Modulation of nonlinear waves in a viscous fluid contained in a tapered elastic tube

Modulation of nonlinear waves in a viscous fluid contained in a tapered elastic tube

International Journal of Engineering Science 40 (2002) 1897–1918 www.elsevier.com/locate/ijengsci Modulation of nonlinear waves in a viscous fluid con...

193KB Sizes 0 Downloads 53 Views

International Journal of Engineering Science 40 (2002) 1897–1918 www.elsevier.com/locate/ijengsci

Modulation of nonlinear waves in a viscous fluid contained in a tapered elastic tube Hilmi Demiray

*

Department of Mathematics, Faculty of Arts and Sciences, Isik University, B€ uy€ ukdere Caddesi Maslak, 80670 Istanbul, Turkey Received 15 May 2002; accepted 10 June 2002

Abstract In the present work, treating the arteries as a tapered, thin walled, long and circularly conical prestressed elastic tube and the blood as a Newtonian fluid, we have studied the amplitude modulation of nonlinear waves in such a fluid-filled elastic tube, by use of the reductive perturbation method. The governing evolution equation is obtained as the dissipative nonlinear Schr€ odinger equation with variable coefficients. It is shown that this type of equations admit solitary wave solutions with variable wave amplitude and speed. It is observed that, the wave speed increases with distance for tubes of descending radius while it decreases for tubes of ascending radius. The dissipative effects cause a decay in wave amplitude and wave speed. Ó 2002 Elsevier Science Ltd. All rights reserved. Keywords: Solitary waves; Tapered tubes; Wave modulation

1. Introduction The striking feature of the arterial blood flow is its pulsatile character. The intermittent ejection of blood from the left ventricle produces pressure and flow pulses in the arterial tree. Experimental studies reveal that flow velocity in blood vessels largely depends on the elastic properties of the vessel wall and they propagate towards the periphery with a characteristic pattern [1]. Due to their applications in arterial mechanics, the propagation of pressure pulses in fluid-filled distensible tubes has been studied by several researchers (Pedley [2] and Fung [3]). Most of the

*

Tel.: +90-212-286-29-60; fax: +90-212-286-57-96. E-mail address: [email protected] (H. Demiray).

0020-7225/02/$ - see front matter Ó 2002 Elsevier Science Ltd. All rights reserved. PII: S 0 0 2 0 - 7 2 2 5 ( 0 2 ) 0 0 1 1 3 - 1

1898

H. Demiray / International Journal of Engineering Science 40 (2002) 1897–1918

works on wave propagation in compliant tubes have considered small amplitude waves ignoring the nonlinear effects and focused on the dispersive character of waves, see [4–6]. However, when the nonlinear terms arising from the constitutive equations and kinematical relations are introduced, one has to consider either finite amplitude, or small-but-finite amplitude waves, depending on the order of nonlinearity. The propagation of finite amplitude waves in fluid-filled elastic or viscoelastic tubes has been examined, for instance, by Rudinger [7], Anliker et al. [8] and Moodie and his co-workers [9–12] by using the method of characteristics, in studying the shock formation. On the other hand, the propagation of small-but-finite amplitude waves in distensible tubes has been investigated by Johnson [13], Hashizume [14], Yomasa [15], Erbay et al. [16] and Demiray [17] by employing various asymptotic methods. In all these works [13–17], depending on the balance between the nonlinearity, dispersion and dissipation, the Korteweg-de Vries (KdV), BurgerÕs or KdV–BurgerÕs equations are obtained as the evolution equations. As is well known, when the nonlinear effects are small, the system of equations that describe the physical phenomena admit harmonic wave solutions with constant amplitude. If the amplitude of the wave is small-but-finite, the nonlinear terms cannot be neglected and the nonlinearity gives rise to the variation of amplitude both in space and time variables. When the amplitude varies slowly over a period of oscillation, a stretching transformation allows us to decompose the system into a rapidly varying part associated with the oscillation and slowly varying part such as the amplitude. A formal solution can be given in the form of an asymptotic expansion, and an equation determining the modulation of the first order amplitude can be derived. For instance, the nonlinear Schr€ odinger equation is the simplest representative equation describing the selfmodulation of one dimensional monochromatic plane waves in dispersive media. It exhibits a balance between the nonlinearity and dispersion. The problem of self-modulation of small-butfinite amplitude waves in fluid-filled distensible tubes was considered by Ravindran and Prasad [18], in which they showed that for a linear elastic tube wall model, the nonlinear self-modulation of pressure waves is governed by the NLS equation. Nonlinear self-modulation in fluid-filled distensible tubes had been investigated by Erbay and Erbay [19], by employing the nonlinear equations of a viscoelastic thin tube and the approximate fluid equations and they showed that the nonlinear pressure waves are governed by the dissipative NLS equation. Demiray [20], employing the exact equations of a viscous fluid and of a prestressed elastic tube, studied the amplitude modulation of nonlinear waves and obtained the dissipative nonlinear Schr€ odinger equation as the governing equation. In all these works, the arteries are considered as a cylindrical tube with constant radius. In essence, the radius of the arteries is variable along the axis of the tube. In the present work, treating the arteries as a tapered elastic thin walled long circularly conical tube and the blood as a Newtonian fluid, we have studied the amplitude modulation of weakly nonlinear waves in such a fluid-filled elastic tube by use of the reductive perturbation method. The governing evolution equation is found to be the dissipative nonlinear Schr€ odinger equation with variable coefficients. It is shown that this type of equations admit solitary wave solutions with variable wave speed and amplitude. It is observed that, the wave speed increases with distance for tubes of descending radius while it decreases for tubes of ascending radius. It is further observed that the dissipation causes to decay in wave amplitude and the speed of enveloping wave with the distance parameter s.

H. Demiray / International Journal of Engineering Science 40 (2002) 1897–1918

1899

2. Basic equations and theoretical preliminaries 2.1. Equations of tube In this section, we shall derive the basic equations governing the motion of a prestressed thin and tapered elastic tube filled with an inviscid fluid. For that purpose, we consider a circularly conical tube of radius R0 at the origin of the coordinate system with tapering angle U. Then, the position vector R of a generic point on the tube may be described by R ¼ ðR0 þ UZÞer þ Zez ;

ð1Þ

where er , eh and ez are the unit base vectors in the cylindrical polar coordinates, Z is the axial coordinate of a material point in the undeformed configuration. The arclengths of the curves along the meridional and circumferential directions are given by dSZ ¼ ð1 þ U2 Þ1=2 dZ;

dSh ¼ ðR0 þ UZÞ dh:

ð2Þ

We assume that such a tapered tube is subjected to an inner static pressure P0 ðZÞ and the deformation is described by r0 ¼ ðr0 þ /z Þer þ z ez ;

z ¼ kz Z:

ð3Þ

Here, z is the axial coordinate after static deformation, kz is the stretch ratio in the axial direction, r0 is the deformed end radius at the origin, / is the deformed tapering angle. Then, the arclengths of the corresponding curves in the meridional and circumferential directions are given by ds0z ¼ ð1 þ /2 Þ1=2 dz ;

ds0h ¼ ðr0 þ /z Þ dh:

ð4Þ

Then, the corresponding stretch ratios after static deformation are given as k01

 1=2 ds0z 1 þ /2 ¼ ¼ kz ; dSZ 1 þ U2

k02 ¼

ds0h ðr0 þ /z Þ ¼ kz : ðkz R0 þ Uz Þ dSh

ð5Þ

Now, on this initial static deformation, we shall superimpose a dynamical radial displacement u ðz ; t Þ but, in view of the external tethering, the axial displacement is assumed to be zero. Then, the position vector of a generic point on the membrane after final deformation is given by r ¼ ðr0 þ /z þ u Þer þ z ez ;

ð6Þ

where t is the time parameter. The arclengths along the deformed meridional and circumferential curves are given by "



ou dsz ¼ 1 þ / þ  oz

2 #1=2

dz ;

dsh ¼ ðr0 þ /z þ u Þ dh:

ð7Þ

1900

H. Demiray / International Journal of Engineering Science 40 (2002) 1897–1918

Then, the stretch ratios in the final configurations read "  2 #1=2 ou 1þ /þ  oz ðr0 þ /z þ u Þ k1 ¼ kz ; k ¼ k : 2 z kz R0 þ Uz ð1 þ U2 Þ1=2 Thengent vector t along the deformed meridional curve may be given by ! ou / þ  er þ ez oz t¼"  2 #1=2 : ou 1þ /þ  oz Similarly, the unit exterior normal vector n to the deformed membrane is given as ! ou er  / þ  ez oz n¼2 !2 31=2 :  41 þ / þ ou 5 oz

ð8Þ

ð9Þ

ð10Þ

Throughout this work, we shall assume that the material under consideration is incompressible. Let H be the initial thickness of the tube element, and let h and h0 be the thickness after static and final dynamical deformations, respectively. The incompressibility of the material requires that h¼

H ð1 þ U2 Þ1=2 kz R0 þ Uz ; k2z ð1 þ /2 Þ1=2 r0 þ /z

ð11Þ

H ð1 þ U2 Þ1=2 ðkz R0 þ Uz Þ 2 3 !2 1=2 ½r0 þ /z þ u : ou k2z 41 þ / þ  5 oz

h0 ¼

ð12Þ

As is seen from (11), even for the static deformation, the thickness changes along the tube axis. The value of the thickness at the coordinate origin and infinity are, respectively, given by h0 ¼

H ð1 þ U2 Þ1=2 ; kh kz ð1 þ /2 Þ1=2

h1 ¼

H ð1 þ U2 Þ1=2 U 1=2

k2z ð1 þ /2 Þ

/

;

ð13Þ

where kh ¼ r0 =R0 is the stretch ratio at the origin in the radial direction. If the tapering angles before and after static deformation are related to each other by / ¼ Ukh =kz , the thickness remains constant throughout the axis and given by h¼

Hð1 þ U2 Þ1=2 kh kz ð1 þ /2 Þ1=2

:

ð14Þ

H. Demiray / International Journal of Engineering Science 40 (2002) 1897–1918

1901

As a matter of fact, in this case the generators before and after static deformation remain parallel to each other. Let T1 and T2 be the membrane forces along the meridional and circumferential curves, respectively. Then, the equation of the radial motion of a small tube element placed between the planes z ¼ const, z þ dz ¼ const, h ¼ const and h þ dh ¼ const may be given by 8 9 #1=2 " > >    2 = ou o < ðr0 þ /z þ u Þ / þ ou oz þ  T1 h  T2 1 þ / þ  þ G ðr0 þ /z þ u Þ i 1=2 > oz > oz ou 2 : ; 1 þ / þ oz ¼

2  q0 H 2 1=2  o u ð1 þ U Þ ðR k þ Uz Þ ; 0 z ot2 k2z

ð15Þ

where q0 is the mass density of the membrane and G is the fluid reaction force density defined by      oVr oVr oVz ou   þ : ð16Þ G ¼ P  2lv þ lv /þ  or oz or oz r¼r0 þ/z þu Here, P  is the fluid pressure function, Vr and Vz are the fluid velocity components in the radial and axial directions, respectively, and lv is the fluid viscosity. Let lR be the strain energy density function of the membrane, where l is the shear modulus of the membrane material. The membrane forces may be expressed in terms of the stretch ratios as T1 ¼

lH oR ; k2 ok1

T2 ¼

lH oR : k1 ok2

ð17Þ

Introducing (17) into Eq. (15), the equation of motion in the radial direction takes the following form 8 9 > >  l l o < ðkz R0 þ Uz Þ / þ ou oR = 2 1=2 oR oz  Hð1 þ U Þ þ H þ G ðr0 þ /z þ u Þ h i1=2 kz ok2 kz oz > ok1 > ; : 1 þ / þ ou 2 oz ¼

q0 o2 u H ð1 þ U2 Þ1=2 ðkz R0 þ Uz Þ 2 : 2 ot kz

ð18Þ

2.2. Equations of fluid Blood is known to be an incompressible non-Newtonian fluid. However, in the course of flow in arteries, the red cells in the vicinity of arteries move to the central region of the artery so that the hematocrit ratio becomes quite low near the arterial wall and the blood viscosity does not change much with shear rate. Moreover, due to high shear rate near the arterial wall, the viscosity of blood is further reduced. Therefore, for flow problems in large blood vessels, the blood may be treated as a Newtonian fluid. For an axisymmetric motion of blood, the equations of motion in the cylindrical polar coordinates may be given as follows:

1902

H. Demiray / International Journal of Engineering Science 40 (2002) 1897–1918   oVr 1 oP  lv  oVr  oVr þ V ¼ þ V þ r z ot or oz qf or qf   oVz 1 oP  lv  oVz  oVz þ V þ ¼ þ V r z ot or oz qf oz qf

oVr Vr oVz þ þ  ¼0 or r oz





 o2 Vr 1 oVr Vr o2 Vr  2 þ 2 ; þ r or or2 r oz

ð19Þ

 o2 Vz 1 oVz o2 Vz þ þ 2 ; r or or2 oz

ð20Þ

ðincompressibility conditionÞ;

ð21Þ

where qf is the mass density of the fluid body. These field equations must satisfy the following boundary conditions ou ou   þ V j   ¼ Vr jr¼r þ/z þu : 0 ot oz z r¼r0 þ/z þu

ð22Þ

At this stage it is convenient to introduce the following nondimensionalized quantities 

t ¼



 R0 t; z ¼ R0 z; r ¼ R0 x; u ¼ R0 u; Vr ¼ c0 v; Vz ¼ c0 w; G ¼ qf c20 g; c0

P  ¼ qf c20 p; m ¼

q0 H lH ; r0 ¼ kh R0 ; lv ¼ qf R0 c0 m; c20 ¼ : qf R0 qf R0

ð23Þ

Introducing (23) into equations (18)–(22) we obtain the following nondimensionalized equations:  2  ov ov ov op o v 1 ov v o2 v þ ¼ 0; þv þw þ m  þ ot ox oz ox ox2 x ox x2 oz2

ð24Þ

 2  ow ow ow op o w 1 ow o2 w þ ¼ 0; þv þw þ m þ ot ox oz oz ox2 x ox oz2

ð25Þ

ov v ow þ þ ¼ 0; ox x oz

ð26Þ

with boundary conditions 

   ov ov ow ou ðp0 þ pÞ  2m þ m  g ¼ 0; þ /þ ox oz ox oz x¼kh þ/zþu

ou ou þ wj ¼ vjx¼kh þ/zþu ; ot oz x¼kh þ/zþu

ð27Þ

H. Demiray / International Journal of Engineering Science 40 (2002) 1897–1918

1903

where the function g is defined by g¼

m ðkz þ UzÞ o2 u ð1 þ U2 Þ1=2 oR 2 1=2 ð1 þ U Þ þ ðkh þ /z þ uÞ ot2 kz ðkh þ /z þ uÞ ok2 k2z 8 9 > > < ou / þ oz ðkz þ UzÞ oR = 1 o :  h i1=2 kz ðkh þ /z þ uÞ oz > ok1 > : 1 þ / þ ou 2 ; oz

ð28Þ

These equations give sufficient relations to determine the field quantities u, v, w and p completely. 3. Nonlinear wave modulation In this section we shall examine the amplitude modulation of weakly nonlinear waves in a fluidfilled thin elastic tube whose dimensionless governing equations are given in Eqs. (24)–(28). Considering the dispersion relation of the linearized field equations and the nature of the problem of concern, which is a boundary value type, the following stretched coordinates may be introduced n ¼ ðz  ktÞ;

s ¼ 2 z;

ð29Þ

where  is a small parameter measuring the weakness of nonlinearity and k is the scale constant to be determined from the solution. In order to take the effect of tapering into account, the order of the tapering angles should be of order of 4 . Hence, the tapering angles can be expressed as U ¼ A4 ;

/ ¼ a4 :

ð30Þ

Here A and a are some finite constants describing the tapering angles and will be specified later. Noting the differential relations o o o o ! þ  þ 2 ; oz oz on os

o o o !  k ot ot on

ð31Þ

and expanding the field variables into asymptotic series as u ¼ u1 þ 2 u2 þ 3 u3 þ ; v ¼ v1 þ 2 v2 þ 3 v3 þ ; w ¼ w1 þ 2 w2 þ 3 w3 þ ; 2

ð32Þ

3

g ¼ g0 þ g1 þ  g2 þ  g3 þ ; p ¼ p0 þ p1 þ 2 p2 þ 3 p3 þ ; where u1 ; . . . ; p3 ; . . . are functions of the fast variables ðt; zÞ and slow variables ðn; sÞ, and introducing (31) and (32) into the field equations (24)–(27), the following sets of differential equations are obtained:

1904

H. Demiray / International Journal of Engineering Science 40 (2002) 1897–1918

OðÞ order equations: ov1 op1 þ ¼ 0; ot ox

ow1 op1 þ ¼ 0; ot oz

ov1 v1 ow1 þ þ ¼ 0; ox x oz

ð33Þ

and the boundary conditions p1 jx¼kh ¼ g1 ;

ou1 ¼ v1 jx¼kh : ot

ð34Þ

Oð2 Þ order equations: ov2 ov1 ov1 ov1 op2 k þ v1 þ w1 þ ¼ 0; ot on ox oz ox ow2 ow1 ow1 ow1 op2 op1 k þ v1 þ w1 þ þ ¼ 0; ot on ox oz oz on ov2 v2 ow2 ow1 þ þ þ ¼ 0; ox x oz on and the boundary conditions   op1  p2 þ u1 ¼ g2 ; ox x¼kh

ð35Þ

   ov1  ou2 ou1 ou1  v 2 þ u1 ¼ : k þ w1 ox x¼kh ot on oz x¼kh

ð36Þ

Oð3 Þ order equations:  2  ov3 ov2 o ov1 ov2 ov1 op3 o v1 1 ov1 v1 o2 v1 k þ ðv1 v2 Þ þ w2 þ w1 þ w1 þ m  þ þ ¼ 0; ot on ox oz oz on ox ox2 x ox x2 oz2 ow3 ow2 ow2 ow1 o ow1 op3 op2 op1 k þ v1 þ v2 þ ðw1 w2 Þ þ w1 þ þ þ oz ot on ox ox on oz on os  2  2 o w1 1 ow1 o w1 þ ¼ 0; m þ 2 x ox ox2 oz ov3 v3 ow3 ow2 ow1 þ þ þ þ ¼ 0; ð37Þ ox x oz on os and the boundary conditions 

 1 2 o2 p1 op2 op1 ov1  u þ ðas þ u2 Þ þ p3  2m ¼ g3 ; þ u1 2 1 ox2 ox ox ox x¼kh    1 2 o2 v 1 ov1 ov2 ou3 ou2 ¼ u1 2 þ ðas þ u2 Þ þ u1 þ v3  k 2 ox ox ox ot on x¼kh     ou2 ou1 ou1 ow1  þ w1 jx¼kh : þ þ w2 þ u1 oz on oz ox  x¼kh

ð38Þ

H. Demiray / International Journal of Engineering Science 40 (2002) 1897–1918

1905

In order to make the equations self-sufficient, or complete, we need the explicit expressions of g1 , g2 and g3 , which should be obtained from Eq. (28). Under the coordinate transformations (30), the tapering terms in these expressions become ðAsÞ2 and ðasÞ2 , in this approximation. Furthermore, we shall assume that the generators before and after the static deformation remain parallel to each other. As pointed out before, for this case the relation between a and A becomes a ¼ Akh =kz . Hence the following expansions are permissible:   2    1 ou1 ou1 ou2 ou1 3 2 k1 ¼ kz 1 þ  þ þ  þ

; 2 oz oz oz on ! As 2 k2 ¼ kh þ u1  þ u2  þ u3  u1 3 þ ; kz ( ! 1 1 u1 u21 u2 A 2 ½kh þ as þ u ¼ 1 þ   s 2 kh kh k2h kh kz " # ) u31 2 2 u3 3  þ

; Asu2  þ  3 þ 2 u1 u2 þ kh kh kz kh kh !2 # " " 1 oR ou 1 ¼ b0 þ b1 u1  þ b2 u21 þ b1 u2 þ a1 kz þ 2 þ b3 u31 þ 2b2 u1 u2 þ b1 u3 kh kz okz oz ! #  2 ou1 ou2 ou1 ou1 A þ þ a2 kz u1 þ 2a1 kz  b1 su1 3 þ ; kz oz oz on oz " #  2 1 oR ou1 2 2 þ ; ¼ a0 þ 2a1 u1  þ a2 u1 þ 2a1 u2 þ c1 kz kh kz ok1 oz

ð39Þ

where the coefficients a0 , a1 , a2 , b0 ; . . . ; b3 and c1 are defined by 1 o2 R ; 2kh kz okh okz

a0 ¼

1 oR ; kh kz okz

a1 ¼

b1 ¼

1 o2 R ; kh kz ok2h

b2 ¼

1 o3 R ; 2kh kz ok3h

1 o3 R 1 oR ; b0 ¼ ; 2 2kh kz okh kz kh kz okh 1 o4 R 1 o2 R b3 ¼ ; c ¼ : 1 6 ok4h 2kh kz ok2z a2 ¼

ð40Þ

Introducing Eq. (39) into Eq. (28) the fluid reaction force terms g1 , g2 and g3 may be given by   m o2 u1 o2 u1 b0 g1 ¼  a0 kz 2 þ b1  ð41Þ u1 ; kh kz ot2 oz kh !  2    m o u2 o2 u1 m o2 u1 b1 b0 2 b0  2l u2 g2 ¼  2 u1 2 þ b2  þ 2 u1 þ b1  kh kz ot2 oton ot kh kh kh kh kz    2 o2 u2 o2 u1 a0 o2 u1 ou1 b  2a1 u1 2  a1 kz  a0 kz 2  2a0 kz  0 As; ð42Þ þ kz oz ozon kh oz oz kz

1906

H. Demiray / International Journal of Engineering Science 40 (2002) 1897–1918

! m o2 u3 o2 u3 b0 m o2 u2 o2 u2  u g3 ¼  a k þ b  2k k  2a 0 z 3 0 z 1 kh kz ot2 kh kz oton ot2 kh ozon   2   2 2 2 m 2 o u1 m o u1 o u2 o u1 m 2 o2 u1 k  a0 kz þ 2ku  u u1 2 þ þ  u 1 1 2 kh kz oton ot2 ot2 ot k3h kz on2 k2h kz ! ! b b b b b o2 u1 þ b3  2 þ 21  30 u31 þ 2 b2  1 þ 20 u1 u2  2a0 kz kh kh kh kh kh ozos ! !   2 2 3 ou1 o u1 a0 o2 u2 o2 u1 a0  3c1 kz  2a1 u1 2 þ u2 2 þ kz þ kz 2 oz oz2 kh oz oz !     ou1 ou2 ou1 a0 o2 u1 2a1 a0 2 o2 u1 þ þ kz  a2 þ  2a1 u1  2 u1 2  2a1 kz þ 2kz oz oz on kh ozon kh oz kh      2 a1 ou1 2 b o2 u1  a2 u1 þ kz  b1  0 Asu1 þ a0 As 2 : kz kh oz kh oz

ð43Þ

4. Solution of the field equations 4.1. The solution of OðÞ order equations The solution of the differential equations given in (33) and (41) suggests us to seek the following type of solution to these differential equations u1 ¼ U1 exp½iðxt  kzÞ þ c:c:;

g1 ¼ G1 exp½iðxt  kzÞ þ c:c:;

v1 ¼ V1 exp½iðxt  kzÞ þ c:c:;

w1 ¼ W1 exp½iðxt  kzÞ þ c:c:;

p1 ¼ P1 exp½iðxt  kzÞ þ c:c:;

ð44Þ

where x is the angular frequency, k is the wave number, U1 and G1 are amplitude functions which depend on the slow variables n and s, and V1 , W1 and P1 are amplitude functions which depend on x as well as the slow variables ðn; sÞ and c.c. stands for the complex conjugate of the corresponding quantities. The solution satisfying the field equations (33) and the boundary conditions (34) are given as follows: U1 ¼ U ;

G1 ¼

x2 f0 U ; k

V1 ¼ ixf1 ðkxÞU ;

W1 ¼ xf0 ðkxÞU;

P1 ¼

x2 f0 ðkxÞU ; k

provided that the following dispersion relation holds true   x2 mx2 b0 f0 þ  b1   a0 kz k 2 ¼ 0; k kh kz kh

ð45Þ

ð46Þ

where, for brevity, we have defined the following functions fn ðkxÞ ¼ In ðkxÞ=I1 ðkh kÞ; ðn ¼ 0; 1; 2; . . .Þ;

f0 ¼ f0 ðkh kÞ;

u ¼ xt  kz:

ð47Þ

H. Demiray / International Journal of Engineering Science 40 (2002) 1897–1918

1907

Here In ðxÞ is the modified BesselÕs function of order n and U ðn; sÞ is an unknown function of the slow variables, whose governing equation will be obtained later. The group velocity vg is defined by vg ¼

kh x2 ðf02  1Þ þ 2a0 kz k 2 : 2xðf0 þ mk=kh kz Þ

ð48Þ

4.2. The solution of Oð2 Þ order equations Introducing the solution given in (45) into Eq. (35) we obtain # " 2 2 2 ov2 op2 oU x f ðkxÞ f ðkxÞ 1 1 þ  ixk U 2 e2iu þ 2x2 2kf0 ðkxÞf1 ðkxÞ  jU j2 þ c:c: ¼ 0; f1 ðkxÞeiu þ ot ox x x on   ow2 op2 x oU iu  k f0 ðkxÞ þ þx e þ ix2 k½f1 ðkxÞ2  f0 ðkxÞ2 U 2 e2iu þ c:c: ¼ 0; ot oz k on ov2 v2 ow2 oU iu e þ c:c: ¼ 0; þ þ þ xf0 ðkxÞ ð49Þ on ox x oz

and the boundary conditions g2  p2 jx¼kh ¼ 2x2 jUj2 þ x2 U 2 e2iu þ c:c:;   ou2 oU i/ 1 e þ ix 2kf0   v2 jx¼kh ¼ k U 2 e2iu þ c:c: on kh ot

ð50Þ

Here, for convenience, we have defined jUj2 ¼ UU  , where U  is the complex conjugate of U, and noticed that f1 ðkh kÞ ¼ 1. The form of the differential equations in (49) suggests us to seek the following type of solution

v2 ¼

ð0Þ V2

þ

!

2 X

ðlÞ V2 ðx; n; sÞ expðiluÞ

þ c:c: ;

l¼1 ð0Þ

w 2 ¼ W2 þ

2 X

! ðlÞ

W2 ðx; n; sÞ expðiluÞ þ c:c: ;

l¼1

p2 ¼

ð0Þ P2

þ

2 X

!

ðlÞ P2 ðx; n; sÞ expðiluÞ

l¼1

u2 ¼

ð0Þ U2

þ

2 X

! ðlÞ U2 ðn; sÞ expðiluÞ

l¼1 ð0Þ

g2 ¼ G2 þ

2 X l¼1

þ c:c: ;

þ c:c: ; !

ðlÞ

G2 ðn; sÞ expðiluÞ þ c:c: ;

ð51Þ

1908

H. Demiray / International Journal of Engineering Science 40 (2002) 1897–1918

where, from (42) we have        b0 x2 b0 kh ð0Þ ð0Þ 2 2 G2 ¼ b 1  U2 þ 2  a  Ab1 s; f0 þ b2 þ a1 k jU j þ b1  kh kh k kh kz   x2 mx oU ð1Þ ð1Þ G2 ¼ k ; f0 U2 þ 2i a0 kz k  kh kz on k   2    x b0 x2 ð2Þ ð2Þ 2 U2 þ  G2 ¼ 4 f 0  3 b 1  f0 þ b2 þ 3a1 kz k U 2 : k kh kh k

ð52Þ ð53Þ ð54Þ

Introducing (51) into (49) and (50) we obtain the following set of differential equations and the boundary conditions " # ð0Þ ð0Þ ð0Þ 2 oP2 f ðkxÞ oV2 V2 1 2 2 þ 2x 2kf0 ðkxÞf1 ðkxÞ  jU j ¼ 0; þ ¼ 0; ð55Þ ox x ox x and the boundary conditions ð0Þ

ð0Þ

ð0Þ

2

G2  P2 jx¼kh ¼ 2x2 jU j ;

V2 jx¼kh ¼ 0:

ð56Þ

The equations and the boundary conditions resulting from the coefficients of expðiuÞ becomes ð1Þ

oP2 oU f1 ðkxÞ ¼ 0;  ixk on ox x  oU ð1Þ ð1Þ k f0 ðkxÞ ¼ 0; ixW2  ikP2 þ x k on ð1Þ

ixV2 þ

ð1Þ

ð57Þ

ð1Þ

oV2 V oU ð1Þ f0 ðkxÞ ¼ 0; þ 2  ikW2 þ x on ox x and the boundary conditions ð1Þ

ð1Þ

G2  P2 jx¼kh ¼ 0;

ð1Þ

ð1Þ

ixU2  V2 jx¼kh ¼ k

oU : on

ð58Þ

The equations and boundary conditions resulting from the coefficients of expð2iuÞ become, ð2Þ

oP2 f 2 ðkxÞ 2 U ¼ 0; þ x2 1 x ox   ð2Þ ð2Þ 2xW2  2kP2 þ x2 k f12 ðkxÞ  f02 ðkxÞ U 2 ¼ 0; ð2Þ

2ixV2 þ ð2Þ

ð2Þ

oV2 V ð2Þ þ 2  2ikW2 ¼ 0; ox x

ð59Þ

H. Demiray / International Journal of Engineering Science 40 (2002) 1897–1918

1909

and the boundary conditions ð2Þ

ð2Þ

G2  P2 jx¼kh ¼ x2 U 2 ð2Þ 2ixU2



ð2Þ V2 jx¼kh

  1 ¼ ix 2kf0  U 2: kh

ð60Þ

The solution of Eqs. (55) and (56) yields ð0Þ

V2

ð0Þ

U2

ð0Þ

2

P2 ¼ H ðn; sÞ  x2 ½f12 ðkxÞ þ f02 ðkxÞ jUj ; " ! # jU j2 2f0 b0 A Hðn; sÞ 2 2 2 x 1þ ;  f0  2b2  2a1 kz k þ ¼ sþ ðb1  b0 =kh Þ ðb1  b0 =kh Þ kh k ðb1  b0 =kh Þ kz

¼ 0;

ð61Þ provided that b1  b0 =kh 6¼ 0. The special case where b1  b0 =kh ¼ 0 will be discussed later. From the solution of Eqs. (57) and (58) it is readily seen that, in order to have a nonzero solution for U ðn; sÞ the scale parameter k must be equal to the group velocity given in Eq. (48). Furthermore, in this work, since we shall be concerned with the governing equation of the lowest order term in the perturbation expansion, without loosing the generality of the problem we can set the homogeneous solution equal to zero. Hence, the nonhomogeneous solution of Eqs. (57) and (58) may be given by   oU k oU ð1Þ ; U2 ¼ i k h f 0  2 ; ¼ ½kf1 ðkxÞ  xxf0 ðkxÞ on x on     x oU x2 oU ð1Þ ð1Þ W2 ¼ i xxf1 ðkxÞ þ  k f0 ðkxÞ ; P2 ¼ i xf1 ðkxÞ : k on on k ð1Þ V2

ð62Þ

The solution of Eq. (59) gives ð2Þ

V2

ð2Þ

¼ ixCF1 ð2kxÞ;

P2 ¼

2

ð2Þ

W2

¼ xCF0 ð2kxÞ;

2

x x CF0 ð2kxÞ þ ½f12 ðkxÞ  f02 ðkxÞ U 2 ; k 2

ð63Þ

where C is another unknown function of slow variables, F0 and the functions Fi ð2kxÞ are defined by F0 ¼ F0 ð2kÞ;

Fi ð2kxÞ ¼

Ii ð2kxÞ ; I1 ð2kÞ

ði ¼ 0; 1; 2; 3; . . .Þ:

ð64Þ

1910

H. Demiray / International Journal of Engineering Science 40 (2002) 1897–1918

The use of the boundary conditions (60) results in   1 ð2Þ C ¼ 2U2 þ  2kf0 U 2 ; kh  2   1     x b0 2x2 1 2 f0 x2 1 ð2Þ 2 3  x  2kf0 F0  f þ F0 þ U2 ¼ 4 f 0  3 b 1  2 2 0 kh k k kh k k kh ! 2  b2  3a1 kz k U 2 :

ð65Þ

4.3. The solution of Oð3 Þ order equations For the solution of this order of differential equations and the boundary conditions given in Eqs. (37) and (38) the field quantities may be expressed as follows: ! 3 X ð0Þ ðlÞ u3 ¼ U3 þ U3 ðn; sÞ expðiluÞ þ c:c: ; l¼1

v3 ¼

ð0Þ V3

þ

3 X

! ðlÞ V3 ðx; n; sÞ expðiluÞ

þ c:c: ;

l¼1 ð0Þ

w2 ¼ W3 þ

3 X

! ðlÞ

W3 ðx; n; sÞ expðiluÞ þ c:c: ;

l¼1 ð0Þ

p3 ¼ P3 þ

3 X

! ðlÞ

P3 ðx; n; sÞ expðiluÞ þ c:c: ;

l¼1

g3 ¼

ð0Þ G3

þ

3 X

ð66Þ

! ðlÞ G3 ðn; sÞ expðiluÞ

þ c:c: ;

l¼1

where ð1Þ G3

!  2  2 ð1Þ x2 oU mk oU mkx oU2 ð1Þ ¼ þ 2i a0 kz k   a0 kz þ f0 U3 þ 2ia0 kz os kh kz k kh kz on on2 # " " x2 b b x2 ð0Þ f0 þ 2a1 kz k 2 þ 2b2  1 þ 20 U2 U þ  5 f0 þ 6a1 kz k 2 þ  kh k kh kh kh k !# "     b1 b0 x2 b2 a1 ð2Þ  þ 2a2  5 kz k 2 þ 2b2 þ 3  U2 U 3 2 f0 þ 3 b3  kh k2h kh kh kh k ! # " ! # 3 b A 2  kz sU: a0  3c1 kz k 4 jU j U  2 b1  0 þ a0 kz k 2 kh 2 kz

ð67Þ

Introducing the expansion (66) into Eqs. (37) and (38), we obtain the following sets of differential equations and the boundary conditions

H. Demiray / International Journal of Engineering Science 40 (2002) 1897–1918 ð0Þ

k

ð0Þ

oW2 oP o þ 2 þ x2 ðf02 ðkxÞ þ f12 ðkxÞÞ jU j2 ¼ 0 on on on

ð0Þ

1911

ð0Þ

ð0Þ

oV3 V oW þ 3 þ 2 ¼ 0; ox x on with the boundary condition   ð0Þ oU2 k ojU j2 ð0Þ V3 jx¼kh ¼ k þ 2xf0  : kh on on

ð68Þ

ð69Þ

4.4. l ¼ 1 equations ð1Þ

ð1Þ

oP3 oV o ð2Þ ð0Þ ð2Þ  k 2  ixU  ½f1 ðkxÞV2 þ kxf1 ðkxÞðW2 U þ W2 U  Þ ox ox on  2  o V1 1 oV1 V1 ð2Þ 2  2ixkf0 ðkxÞV2 U   m þ ¼ 0;  k V  1 x ox x2 ox2 ! ð1Þ ð0Þ ð2Þ oW2 x2 oU oW2 oW ð1Þ ð1Þ ixW3  ikP3  k þ ixf1 ðkxÞ þ f0 ðkxÞ U  U 2 os on k ox ox   ð1Þ oP2 o2 W1 1 oW1 ð2Þ  ð0Þ ð2Þ  2 þ xkf1 ðkxÞV2 U  ixkf0 ðkxÞ½W2 U þ W2 U þ m  k W1 ¼ 0; þ x ox on ox2 ð1Þ

ixV3 þ

ð1Þ

ð1Þ

ð1Þ

oV3 V oW oU ð1Þ ¼ 0; þ 3  ikW3 þ 2 þ xf0 ðkxÞ os ox x on

ð70Þ

and the boundary conditions ð1Þ G3

¼

ð1Þ P3 jx¼kh

2

ð0Þ U2 U

2

ð2Þ U2 U 

x2 þ 2



 3  13kf0 jU j2 U kh

þx þ 5x   1 A U þ kh x2 sU ;  2imx kf0  kh kz   ð1Þ oU2 3 2 3 k ð1Þ ð1Þ 2 kf0 þ F0  2k f0 F0 jUj2 U k þ þ ix ixU3  V3 jx¼kh ¼ k 2 2kh kh on       1 1 1 A ð0Þ ð0Þ ð2Þ  þ ikW2 U þ ix kf0  U2 U þ ix 2kF0 þ kf0  U2 U þ ikh x kf0  sU : kh kh kh kz ð71Þ The solution of (68) under the boundary conditions (69) is given as follows: ð0Þ W2

H ðn; sÞ ¼ ; k

ð0Þ V3

1 oH ¼ x; 2k on

  k2 ð0Þ k 1 jU j2 : 2xf0  H ¼ 2 U2  2 kh kh kh

ð72Þ

1912

H. Demiray / International Journal of Engineering Science 40 (2002) 1897–1918

Introducing the expression of H into Eq. (61) we have ð0Þ U2

2



k2 þ 2b2 kh þ 2a1 kh kz k 2 kh !    2f0 A 2 2 2  kh x jU j  b0 s : þ kh f0  kz k 1

¼ ½2k  ðkh b1  b0 Þ

4kxf0  2

ð73Þ

Finally the solution of Eq. (70) under the boundary conditions (71) is given by ð1Þ P3

 ¼

 2 x2 x 2 x2 x oU   x2 ½F0 ð2kxÞf0 ðkxÞ þ F1 ð2kxÞf1 ðkxÞ CU  f0 ðkxÞ þ 2 f1 ðkxÞ 2k 2k on2

þi ð1Þ V3

ð1Þ W3

ð1Þ

  2    ikHU x x 2 k2 oU oU f1 ðkxÞ þ i k  x þ ; ¼  xxf0 ðkxÞ xf0 ðkxÞ  f1 ðkxÞ 2 k 2k 2 os x on    2   kHU x x 2 k2 k oU ¼ f0 ðkxÞ þ k  xf1 ðkxÞ þ  x  þ f0 ðkxÞ k 2k 2 x k on2   x oU þ i xxf1 ðkxÞ þ f0 ðkxÞ ; k os

G3 ¼

ð1Þ U3

x2 oU ; xf1 ðkxÞ os k

x2 kh o2 U ð0Þ ð2Þ ð1  kk f Þ  x2 ð1 þ f0 F0 ÞCU  þ x2 U2 U þ 5x2 U2 U  h 0 2 2k 2 on     2 x 3 1 A  13kf0 jU j2 U  2imx kf0  U þ kh x2 sU ; þ kh kz 2 kh

   2kFU 2i oU k 1 k2 k2h o2 U ¼ þ þ 2  kh f0  3 2  xk x os x 2k x 2 on2     3 2 3 k 1 ð0Þ 2 2 U2 U þ kf0 þ F0  2k f0 F0 jU j U þ kf0  k þ 2 2kh kh kh     1 1 A ð2Þ  þ 2kF0 þ kf0  sU : U2 U þ kh kf0  kh kh kz ð1Þ

ð74Þ

ð1Þ

Eliminating G3 and U3 between the Eqs. (71) and (74) the following dissipative nonlinear Schr€ odinger equation with variable coefficient is obtained i

oU o2 U 2 þ l1 2 þ l2 jU j U þ il3 U þ l4 sU ¼ 0; os on

ð75Þ

H. Demiray / International Journal of Engineering Science 40 (2002) 1897–1918

1913

1      x2 2 m f0 x2 kh kk 2 2 2 f  kh f 0  kh ¼ 2a0 kz k þ kh ðf0  1Þ  3k þ þ 2 4 kh kz k x 0 k 2k    mx k f0 þ 2a0 kz  a0 kz ð1 þ 2kh kf0 Þ ; þ 2k kz x ! ( "  1 x2 2 3 13 k 3 3 ¼ 2a0 kz k þ kh ðf0  1Þ x2  þ k þ 4 2 þ k þ 2 f0 2kh 2 k kh 2 kh k        x 3 1 x b f2 þ  2k f0 F0 þ 4 þ 3 b3  2 þ 8 þ kh 2kh 0 kh kh kh ! " !   a1 3 2 þ 2a2  5 kz k þ 2  kz a0  3c1 kz k 4 þ x2 f02  f0  1 2 kh k kh # b1 b0 x ð0Þ þ 2b2  þ 2 þ 2a1 kz k 2 þ 4k f0 U2 U kh kh kh "  ! # )  6 b1 b0 ð2Þ  2 2 2 þ 6a1 kz k U2 U þ x 4f0 F0 þ f0   f0  3 þ 2b2 þ 3 kh k kh k2h   2mx kf0  k1h ¼ 2 2a0 kz k þ kh xk ðf02  1Þ ! !  1 ( 2 x2 2 f f b 0 ¼ 2a0 kz k þ kh ðf0  1Þ x2 0  2  kh  2 b1  0  a0 kz k 2 k kh kh k kh  h  i9 =A b0 x2 f02  k2h k f0  1 þ 2b2  bkh1 þ bk20 þ 2a1 kz k 2 þ 4 kx f kh 0 h  : ; kz 2k2  ðkh b1  b0 Þ

ð76Þ

where 

l1

l2

l3 l4

When the tapering angle parameter A is set equal to zero the coefficient l4 vanishes and the resulting evolution equation becomes the dissipative nonlinear Schr€ odinger equation i

oU o2 U þ l1 2 þ l2 jUj2 U þ il3 U ¼ 0: os on

ð77Þ

Therefore, the coefficient l4 stands for the contribution of tapering to the evolution equation. 4.5. Progressive wave solution In this sub-section we shall try to present a progressive wave solution to the evolution equation (75). For that purpose, following Demiray [21], we shall propose a solution of the form U ðn; sÞ ¼ aðsÞV ðfÞ expfi½XðsÞ  Kn g;

f ¼ aðsÞ½n  2l1 Ks ;

ð78Þ

1914

H. Demiray / International Journal of Engineering Science 40 (2002) 1897–1918

where K is a constant aðsÞ, aðsÞ, and V ðfÞ are some real functions to be determined from the solution of (75). Introducing (78) into Eq. (75) and setting the real and imaginary parts of the resulting equation equal to zero we obtain the following sets of ordinary differential equations 

 a0 ðsÞ a0 ðsÞ 0 fV ¼ 0; þ l3 V þ aðsÞ aðsÞ

ð79Þ

½X0 ðsÞ  l1 K 2 þ l4 s V þ l1 aðsÞ2 V 00 þ l2 a2 ðsÞV 3 ¼ 0;

ð80Þ

where primes denote the derivative of the corresponding quantity with respect to its argument. In the present work we shall be concerned with the localized travelling wave solution to the field equation, i.e., V and its various order derivatives vanish as f ! 1. Under such assumptions one can show that V is square integrable over the interval ð1; 1Þ. Thus, multiplying Eq. (79) by V and integrating the resulting equation with respect to f from 1 to þ1 we obtain 

 a0 ðsÞ 1 a0 ðsÞ  þ l3 hV 2 i ¼ 0; aðsÞ 2 aðsÞ

2

hV i ¼

Z

1

V 2 df:

ð81Þ

1

Since hV 2 i is bounded and nonzero, we obtain the following ordinary differential equation a0 ðsÞ 1 a0 ðsÞ  þ l3 ¼ 0: aðsÞ 2 aðsÞ

ð82Þ

Now, in the first place, we shall propose a solution to Eq. (80) of the following form V ðfÞ ¼ sech f:

ð83Þ

Introducing (83) into Eq. (80), the following differential equations are obtained 2

aðsÞ ¼

l2 2 aðsÞ ; 2l1

X0 ðsÞ ¼

l2 2 aðsÞ þ l4 s  l1 K 2 : 2

ð84Þ

It is seen from the first term of Eq. (84) that, in order to have a real solution for aðsÞ and aðsÞ the coefficient l1 and l2 must satisfy the inequality l1 l2 > 0, which is the case for the classical NLS equation. Now, let us return to the investigation of Eq. (79). It can be shown from the first term of Eq. (84) that a0 ðsÞ=aðsÞ ¼ a0 ðsÞ=aðsÞ. Introducing this relation into Eq. (79) we obtain a0 ðsÞ þ 2l3 ¼ 0: aðsÞ

ð85Þ

The solution of this equation may be given as follows: aðsÞ ¼ a0 e2l3 s ;

ð86Þ

H. Demiray / International Journal of Engineering Science 40 (2002) 1897–1918

1915

where a0 is a constant. Introducing (86) into equation (84) we obtain  aðsÞ ¼

l2 2l1

1=2

a0 e2l3 s ;

XðsÞ ¼ l1 K 2 s þ

l4 2 l2 a20 ð1  e4l3 s Þ: s þ 2 8l3

ð87Þ

Here, in obtaining the function XðsÞ we have utilized the regularity condition that XðsÞ ¼ 0 at s ¼ 0. Thus, the final solution may be given as follows: U ðn; sÞ ¼ a0 e

2l3 s

 sech f expfi½XðsÞ  Kn g;



l2 2l1

1=2 aðsÞðn  2l1 KsÞ:

ð88Þ

It should be noted that the Eq. (88) is not a solution in the classical sense, it is rather a solution in the sense of distribution. If the coefficient l3 is vanishingly small then one can approximate  a ¼ a0 ;



l2 2l1

1=2 a0 ;

XðsÞ ¼ ðl1 K 2 þ l2 a20 =2Þs þ

l4 2 s: 2

ð89Þ

This result is exactly the same with that of obtained by Demiray [21] for nondissipative NLS equation. If the tapering parameter is set equal to zero, i.e., l4 ¼ 0; the result will be that of the progressive wave solution of the classical NLS equation. Now, secondly, we shall propose a solution to Eq. (80) of the following form V ¼ tanh f:

ð90Þ

Since this function is not square integrable we cannot follow the above procedure to handle this problem. As is seen from Eq. (79), for this type of solution fV 0 ðfÞ approaches to zero as f ! þ1. Therefore, if we investigate the far field behavior of Eq. (79) and consider that fV 0 ðfÞ vanishes as f ! þ1 and obtain the following differential equation a0 ðsÞ þ l3 ¼ 0: aðsÞ

ð91Þ

The solution of this may be given by aðsÞ ¼ a0 el3 s ;

ð92Þ

where a0 is a constant. Now, let us introduce the proposed solution (90) into Eq. (80). In order to satisfy this equation the following relations must be satisfied 2l1 aðsÞ2 þ l2 aðsÞ2 ¼ 0;

ð93Þ

X0 ðsÞ  l1 K 2 þ l4 s þ l2 aðsÞ2 ¼ 0:

ð94Þ

1916

H. Demiray / International Journal of Engineering Science 40 (2002) 1897–1918

The relation (93) holds true if and only if l1 and l2 have different signs, which is the case for classical nonlinear Schr€ odinger equation. Introducing (92) into (93) we obtain aðsÞ as  aðsÞ ¼

l  2 2l1

1=2

a0 el3 s :

ð95Þ

Finally, integrating (94) and utilizing the regularity condition that XðsÞ at s ¼ 0, we obtain XðsÞ ¼ l1 K 2 s þ

l4 2 a20 l2 ð1  e2l3 s Þ: s þ 2 2l3

ð96Þ

Thus, the final solution may be given by l3 s

U ðn; sÞ ¼ a0 e

 tanh f expfi½XðsÞ  Kn g;



l  2 2l1

1=2

a0 el3 s  2l1 Ks:

ð97Þ

If the coefficient l3 is vanishingly small, then one can approximate  a ¼ a0 ;





l2 2l1

1=2 a0 ;

XðsÞ ¼ l1 K 2 s þ l2 a20 s þ

l4 2 s: 2

ð98Þ

As is seen from these solutions, the existence of dissipation causes the decay in wave amplitude with the distance parameter s. Similar interpretation applies to the phase velocity of the enveloping wave, which might be given by vp ¼ l1 K þ

l4 l s þ 2 a20 e4l3 s : K 2K

ð99Þ

Here, again, the dissipative effect causes to decay in phase speed with distance parameter s. In order to see the contribution of the tapering to the phase velocity of the enveloping wave, one has to know the sign of the coefficient l4 . For convenience we shall re-write l4 as l4 ¼ v

A ; kz

ð100Þ

where 8 ! 1 <   2 x f f b0 0 2 2 0 x  þ 2 þ kh þ 2 b1  þ a0 kz k 2 v ¼ 2a0 kz k þ kh ðf0  1Þ : k kh kh k kh  h  i9 = b0 x2 f02  k2h k f0  1 þ 2b2  bkh1 þ bk20 þ 2a1 kz k 2 þ 4 kx f kh 0 h þ : ; 2k2  ðkh b1  b0 Þ 

2

ð101Þ

H. Demiray / International Journal of Engineering Science 40 (2002) 1897–1918

1917

In order to get information about the sign of v one has to know the constitutive relation of the tube material. In this work we shall utilize the constitutive relation proposed by Demiray [22] for soft biological tissues. Following Demiray [22], the strain energy density function may be expressed as R¼

1 fexp½aðI1  3Þ  1g; 2a

ð102Þ

where a is a material constant and I1 is the first invariant of Finger deformation tensor and defined by I1 ¼ k2z þ k2h þ 1=k2z k2h . Introducing (102) into Eq. (44), the coefficients a0 , b0 , b1 and b2 are obtained as ! 1 1  F ðkh ; kz Þ; a0 ¼ kh k3h k4z " ! !# 1 1 1 a1 ¼ þa 1 4 2 1 2 4 F ðkh; kz Þ; k4h k4z kh kx kh kz ! 1 1  F ðkh ; kz Þ; b0 ¼ kz k4h k3z 2 ! !2 3 1 3 a 1 þ 5 3 þ2 kh  3 2 5F ðkh ; kz Þ; b1 ¼ 4 kh kz kh kz kh kz kh kz 2 ! ! !3 3 2 6 a 3 1 a 1 b2 ¼ 4  4 3 þ 3 kh  3 2 þ 2 1þ 4 2 kh  3 2 5F ðkh ; kz Þ; k k k k kh kz kh kz kh kz kh kz h z h z

ð103Þ

where the function F ðkh ; kz Þ is defined by "

!# 1 F ðkh ; kz Þ ¼ exp a k2h þ k2z þ 2 2  3 : kh kz

ð104Þ

In order to study the variation of the coefficient l4 with the initial deformation, we need the value of material constant a. For the static case, the present model was compared by Demiray [23] with the experimental measurements by Simon et al. [24] on canine abdominal artery with the characteristics Ri ¼ 0:31 cm, R0 ¼ 0:38 cm and kz ¼ 1:53, and the value of the material constant a was found to be a ¼ 1:948. The numerical analysis of the coefficient v as a function of kh , kz and the wave number k indicates that the coefficient v is always positive. This means that for descending tube (A < 0) the coefficient l4 is positive and the wave speed given in (99) increases with the distance parameter s. On the other hand for ascending tube (A > 0) the coefficient l4 is negative and the wave speed in (99) decreases with distance from the origin. Such a result is to be expected from physical considerations.

1918

H. Demiray / International Journal of Engineering Science 40 (2002) 1897–1918

Acknowledgement This work was supported by the Turkish Academy of Sciences.

References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]

S.C. Ling, H.B. Atabek, A nonlinear analysis of pulsatile blood flow in arteries, J. Fluid Mech. 55 (1972) 492–511. T.J. Pedley, Fluid Mechanics of Large Blood Vessels, Cambridge University Press, Cambridge, 1980. Y.C. Fung, Biodynamics: Circulation, Springer-Verlag, New York, 1981. H.B. Atabek, H.S. Lew, Wave propagation through a viscous incompressible fluid contained in an initially stressed elastic tube, Biophys. J. 7 (1966) 486–503. A.J. Rachev, Effects of transmural pressure and muscular activity on pulse waves in arteries, J. Biomech. Engng., ASME 102 (1980) 119–123. H. Demiray, Wave propagation through a viscous fluid contained in a prestressed thin elastic tube, Int. J. Eng. Sci. 30 (1992) 1607–1620. G. Rudinger, Shock waves in a mathematical model of aorta, J. Appl. Mech. 37 (1970) 34–37. M. Anliker, R.L. Rockwell, E. Ogden, Nonlinear analysis of flow pulses and shock waves in arteries, Z. Angew. Math. Phys. 22 (1968) 217–246. R.J. Tait, T.B. Moodie, Waves in nonlinear fluid filled tubes, Waves Motion 6 (1984) 197–203. T.B. Moodie, J.B. Haddow, Int. J. Non-linear Mech. 12 (1977) 223–231. T.B. Moodie, J.B. Haddow, J. Acoustic. Soc. Am. 67 (1980) 446–452. T.B. Moodie, G.E. Swaters, Quart. Appl. Math. 47 (1989) 705–722. R.S. Johnson, J. Fluid Mech. 42 (1970) 49–60. Y. Hazhizume, J. Phys. Soc. Jpn. 54 (1985) 3305–3312. Y. Yomosa, J. Phys. Soc. Jpn. 56 (1987) 506–520. H.A. Erbay, S. Erbay, S. Dost, Acta Mech. 95 (1992) 87–102. H. Demiray, Bull. Math. Biol. 58 (1996) 939–955. A.E. Ravindran, P. Prasad, Acta Mech. 31 (1979) 253–280. H.A. Erbay, S. Erbay, Acta Mech. 104 (1994) 201–214. H. Demiray, Int. J. Nonlinear Mech. 36 (2001) 649–661. H. Demiray, Applied Mathematics and Computation, in press. H. Demiray, J. Biomech. 5 (1972) 309–311. H. Demiray, Bull. Math. Biol. 38 (1976) 701–711. B.R. Simon, A.S. Kobayashi, D.E. Stradness, C.A. Wiederhielm, Circulation Res. 30 (1972) 491–500.