or critical areas and taking LQWRDFFRXQWWZRLQGLFDWRUVRIHQYLURQPHQWDOTXDOLW\WKHDULGLW\LQGH[ $, DQGODPLQDUZLQGHURVLRQ /:( .

480

A. López Santos et al.

Evaluation techniques for natural resources, similar to those applied by the Instituto Nacional de Ecología y Cambio Climático (National Institute of Ecology and Climate Change) were used for studies of ecological land use. The inputs include climate information (current and future), soil cover and edaphic properties UHODWHGWRWKHPXQLFLSDOLW\RI*yPH]3DODFLR'XUDQJR0H[LFR ž1ž: . According to calculations estimated from the anomalies for the mean annual rainfall and mean annual temperature, in a IXWXUHFOLPDWHFKDQJHVFHQDULRDQDYHUDJHLPSDFWRIDSSUR[LPDWHO\ZRXOGEHFDXVHGE\/:(DQGWKH AI would change from its historical value of 9.3 to 8.7. It is estimated that the average impact on the AI in WKHIXWXUHZLOOEH“ Keywords: Climate scenarios, modeling, ecological zoning.

1. Introduction In less than a decade, modeling climate processes to assess the deterioration of natural resources has become a powerful tool for determining trends, esSHFLDOO\IRUZDWHUDQGVRLO
critical areas and taking into account two indicators of environmental quality, the aridity index (AI) and soil erosion. 2. Methodology 2.1 Study area, characteristics and location *yPH]3DODFLRLVRQHRIWKHPXQLFLSDOLWLHVRI the state of Durango. It has an area of 842.32 km2, DQGLWLVORFDWHG ž1ž: LQDJHRgraphical-ecological region known as the Bolsón de Mapimí. This region presents a climate gradient from south to north, ranging from dry (BSohw) to YHU\GU\ %:KZ 7KHDQQXDODYHUDJHWHPSHUDWXUH YDULHVIURPWRž&DQGWKHPHDQDQQXDOUDLQIDOOLVDSSUR[LPDWHO\PP *DUFtD 2QH of its salient characteristics is that approximately  RI WKH WHUULWRU\ LV XVHG IRU DJULFXOWXUH ZLWK irrigation, as is favored by its topography (slope <  WKHUHPDLQLQJFRUUHVSRQGVWRXUEDQDQG rural (Fig. 1). 2.2 Study baseline and indicators of environmental quality (IQA) The baseline or reference for this study were the conditions of 2010, which serve as a basis for comparison to assess the impact of climate change on a 30-year (2010-2039) time horizon. The environmental characteristics chosen as indicators were the laminar wind HURVLRQ /:( DQG$,WKH¿UVWDVWKHORVVRIVRLOGXH to the wind action on the soil surface, and the second as drought stress. Each is directly correlated with the changes under future scenarios for temperature and rainfall, as described by Magaña et al. (2012) for the northeast of Mexico. 2.3 IQA modeling and input data 7KHPRGHOLQJRIWKH,4$/:(DQG$,ZDVGHYHORSHGWKURXJKWZRWHFKQLTXHV  IRUWKH/:(LQGLFD-

Modeling the potential impact of climate change

644000

636000

644000

652000

660000

668000

652000

660000

668000

2856000 2848000

2848000

2832000

2832000

2840000

2840000

UTM

2856000

2864000

2864000

636000

481

UTM

Bolsón de Mapimí

Legend Municipal limit

Tlahualilo

Railroad Road

Mapimí Gómez Palacio

Scale 22800

Lerdo

Meters

)LJ*HRJUDSKLFDOORFDWLRQDQGWRSRJUDSKLFIHDWXUHVRIWKHPXQLFLSDOLW\RI*yPH]3DODFLR'XUDQJR0H[LFR

tor, the loss of soil in t ha–1 yr–1 was estimated based on the methodology proposed by INE (1998) for studies of ecological-use zoning, and (2) AI was determined by the De Martonne’s aridity index, which has been used by Mercado-Mancera et al. (2010) as DQHVWLPDWRURIWKHDULGLW\DQGGHVHUWL¿FDWLRQLQDULG land in northwestern Mexico. The input for the baseline year modeling was the historical data set of weather from the Servicio 0HWHRUROyJLFR 1DFLRQDO 601 1DWLRQDO :HDWKHU

Service), as well as measurements related to the biotic physical environment such as topography, soil and vegetation. Meanwhile, to assess the potential impact on the IQA by future scenarios (2010-2039), projections (metadata) for regional climate change of Mexico were downloaded (INE-SEMARNAT, 2011). These data were generated by downscaling WKHUHVXOWVRIWKHJOREDOFLUFXODWLRQPRGHOV *&0  used in the Fourth Assessment Report of the IPCC in 2007 (IPCC, 2008).

A. López Santos et al.

482

2.4 Meaning and process for determining LWE 7KH /:( DV DQ HQYLURQPHQWDO TXDOLW\ LQGH[ UHSresents the magnitude (t ha–1 yr–1) of soil loss by wind, which theoretically is incorporated as an additional burden at different heights in the atmosphere. In the lower layer, the air carrying soil has direct effects on human health because it is the layer of air that people breathe. Such impacts can reach many kilometers from where it is produced, affecting both rural and urban areas. &DOFXODWLQJWKHEDVHOLQH/:( IRU EHJDQ with the determination of the dominant environmental factors in erosion, the action of water or wind. The values depend on indices related to edaphic properties (CATEX, Spanish acronym), use of soil (CAUSO, Spanish acronym), susceptibility of soil to erosion (CAERO, Spanish acronym) and topographical conditions (CATOP, Spanish acronym), which apply according to the predominant process in the erosion. The basis for the calculation of the erosion rates is in both cases (water or wind) related to the availability of humidity as a result of the presence of rain > 10 mm. Therefore, the mean annual rainfall (MAR) was determined to estimate the rain aggressiveness LQGH[ 5$, DQGZLQGDJJUHVVLYHQHVVLQGH[ :$,  Both indices depend on MAR, which determines WKHJURZWKSHULRG *523( GH¿QHGDVWKHQXPEHU of days per year with availability of water and temperatures conducive to the development of a crop. 7KLV*523(LQGH[KDVEHHQVXFFHVVIXOO\XVHGE\ Monterroso et al. (2011) in a recent study in which they assess the impact of climate change on rain-fed maize in Mexico (Fig. 2). 7KH¿UVWVWHSRIWKLVSURFHVVZDVWRPDNH]RQLQJ PDSVIRUWKH5$,DQG:$,ZKLFKZHUHFDOFXODWHG

using digitalization processes (interpolation, reclasVL¿FDWLRQDQGUDVWHU֐YHFWRU LQ$UF*LV (65,  according to the following equations: *523(   0$5 ± (MAR)2 – 33.1019

(1)

5$,   *523( ±



:$, ±  *523( 



There are three rules for determining the dominant factor in soil erosion: (1) if the value of the RAI is JUHDWHUWKDQ ! LWLVFRQVLGHUHGD]RQHRILQÀXHQFHIRUWKHVWXG\RIZDWHUHURVLRQ  LIWKHYDOXH RIWKH:$,LVJUHDWHUWKDQ ! LWLVFRQVLGHUHG D]RQHRILQÀXHQFHIRUWKHVWXG\RIZLQGHURVLRQDQG (3) if both factors reach the threshold values, then the magnitude of erosion is calculated separately, or without erosion. In accordance with these decision rules, the applied analysis (Fig. 2) determined that laminar water HURVLRQLQQRWGRPLQDQWLQWKHWRZQRI*yPH]3DODcio, so this part of the methodology only describes the procedure to determine the magnitude and distribution of laminar soil erosion by wind. To calculate /:(LQWKD–1 yr–1, the following equation was used: /:( :$, &$7(; &$862

2.5 Aridity index as a drought indicator De Martonne’s AI has been used to characterize climate and indicate drought (Mercado-Mancera et al., 2010). For this study, the following expression was applied:

RAI (Eq 2)

Index (>50)

Water erosion Defining areas by type of erosion



Zoning Maps

GROPE (Eq 1) Wind erosion

Index (>20)

WAI (Eq 3)

Fig. 2. Flowchart of zoning maps for the generation of aggressiveness indices IRUUDLQ 5$, DQGZLQG :$, 

Modeling the potential impact of climate change



:KHUH$,LVWKHDULGLW\LQGH[ZKLFKWDNHVGLPHQVLRQOHVVYDOXHVEHWZHHQDQG!0$5LVWKHPHDQ annual rain from historical records and the A2 scenario; MAT is the mean annual temperature from historical records and the A2 scenario; and 10 is a constant value derived from De Martonne’s model (Table I). Table I. De Martonne’s aridity index. AI value   10-20 20-30  !

&ODVVL¿FDWLRQ Desert (hyperarid) Semi-desert (arid) Semiarid Mediterranean type Subhumid :HW Perwet

Source: http://www.miliarium.com/prontuario/MedioAmbiente/Atmosfera/IndicesClima.htm#De_Martonne.

2.6 Origin and management of climate data 'DWDIURPZHDWKHUVWDWLRQV :6 ZHUHXVHG from the SMN and one from the Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP, National Institute for Forestry, Agricultural and Livestock Research), located at the northern region of the municipality. All of them fell within a UDGLXVRIDSSUR[LPDWHO\NP)RXU:6FRUUHVSRQG WR WKH VWDWH RI &RDKXLOD :6 ,' QXPEHUV  DQG DQGWKHRWKHUQLQHWRWKHVWDWH of Durango. The metadata for the future scenarios are in this coverage as well (Fig. 3). 2.7 Indices related to edaphic properties and land use: CATEX and CAUSO The estimated values of the indices CATEX and CAU62IRUWKHPXQLFLSDOLW\RI*yPH]3DODFLRZHUHFUHDWHG by manipulating the attribute tables of vector data sets containing the CATEX index. The indices were calculated according to matching criteria between the type RIVRLOVXVHGLQ0H[LFRE\,1(*,LQWKHFDUWRJUDSKLF

ºW

Coordinates y x

Height m 1136

10085

Presa Cuije

103.300

25.700

1116

5028 5029

Presa Guadalupe Presa La Flor

103.230 103.350

25.767 25.083

1112 1276

10004

Presa de Fernández

103.750

25.283

1360

10009

Cd. Lerdo (SMN)

103.520

25.533

1135

10045

Mapimí (km 29)

103.850

25.817

1325

10055

Pedriceñas

103.750

25.083

1330

10108 10140

Cd. Lerdo (DGE) La Cadena

103.370 104.167

25.500 25.533

1139 2230

10049

Nazas

104.117

25.233

1264

10085

Tlahualilo

103.483

26.168

1096

CNID-RASPA

103.476

25.886

1140

Tlahualilo

26

Col. Torreón Jardín

5027

COAHUILA STATE

Mapimí 26

5006

--- degrees --103.400 25.533

NOR

DURANGO STATE

10045 Gómez Palacio

5028

5027

25.5

WS Name

103

103.5 N

Weather stations (WS) selected to characterize the climate of Gomez Palacio Id WS

104

ºN

MAR  10 + MAT

Lerdo 10009

10140

NOR 5006 25.5

AI =

483

10108

Id WS= Identification key for WS; Coord= Coordinate; NOR = Not oficially registered in the WS-SMN.

Nazas

10004

10049 Leyend WS, Id number Node scenarios GP, municipality

5029 25

Municipal limit

S. Bolivar

10055 25

Note: WS and nodes distributed every 50 km for Future Scenarios 2010-2039.

Cuencame 104

)LJ,QWHJUDWLRQRIVHOHFWHG:6601DQGWKHLUJHRJUDSKLFDOORFDWLRQ

103.5

103

A. López Santos et al.

484

Table II. CATEX and CAUSO indexes. CATEX

TCPP

&,1(*,

CAUSO

Category and use

   0.87

1 2 3 SPB

Coarse Medium Fine 33*

0.70 0.20  0.30

C1, rainfed agriculture C2, irrigated agriculture C3, scrubland C4, grassland

TCPP: Textural class and physical phase; SPB: Stony phase or burdensome; &,1(*,7H[WXUDOFODVVDFFRUGLQJWR,1(*,

series I and II. Series I was elaborated based on the VRLOV FODVVL¿FDWLRQ GHYHORSHG E\ )$281(6&2 LQ  DQG PRGL¿HG E\ &(7(1$/ LQ  .UDVLOnikov et al 6HULHV,,ZDVEDVHGRQWKH:RUOG Reference Base for Soils (FAO-ISRIC-ISSS, 1998). The soils of the municipality are almost entirely of FDOFDUHRXVRULJLQVRZHVHOHFWHGWH[WXUHTXDOL¿FDWLRQ and physical phase. The CAUSO index, associated with the distribution and abundance of vegetation, was HVWLPDWHGEDVHGRQWKHLGHQWL¿FDWLRQRIIRXUYHJHWDWLRQ groups, as well as the land dedicated to agricultural use and under irrigation (Table II). 2.8 Metadata for regionalized climate scenarios (2010-2039) to determine the LWE To assess the climate changes, metadata were downloaded from the SEMARNAT-INE website (http:// zimbra.ine.gob.mx/escenarios/) corresponding to MAT and MAR for three future scenarios: A2, A1B and B1 for the 2010-2039 period. In the original metadata, each RQHKDVDVSHFL¿FIRUPDWUDLQDQRPDOLHVDUHLQSHUFHQW and the temperature is in degrees Celsius (Table III). The climatic future scenarios produced by Magaña and Caetano (2007), with anomalies for rain and temperature (shown in Table III), are the result of numerous experiments based on the 24 *&0SURSRVHGE\WKH,3&&,QIDFWWKLVZRUNLVWKH RULJLQRI*+*HPLVVLRQOLQHV ,3&& ZKRVH characteristics are as follows: Scenario A1: Assumes a very rapid global economic growth, up to doubling the world population by mid-century, and the rapid introduction of new and PRUHHI¿FLHQWWHFKQRORJLHV,WLVGLYLGHGLQWRWKUHH JURXSVZKLFKUHÀHFWWKUHHDOWHUQDWLYHGLUHFWLRQVIRU technological change: intensive fossil fuels (A1FI), non-fossil energy (A1T), and a balance between the various energy sources (A1B). Scenario B1: Describes a convergent world with the same population as A1 but with a more rapid

evolution of economic structures toward a service and information economy. Scenario A2: Describes a very heterogeneous world with strong population growth and both slow economic development and technological change. 2.9 Geostatistical analysis and assessing impact The impact analysis of future climate variability in rainfall and temperature began with the creation of a projected layer (shp), according to the locations (x, y) of the weather stations. The data were interpolated for each of the variables included in the study (zi), XVLQJDQLQYHUVHGLVWDQFHZHLJKWHG ,': PHWKRG in ArcMap 10 (ESRI), the same method used by .DUDFD  7KH¿UVWSURGXFWRIWKLVSURFHVVZDV the creation of a raster layer adjusted to maximum and minimum extreme values. The second product was a change of the properties of the statistical and pixel raster image in tree classes for calculating the changes from historic or current data to the future VFHQDULRV1H[WZHFRQYHUWHGWKHFODVVL¿HGUDVWHU image to a vector format, from which it was possible to determine the surface terms most impacted. 3. Results and discussion 7KH :6 GDWD VHW VKRZQ DERYH 7DEOH ,,,  ZDV calculated for each variable; for the mean annual rainfall, percent anomalies were subtracted, and for the temperatures, the anomaly value was directly added. The percentage anomalies for both MAR and MAT were very similar among the three future scenarios described by Magaña and Caetano (2007), A2, A1B and B1. Therefore, this single study focused only on local impacts of the A2 scenario. 3.1 Analysis of the MAR impact The values in Table IV, which compares the projected 0$5WRWKHKLVWRULF +0$5 DUHFRQVLVWHQWZLWK WKH PD[LPXP  PP  DQG PLQLPXP UDLQIDOOV

7DEOH,,,+0$5DQG+0$7DQGDQRPDOLHVUHJLRQDOL]HGIRU0H[LFRIRUWKUHHIXWXUHVFHQDULRVRIWKHSHULRG Coordinates :6,G

:6QDPH

/RQJ:

Lat. N

    10004 10009   10108 10140 10049  NOR

Col. Torreón Jardín Presa Cuije 3UHVD*XDGDOXSH Presa La Flor Cañón de Fernández Cd. Lerdo (SMN) Mapimí (km 29) Pedriceñas &G/HUGR '*( La Cadena Nazas Tlahualilo CENID-RASPA

103.4 103.3 103.23      103.37  104.117 103.483 

             Aver. Stdev

  1112     1330 1139 2230   1127 1280 301

 194 203.3 280.3 320.4  320.1  270.1 274.2 348.9    

Anomaly A2

A1B

B1

MAT +0$7

 ± –3.32 –3.32 ± –3.98 –2.98 –2.98 –3.98 ± ± –2.81 ± –3.32 ± 

–3.08 –3.08 –3.08 –2.87 –3.94 ± ± –3.94 –2.87 –2.84 ± –2.12 –3.07 ± 

Anomaly A2

A1B

B1

   0.929     0.929 0.973  0.92  0.933 

0.838 0.838 0.838   0.823 0.823   0.834  0.827 0.838  0.007

ž& –2.79 –2.79 –2.79 –2.94 ± –2.24 –2.24 ± –2.94 –2.73 ± –2.74 –2.78 –2.84 0.44

22 21.9  20.9 22.1 21 19.3  21 21.2 20.3   20.9 

          0.883    0.008

Modeling the potential impact of climate change

Degrees

MAR Elevation +0$5 m mm

:6,G:HDWKHUVWDWLRQNH\$YHU$YHUDJH6WGHY6WDQGDUGGHYLDWLRQ1251RWRI¿FLDOO\UHJLVWHUHGLQWKH:6601+0$5+LVWRULF IRUPHDQDQQXDOUDLQIDOO+0$7+LVWRULFIRUPHDQDQQXDOWHPSHUDWXUH

485

A. López Santos et al.

486

Table IV. The relative impact (RI) on MAR in the future scenario A2. MAR Range

+LVWRULF +0$5

Impact

Scenario A2 (MARScA2)

ACh +0$5±0$5ScA2)

mm Lower Upper Average

202.9  

  237.4

 9 

RI  3.2 3.13 

0$50HDQDQQXDOUDLQIDOO$&K$EVROXWHFKDQJH5, $&K+0$5 

 PP  LQ WKH  :6 LQFOXGHG LQ WKH SUHVHQW study. For the future scenario A2 (MARScA2), which is given by subtracting the average negative anomalies, WKHORZHUOLPLW PP LVPRUHDIIHFWHGZLWKD OLNHO\GHFUHDVHRIPPSHU\HDU &RPSDUHGWR+0$5, in the MARScA2, the impact of such anomalies on the spatial distribution of the gradient in annual rainfall from west to east (Fig. 4b) is to decrease MAR for both the lower and upper UDQJHVDWDQGPPUHVSHFWLYHO\ZKLFKHTXDOV DQDYHUDJHLPSDFWRI 7DEOH,9  To complement the analysis of the changes in MAR IURP+0$5WR WKH$VFHQDULR DQDGGLWLRQDO digital process was performed over the “raster” images WKDWUHSUHVHQWWKHGLVWULEXWLRQRIWKH+0$5ZLWKWKH objective of comparing similar ranges. Data for each WLPHSHULRGZDVUHFODVVL¿HGLQWRWKUHHFDWHJRULHVDQG the involved surfaces were calculated (Fig. 4c). :HWKHQFRPSDUHGWKHKLVWRULFDOQXPEHURISL[HOV and the surface area in each category to the projected scenario. Pixels from each period were divided into WKUHHFODVVHV DDDQGDIRU+0$5DQGEE and b3 for MARScA2). The lowest category included lower values in MARScA2)URP+0$5WR$ of the surface shifted from class 1 to 2, and between FODVVDDQGEWKHVXUIDFHORZHUHG,QVFHnario A2, the class with the lowest values for MAR   WKH VXUIDFH DUHD LQFUHDVHG  while the surface of the class with the highest values   GHFUHDVHG   FKDQJLQJ IURP WRKD,WLVDOVRLPSRUWDQWWRPHQWLRQ the following: The average MAR decreased 11.2 mm, to move IURPWRPPDQQXDOO\EHWZHHQKLVWRULFDO values and the future (Fig. 4c). In the above-mentioned class with the highest YDOXHV  WKHDIIHFWHGDUHDH[WHQGVIURP

the eastern boundary with the municipality of Matamoros, Coahuila, to the north by Tlahualilo, to the western boundary near Arcinas and Pastor Rovaix, and to the north near Lucero and Banco Nacional (Fig. 4b). There is a concentration of pixels in the lower UDQJHLQVFHQDULR$ E ZKLFKPDJQL¿HVWKHLPpact. Although the mean difference between a3 and b3 is 8.9 mm, the impact is much greater because of the number of values concentrated towards the lower limit of that range (Fig. 4d). Finally, it is important to note the anomalies DIIHFWLQJWZR:6&DxRQGH)HUQiQGH] ,G  DQG3HGULFHxD ,G $WWKHVHVWDWLRQVUXQRIIRI surface water begins to feed the reservoirs (Francisco =DUFRGDP DQGWKHDJULFXOWXUDOLUULJDWLRQRI*yPH] Palacio depends on this runoff. In absolute terms, the MAR could exceed the average for the three scenarios; i.e., the consequence of this declination index is DSSUR[LPDWHO\ 3.2 Calculation and zoning of the GROPE 7KH*523(LVDQLQGH[WKDWZDVFDOFXODWHGEDVHGRQ Eq. (1), where the independent variable is the MAR. Therefore, it compares anomalies in average annual UDLQIDOOLQKLVWRULFDODQGWKHIXWXUHVFHQDULR$:H FRPSDUHG+*523(WR*523(ScA27KH+*523( LQGH[IHOOE\DQDYHUDJHRILQWKHIXWXUH$ VFHQDULR *523(ScA2). In addition, the boundaries of the ranges change between the historic values  DQGWKH*523(ScA2 (12.8-31.1), as shown in Table V. Based on the relationship that exists between the 0$5DQG*523(LQGH[ZHZRXOGH[SHFWWKH0$5 to be affected to the same extent, although it is not easy to determine the magnitude of the impacts of this signal in the limits of the range considered. To clarify

Modeling the potential impact of climate change

487

(a)

(b) a2

Arturo Martínez Adame

Arturo Martínez Adame

Seis de Octubre

Seis de Octubre a1

b1

b2 a2

b3

a3 San Martín

San Martín

HMAR

MARScA2

Rank, mm 287.1

Rank, mm 278.5 196.4

Analysis of the relative impact (IR) on mean annual rainfall (MAR) for the future scenario A2 Surface ha

a) HAAR

281.7

(d)

250000

(c)

Mean annual rainfall, MAR

Gómez Palacio

259.7

Inhabited areas Municipal limit Road Railroad Class limit

Mean

Inhabited areas Municipal limit Road Railroad Class limit

237.6

Gómez Palacio

200000

Class

Range mm

IR %

HMAR

a1 a2 a3

202.9 – 237.6 237.6 – 259.7 259.7 – 287.1

19601 24750 39887

23.27 29.38 47.35

MARScA2

b1 b2

196.4 – 237.6 237.6 – 259.7

26505 32777

31.46 38.91

b3

259.7 – 278.2

24955

29.62

Pixels

202.9

150000

Range a1

Range a3

Range a2

100000 50000 0

281.7

259.7

b) A2 AAR

266.0893936 287.120239

225.058548

Mean

250000

224.0277023

237.6

202.9968567

Pixels

200000 150000

Range b2

Range b1

Range b3

100000 50000 0 196.4049835 216.8509729 237.2969624 257.7429518 278.188941

Rain, mm

)LJ6SDWLDOGLVWULEXWLRQRI+0$5 D DQG0$5ScA2 (b); impact analysis based on surface and relative impact F UHVXOWVRIWKHUHFODVVL¿FDWLRQRILPDJHVDDQGE G 

A. López Santos et al.

488

7DEOH9,PSDFWDQDO\VLVLQWKH*523(LQGH[DVDUHVXOWLQWKH0$5FKDQJHV *523( Range limit Lower +LJKHU Average

Impact

+LVWRULF +*523(

Scenario A2 *523(ScA2

ACh +*523(*523(ScA2)

5,

14.2 32.9 

12.7 31.1 21.9

 1.8 1.7

  7.18

5,  $&K+*523( 

WKLVLQWHUPVRIWKHLPSDFWDWWKHVXUIDFHOHYHO )LJ WKDW ZRXOG EH DIIHFWHG WKH *523( LQGH[ LPDJHV ZHUH DOVR UHFODVVL¿HG LQWR WKUHH FODVVHV )LJ F and compared. First, between classes a1 and b1, there is a projectHGLQFUHDVHRIKDHTXLYDOHQWWRZKLFK would imply an extension of 2.7 km from east to west. This extension would occur from Esmeralda, where FXUUHQWO\WKH+*523(LVORFDWHGWRWKHZHVWLQWKH vicinity of Pastor Rovaix and Consuelo. Second, between classes a2 and b2, there is a projected increase RIKDHTXLYDOHQWWRZKLFKZRXOGLPSO\ DQ H[WHQVLRQ RI DSSUR[LPDWHO\  NP IURP HDVW WR west. This extension would occur from La Popular, ZKLFKLVFXUUHQWO\+*523(WRWKHZHVWQHDUWR(O Cairo, Estación Noé, La Plata and Bucareli. Third, there is a double impact in the shift between classes DDQGE7KH*523(LQGH[ZRXOGKDYHDUHGXFWLRQ RIWZRXQLWVIURPWKH+*523(  WRWKH *523(ScA2  DQGWKHLQGH[DOVRKDVORZHU PD[LPXPYDOXHVLQFODVVE )LJG  3.3 Calculation and zoning of the WAI $VLQWKHSUHYLRXVFDVHVWKH:$,FRXOGEHDIIHFWHG LQWKHIXWXUH$VFHQDULR :$,ScA2) because of the way the MAR is affected, although the relationship LVPRUHGLUHFWIRU*523(DVGHVFULEHGLQWKHPHWKRGRORJ\ (T :$,FRXOGWKHUHIRUHEHLPSDFWHG LQ FOLPDWH VFHQDULR$ IRU WKH WHUULWRU\ RI *yPH] 3DODFLRE\DQDYHUDJHUHGXFWLRQRIDQGDFKDQJH LQWKHUDQJHRIYDOXHVIURPKLVWRULFDOOHYHOV   WRWKH$VFHQDULR  DVVKRZQLQ Table VI. 7KHVSDWLDOGLVWULEXWLRQRIWKH:$,LVSUHVHQWHGLQ )LJXUH2QHVDOLHQWFKDQJHLVWKHJURZWKEHWZHHQ classes a2 and b2, which is estimated to affect a WRWDORIKDGHULYHGIURPDQLQFUHDVHRI EHWZHHQ+:$,DQG:$,ScA2 )LJF 7KLVLQFUHDVH

includes the area known as Perímetro Lavín, where the following stations are located: El Cairo, Competencia, Noé, Dolores, Numancia and Britingham )LJE  3.4 Calculation and zoning of the CAUSO index 7KH&$862LVDQLQGH[GH¿QHGE\FXUUHQWODQGXVH (Table II), and the determination of the surfaces that will be occupied by urban nuclei on a horizon of approximately 30 years (2010-2039) was based on the programa de desarrollo urbano (PDU, program RIXUEDQGHYHORSPHQW RIWKHPXQLFLSDOLW\RI*yPH] Palacio (SEMARNAT, 2012). The distribution of the CAUSO index is shown in Figure 7, where future impacts can be assumed because of the drastic changes LQFDWHJRULHV&DQG&)RUWKH¿UVWFDWHJRU\WKHUH is a probable decrease in scrubland located in the western part of the municipality near Poanas, Dinamita and San Martín. The extent would fall from the KD  FXUUHQWO\HVWLPDWHGWR KD  E\)RUWKHVHFRQGFDWHJRU\WKHUH is an estimated increase in the vegetation associated ZLWKVDQG\GHVHUWV +DORSK\WH LQWKHQRUWKRIWKH municipality, which would grow from 4473.1 ha  WRKD   )LJF  3.5 Estimation and zoning of the LWE rate The rate of /:(QRWRQO\UHSUHVHQWVWKHTXDQWLW\RI soil loss per year but is also a way to evaluate enviURQPHQWDOORVV7RGHWHUPLQHWKH/:(UDWHDGLJLWDO process was conducted based on algebra maps using matrix operations and between digital layers (raster) using Eq. (4). The inputs described above in the context of the A2 scenario were used, as in CAUSO DQG:$,ZLWKWKHH[FHSWLRQRIWKHHGDSKLFLQGH[ (CATEX). Edaphic characters such as the texture and the physical phase (stoniness factor) are changes not easily predictable in a short period of time.

Modeling the potential impact of climate change

489

(a)

(b) a2 Arturo Martínez Adame

Arturo Martínez Adame

Seis de Octubre

Seis de Octubre b1

a1

b2

a2

a3

b3

San Martín San Martín HGROPE Rank High: 32.9

GROPE ScA2 Rank High: 31.1

Low: 14.2

Low: 12.7 Gómez Palacio

Class limit Municipal limit Inhabited areas Road Railroad

Class limit Municipal limit Inhabited areas Road Railroad

Gómez Palacio

Class

HMAR

a1 a2 a3

14.2 – 21.9 21.9 – 26.8 26.8 – 32.9

19101 24281 40856

22.67 28.82 48.50

b1 b2

12.7 – 21.9 21.9 – 26.8

26038 31957

30.91 37.94

b3

26.8 – 31.1

26244

31.15

Surface ha

IR %

Pixels

32.9

200000

GROPE index

Range (index)

26.8

a) HGROPE

Mean

250000

Analysis of the relative impact (RI) in the GROPE index for the future scenario A2.

21.9

(d) (c)

150000

Range a1

Range a3

Range a2

100000

50000 0

31.1

b) GROPEScA2

26.8

250000

Mean

202.9968567 287.1202 266.0893936 32.9699 224.0277023 23.60838509 225.058548 28.28917027 14.24681473 18.92759991

21.9

GROPEScA2

Pixels

200000 150000

Range b2

Range b1

Range b3

100000 50000 0 196.4049835 17.33757305 278.1889 257.7429518 31.0779 216.8509729 21.91771126 237.2969624 26.49784946 12.75743484

Rain, mm

)LJ6SDWLDOGLVWULEXWLRQRI+*523( D DQG*523(ScA2 (b); impact analysis based on surface and relative imporWDQFH F UHVXOWVRIWKHUHFODVVL¿FDWLRQRILPDJHVDDQGE G 

A. López Santos et al.

490

7DEOH9,,PSDFWDQDO\VLVRIWKH:$,DVDFRQVHTXHQFHRIWKH*523(FKDQJHV RQWKHPXQLFLSDOLW\RI*yPH]3DODFLR :$, Range limit Lower +LJKHU Average

Impact

+LVWRULF +:$,

Scenario A2 :$,ScA2)

ACh +:$,±:$,ScA2)

5,

 149.9 142.7

137.0  144.12

  1.42

1.12 0.77 1.00

5,  $&K+*523( 

The results indicate an average impact on the RUGHURIGHULYHGIURPDFKDQJHLQWKHUDQJH LQWKHKLVWRULFDOODPLQDUZLQGHURVLRQ +/:( UDWH IURPWRWKD–1 yr–1 in the future for WKH$VFHQDULR /:(ScA2), as shown in Figure 8c. A more detailed analysis of the impact associated with the increased susceptibility of soils to wind erosion and by a lower availability of moisture because of the lower MARScA2 indicates that this HIIHFW PLJKW EH JUHDW DQG FRXOG LQÀXHQFH QHDUO\ one third of the municipality (Fig. 8d). The spatial distribution of the three classes of erosion is shown in Figure 8b. 3.6 Analysis of the variables related to the aridity index ,Q DGGLWLRQ WR WKH FDOFXODWLRQ IRU /:( DV VKRZQ above, the aridity index provides a good complement to determine the magnitude of probable impacts for decreasing MAR and increasing MAT. AI has been examined in the three climate scenarios analyzed for the north and northeast of Mexico (Magaña and Caetano, 2007; Magaña et al., 2012). 3.7 Changes in mean annual temperature According to the climate scenarios in the report of the IPCC (2007), the mean temperature in the northern hemisphere during the second half of the 20th cenWXU\ZDVOLNHO\KLJKHUWKDQDQ\RWKHU\HDUSHULRG LQWKHODVWDQGPRVWOLNHO\WKHKLJKHVWRYHUWKH past 1300 years. $FFRUGLQJWRWKH,3&&UHSRUW  VLJQL¿FDQW changes were observed in the data for physical (snow, ice and frozen ground; hydrology; and coastal processes) and biological systems (land, marine and freshwater biological systems), and there was great variation in the air surface temperature during the period 1970-2004. The temperature changed on

WKHRUGHURIWRž&ZLWKLQNPWRWKHQRUWKRI WKH7URSLF RI &DQFHU ž 1 7KLV LQFUHDVH ZLOO affect almost all of the municipality, but especially the northern area, where Seis de Octubre and Arturo Martínez Adame are located. Temperature and rain are obviously fundamental variables in the analysis of the deterioration of natural resources. Both are processed for the historic data set and later were calculated since the anomalies. The results in Table III suggest that the temperature change HVWLPDWHGE\+0$7ZRXOGEHIURPWRž& in the future A2 scenario (MATScA2). 3.8 Changes in the aridity index *LYHQWKHUHODWLRQVKLSWKH'H0DUWRQQHPRGHO (T   HVWDEOLVKHV IRU 0$5 DQG 0$7 DV PHQWLRQHG above, a decrease of rain will accompany an increase in temperature. In a future scenario there may be environmental deterioration manifested by an increase in aridity and prolonged drought as reported previously for North America and particularly for Mexico )UHGHULFN DQG *OHLFN  8$&+&21$=$ 6('(62/6$*$53$,3&&  According to the calculations made from anomalies already described for the MAR and the MAT (Table III), the aridity index in the municipality of *yPH]3DODFLRZRXOGFKDQJHIURPWKHKLVWRULFYDOXHV +$, RIWRLQWKHIXWXUHVFHQDULR$ $,ScA2). It is estimated that the average impact on this index LQWKHIXWXUHFRXOGEH±“ 7DEOH9,,  The estimated impact, in terms of surface area IRUWKH$,LQGLFDWHGWKDWWKHPXQLFLSDOLW\RI*yPH] Palacio would most likely become more sensitive due to the tendency toward a hyper-arid condition, and UHDFKLQGH[YDOXHVLQWKHUDQJHRIWRDVDOUHDG\ VSHFL¿HG DERYH 7DEOH ,  7KH LPSDFW LQ WKLV FDVH could cover an area of 13 072 ha, equivalent to the RIWKHPXQLFLSDOWHUULWRU\ )LJF 

Modeling the potential impact of climate change

491

(a)

(b) b2

a2 Arturo Martínez Adame

Arturo Martínez Adame

Seis de Octubre

Seis de Octubre a3

b3

a2 b2 a1 San Martín

b1 San Martín WAIScA2 Rank High: 151.0

HWAI Rank High: 149.9 Low: 135.5

Low: 137.0 Gómez Palacio

Class limit

Class limit

Municipal limit Inhabited areas Road Railroad

Gómez Palacio

Municipal limit Inhabited areas Road Railroad

Class

Range (index)

HWAI

a1 a2 a3

135 – 140.1 140.1 – 143.8 143.8 – 149.85

38972 24792 20474

46.26 29.43 24.31

WAIScA2

b1 b2

137.2 – 140.1 140.1 – 143.8

23622 33218

28.04 39.43

b3

143.8 – 151.05

27399

32.52

Surface ha

IR %

200000

Pixels

WAI (index)

150000

149.86

143.8

a) HWAI

Mean

250000

Analysis of the impact on historical index of aggressiveness of the wind (HWAI) and the rate of aggression for the future scenario A2 (WAI Sc A2)

140.1

(d) (c)

Range a1

Range a2

Range a3

100000

50000 0

Pixels

200000 150000

Range b1

Range b2

151.05

Mean

140.1

b) WAIScA2 250000

143.8

202.9968567 266.0893936 287.120239 224.0277023 142.7130514 225.058548 146.2844742 135.5702057 139.1416285 149.85589

Range b3

100000 50000 0 196.4049835 110.5278397 257.7429518 216.8509729 111.0362211 237.2969624 117.5116091 278.188941 137.019155 151.05299

Rain, mm

)LJ7KHVSDWLDOGLVWULEXWLRQRI+:$, D DQG:$,ScA2 (b); analysis of relative impact (RI) based on affected surface F UHVXOWVRIWKHUHFODVVL¿FDWLRQRILPDJHVDDQGE G 

A. López Santos et al.

492

(a)

(b)

Arturo Martínez Adame

Arturo Martínez Adame

Seis de Octubre

Seis de Octubre

San Martín

n

San Martín Index CAUSO 2010 0.15 0.2 0.3 Inhabited areas Artificial surface Nazas river Road Railroad

CAUSOScA2 Index 0.15 0.2 0.3 Inhabited areas Artificial surface Municipal limit Nazas river Road Railroad

Gómez Palacio

Gómez Palacio

(c) 60 50 Surface, ha (thousand)

40 30 20 10 0 Scrubland C3

Agricultural irrigation C2

Grassland C4

CAUSO 2010

19 793.5

49 336.9

4 473.1

CAUSOScA2

8 675.5

47 019.7

15 390.2

Figure 7. Spatial distribution of CAUSO current (a) and CAUSOScA2 (b); impact analysis based on surface and relative importance (c).

It is also important to mention that in addition to the reduction in the range of index values from hisWRULFDOOHYHOV  WRWKHIXWXUHVFHQDULR$,ScA2  WKHDYHUDJHRIWKLVLQGH[FKDQJHGIURP  WR $GGLWLRQDOO\ WKHUH LV JUHDWHU DULGLW\ in the highest class, as seen in the density of pixels between the two cases (Fig. 9d). 3.9 Environmental quality analysis and probable impacts Environmental quality is a term that relates to certain conditions of “comfort” for people and natural environments or biological systems. The critical elements

are the availability of fresh water, air quality and WHPSHUDWXUH .DUDFD  .XR-HQ et al., 2012). The water in the form of rain becomes important in regulating temperature and its relationship with extreme events, such as drought and dust storms, among others (Sun et al., 2003; Batjargal et al Zhang et al., 2012). Arid and semiarid regions will likely experience an increase in temperature and decrease in rain (Rivera et al*DUFtD3iH]DQG&UX]0HGLQD Magaña et al., 2012), especially for latitudes similar WR WKH %ROVyQ GH 0DSLPt WKH DUHD ZKHUH *yPH] Palacio is located.

Modeling the potential impact of climate change

493

(a)

(b)

Arturo Martínez Adame Arturo Martínez Adame

Seis de Octubre Seis de Octubre

San Martín San Martín

HLWE Class Low Moderate High Inhabited areas (2010) Artificial surface Municipal limit Nazas river Road Railrad

LWE ScA2 Class Low Moderate High Inhabited areas (2035) Artificial surface Municipal limit Nazas river Road Railrad

Gómez Palacio

(c)

(d) Changes between class erosion to HLWE and LWE ScA2

Analysis impact of the LWE in the future A2 scenario Rank limit

From HLWE

to LWEScA2

--- Impacts --ACh RI

---------- t ha-1 yr -1 ---------Lower Upper Average

36 106 71

Gómez Palacio

36 151.4 93.7

0 45.4 22.7

Rank

Surface

RI

HLWE

Class Low Moderate High

(t ha -1 yr -1) 36 - 41 41 - 55 55 - 106

ha 23 435 55 130 3 023

% 28.7 67.6 3.7

Low Moderate High

36 - 41

LWEScA2

7 303 45 950 17 296

10.4 65.1 24.5

Period

% 0 126.11 63.06

41 - 55 55 - 151.4

)LJ6SDWLDOGLVWULEXWLRQRI+/:( D DQG/:(ScA2 (b); impact analysis based on surface and relative importance F LPSDFWDQDO\VLVEDVHGRQVXUIDFH/:(E\UDQJHVDQGUHODWLYHFODVVHV G 

Although this study used an average temperature LQFUHDVHRIOHVVWKDQž&DQGDUDLQIDOOGHFOLQHRI DSSUR[LPDWHO\WKHFKDQJHVPD\EHODUJHU)RU example, Magaña et al. (2012) remarked that for the north of Mexico in the future A2 scenario, the average temperature towards the end of the 21st century FRXOGLQFUHDVHIURPž& “ ZLWKH[WUHPHVIRU WKHGULHUPRQWKV 0DUFK$SULODQG0D\ XSWRž& ZKLOHUDLQIDOOFRXOGGHFOLQHE\XSWR This decrease in humidity, as shown in Figure 8, could not only negatively impact the rates of soil erosion, with probable losses in the future scenario $RIXSWRWKD–1 yr–1, but could also result in changes in the systems of biological feedback (Breshears et al.+DUSHUet al., 2010), a crisis

of freshwater availability and negative effects on the air quality due to a drastic increase in suspended particles. This change is potentially harmful to people´s health (Razo et al., 2004; Rashki et al., 2011) and could affect the albedo at the level of the surface of the Earth and the atmosphere (Batjargal et al.+DN6XQJet al., 2011). Figure 10 shows DQDHULDOYLHZRI*yPH]3DODFLRPXQLFLSDOLW\DQG an example of qualitative laminar wind erosion. 7KHUDWHRIODPLQDUZLQGHURVLRQZDVWKD–1 –1 yr , equivalent to the removal and transport of a soil OD\HUEHWZHHQDQGPPWKLFN,IWKHVRLOLV medium textured over the entire area of study, this amount is between 1100 and 1200 kg m–3, which implies a potential loss of approximately 0.4 m in

A. López Santos et al.

494

7DEOH9,,(VWLPDWLRQRIFKDQJHVLQWKH$,IURPWKHKLVWRULF +$, WRIXWXUH$VFHQDULR $,ScA2 LQ*yPH] Palacio. Coordinates :6,G

Name :6601

Long.

Aridity Index

Lat.

+$,

Degrees     10004 10009   10108 10140 10049  NOR

Col. Torreón Jardín Presa Cuije 3UHVD*XDGDOXSH Presa La Flor Cañón de Fernández Cd. Lerdo (SMN) Mapimí (km 29) Pedriceña &G/HUGR '*( La Cadena Nazas Tlahualilo CENID-RASPA

103.400 103.300 103.230      103.370  104.117 103.483 

AIScA2

ACh

Index

             Aver. Stddev

8.0   9.1 10.0 9.2 10.9  8.7 8.8  8.7  9.3 2.1

    9.3 8.7 10.3 12.7 8.3 8.2 10.9 8.3  8.7 2.0

0.41  0.38 0.47    0.91    0.38 0.4  0.20

$&K$EVROXWHFKDQJHRQDULGLW\LQGH[ +$,±$,ScA2); the value of the historic temperature (bold) for the :6601ZDVDYHUDJHGXVLQJWKHYDOXHVIURPWKHQHDUHVWQHLJKERUKRRG$YHU$YHUDJH6WGGHY 6WDQGDUGGHYLDWLRQ1251RWRI¿FLDOO\UHJLVWHUHGLQWKH:6601

30 years. For this type of soil, these values exceed WKHUDWHVRIVRLOORVVWROHUDQFH WKD–1 yr–1) proposed by the United States Department of Agriculture (USDA) (Montgomery, 2007). An example of changes in the biological feedback is that the removal of the soil directly affects the role of nitrogen (N). N determines plant productivity, and in arid environments, the soil frequently presents large accumulations of calcium carbonate that push the soil S+WRDUDQJHRIWR$WWKLVS+SKRVSKRUXV 3 LV in complex forms and not available (Munson et al., 2011; Schlesinger et al., 2011), a set of conditions that matches the selection criteria of the parameters for the CATEX index that was described in the methodoloJ\,QUHVSRQVHWRDGH¿FLHQF\RI1DQG3Larrea tridentataVKRZVWKHKLJKHVWOHYHOVRIHI¿FLHQWXVHRI nutrients that have been found in woody plants. 4. Conclusions 7KH PRGHOV IRU WKH /:( DQG WKH$, VXJJHVW WKDW in the immediate future (2010-2039) the climatic conditions of the area of study and its surroundings will deteriorate and could lead to a steady decline of environmental quality and health. There are two

important implications of this study. First, the models can serve to warn people of the risks to human and natural environments from extreme conditions such as droughts and dust storms. Secondly, it is possible to identify local changes in use of the soil and deforestation. Finally, it is important to mention that the magnitude and distribution of the impact on the territory are relevant to planning the management of natural resources. This research should be taken into account in decision-making about preventing impacts on natural resources now and in the future. Acknowledgements This article is part of the results of the research carried out within the framework of the Programa Estatal de Acciones ante el Cambio Climático (State Program of Action on Climate Change) Durango 3($&&'*2 DQG$JXDVFDOLHQWHV 3($&&$*6  during a post-doctoral stay conducted between 2011 and 2012. Thanks to Joaquín Pinto Espinoza and Adriana Martínez Prado, both responsible for the 3($&&'*2 DQG (OVD 0DUFHOD 5DPtUH] /ySH] KHDGRI3($&&$*6

Modeling the potential impact of climate change

495

(a)

(b)

Arturo Martínez Adame

Arturo Martínez Adame

Seis de Octubre

Seis de Octubre

San Martín San Martín HAI Clase Low Moderate High Inhabited areas (2010) Artificial surface Municipal limit Road railroad

AI ScA2 Clase Low Moderate High Inhabited areas (2035) Artificial surface Municipal limit Road railroad

Gómez Palacio

Gómez Palacio

High Moderate

6.11 – 7.7 7.7 – 8.5

Low

8.5

– 9.62

9.74 29.75 60.51

21288.9 23998.5

25.26 28.48

0

38981.6

46.26

202.9968567 6.555311203

8.5

Mean Range

Range

High

Moderate

Low

50

150

224.0277023 7.323812962

b) AIScA2

225.058548 8.09231472

287.12023 266.0893936 9.62931 8.860816479

9.17

AIScA2

8209.7 25066.9 50984.5

Range 100

8.5

HAI

6.5 7.7 8.5

RI %

Mean

– 7.7 – 8.5 – 9.62

High Moderate Low

Surface ha

7.7

Rank index

Class

a) HAI

Pixels

Period

7.7

150

Analysis of the relative impact (RI) in the aridity index (AI) to the future scenario A2 (IAScA2).

9.62

(d) (c)

Pixels

100 Range

Range

Range

High

Moderate

Low

50

0

196.4049835 6.880219316 278.18894 257.7429518 9.16679 216.8509729 7.642412376 237.2969624 8.4046054636 6.118026257

)LJ  6SDWLDO GLVWULEXWLRQ RI +$, D  DQG$,ScA2 (b); impact analysis based on surface and relative importance (c); impact analysis based on surface AI by ranges and relative classes (d).

A. López Santos et al.

496

Scrubland & agricultural irrigation. Scale 500 m

Scrubland Scale 500 m

Municipal limit Scale 22.9 km

)LJ&XUUHQWDHULDOYLHZDWGLIIHUHQWVFDOHVRIWKHVXSHU¿FLDODUHDRI*yPH]3DODFLRDQGDFORVHXS to the high critical zone of laminar wind erosion.

References %DWMDUJDO = - 'XODP DQG < 6 &KXQJ  'XVW storms are an indication of an unhealthy environment in East Asia. Environ. Monit. Assess. 114  GRLV %UHVKHDUV''--:KLFNHU03-RKDQVHQDQG-( 3LQGHU:LQGDQGZDWHUHURVLRQDQGWUDQVSRUWLQ semi-arid shrub land, grassland and forest ecosystems: Quantifying dominance of horizontal wind-driven transport. Earth Surf. Proc. Land. 28, 1189-1209, doi:10.1002/esp.1034. )$2,65,&,666  :RUOG UHIHUHQFH EDVH IRU VRLO UHVRXUFHV:RUOG6RLO5HVRXUFHV5HSRUWV)RRGDQG Agriculture Organization of the United Nations, Rome. $YDLODEOH DW KWWSZZZIDRRUJGRFUHS:( :(KWP )UHGHULFN.'DQG3+*OHLFN3RWHQWLDOLPSDFWV on US water resources. In: Climate change, science strategy and solutions (E. Claussen, V. Arroyo Cochran DQG ' 3 'DYLV (GV  7KH 3RZ &HQWHU RQ *OREDO &OLPDWH&KDQJH%ULOO%RVWRQSS

*DUFtD (  'LVWULEXFLyQ GH OD SUHFLSLWDFLyQ HQ OD República Mexicana. ,QYHVWLJDFLRQHV *HRJUi¿FDV 50 *DUFtD3iH])DQG,5&UX]0HGLQD9DULDELOLGDG GHODSUHFLSLWDFLyQSOXYLDOHQODUHJLyQ3DFt¿FRQRUWH de México. Agrociencia 43, 1-9. +DN6XQJ.&
Modeling the potential impact of climate change

to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden and C. (+DQVRQ(GV &DPEULGJH8QLYHUVLW\3UHVV&DPEULGJHSS IPCC, 2007. Cambio climático 2007: Informe de síntesis. Contribución de los grupos de trabajo I, II y III al Cuarto Informe de Evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático (R. .3DFKDXULDQG$5HLVLQJHU(GV ,3&&*HQHYH 104 pp. .DUDFD )  'HWHUPLQDWLRQ RI DLU TXDOLW\ ]RQHV in Turkey. JAPCA J. Air Waste Ma. 62, 408-419, GRL .UDVLOQLNRY30&*XWLpUUH]&DVWRUHQD5-$KUHQV& 2&UX]*DLVWDUGR66HGRYDQG(6ROOHLUR5HEROOHdo, 2013. The soils of Mexico:RUOG6RLOV%RRN6HULHV 6SULQJHUSSGRLB .XR-HQ/3$PDU(7DJDULVDQG$*5XVVHOO Development of risk-based air quality management strategies under impacts of climate change. JAPCA J. Air Waste Ma. 62GRL  Magaña V. O., J. L. Vázquez, J. L. Pérez and J. B. Pérez, 2003. Impact of El Niño on precipitation in Mexico. Geofí. Int. 42, 313-330. Magaña V. O. and E. Caetano, 2007. Pronóstico climático estacional regionalizado para la República Mexicana como elemento para la reducción de riesgo, para la LGHQWL¿FDFLyQ GH RSFLRQHV GH DGDSWDFLyQ DO FDPELR climático y para la alimentación del sistema: cambio FOLPiWLFRSRUHVWDGR\SRUVHFWRU LQIRUPH¿QDO 'LUHFFLyQ*HQHUDOGH,QYHVWLJDFLyQVREUH&DPELR&OLPiWLFR SEMARNAT-INE. 41 pp. Magaña V. O., 2010. Guía para generar y aplicar escenarios probabilísticos regionales de cambio climático en la toma de decisiones. Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, 80 pp. Magaña V. O., D. Zermeño and C. Neri, 2012. Climate change scenarios and potential impacts on water availability in northern Mexico. Clim. Res. 51, 171-184, GRL&5 0HUFDGR0DQFHUD*(7UR\R'LpJXH]$$JXLUUH*ymez, B. Murillo-Amador, L. F. Beltrán-Morales and J. /*DUFtD+HUQiQGH]&DOLEUDFLyQ\DSOLFDFLyQ del índice de aridez de De Martonne para el análisis del Gp¿FLWKtGULFRFRPRHVWLPDGRUGHODDULGH]\GHVHUWL¿cación en zonas áridas. Universidad y Ciencia 26

497

0RQWHUURVR$,$&&RQGH'5RVDOHV-'*yPH] DQG&*D\$VVHVVLQJFXUUHQWDQGSRWHQWLDOUDLQfed maize suitability under climate change scenarios in Mexico. Atmósfera 24 Montgomery D. R., 2007. Soil erosion and agricultural sustainability. P. Natl. Acad. Sci. USA 104 0XQVRQ 6 0 - %HOQDSD DQG * 6 2NLQE  5Hsponses of wind erosion to climate-induced vegetation changes on the Colorado Plateau. P. Natl. Acad. Sci. USA 108 318'Marco de políticas de adaptación al cambio climático: desarrollo de estrategias, políticas y medidas (B. Lim and E. Spanger-Siegfried, Eds.). Programa de las Naciones Unidas para el Desarrollo, New York, 274 pp. 5DVKNL$&-5DXWHQEDFK3*(ULNVVRQ'*.DVNDRXWLVDQG3*XSWD7HPSRUDOFKDQJHVRISDUticulate concentration in the ambient air over the city of Zahedan, Iran. Air Quality, Atmosphere & Health, GRLV Razo I., L. Carrizales, J. Castro, F. Díaz-Barriga and M. Monroy, 2004. Arsenic and heavy metal pollution of soil, water and sediments in a semi-arid climate mining area in Mexico. Water Air Soil Poll. 152  GRL%:$7(F 5LYHUDGHO5tR5*&UHVSR3LFKDUGR5$UWHDJD5DPtUH] and A. Quevedo Nolasco, 2007. Comportamiento espacio temporal de la sequía en el estado de Durango, México. Terra Latinoamericana 25, 383-392. 5RVH&:(URVLRQE\ZDWHUPRGHOLQJ,QEncyclopaedia of Soil Science (R. Lal, Ed.). Marcel Decker, 1HZODVW DFFHVVHG RQ0DUFK@ SEMARNAT-INE, 2009. México, cuarta comunicación nacional ante la Convención Marco de las Naciones Unidas sobre Cambio Climático. Secretaría de Medio Ambiente y Recursos Naturales, Instituto Nacional de Ecología, México, 274 pp. Available at: http://www.

498

A. López Santos et al.

semarnat.gob.mx/informacionambiental/documents/ sniarn/pdf/Cuarta_Comunicacion_Nacional.pdf. SEMARNAT-INE, 2011. Sistema de información de escenarios de cambio climático regionalizados (SIECCRe). 0HWDGDWRV \ PDSDV SDUD 6,*$YDLODEOH DW KWWS ]LPEUDLQHJREP[HVFHQDULRV>ODVWDFFHVVHGRQ6HSWHPEHU@ 6XQ / ; =KRX - /X<3 .LP DQG<6HXQJ &KXQJ 2003, Climatology, trend analysis and prediction of sandstorms and their associated dust fall in China. Water Air Soil Poll. 3 8$&+&21$=$  Escenarios climatológicos de la República Mexicana ante el cambio climático.

Universidad Autónoma Chapingo, Comisión Nacional GH=RQDVÈULGDV0p[LFRSS 9DQ5RRVPDOHQ/726RQQHQERUJ.+-HQVHQDQG -+&KULVWHQVHQ&RPSDULVRQRIK\GURORJLFDO simulations of climate change using perturbation of observations and distribution-based scaling. Vadose Zone J. 10GRLY]M