Mouse models of thyroid cancer: Bridging pathogenesis and novel therapeutics

Mouse models of thyroid cancer: Bridging pathogenesis and novel therapeutics

Journal Pre-proof Mouse Models of Thyroid Cancer: Bridging Pathogenesis and Novel Therapeutics Yuchen Jin, Min Liu, Ri Sa, Hao Fu, Lin Cheng, Libo Che...

18MB Sizes 0 Downloads 17 Views

Journal Pre-proof Mouse Models of Thyroid Cancer: Bridging Pathogenesis and Novel Therapeutics Yuchen Jin, Min Liu, Ri Sa, Hao Fu, Lin Cheng, Libo Chen PII:

S0304-3835(19)30489-6

DOI:

https://doi.org/10.1016/j.canlet.2019.09.017

Reference:

CAN 114507

To appear in:

Cancer Letters

Received Date: 22 July 2019 Revised Date:

25 September 2019

Accepted Date: 30 September 2019

Please cite this article as: Y. Jin, M. Liu, R. Sa, H. Fu, L. Cheng, L. Chen, Mouse Models of Thyroid Cancer: Bridging Pathogenesis and Novel Therapeutics, Cancer Letters, https://doi.org/10.1016/ j.canlet.2019.09.017. This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2019 Elsevier B.V. All rights reserved.

Abstract Due to a global increase in the incidence of thyroid cancer, numerous novel mouse models were established to reveal thyroid cancer pathogenesis and test promising therapeutic strategies, necessitating a comprehensive review of translational medicine that covers (i) the role of mouse models in the research of thyroid cancer pathogenesis, and (ii) preclinical testing of potential anti-thyroid cancer therapeutics. The present review article aims to: (i) describe the current approaches for mouse modeling of thyroid cancer, (ii) provide insight into the biology and genetics of thyroid cancers, and (iii) offer guidance on the use of mouse models for testing potential therapeutics in preclinical settings. Based on research with mouse models of thyroid cancer pathogenesis involving the RTK, RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, SRC, and JAK-STAT signaling pathways, inhibitors of VEGFR, MEK, mTOR, SRC, and STAT3 have been developed as anti-thyroid cancer drugs for “bench-to-bedside” translation. In the future, mouse models of thyroid cancer will be designed to be ‘‘humanized” and “patient-like,” offering opportunities to: (i) investigate the pathogenesis of thyroid cancer through target screening based on the CRISPR/Cas system, (ii) test drugs based on new mouse models, and (iii) explore the underlying mechanisms based on multi-omics.

1

1

Mouse Models of Thyroid Cancer: Bridging

2

Pathogenesis and Novel Therapeutics

3

Yuchen Jin1*, Min Liu1, 2*, Ri Sa1, Hao Fu1, Lin Cheng1, and Libo Chen1

4

1

5

Shanghai 200233, People’s Republic of China.

6

2

7

200032, China.

8

*

9

E-mail addresses for authors:

Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital,

Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai,

Yuchen Jin and Min Liu were the co-first authors.

10

[email protected] (Yuchen Jin)

11

[email protected] (Ri Sa)

12

[email protected] (Hao Fu)

13

[email protected] (Lin Cheng)

14

[email protected] (Min Liu)

15

[email protected] (Libo Chen)

16 17

Addresses for correspondence:

18

Professor Libo Chen, MD & PhD, Department of Nuclear Medicine, Shanghai Jiao Tong University

19

Affiliated Sixth People’s Hospital, Shanghai 200233, People’s Republic of China.

20

Telephone: +86-21-64369181

21

Fax: +86-21-64844183

22

E-mail: [email protected]

23 1

24

Financial support and conflicts of interest: This study was sponsored by the National Natural

25

Science Foundation of China (Grant Nos. 81671711 and 81701731) and Shanghai Key Discipline of

26

Medical Imaging (Grant No. 2017ZZ02005). None of the authors has any conflict of interest to

27

declare.

28 29

Manuscript length: 4408 words (main text)

30

Abstract: 199 words

31

References: 259

32

Figures: 4

33

Tables: 5

34

Abstract

35

Due to a global increase in the incidence of thyroid cancer, numerous novel mouse models were established to

36

reveal thyroid cancer pathogenesis and test promising therapeutic strategies, necessitating a comprehensive review

37

of translational medicine that covers (i) the role of mouse models in the research of thyroid cancer pathogenesis,

38

and (ii) preclinical testing of potential anti-thyroid cancer therapeutics. The present review article aims to: (i)

39

describe the current approaches for mouse modeling of thyroid cancer, (ii) provide insight into the biology and

40

genetics of thyroid cancers, and (iii) offer guidance on the use of mouse models for testing potential therapeutics in

41

preclinical settings. Based on research with mouse models of thyroid cancer pathogenesis involving the RTK,

42

RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, SRC, and JAK-STAT signaling pathways, inhibitors of VEGFR, MEK,

43

mTOR, SRC, and STAT3 have been developed as anti-thyroid cancer drugs for “bench-to-bedside” translation. In

44

the future, mouse models of thyroid cancer will be designed to be ‘‘humanized” and “patient-like,” offering

45

opportunities to: (i) investigate the pathogenesis of thyroid cancer through target screening based on the

46

CRISPR/Cas system, (ii) test drugs based on new mouse models, and (iii) explore the underlying mechanisms

47

based on multi-omics.

48 49

Keywords: Thyroid cancer; Mouse model; Preclinical testing; Anti-cancer therapeutics 2

50

Introduction

51

Thyroid cancers are endocrine-related tumors, and their incidence is increasing globally [1].

52

Surveillance and Epidemiology and End Results (SEER) indicated that the numbers of new cases of

53

thyroid cancer and thyroid cancer-related deaths in the USA in 2019 were expected to reach 52,070

54

and 2,170, respectively [2]. In China, there were about 90,000 new cases and 6,800 deaths in 2015

55

[3]. By 2030, the incidence of thyroid cancer is expected to rank second among all tumors in women

56

and ninth in men [4]. The most prevalent type of thyroid cancer, differentiated thyroid cancer (DTC),

57

originates in follicular cells and accounts for 90,800 of the total number of cases [1]. Within 10 years

58

after an initial operation, local recurrence and distant metastases occur in about 20% and 10% of

59

DTC cases, respectively. Despite the availability of I-131 therapy, metastasectomy, and radiotherapy,

60

only one-third of patients are identified as having a “complete response”; the remaining patients are

61

refractory to I-131 and have a poor prognosis [5]. Medullary thyroid cancer (MTC) and anaplastic

62

thyroid cancer (ATC) are rare forms that account for less than 2% of all thyroid cancers. However,

63

50% to 80% of MTC patients have metastatic disease at the time of diagnosis, with a five-year

64

survival of <50%; ATC is an extremely aggressive disease with a median overall survival of <1 year

65

[6]. Therefore, preclinical translational studies on its pathogenesis and novel therapeutics using

66

animal models of thyroid cancer are urgently needed.

67

In the past decade, spontaneous and transplantation mouse models have been used to explore the

68

biomedical features of thyroid cancer. These models produce thyroid tumors that resemble their

69

counterparts in humans, both histologically and genetically [7]. Sequencing results for the mouse and

70

human genomes have revealed the extent of their cross-species genomic similarity, indicating the

71

value of mouse models in thyroid cancer research [8]. Currently, genetic manipulation techniques,

72

such as conditional genetic recombination and the introduction of severe immunodeficiency, have

73

allowed for the development of new mouse models of thyroid cancer to mimic complicated clinical

74

settings, tumor heterogeneity, and disease status in thyroid cancer patients. Interestingly, such models 3

75

provide insight into thyroid cancer pathogenesis and facilitate preclinical testing of anti-cancer drugs.

76

Furthermore, mouse models are indispensable for elucidating the interaction of anti-cancer drugs

77

with thyroid cancer cells, the screening of drugs before clinical trials, and the interpretation of drug

78

efficacy and safety results for thyroid cancer patients in clinical trials [9].

79

Given the increasing number of newly established thyroid cancer mouse models, recently

80

discovered anti-thyroid cancer mechanisms, and potential anti-cancer therapeutics, we performed a

81

review of the currently available literature, including established thyroid cancer mouse models,

82

thyroid cancer pathogenesis, and new drugs for thyroid cancer therapy. We also discuss perspectives

83

for further applications of thyroid cancer mouse models, highlighting techniques for such modeling,

84

and provide guidance for the translation of anti-cancer drugs as individualized thyroid cancer

85

therapeutics.

86

Modeling

87

Anti-cancer investigations can be performed by injecting cultured cell-derived xenografts into

88

immunodeficient mice. Considerable work on drug testing relies on the use of these cell line-derived

89

xenograft models (CDXMs). CDXMs, as well as patient-derived xenograft models (PDXMs) and

90

genetically engineered models (GEMs), provide a basis to investigate thyroid cancer pathogenesis

91

and the pharmacological mechanisms of anti-thyroid cancer therapeutics. These three models are

92

described below.

93

CDXMs

94

The establishment of CDXMs is based on xenotransplants. Tumor cells can be engrafted

95

subcutaneously, orthotopically, or metastatically. Such thyroid cancer models commonly have been

96

built with authenticated cell lines (e.g., 8505C, TPC-1, FTC133) to investigate thyroid cancer-related

97

phenomena, including invasion, metastasis, and angiogenesis.

98

Subcutaneous tumor models are established by inoculating Matrigel-suspended thyroid tumor cells

99

into immunodeficient mice [10]. Although the progression of tumors can be monitored easily, the 4

100

models fail to imitate the microenvironment, invasional type, and metastatic patterns of thyroid

101

cancer, and thus may not be adequate for the prediction of clinical anti-cancer responses [11]. In fact,

102

in immunodeficient mice, subcutaneously transplanted thyroid cancer cells rarely metastasize, failing

103

to mimic the thyroid tumor microenvironment [12,13]. In contrast, thyroid cancer models involving

104

orthotropic transplants simulate the microenvironment, morphology, growth, and metastatic patterns,

105

thereby reflecting the clinical spectrum of thyroid cancer. Orthotropic transplants are established by

106

injecting thyroid tumor cells into the thyroid glands of immunodeficient mice under surgery, with or

107

without ultrasound examination [14]. Mouse models of metastatic thyroid cancer, established in

108

severely immunodeficient mice, mimic the metastatic patterns of thyroid cancers in human patients.

109

After intravenous or intraventricular injection with as few as 30,000 thyroid cancer cells, metastases

110

develop rapidly in the lungs and bones of these mice [15].

111

Approaches involving cell lines result in rapid development of thyroid tumors, generating cohorts

112

for preclinical investigation. However, CDXMs suffer from several drawbacks. First, cell lines may

113

have incurred changes in their microenvironment, especially after many passages, which may alter

114

the DNA structure, RNA/protein expression, and the status of thyroid cancer differentiation, thereby

115

decreasing the reliability of the experiments [16]. Second, in CDXMs, the tumor microenvironment,

116

including stroma and the immune system, is lacking [17]. Finally, tumor cell implantation is

117

accomplished through a wound and therefore may not accurately mimic local invasion through the

118

thyroid capsule [18]. In this respect, in preclinical experiments, their resemblance to thyroid cancers

119

in patients may not be adequate. However, because their experimental repeatability is excellent,

120

CDXMs have been widely used.

121

PDXMs

122

PDXMs are established by transplanting tissue or cells from tumors of patients into immunodeficient

123

mice. The growth of patient-derived tumor fragments creates a stroma-based tumor environment,

124

which is of value for investigating thyroid cancer pathogenesis, evaluating drug efficacy and safety,

5

125

and exploring tumor heterogeneity; for thyroid cancer patients, they allow individualization of drug

126

management [16].

127

For

establishing

thyroid

cancer

PDXMs,

NOD/Shi-scid/IL-2Rγnull

and

128

NOD.Cg-PrkdcscidIl-2rgtm1Wjl/SzJ mice are more commonly used than nude mice [12].

129

Patient-derived thyroid tumor fragments are required for the establishment of PDXMs. After

130

resection of thyroid tumors is performed, tumors are divided into several fragments. Next, the

131

fragments are digested into single-cell suspensions and injected into immunodeficient mice [19]. In

132

these fragments, cell–cell interactions and some tissue architecture of the original thyroid cancer

133

remain; therefore, these models mimic the thyroid tumor microenvironment [20].

134

PDXMs allow the real-time investigation of novel anti-thyroid cancer drugs [21] (Figure 1). Up to

135

date, multiple tumor PDXMs have been established and tested in preclinical trials, yielding

136

promising results [22–24]; Yet none of thyroid cancer PDXM has been applied in clinical trials,

137

which should be regarded as a gateway, inspiring the translational studies. So far, only vemurafenib

138

[25], obatoclax [25], LOXO-292 [26], Sorafeinib [27], Lenvatinib [27], PLX51107 [28], PD0325901

139

[28], and cabozantinib [29] were tested in thyroid cancer PDXM-based preclinical trials. Although

140

no evidence showed therapeutic drugs effective in thyroid cancer PDXMs could be also effective in

141

corresponding patients; According to stably maintained pathology [30], and genome [31] of patient

142

tumors in thyroid cancer PDXMs, PDXM-based pre-clinical trials may still show meaningful

143

benefits for finding and testing potential anti-thyroid cancer drugs. Based on the individualized

144

molecular pathogenesis of thyroid cancer, the application of PDXM may precisely reflect biological

145

characteristics of the disease in patient individuals and firmly accelerate the clinical translation

146

process of anti-thyroid cancer therapeutics. One minor problem——despite PDXMs overcome the

147

lack of a tumor microenvironment in CDXMs, implantation is still accomplished through a wound.

148

GEMs

6

149

Differing from mouse models involving grafts, GEMs are established by genome alterations using

150

genetic engineering tools [32]. GEMs are increasingly utilized for thyroid cancer investigations, for

151

these models offer the possibility to generate gene mutations, amplifications, deletions, and

152

translocations, allowing researchers to turn on/off oncogenes and tumor suppressor genes [7].

153

To evade normal cellular control systems, GEMs target genes that can be altered by Cre-mediated

154

gene recombination [33]. The expression of oncogenes caused by mutations, amplifications,

155

deletions, and translocations can be temporally or spatially controlled with promoters specific for

156

thyroid tissue (e.g., promoters for thyroglobulin, thyroid peroxidase, or calcitonin) (Figure 2)

157

[33–35].

158

Two important factors may influence the choice for the use of thyroid cancer GEMs. First, GEMs,

159

which exhibit the characteristic development of a thyroid tumor, circumvent most problems

160

associated with grafted models and meet the need for exploring the interactions between tumor cells,

161

the tumor microenvironment, and the immune system [36]. Second, however, the microenvironment

162

and the immune system remain based on mouse DNA, RNA, and proteins, and the thyroid cancer

163

phenotype may be different from that of thyroid cancer patients [37].

164

Translation

165

By use of the above mouse models, various biological systems and events that are involved in

166

thyroid cancer dedifferentiation, proliferation, and metastasis have been described, providing

167

potential targets for anti-thyroid cancer targeted therapy (Figure 3). To lay a foundation for potential

168

bench-to-bedside translation of targeted therapy, thyroid cancer mouse models are of value to

169

understand the specific mechanisms how thyroid cancers derived pathologically. Identification of the

170

genetic and molecular alterations in thyroid cancer cells has advanced our knowledge about thyroid

171

cancer pathogenesis, which involves the RTK, RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, SRC, and

172

JAK-STAT signaling pathways. Activation of RAS/RAF/MEK/ERK pathway are tend to transfer

173

follicular cells into PTC; Upregulated PI3K/AKT/mTOR changes the follicular cells into FTC; And 7

174

dysfunctional RTK pathway are prone to be observed in MTC, indicating that thyroid cancer patients

175

should be personally treated with specific anti-pathway drugs [38,39]. Necessarily, these potential

176

drugs should be tested in mouse models to evaluate the efficacy and safety of anti-thyroid cancer

177

therapeutics.

178

RTK Signaling Pathway

179

RTKs include 20 different surface receptor families, i.e., those of EGF, insulin, PDGF, VEGF, FGF,

180

CCK, NGF, HGF, Eph, AXL, TIE, RYK, DDR, RET, ROS, LTK, ROR, MuSK, LMR, and an

181

undetermined family, which act through growth factors, hormones, and other extracellular molecules

182

[40,41]. Mutations in RTKs are often found in thyroid cancers of patients. RET mutations are

183

commonly present in MTCs, including sporadic MTCs, familial MTCs, and multiple endocrine

184

neoplasia 2 (MEN2) syndromes [38,42]. RET/PTC, a rearranged form of RET, was the first genetic

185

alteration identified in papillary thyroid carcinoma (PTC) [43].

186

Thyroid cancer models with RET-PTC1 and RET-PTC3 gene rearrangements have been created by

187

using the Cre–loxP system. In GEMs, tumors with RET-PTC1 and RET-PTC3 develop into

188

non-invasive PTCs. RET/PTC rearrangements are early events in thyroid carcinogenesis and are

189

specific for dedifferentiation [44]. Based on the corresponding thyroid cancer mouse models, the

190

RTK signaling pathway has been identified as a controller of angiogenesis, proliferation, and

191

metastasis. In the process of thyroid cancer progression, RTKs, activated after ligand binding with

192

extracellular molecules, phosphorylate PI3K and MAPK, leading to activation of the

193

PI3K/AKT/mTOR and RAS/RAF/MEK/ERK pathways. The RTK signaling pathway and

194

subsequently the phenotypes of cell proliferation, dedifferentiation, survival, migration, and tumor

195

angiogenesis in thyroid tumors have been validated with both CDXMs and GEMs [43,45,46].

196

RTK inhibitors, including cabozantinib, gefitinib, imatinib, lenvatinib, motesanib, pazopanib,

197

sorafenib, sunitinib, and vandetanib, have been evaluated in preclinical studies and clinical trials,

198

which have yielded some promising results (Table 1). Some recently developed RTK inhibitors,

8

199

including anlotinib, apatinib, nintedanib, ponatinib, and regorafenib, which inhibit the

200

anti-angiogenesis-related targets of VEGFR, PDGFR, FGFR, KIT, and RET, have been tested in

201

mice and are being translated into clinical settings (Table 2). Other preclinically tested RTK

202

inhibitors, such as LIF, AEE788, CUDC-101, PD173074, tetraiodothyroacetic acid, CLM3,

203

withaferin A, Pulsatilla koreana extract, and crizotinib, have been tested in mouse models as

204

potential candidates for anti-thyroid cancer therapy (Table 3). Targeting RET and E2F1, LIF shows a

205

capacity for decreasing tumor burdens; tumor weights are reduced by 50–70% compared to the

206

control group, showing potential value for translation. AEE788 and CUDC-101, which inhibit EGFR,

207

show anti-proliferative activity in ATC/FTC-derived CDXMs [47–49]. Agents targeting RTKs have

208

been applied for redifferentiation of radioiodine-refractory DTCs. There is an inverse relationship

209

between PDGFRα activation and the transcriptional activity of thyroid transcription factor-1 (TTF1).

210

PDGFRα blockade promotes expression of sodium/iodide symporter (NIS), restoring iodine

211

transport in a thyroid cancer mouse model [50]. VEGF inhibitors include antibodies against VEGF

212

(bevacizumab) and VEGFR-2 (ramucirumab) and recombinant fusion protein against VEGF-A

213

(aflibercept). However, despite the positive results obtained with thyroid cancer CDXMs, for many

214

patients, VEGF-targeted therapy fails to show appreciable clinical benefit [27,51]. The observation

215

that sorafenib and lenvatinib are effective inhibitors of radioiodine-refractory PTCs in individual, but

216

not all, mice indicates that individualized therapeutics are of high value [27].

217

RAS/RAF/MEK/ERK Signaling Pathway

218

Components of the RAS/RAF/MEK/ERK signaling pathway are RAS and the downstream kinases

219

RAF, MEK, and ERK. RET, RAS, BRAF, and TERT mutations are mainly related to the Ras signaling

220

pathway [52]. The prevalence of RAS mutations is 18–55% in PDTCs, 45% in FTCs, 35% in

221

follicular variant-PTCs, and 4–60% in ATCs [53]. BRAFV600E is commonly detected in thyroid

222

cancers, especially in PTCs; the incidence of BRAFV600E varies from 29 to 70% in PTCs [38]. TERT

223

mutations usually accompany BRAFV600E mutations; most are found in aggressive, dedifferentiated

9

224

thyroid cancers, accounting for about 7–10% in PTCs [54].

225

K-RasG12D, N-RASQ61K, RET-PTC1, RET-PTC3, and BRAFV600E mice have been created using the

226

Cre–loxP system. In these models, H-RAS and K-RAS are responsible for hyperplasia [55,56]. In

227

GEMs, tumors with RET-PTC1, RET-PTC3, and BRAFV600E develop into non-invasive PTCs.

228

RET/PTC rearrangements are early events in thyroid carcinogenesis and are specific for

229

dedifferentiation [57]. In K-RASG12D, N-RASQ61K, and BRAFV600E GEMs, RAS mutations and

230

BRAFV600E lead to constitutive activation of RAS and BRAF, inducing thyroid cancer

231

dedifferentiation and proliferation [58]. In general, RAS mutations are associated with thyroid tumor

232

progression. However, thyroid carcinogenesis and dedifferentiation are not necessarily only driven

233

by RAS mutations; the combination of BRAF mutations and RAS mutations may be involved in

234

thyroid cancer formation and progression. The activated RAS/RAF/MEK/ERK signaling pathway

235

induces matrix degrading proteases, including MMP-1, -2, -3, and -9, and overexpression of

236

urokinase plasminogen activator (uPa). RAS (H-, K-, and N-RAS) and its downstream targets

237

promote migration of thyroid tumor cells [38,46]. Moreover, BRAFV600E-induced dedifferentiation is

238

associated with dysfunction of NIS. BRAFV600E causes poor radioiodine uptake in thyroid tumors and

239

may lead to therapeutic resistance to radioiodine therapy, which has been observed in thyroid cancer

240

GEMs exposed to radioiodine [59,60].

241

Some molecular therapeutics target the RAS/RAF/MEK/ERK signaling cascade. Inhibitors of the

242

RAS/RAF/MEK/ERK signaling pathway, including vemurafenib, selumetinib, dabrafenib, and

243

trametinib, have been investigated in thyroid cancer clinical trials, revealing promising results [9,61]

244

(Table 1). The allosteric MEK inhibitor CH5126766 is a candidate for clinical translation. In the

245

BRAFV600E GEM, CH5126766 induces a five-fold increase in NIS expression in thyroid cancer cells,

246

and reuptake radioiodine accumulation is twice as high as that observed after selumetinib treatment.

247

In addition, CH5126766 treatment prior to radioiodine delivery decreases thyroid tumor size

248

compared to radioiodine delivery without pretreatment [59].

10

249

PI3K/AKT/mTOR Signaling Pathway

250

The PI3K/AKT/mTOR signaling pathway is involved in thyroid cancer proliferation and in survival

251

and angiogenesis of tumor cells [62]. In thyroid cancer cells, PIK3CA mutations commonly exist in

252

FTCs, PDTCs, and ATCs [36].

253

In GEMs, activation of PIK3CA may lead to poor differentiation and rapid progression. In

254

addition, in FTC GEMs, amplification or mutation of PIK3CA, which encodes the catalytic subunit

255

of the PI3K converting PIP2 to PIP3, activates mTOR [38,63]. Higher mTOR levels lead to

256

downstream activation of S6K1 and 4E-BP1, which induce migration and invasion of thyroid tumor

257

cells. The matrix remodeling enzymes MMP-2/-9, uPa, and plasminogen activator inhibitor-1 (PAI-1)

258

are upregulated, resulting in invasiveness [64]. If mTOR is inhibited by stress signals, such as low

259

oxygen tension or low glucose in a low-pH extracellular setting, the beclin 1/PI3K complex is

260

activated, which enhances autophagy to overcome the hostile microenvironment and sustain tumor

261

proliferation [65]. In addition, with a transgenic mouse model of thyroid cancer, PI3K acts as a

262

negative controller of NIS, and PTEN as a positive regulator of TTF1 and NIS expression, balancing

263

differentiation and dedifferentiation [66].

264

The

PI3K/AKT/mTOR

pathway

contains

a

variety

of

therapeutic

targets.

Several

265

PI3K/AKT/mTOR pathway inhibitors, including everolimus, temsirolimus, torin2, CUDC-907,

266

PP121, GDC-0941, LY294002, IC87114, and AZD8055, have been tested preclinically and/or

267

clinically (Tables 1 and 3). Torin2, discovered through screening of compound libraries (3282 drugs),

268

suppresses thyroid tumor cell proliferation and, in CDXMs, inhibits thyroid tumor growth and

269

metastasis [67].

270

SRC Signaling Pathway

271

SRC family kinases (SFKs), which include SRC, FYN, YES, BLK, FGR, HCK, LCK, YRK, and

272

LYN, are non-receptor tyrosine kinases. Tyrosine kinase, G protein-coupled receptors, steroid

273

receptors, and Signal Transducers and Activators of Transcription (STAT) are activators of SFK,

11

274

which is involved in cell proliferation, motility, invasion, and angiogenesis [68].

275

Only a few studies have focused on the SRC pathway in thyroid cancer cells or in mouse models

276

of thyroid cancer. In CDXMs with a RET/PTC1 rearrangement, the SRC inhibitor dasatinib

277

suppresses tumor volume, suggesting that the SRC pathway is involved in regulating growth of

278

thyroid cancers [69]. In mice with ThrbPV/PVPten+/- thyroid cancer, SKI-606, an SRC/ABL dual

279

inhibitor, reduces tumor growth, invasion, and metastasis, effects that are related to inhibition of the

280

SRC pathway and the epithelial–mesenchymal transition [70]. These results suggest that the SRC

281

pathway influences the invasion and metastasis of thyroid cancer and that the activated SRC pathway

282

subsequently activates the MAPK, PI3K, FAK, and STAT pathways, promoting the progression of

283

thyroid cancers [69][69–72].

284

JAK-STAT Signaling Pathway

285

The JAK family includes JAK1, JAK2, JAK3, and TYK2, and the STAT family includes STAT1,

286

STAT2, STAT3, STAT4, STAT5a, STAT5b, and STAT6. JAK is activated by a combination of

287

cytokines or growth factors and their corresponding receptors, and activated JAK in turn activates

288

STAT, which can interact with DNA and regulate translation of various genes [73,74].

289

A high-fat diet induces the expression of STAT3, cyclin D1, and phosphorylated retinoblastoma

290

protein through the JAK2-STAT3 pathway, which leads to the development of ATCs in mice with

291

ThrbPV/PVPten+/- thyroid cancer. This suggests that, in these mice, STAT3 boosts the effects of a

292

high-fat diet by inducing development and progression of thyroid cancers [75]. Despite preclinical

293

results showing that the efficacies of cucurbitacin I, metformin, and S3I-201 are limited, the response

294

to the JAK1/2 inhibitor AZD1480 in PTC CDXMs is extensive (Table 3). These results indicate that

295

the JAK-STAT3 pathway may be involved in the development, progression, and metastasis of

296

thyroid tumors. However, other researchers have obtained opposite results, i.e., that STAT3 may be a

297

negative regulator of thyroid tumor growth, suggesting that the JAK-STAT3 pathway may inhibit

298

rather than promote thyroid cancer [76,77].

12

299

Other Signaling Pathways

300

Other signaling pathways may be related to the progression of thyroid tumors. The

301

RASSF1-MST1-FOXO3 pathway may be regulated by BRAFV600E gene mutations [78]; the activated

302

C-MET pathway may promote the growth, invasion, and metastasis of thyroid tumors [79,80]; and

303

the hedgehog pathway may be associated with the progression and metastasis of thyroid cancer

304

[38,81]. The corresponding therapeutics tested in preclinical settings are listed in Table 3.

305

Perspectives

306

Despite broad use of mouse models in thyroid cancer research, a certain amount of skepticism about

307

their relevance with human thyroid cancer and their value for clinical translation is presented in the

308

field of thyroid cancer research [11]. This is likely due to the differences between mice and humans,

309

but also to the fact that some clinical trials still fail despite the use of mouse models in the preceding

310

discovery research phases. According to Tables 1–4, the translational rate was only about 4–5%,

311

raising the awareness that thyroid cancer mouse models need to be further refined. Given the

312

increasing kinds of PDXMs and humanized PDXMs for thyroid cancer research, these best

313

approaches may facilitate in vivo drug tests and consequently accelerate the bench to bedside

314

translation. In the future, the ever-evolving establishment of thyroid cancer mouse models may solve

315

the significant issue that some therapeutic drug effective in mouse models but invalid in thyroid

316

cancer patients.

317

The dawn of a new century has witnessed not only the establishment of CDXMs, PDXMs, and

318

GEMs of thyroid cancer, but also the increasing applications of these models. To better translate

319

novel therapeutics into clinical settings, further advanced studies are essential in the areas of mouse

320

modeling, drug testing, target screening, and mechanism identification.

321

Mouse Modeling Based on Humanization

322

Humanized mice are now used as PDXMs in biological and medical research on thyroid cancer.

323

Severe combined immunodeficient mice that are highly deficient in T, B, and NK cells support the 13

324

engraftment of functional human immune cells [17,37]. These cells migrate into thyroid tumors and

325

replicate their natural microenvironment [37]. With the ongoing progress in immunology, scientists

326

are increasingly aware that the therapeutic effects of anti-cancer therapeutics are inseparable from

327

the role of the anti-tumor immune system. Anti-thyroid therapeutics applied systemically, especially

328

MEK inhibitors, CDK inhibitors, and PD1/PDL1 inhibitors, influence the immune system.

329

Consequently, the role and pharmacological mechanism of anti-apoptosis therapy, redifferentiation

330

therapy, and immunotherapy should be tested in the environment of a humanized immune system.

331

The humanized mouse model may lead to a revolution in mouse modeling. The newly established

332

mouse models may be “patient-like” and “humanized,” and may provide new, efficacious ways for

333

testing drugs for treatment of thyroid cancers.

334

Drug Testing Based on New Mouse Models

335

Dedifferentiated and highly aggressive thyroid cancers present challenges in the translation of

336

therapeutics into clinical applications. As shown in Table 1, most results of clinical trials match the

337

conclusions derived from preclinical studies, showing that the efficacy and safety of anti-thyroid

338

cancer drugs may be predicted from the data derived in preclinical studies. In clinical trials,

339

promising drugs, such as anlotinib, apatinib, nintedanib, ponatinib, regorafenib, and tipifarnib, may

340

be translated into clinical applications (Table 2). Future studies, many involving the use of thyroid

341

cancer mouse models, will continue to focus on “bench-to-bedside” translation. To date, numerous

342

drugs have been designed and tested in mouse models; promising drugs are listed in Table 3.

343

Additionally, drug combinations are of interest for the treatment of thyroid cancer; these are listed in

344

Table 4.

345

Target Screening Based on the CRISPR/Cas System

346

CRISPR is a method for gene editing derived from the bacterial anti-viral defense system. With the

347

intracellular delivery of Cas9 nuclease and synthetic guide RNA (sgRNA), genes can be cut at

348

desired positions [82]. The designed sgRNAs can be included in sgRNA libraries by

14

349

adeno-associated virus (AAV), which offers an alternative approach to screen anti-thyroid cancer

350

targets. For lung cancers and glioblastomas, AAV encoding sgRNA libraries are delivered to the

351

lungs and brains of mice expressing Cas9. As a result, the pathogenesis of cancers and anti-tumor

352

targets can be analyzed [83,84]. Target screens by delivery of sgRNA libraries can be performed with

353

thyroid tissue and could clarify the role of genes associated with thyroid cancer.

354

Mechanism Exploring Based on Multi-Omics

355

Omics methods involve high-throughput investigations of the genome, epigenome, transcriptome,

356

proteome, and metabolome. These methods are used to understand thyroid cancer pathogenesis, to

357

find the underlying molecular characteristics of thyroid tumors, and to reveal the phenotypes of

358

thyroid cancers [85]. With multi-omics analysis of thyroid cancer mouse models, the link between

359

genomic alterations and mRNAs, proteins, and metabolites in relation to thyroid cancer may be

360

revealed. Based on mouse models of thyroid cancer, the next phase of multi-omics analysis will

361

focus on dealing with thousands of mRNAs and proteins to reveal changes in the thyroid cancer

362

omics in a dynamic manner. For the biologic analysis of thyroid cancer, it will be highly desirable to

363

develop PDXMs that are useful in the development of drugs for precision therapy based on

364

personalized multi-omics data. Moreover, driven by such data, analysis of thyroid cancer GEMs is

365

likely to make large contributions to the research on thyroid cancer pathogenesis and to the

366

development of novel drugs [86].

367

Summary

368

Mouse models of thyroid cancer are of high importance for the development of therapeutic

369

interventions. In our opinion, CDXMs, PDXMs, and GEMs are all effective approaches for the

370

analysis of pathogenesis and for drug evaluations. CDXMs, as a flexible tool, have mostly been

371

utilized in thyroid cancer research, especially in tests of anti-thyroid cancer drugs. With CDXMs,

372

mechanisms of tumor differentiation, vascularization, proliferation, and metastasis have been

373

explored. GEMs have mainly been used for investigating effects of gene alterations, tumorigenesis, 15

374

confirming anti-thyroid cancer targets, and for investigating pharmacological mechanisms of

375

anti-thyroid cancer drugs. They have yielded specific targets and mechanism-based drugs for clinical

376

translation. Differing from CDXMs and GEMs, PDXMs are used in preclinical trials and for

377

screening drugs for individual patients. However, the development of PDXMs for thyroid cancer

378

investigations remains insufficient. Ideal thyroid cancer models will mimic thyroid cancer biology

379

and facilitate drug translation in cancer therapy. Therefore, advanced mouse models will be

380

necessary in cross-linking basic researches on thyroid cancer mechanisms and clinical studies on

381

potential anti-thyroid cancer therapeutics (Figure 4). The literature reveals that thyroid cancer mouse

382

models tend to be ‘‘humanized” and “patient-like.” They will offer opportunities to investigate

383

thyroid cancer mechanisms and to optimize anti-cancer drugs for “bench-to-bedside” translation.

384

Studies using thyroid cancer mouse models have provided information on the pathogenesis and

385

tumorigenesis of thyroid cancer and have been useful for both fundamental research and clinical

386

studies. The roles of signaling pathways, such as RAS/RAF/MEK/ERK and PI3K/AKT/mTOR, in

387

thyroid tumors have been analyzed using mouse models. In thyroid cancer GEMs, several gene

388

alterations, including RET/PTC rearrangements and the BRAFV600E mutation, have proved to be

389

oncogenic, validating the relevance of MAPK signaling pathways in PTC. In addition, RAS

390

mutations are involved in the development of PTCs and FTCs. Mice with overactivation of the

391

PI3K/AKT/mTOR signaling pathway develop FTCs. Other signaling pathways, including the SRC,

392

JAK-STAT, RASSF1-MST1-FOXO3, C-MET, and sonic hedgehog pathways, are studied as

393

potential targets for anti-thyroid cancer drugs. These studies have revealed mechanisms of thyroid

394

tumorigenesis and progression and have led to the development, testing, and translation of

395

anti-thyroid cancer drugs into clinical settings. Mouse models have confirmed the pathogenesis of

396

thyroid cancer and have led to the availability of new drugs for the treatment of thyroid cancer.

397

Consistent with the results on tumor pathogenesis, drugs such as MLN8054 (aurora kinase inhibitor),

398

radicicol (HSP90 inhibitor), HNHA (HDAC inhibitor), and PD-L1 antibody have been tested in

16

399

mouse models.

400

There remains a need for new screening methods to evaluate potential thyroid cancer therapeutics.

401

The development of mouse models, the understanding of the pathogenesis of thyroid cancer, and the

402

discovery of anti-thyroid cancer therapeutics will help in establishing individualized therapy. The

403

next step will be the discovery of drug response-related biomarkers, which will aid in the prediction

404

of the results of anti-tumor therapy and help in the management of thyroid cancer.

405

Abbreviations

406

See Table 5.

407

Acknowledgments

408

This study was supported by the National Natural Science Foundation of China (Grant Nos.

409

81671711 and 81701731) and the Shanghai Key Discipline of Medical Imaging (Grant No.

410

2017ZZ02005). We thank LetPub (www.letpub.com) for their linguistic assistance during the

411

preparation of this manuscript.

412

Conflict of interest

413

The authors have no conflicts of interest to declare.

17

414 415

References

416

[1]

H. Lim, S.S. Devesa, J.A. Sosa, D. Check, C.M. Kitahara, Trends in Thyroid Cancer

417

Incidence and Mortality in the United States, 1974-2013., JAMA. 317 (2017) 1338–1348.

418

doi:10.1001/jama.2017.2719.

419

[2]

7–34. doi:10.3322/caac.21551.

420 421

R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2019., CA. Cancer J. Clin. 69 (2019)

[3]

W. Chen, R. Zheng, P.D. Baade, S. Zhang, H. Zeng, F. Bray, A. Jemal, X.Q. Yu, J. He,

422

Cancer

423

doi:10.3322/caac.21338.

424

[4]

statistics

in

China,

2015.,

CA.

Cancer

J.

Clin.

66

(n.d.)

115–132.

L. Rahib, B.D. Smith, R. Aizenberg, A.B. Rosenzweig, J.M. Fleshman, L.M. Matrisian,

425

Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and

426

pancreas

427

doi:10.1158/0008-5472.CAN-14-0155.

428

[5]

cancers

in

the

united

states,

Cancer

Res.

74

(2014)

2913–2921.

C. Durante, N. Haddy, E. Baudin, S. Leboulleux, D. Hartl, J.P. Travagli, B. Caillou, M.

429

Ricard, J.D. Lumbroso, F. De Vathaire, M. Schlumberger, Long-term outcome of 444 patients

430

with distant metastases from papillary and follicular thyroid carcinoma: Benefits and limits of

431

radioiodine

432

doi:10.1210/jc.2005-2838.

433

[6]

therapy,

J.

Clin.

Endocrinol.

Metab.

91

(2006)

2892–2899.

B.R. Haugen, E.K. Alexander, K.C. Bible, G.M. Doherty, S.J. Mandel, Y.E. Nikiforov, F.

434

Pacini, G.W. Randolph, A.M. Sawka, M. Schlumberger, K.G. Schuff, S.I. Sherman, J.A. Sosa,

435

D.L. Steward, R.M. Tuttle, L. Wartofsky, 2015 American Thyroid Association Management

436

Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The

437

American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated

438

Thyroid Cancer, Thyroid. 26 (2016) 1–133. doi:10.1089/thy.2015.0020.

18

439

[7]

update., Mol. Cell. Endocrinol. 421 (2016) 18–27. doi:10.1016/j.mce.2015.06.029.

440 441

[8]

R.D. Dowell, The similarity of gene expression between human and mouse tissues., Genome Biol. 12 (2011) 101. doi:10.1186/gb-2011-12-1-101.

442 443

L.S. Kirschner, Z. Qamri, S. Kari, A. Ashtekar, Mouse models of thyroid cancer: A 2015

[9]

S. Saini, K. Tulla, A. V Maker, K.D. Burman, B.S. Prabhakar, Therapeutic advances in

444

anaplastic thyroid cancer: a current perspective., Mol. Cancer. 17 (2018) 154.

445

doi:10.1186/s12943-018-0903-0.

446

[10] M. Jia, Y. Shi, Z. Li, X. Lu, J. Wang, MicroRNA-146b-5p as an oncomiR promotes papillary

447

thyroid carcinoma development by targeting CCDC6., Cancer Lett. 443 (2019) 145–156.

448

doi:10.1016/j.canlet.2018.11.026.

449 450

[11] C.S. Kim, X. Zhu, Lessons from Mouse Models of Thyroid Cancer, Thyroid. 19 (2009) 1317–1331. doi:10.1089/thy.2009.1609.

451

[12] Y. Hiroshima, A. Maawy, Y. Zhang, N. Zhang, T. Murakami, T. Chishima, K. Tanaka, Y.

452

Ichikawa, M. Bouvet, I. Endo, R.M. Hoffman, Patient-derived mouse models of cancer need

453

to be orthotopic in order to evaluate targeted anti-metastatic therapy., Oncotarget. 7 (2016)

454

71696–71702. doi:10.18632/oncotarget.12322.

455

[13] S.-H. Ahn, Y. Henderson, Y. Kang, C. Chattopadhyay, P. Holton, M. Wang, K. Briggs, G.L.

456

Clayman, An orthotopic model of papillary thyroid carcinoma in athymic nude mice., Arch.

457

Otolaryngol. Head. Neck Surg. 134 (2008) 190–197. doi:10.1001/archoto.2007.36.

458

[14] A. Greco, S. Albanese, L. Auletta, P. Mirabelli, A. Zannetti, C. D’Alterio, G. Di Maro, F.M.

459

Orlandella, G. Salvatore, A. Soricelli, M. Salvatore, High-Frequency Ultrasound-Guided

460

Injection for the Generation of a Novel Orthotopic Mouse Model of Human Thyroid

461

Carcinoma., Thyroid. 26 (2016) 552–558. doi:10.1089/thy.2015.0511.

462

[15] L. Zhang, K. Gaskins, Z. Yu, Y. Xiong, M.J. Merino, E. Kebebew, An in vivo mouse model

463

of metastatic human thyroid cancer., Thyroid. 24 (2014) 695–704. doi:10.1089/thy.2013.0149.

19

464

[16] A.T. Byrne, D.G. Alférez, F. Amant, D. Annibali, J. Arribas, A. V Biankin, A. Bruna, E.

465

Budinská, C. Caldas, D.K. Chang, R.B. Clarke, H. Clevers, G. Coukos, V. Dangles-Marie,

466

S.G. Eckhardt, E. Gonzalez-Suarez, E. Hermans, M. Hidalgo, M.A. Jarzabek, S. de Jong, J.

467

Jonkers, K. Kemper, L. Lanfrancone, G.M. Mælandsmo, E. Marangoni, J.-C. Marine, E.

468

Medico, J.H. Norum, H.G. Palmer, D.S. Peeper, P.G. Pelicci, A. Piris-Gimenez, S.

469

Roman-Roman, O.M. Rueda, J. Seoane, V. Serra, L. Soucek, D. Vanhecke, A. Villanueva, E.

470

Vinolo, A. Bertotti, L. Trusolino, Interrogating open issues in cancer precision medicine with

471

patient-derived xenografts., Nat. Rev. Cancer. 17 (2017) 254–268. doi:10.1038/nrc.2016.140.

472

[17] P. De La Rochere, S. Guil-Luna, D. Decaudin, G. Azar, S.S. Sidhu, E. Piaggio, Humanized

473

Mice for the Study of Immuno-Oncology., Trends Immunol. 39 (2018) 748–763.

474

doi:10.1016/j.it.2018.07.001.

475

[18] P. Vanden Borre, D.G. McFadden, V. Gunda, P.M. Sadow, S. Varmeh, M. Bernasconi, T.

476

Jacks, S. Parangi, The next generation of orthotopic thyroid cancer models: immunocompetent

477

orthotopic mouse models of BRAF V600E-positive papillary and anaplastic thyroid

478

carcinoma., Thyroid. 24 (2014) 705–714. doi:10.1089/thy.2013.0483.

479

[19] R.E. Schweppe, N. Pozdeyev, L.A. Pike, C. Korch, Q. Zhou, S.B. Sams, V. Sharma, U.

480

Pugazhenthi, C. Raeburn, M.B. Albuja-Cruz, P. Reigan, D. V LaBarbera, I. Landa, J.A.

481

Knauf, J.A. Fagin, B.R. Haugen, Establishment and Characterization of Four Novel Thyroid

482

Cancer Cell Lines and PDX Models Expressing the RET/PTC1 Rearrangement, BRAFV600E,

483

or

484

doi:10.1158/1541-7786.MCR-18-1026.

485 486

RASQ61R

as

Drivers.,

Mol.

Cancer

Res.

17

(2019)

1036–1048.

[20] J. Jung, H.S. Seol, S. Chang, The Generation and Application of Patient-Derived Xenograft Model for Cancer Research., Cancer Res. Treat. 50 (2018) 1–10. doi:10.4143/crt.2017.307.

487

[21] L.A. Marlow, A.C. Mathias, L.K. Dawson, W.F. Durham, K.A. Meshaw, R.J. Mullin, D.L.

488

Small, A.J. Synnott, D. Milosevic, B.C. Netzel, S.K. Grebe, K. Wu, R.C. Smallridge, J.A.

20

489

Copland, Abstract 1458: Characterization of novel thyroid PDX models and their response to

490

combination therapies, in: Tumor Biol., American Association for Cancer Research, 2015: pp.

491

1458–1458. doi:10.1158/1538-7445.AM2015-1458.

492

[22] D. Laheru, P. Shah, N. V Rajeshkumar, F. McAllister, G. Taylor, H. Goldsweig, D.T. Le, R.

493

Donehower, A. Jimeno, S. Linden, M. Zhao, D. Song, M.A. Rudek, M. Hidalgo, Integrated

494

preclinical and clinical development of S-trans, trans-Farnesylthiosalicylic Acid (FTS,

495

Salirasib)

496

doi:10.1007/s10637-012-9818-6.

in

pancreatic

cancer.,

Invest.

New

Drugs.

30

(2012)

2391–2399.

497

[23] G. Colon-Otero, S.J. Weroha, N.R. Foster, P. Haluska, X. Hou, A.E. Wahner-Hendrickson, A.

498

Jatoi, M.S. Block, T.A. Dinh, M.W. Robertson, J.A. Copland, Phase 2 trial of everolimus and

499

letrozole in relapsed estrogen receptor-positive high-grade ovarian cancers., Gynecol. Oncol.

500

146 (2017) 64–68. doi:10.1016/j.ygyno.2017.04.020.

501

[24] T.K. Owonikoko, G. Zhang, H.S. Kim, R.M. Stinson, R. Bechara, C. Zhang, Z. Chen, N.F.

502

Saba, S. Pakkala, R. Pillai, X. Deng, S.-Y. Sun, M.R. Rossi, G.L. Sica, S.S. Ramalingam, F.R.

503

Khuri, Patient-derived xenografts faithfully replicated clinical outcome in a phase II

504

co-clinical trial of arsenic trioxide in relapsed small cell lung cancer., J. Transl. Med. 14

505

(2016) 111. doi:10.1186/s12967-016-0861-5.

506

[25] M. Duquette, P.M. Sadow, A. Husain, J.N. Sims, Z.A. Antonello, A.H. Fischer, C. Song, E.

507

Castellanos-Rizaldos, G.M. Makrigiorgos, J. Kurebayashi, V. Nose, P. Van Hummelen, R.T.

508

Bronson, M. Vinco, T.J. Giordano, D. Dias-Santagata, P.P. Pandolfi, C. Nucera,

509

Metastasis-associated MCL1 and P16 copy number alterations dictate resistance to

510

vemurafenib in a BRAFV600E patient-derived papillary thyroid carcinoma preclinical model,

511

Oncotarget. 6 (2015). doi:10.18632/oncotarget.6442.

512

[26] V. Subbiah, V. Velcheti, B.B. Tuch, K. Ebata, N.L. Busaidy, M.E. Cabanillas, L.J. Wirth, S.

513

Stock, S. Smith, V. Lauriault, S. Corsi-Travali, D. Henry, M. Burkard, R. Hamor, K. Bouhana,

21

514

S. Winski, R.D. Wallace, D. Hartley, S. Rhodes, M. Reddy, B.J. Brandhuber, S. Andrews,

515

S.M. Rothenberg, A. Drilon, Selective RET kinase inhibition for patients with RET-altered

516

cancers, Ann. Oncol. 29 (2018) 1869–1876. doi:10.1093/annonc/mdy137.

517

[27] S.Y. Kim, S.-M. Kim, H.-J. Chang, B.-W. Kim, Y.S. Lee, C.S. Park, K.C. Park, H.-S. Chang,

518

SoLAT (Sorafenib Lenvatinib alternating treatment): a new treatment protocol with

519

alternating Sorafenib and Lenvatinib for refractory thyroid Cancer., BMC Cancer. 18 (2018)

520

956. doi:10.1186/s12885-018-4854-z.

521

[28] X. Zhu, S. Park, W.K. Lee, S. Cheng, Potentiated anti-tumor effects of BETi by MEKi in

522

anaplastic

thyroid

cancer,

523

doi:10.1530/erc-19-0107.

Endocr.

Relat.

Cancer.

26

(2019)

739–750.

524

[29] H. Lin, X. Jiang, H. Zhu, W. Jiang, X. Dong, H. Qiao, X. Sun, H. Jiang, 2ME2 inhibits the

525

activated hypoxia-inducible pathways by cabozantinib and enhances its efficacy against

526

medullary

527

doi:10.1007/s13277-015-3816-1.

thyroid

carcinoma,

Tumor

Biol.

37

(2016)

381–391.

528

[30] A. Wunderlich, M. Khoruzhyk, S. Roth, A. Ramaswamy, B.H. Greene, D. Doll, D.K. Bartsch,

529

S. Hoffmann, Pretherapeutic drug evaluation by tumor xenografting in anaplastic thyroid

530

cancer., J. Surg. Res. 185 (2013) 676–683. doi:10.1016/j.jss.2013.06.017.

531

[31] L.A. Marlow, S.D. Rohl, J.L. Miller, J.A. Knauf, J.A. Fagin, M. Ryder, D. Milosevic, B.C.

532

Netzel, S.K. Grebe, H. V Reddi, R.C. Smallridge, J.A. Copland, Methodology, Criteria, and

533

Characterization of Patient-Matched Thyroid Cell Lines and Patient-Derived Tumor

534

Xenografts, J. Clin. Endocrinol. Metab. 103 (2018) 3169–3182. doi:10.1210/jc.2017-01845.

535

[32] G. Vitale, G. Gaudenzi, L. Circelli, M.F. Manzoni, A. Bassi, N. Fioritti, A. Faggiano, A.

536

Colao, Animal models of medullary thyroid cancer: state of the art and view to the future.,

537

Endocr. Relat. Cancer. 24 (2017) R1–R12. doi:10.1530/ERC-16-0399.

538

[33] M. Shimamura, M. Nakahara, F. Orim, T. Kurashige, N. Mitsutake, M. Nakashima, S. Kondo,

22

539

M. Yamada, R. Taguchi, S. Kimura, Y. Nagayama, Postnatal expression of BRAFV600E does

540

not induce thyroid cancer in mouse models of thyroid papillary carcinoma., Endocrinology.

541

154 (2013) 4423–4430. doi:10.1210/en.2013-1174.

542

[34] M.E.R. Garcia-Rendueles, J.C. Ricarte-Filho, B.R. Untch, I. Landa, J.A. Knauf, F. Voza, V.E.

543

Smith, I. Ganly, B.S. Taylor, Y. Persaud, G. Oler, Y. Fang, S.C. Jhanwar, A. Viale, A. Heguy,

544

K.H. Huberman, F. Giancotti, R. Ghossein, J.A. Fagin, NF2 Loss Promotes Oncogenic

545

RAS-Induced Thyroid Cancers via YAP-Dependent Transactivation of RAS Proteins and

546

Sensitizes

547

doi:10.1158/2159-8290.CD-15-0330.

Them

to

MEK

Inhibition.,

Cancer

Discov.

5

(2015)

1178–1193.

548

[35] R.M. Paragliola, F. Torino, G. Papi, P. Locantore, A. Pontecorvi, S.M. Corsello, Mouse

549

models of medullary thyroid cancer and developing new targeted therapies., Expert Opin.

550

Drug Discov. 11 (2016) 917–919. doi:10.1080/17460441.2016.1223036.

551

[36] N. Smith, C. Nucera, Personalized therapy in patients with anaplastic thyroid cancer: targeting

552

genetic and epigenetic alterations., J. Clin. Endocrinol. Metab. 100 (2015) 35–42.

553

doi:10.1210/jc.2014-2803.

554

[37] J.J. Morton, S.B. Keysar, L. Perrenoud, T.-S. Chimed, J. Reisinger, B. Jackson, P.N. Le, C.

555

Nieto, K. Gomez, B. Miller, D. Gao, H. Somerset, X.-J. Wang, A. Jimeno, Dual use of

556

hematopoietic and mesenchymal stem cells enhances engraftment and immune cell trafficking

557

in an allogeneic humanized mouse model of head and neck cancer., Mol. Carcinog. 57 (2018)

558

1651–1663. doi:10.1002/mc.22887.

559 560 561 562 563

[38] J.A. Fagin, S.A. Wells, Biologic and Clinical Perspectives on Thyroid Cancer., N. Engl. J. Med. 375 (2016) 1054–1067. doi:10.1056/NEJMra1501993. [39] V.T. DeVita, S.A. Rosenberg, T.S. Lawrence, Cancer: principles and practice of oncology [11ed.], 2018. [40] T. Regad, Targeting RTK Signaling Pathways in Cancer., Cancers (Basel). 7 (2015)

23

564

1758–1784. doi:10.3390/cancers7030860.

565

[41] A.I. Ségaliny, M. Tellez-Gabriel, M.-F. Heymann, D. Heymann, Receptor tyrosine kinases:

566

Characterisation, mechanism of action and therapeutic interests for bone cancers., J. Bone

567

Oncol. 4 (2015) 1–12. doi:10.1016/j.jbo.2015.01.001.

568

[42] F. Bentzien, M. Zuzow, N. Heald, A. Gibson, Y. Shi, L. Goon, P. Yu, S. Engst, W. Zhang, D.

569

Huang, L. Zhao, V. Vysotskaia, F. Chu, R. Bautista, B. Cancilla, P. Lamb, A.H. Joly, F.M.

570

Yakes, In vitro and in vivo activity of cabozantinib (XL184), an inhibitor of RET, MET, and

571

VEGFR2, in a model of medullary thyroid cancer., Thyroid. 23 (2013) 1569–1577.

572

doi:10.1089/thy.2013.0137.

573

[43] C. Romei, R. Elisei, RET/PTC Translocations and Clinico-Pathological Features in Human

574

Papillary

Thyroid

Carcinoma.,

575

doi:10.3389/fendo.2012.00054.

Front.

Endocrinol.

(Lausanne).

3

(2012)

54.

576

[44] R. Bellelli, D. Vitagliano, G. Federico, P. Marotta, A. Tamburrino, P. Salerno, O. Paciello, S.

577

Papparella, J.A. Knauf, J.A. Fagin, S. Refetoff, G. Troncone, M. Santoro, Oncogene-induced

578

senescence and its evasion in a mouse model of thyroid neoplasia., Mol. Cell. Endocrinol. 460

579

(2018) 24–35. doi:10.1016/j.mce.2017.06.023.

580

[45] K. Wong, F. Di Cristofano, M. Ranieri, D. De Martino, A. Di Cristofano, PI3K/mTOR

581

inhibition potentiates and extends palbociclib activity in anaplastic thyroid cancer., Endocr.

582

Relat. Cancer. 26 (2019) 425–436. doi:10.1530/ERC-19-0011.

583

[46] B.R. Untch, V. Dos Anjos, M.E.R. Garcia-Rendueles, J.A. Knauf, G.P. Krishnamoorthy, M.

584

Saqcena, U.K. Bhanot, N.D. Socci, A.L. Ho, R. Ghossein, J.A. Fagin, Tipifarnib Inhibits

585

HRAS-Driven Dedifferentiated Thyroid Cancers., Cancer Res. 78 (2018) 4642–4657.

586

doi:10.1158/0008-5472.CAN-17-1925.

587

[47] M.K. Gule, Y. Chen, D. Sano, M.J. Frederick, G. Zhou, M. Zhao, Z.L. Milas, C.E. Galer, Y.C.

588

Henderson, S.A. Jasser, D.L. Schwartz, J.A. Bankson, J.N. Myers, S.Y. Lai, Targeted therapy

24

589

of VEGFR2 and EGFR significantly inhibits growth of anaplastic thyroid cancer in an

590

orthotopic

591

doi:10.1158/1078-0432.CCR-10-2762.

murine

model.,

Clin.

Cancer

Res.

17

(2011)

2281–2291.

592

[48] M.N. Younes, O.G. Yigitbasi, Y.W. Park, S.-J. Kim, S.A. Jasser, V.S. Hawthorne, Y.D.

593

Yazici, M. Mandal, B.N. Bekele, C.D. Bucana, I.J. Fidler, J.N. Myers, Antivascular therapy of

594

human follicular thyroid cancer experimental bone metastasis by blockade of epidermal

595

growth factor receptor and vascular growth factor receptor phosphorylation., Cancer Res. 65

596

(2005) 4716–4727. doi:10.1158/0008-5472.CAN-04-4196.

597

[49] S. Kim, B.A. Schiff, O.G. Yigitbasi, D. Doan, S.A. Jasser, B.N. Bekele, M. Mandal, J.N.

598

Myers, Targeted molecular therapy of anaplastic thyroid carcinoma with AEE788., Mol.

599

Cancer Ther. 4 (2005) 632–640. doi:10.1158/1535-7163.MCT-04-0293.

600

[50] A. Lopez-Campistrous, E.E. Adewuyi, M.G.K. Benesch, Y.M. Ko, R. Lai, A. Thiesen, J.

601

Dewald, P. Wang, K. Chu, S. Ghosh, D.C. Williams, L.J. Vos, D.N. Brindley, T.P.W.

602

McMullen, PDGFRα Regulates Follicular Cell Differentiation Driving Treatment Resistance

603

and Disease Recurrence in Papillary Thyroid Cancer., EBioMedicine. 12 (2016) 86–97.

604

doi:10.1016/j.ebiom.2016.09.007.

605

[51] X.-G. Peng, Z.-F. Chen, K.-J. Zhang, P.-G. Wang, Z.-M. Liu, Z.-J. Chen, G.-Y. Hou, M. Niu,

606

VEGF Trapon inhibits tumor growth in papillary thyroid carcinoma., Eur. Rev. Med.

607

Pharmacol. Sci. 19 (2015) 235–240.

608 609 610 611

[52] S. Papp, S.L. Asa, When thyroid carcinoma goes bad: a morphological and molecular analysis., Head Neck Pathol. 9 (2015) 16–23. doi:10.1007/s12105-015-0619-z. [53] Y.E. Nikiforov, M.N. Nikiforova, Molecular genetics and diagnosis of thyroid cancer., Nat. Rev. Endocrinol. 7 (2011) 569–580. doi:10.1038/nrendo.2011.142.

612

[54] G.E. Lombardo, V. Maggisano, M. Celano, D. Cosco, C. Mignogna, F. Baldan, S.M. Lepore,

613

L. Allegri, S. Moretti, C. Durante, G. Damante, M. Fresta, D. Russo, S. Bulotta, E. Puxeddu,

25

614

Anti-hTERT siRNA-Loaded Nanoparticles Block the Growth of Anaplastic Thyroid Cancer

615

Xenograft., Mol. Cancer Ther. 17 (2018) 1187–1195. doi:10.1158/1535-7163.MCT-17-0559.

616

[55] S. Hoshi, N. Hoshi, M. Okamoto, J. Paiz, T. Kusakabe, J.M. Ward, S. Kimura, Role of

617

NKX2-1 in N-bis(2-hydroxypropyl)-nitrosamine-induced thyroid adenoma in mice.,

618

Carcinogenesis. 30 (2009) 1614–1619. doi:10.1093/carcin/bgp167.

619 620

[56] I.A. Prior, P.D. Lewis, C. Mattos, A comprehensive survey of Ras mutations in cancer., Cancer Res. 72 (2012) 2457–67. doi:10.1158/0008-5472.CAN-11-2612.

621

[57] L. Cheng, Y. Jin, M. Liu, M. Ruan, L. Chen, HER inhibitor promotes BRAF/MEK

622

inhibitor-induced redifferentiation in papillary thyroid cancer harboring BRAFV600E.,

623

Oncotarget. 8 (2017) 19843–19854. doi:10.18632/oncotarget.15773.

624

[58] E. Oikonomou, E. Koustas, M. Goulielmaki, A. Pintzas, BRAF vs RAS oncogenes: are

625

mutations of the same pathway equal? Differential signalling and therapeutic implications.,

626

Oncotarget. 5 (2014) 11752–11777. doi:10.18632/oncotarget.2555.

627

[59] J. Nagarajah, M. Le, J.A. Knauf, G. Ferrandino, C. Montero-Conde, N. Pillarsetty, A.

628

Bolaender, C. Irwin, G.P. Krishnamoorthy, M. Saqcena, S.M. Larson, A.L. Ho, V. Seshan, N.

629

Ishii, N. Carrasco, N. Rosen, W.A. Weber, J.A. Fagin, Sustained ERK inhibition maximizes

630

responses of BrafV600E thyroid cancers to radioiodine., J. Clin. Invest. 126 (2016)

631

4119–4124. doi:10.1172/JCI89067.

632

[60] D. Chakravarty, E. Santos, M. Ryder, J.A. Knauf, X.-H. Liao, B.L. West, G. Bollag, R.

633

Kolesnick, T.H. Thin, N. Rosen, P. Zanzonico, S.M. Larson, S. Refetoff, R. Ghossein, J.A.

634

Fagin, Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid

635

cancers with conditional BRAF activation., J. Clin. Invest. 121 (2011) 4700–11.

636

doi:10.1172/JCI46382.

637

[61] Y. Jin, M. Ruan, L. Cheng, H. Fu, M. Liu, S. Sheng, L. Chen, Radioiodine Uptake and

638

Thyroglobulin-Guided Radioiodine Remnant Ablation in Patients with Differentiated Thyroid

26

639

Cancer: A Prospective, Randomized, Open-Label, Controlled Trial, Thyroid. 29 (2018)

640

101–110. doi:10.1089/thy.2018.0028.

641

[62] I. Landa, T. Ibrahimpasic, L. Boucai, R. Sinha, J.A. Knauf, R.H. Shah, S. Dogan, J.C.

642

Ricarte-Filho, G.P. Krishnamoorthy, B. Xu, N. Schultz, M.F. Berger, C. Sander, B.S. Taylor,

643

R. Ghossein, I. Ganly, J.A. Fagin, Genomic and transcriptomic hallmarks of poorly

644

differentiated and anaplastic thyroid cancers., J. Clin. Invest. 126 (2016) 1052–66.

645

doi:10.1172/JCI85271.

646 647

[63] M.N. Nikiforova, Y.E. Nikiforov, Molecular diagnostics and predictors in thyroid cancer., Thyroid. 19 (2009) 1351–1361. doi:10.1089/thy.2009.0240.

648

[64] H. Guan, Y. Guo, L. Liu, R. Ye, W. Liang, H. Li, H. Xiao, Y. Li, INAVA promotes

649

aggressiveness of papillary thyroid cancer by upregulating MMP9 expression., Cell Biosci. 8

650

(2018) 26. doi:10.1186/s13578-018-0224-4.

651

[65] C. Tavares, C. Eloy, M. Melo, A. Gaspar da Rocha, A. Pestana, R. Batista, L. Bueno Ferreira,

652

E. Rios, M. Sobrinho Simões, P. Soares, mTOR Pathway in Papillary Thyroid Carcinoma:

653

Different Contributions of mTORC1 and mTORC2 Complexes for Tumor Behavior and

654

SLC5A5

655

doi:10.3390/ijms19051448.

mRNA

Expression.,

Int.

J.

Mol.

Sci.

19

(2018)

pii:

E1448.

656

[66] F. Feng, L. Yehia, Y. Ni, Y.S. Chang, S.M. Jhiang, C. Eng, A Nonpump Function of Sodium

657

Iodide Symporter in Thyroid Cancer via Cross-talk with PTEN Signaling., Cancer Res. 78

658

(2018) 6121–6133. doi:10.1158/0008-5472.CAN-18-1954.

659

[67] S.M. Sadowski, M. Boufraqech, L. Zhang, A. Mehta, P. Kapur, Y. Zhang, Z. Li, M. Shen, E.

660

Kebebew, Torin2 targets dysregulated pathways in anaplastic thyroid cancer and inhibits

661

tumor

662

doi:10.18632/oncotarget.3833.

663

growth

and

metastasis.,

Oncotarget.

6

(2015)

18038–18049.

[68] D.L. Wheeler, M. Iida, E.F. Dunn, The Role of Src in Solid Tumors, Oncologist. 14 (2009)

27

664

667–678. doi:10.1634/theoncologist.2009-0009.

665

[69] Y.C. Henderson, R. Toro-Serra, Y. Chen, J. Ryu, M.J. Frederick, G. Zhou, G.E. Gallick, S.Y.

666

Lai, G.L. Clayman, Src inhibitors in suppression of papillary thyroid carcinoma growth., Head

667

Neck. 36 (2014) 375–384. doi:10.1002/hed.23316.

668

[70] W.G. Kim, C.J. Guigon, L. Fozzatti, J.W. Park, C. Lu, M.C. Willingham, S. Cheng, SKI-606,

669

an Src inhibitor, reduces tumor growth, invasion, and distant metastasis in a mouse model of

670

thyroid

671

doi:10.1158/1078-0432.CCR-11-2892.

cancer.,

Clin.

Cancer

Res.

18

(2012)

1281–1290.

672

[71] C.M. Chan, X. Jing, L.A. Pike, Q. Zhou, D.-J. Lim, S.B. Sams, G.S. Lund, V. Sharma, B.R.

673

Haugen, R.E. Schweppe, Targeted inhibition of Src kinase with dasatinib blocks thyroid

674

cancer

675

doi:10.1158/1078-0432.CCR-11-3359.

growth

and

metastasis.,

Clin.

Cancer

Res.

18

(2012)

3580–3591.

676

[72] P. Vanden Borre, V. Gunda, D.G. McFadden, P.M. Sadow, S. Varmeh, M. Bernasconi, S.

677

Parangi, Combined BRAF(V600E)- and SRC-inhibition induces apoptosis, evokes an immune

678

response and reduces tumor growth in an immunocompetent orthotopic mouse model of

679

anaplastic thyroid cancer., Oncotarget. 5 (2014) 3996–4010. doi:10.18632/oncotarget.2130.

680

[73] T.J. Mitchell, S. John, Signal transducer and activator of transcription (STAT) signalling and

681

T-cell

682

doi:10.1111/j.1365-2567.2005.02091.x.

683 684

lymphomas.,

Immunology.

114

(2005)

301–312.

[74] W.X. Li, Canonical and non-canonical JAK–STAT signaling, Trends Cell Biol. 18 (2008) 545–551. doi:10.1016/j.tcb.2008.08.008.

685

[75] W.G. Kim, J.W. Park, M.C. Willingham, S. Cheng, Diet-induced obesity increases tumor

686

growth and promotes anaplastic change in thyroid cancer in a mouse model., Endocrinology.

687

154 (2013) 2936–2947. doi:10.1210/en.2013-1128.

688

[76] J.P. Couto, L. Daly, A. Almeida, J.A. Knauf, J.A. Fagin, M. Sobrinho-Simões, J. Lima, V.

28

689

Máximo, P. Soares, D. Lyden, J.F. Bromberg, STAT3 negatively regulates thyroid

690

tumorigenesis.,

691

doi:10.1073/pnas.1201232109.

692 693

Proc.

Natl.

Acad.

Sci.

U.

S.

A.

109

(2012)

E2361-2370.

[77] N. Sosonkina, D. Starenki, J.-I. Park, The Role of STAT3 in Thyroid Cancer., Cancers (Basel). 6 (2014) 526–544. doi:10.3390/cancers6010526.

694

[78] S.J. Lee, M.H. Lee, D.W. Kim, S. Lee, S. Huang, M.J. Ryu, Y.K. Kim, S.J. Kim, S.J. Kim,

695

J.H. Hwang, S. Oh, H. Cho, J.M. Kim, D.-S. Lim, Y.S. Jo, M. Shong, Cross-regulation

696

between oncogenic BRAF(V600E) kinase and the MST1 pathway in papillary thyroid

697

carcinoma., PLoS One. 6 (2011) e16180. doi:10.1371/journal.pone.0016180.

698

[79] R. Bu, S. Uddin, M. Ahmed, A.R. Hussain, S. Alsobhi, T. Amin, A. Al-Nuaim, F. Al-Dayel, J.

699

Abubaker, P. Bavi, K.S. Al-Kuraya, c-Met inhibitor synergizes with tumor necrosis

700

factor-related apoptosis-induced ligand to induce papillary thyroid carcinoma cell death., Mol.

701

Med. 18 (2012) 167–177. doi:10.2119/molmed.2011.00238.

702

[80] H.K. Byeon, H.J. Na, Y.J. Yang, H.J. Kwon, J.W. Chang, M.J. Ban, W.S. Kim, D.Y. Shin,

703

E.J. Lee, Y.W. Koh, J.-H. Yoon, E.C. Choi, c-Met-mediated reactivation of PI3K/AKT

704

signaling contributes to insensitivity of BRAF(V600E) mutant thyroid cancer to BRAF

705

inhibition., Mol. Carcinog. 55 (2016) 1678–1687. doi:10.1002/mc.22418.

706

[81] X. Sui, Y. Sui, Y. Wang, LARP7 in papillary thyroid carcinoma induces NIS expression

707

through suppression of the SHH signaling pathway., Mol. Med. Rep. 17 (2018) 7521–7528.

708

doi:10.3892/mmr.2018.8856.

709

[82] V. Anelli, J.A. Villefranc, S. Chhangawala, R. Martinez-McFaline, E. Riva, A. Nguyen, A.

710

Verma, R. Bareja, Z. Chen, T. Scognamiglio, O. Elemento, Y. Houvras, Oncogenic BRAF

711

disrupts thyroid morphogenesis and function via twist expression., Elife. 6 (2017) pii: e20728.

712

doi:10.7554/eLife.20728.

713

[83] R.J. Platt, S. Chen, Y. Zhou, M.J. Yim, L. Swiech, H.R. Kempton, J.E. Dahlman, O. Parnas,

29

714

T.M. Eisenhaure, M. Jovanovic, D.B. Graham, S. Jhunjhunwala, M. Heidenreich, R.J. Xavier,

715

R. Langer, D.G. Anderson, N. Hacohen, A. Regev, G. Feng, P.A. Sharp, F. Zhang,

716

CRISPR-Cas9 knockin mice for genome editing and cancer modeling., Cell. 159 (2014)

717

440–455. doi:10.1016/j.cell.2014.09.014.

718

[84] R.D. Chow, C.D. Guzman, G. Wang, F. Schmidt, M.W. Youngblood, L. Ye, Y. Errami, M.B.

719

Dong, M.A. Martinez, S. Zhang, P. Renauer, K. Bilguvar, M. Gunel, P.A. Sharp, F. Zhang,

720

R.J. Platt, S. Chen, AAV-mediated direct in vivo CRISPR screen identifies functional

721

suppressors in glioblastoma., Nat. Neurosci. 20 (2017) 1329–1341. doi:10.1038/nn.4620.

722

[85] S. Chakraborty, M.I. Hosen, M. Ahmed, H.U. Shekhar, Onco-Multi-OMICS Approach: A

723

New

Frontier

in

Cancer

724

doi:10.1155/2018/9836256.

Research.,

Biomed

Res.

Int.

2018

(2018)

9836256.

725

[86] E.A. Vucic, K.L. Thu, K. Robison, L.A. Rybaczyk, R. Chari, C.E. Alvarez, W.L. Lam,

726

Translating cancer “omics” to improved outcomes., Genome Res. 22 (2012) 188–95.

727

doi:10.1101/gr.124354.111.

728 729

[87] M. Xing, Molecular pathogenesis and mechanisms of thyroid cancer., Nat. Rev. Cancer. 13 (2013) 184–199. doi:10.1038/nrc3431.

730

[88] M. Schlumberger, R. Elisei, S. Müller, P. Schöffski, M. Brose, M. Shah, L. Licitra, J.

731

Krajewska, M.C. Kreissl, B. Niederle, E.E.W. Cohen, L. Wirth, H. Ali, D.O. Clary, Y. Yaron,

732

M. Mangeshkar, D. Ball, B. Nelkin, S. Sherman, Overall survival analysis of EXAM, a phase

733

III trial of cabozantinib in patients with radiographically progressive medullary thyroid

734

carcinoma., Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 28 (2017) 2813–2819.

735

doi:10.1093/annonc/mdx479.

736

[89] C. Mirantes, N. Eritja, M.A. Dosil, M. Santacana, J. Pallares, S. Gatius, L. Bergada, O.

737

Maiques, X. Matias-Guiu, X. Dolcet, An inducible knockout mouse to model the

738

cell-autonomous role of PTEN in initiating endometrial, prostate and thyroid neoplasias., Dis.

30

739

Model. Mech. 6 (2013) 710–720. doi:10.1242/dmm.011445.

740

[90] C.J. Guigon, L. Fozzatti, C. Lu, M.C. Willingham, S.-Y. Cheng, Inhibition of mTORC1

741

signaling reduces tumor growth but does not prevent cancer progression in a mouse model of

742

thyroid cancer., Carcinogenesis. 31 (2010) 1284–1291. doi:10.1093/carcin/bgq059.

743

[91] S.M. Lim, H. Chang, M.J. Yoon, Y.K. Hong, H. Kim, W.Y. Chung, C.S. Park, K.H. Nam,

744

S.W. Kang, M.K. Kim, B.S. Kim, S.H. Lee, H.G. Kim, I.I. Na, Y.S. Kim, M.Y. Choi, J.G.

745

Kim, K.U. Park, H.J. Yun, J.H. Kim, B.C. Cho, A multicenter, phase II trial of everolimus in

746

locally advanced or metastatic thyroid cancer of all histologic subtypes, Ann. Oncol. 24

747

(2013) 3089–3093. doi:10.1093/annonc/mdt379.

748

[92] Y. Nobuhara, N. Onoda, Y. Yamashita, M. Yamasaki, K. Ogisawa, T. Takashima, T.

749

Ishikawa, K. Hirakawa, Efficacy of epidermal growth factor receptor-targeted molecular

750

therapy in anaplastic thyroid cancer cell lines., Br. J. Cancer. 92 (2005) 1110–1116.

751

doi:10.1038/sj.bjc.6602461.

752

[93] B.A. Schiff, A.B. McMurphy, S.A. Jasser, M.N. Younes, D. Doan, O.G. Yigitbasi, S. Kim, G.

753

Zhou, M. Mandal, B.N. Bekele, F.C. Holsinger, S.I. Sherman, S.-C. Yeung, A.K. El-Naggar,

754

J.N. Myers, Epidermal growth factor receptor (EGFR) is overexpressed in anaplastic thyroid

755

cancer, and the EGFR inhibitor gefitinib inhibits the growth of anaplastic thyroid cancer.,

756

Clin. Cancer Res. 10 (2004) 8594–8602. doi:10.1158/1078-0432.CCR-04-0690.

757

[94] E. Kim, M. Matsuse, V. Saenko, K. Suzuki, A. Ohtsuru, N. Mitsutake, S. Yamashita, Imatinib

758

enhances docetaxel-induced apoptosis through inhibition of nuclear factor-kappaB activation

759

in

760

doi:10.1089/thy.2011.0380.

anaplastic

thyroid

carcinoma

cells.,

Thyroid.

22

(2012)

717–724.

761

[95] J. Kurebayashi, S. Okubo, Y. Yamamoto, M. Ikeda, K. Tanaka, T. Otsuki, H. Sonoo, Additive

762

antitumor effects of gefitinib and imatinib on anaplastic thyroid cancer cells., Cancer

763

Chemother. Pharmacol. 58 (2006) 460–470. doi:10.1007/s00280-006-0185-x.

31

764

[96] N.A. Pennell, G.H. Daniels, R.I. Haddad, D.S. Ross, T. Evans, L.J. Wirth, P.H. Fidias, J.S.

765

Temel, S. Gurubhagavatula, R.S. Heist, J.R. Clark, T.J. Lynch, A phase II study of gefitinib in

766

patients

767

doi:10.1089/thy.2007.0120.

with

advanced

thyroid

cancer.,

Thyroid.

18

(2008)

317–323.

768

[97] V. Gunda, B. Gigliotti, T. Ashry, D. Ndishabandi, M. McCarthy, Z. Zhou, S. Amin, K.E. Lee,

769

T. Stork, L. Wirth, G.J. Freeman, A. Alessandrini, S. Parangi, Anti-PD-1/PD-L1 therapy

770

augments lenvatinib’s efficacy by favorably altering the immune microenvironment of murine

771

anaplastic thyroid cancer., Int. J. Cancer. 144 (2019) 2266–2278. doi:10.1002/ijc.32041.

772

[98] S.M. Ferrari, G. Bocci, T. Di Desidero, G. Elia, I. Ruffilli, F. Ragusa, P. Orlandi, S.R. Paparo,

773

A. Patrizio, S. Piaggi, C. La Motta, S. Ulisse, E. Baldini, G. Materazzi, P. Miccoli, A.

774

Antonelli, P. Fallahi, Lenvatinib exhibits antineoplastic activity in anaplastic thyroid cancer in

775

vitro and in vivo., Oncol. Rep. 39 (2018) 2225–2234. doi:10.3892/or.2018.6306.

776

[99] M. Schlumberger, M. Tahara, L.J. Wirth, B. Robinson, M.S. Brose, R. Elisei, M.A. Habra, K.

777

Newbold, M.H. Shah, A.O. Hoff, A.G. Gianoukakis, N. Kiyota, M.H. Taylor, S.-B. Kim,

778

M.K. Krzyzanowska, C.E. Dutcus, B. de las Heras, J. Zhu, S.I. Sherman, Lenvatinib versus

779

placebo in radioiodine-refractory thyroid cancer., N. Engl. J. Med. 372 (2015) 621–630.

780

doi:10.1056/NEJMoa1406470.

781

[100] A. Coxon, J. Bready, S. Kaufman, J. Estrada, T. Osgood, J. Canon, L. Wang, R. Radinsky, R.

782

Kendall, P. Hughes, A. Polverino, Anti-tumor activity of motesanib in a medullary thyroid

783

cancer model., J. Endocrinol. Invest. 35 (2012) 181–190. doi:10.3275/7609.

784

[101] S.I. Sherman, L.J. Wirth, J.-P. Droz, M. Hofmann, L. Bastholt, R.G. Martins, L. Licitra, M.J.

785

Eschenberg, Y.-N. Sun, T. Juan, D.E. Stepan, M.J. Schlumberger, Motesanib Diphosphate in

786

Progressive Differentiated Thyroid Cancer, N. Engl. J. Med. 359 (2008) 31–42.

787

doi:10.1056/NEJMoa075853.

788

[102] D. Chan, Y. Zheng, J.W. Tyner, W.J. Chng, W.W. Chien, S. Gery, G. Leong, G.D.

32

789

Braunstein, H.P. Koeffler, Belinostat and panobinostat (HDACI): in vitro and in vivo studies

790

in

791

doi:10.1007/s00432-013-1465-6.

thyroid

cancer.,

J.

Cancer

Res.

Clin.

Oncol.

139

(2013)

1507–1514.

792

[103] C.R. Isham, B.C. Netzel, A.R. Bossou, D. Milosevic, K.W. Cradic, S.K. Grebe, K.C. Bible,

793

Development and characterization of a differentiated thyroid cancer cell line resistant to

794

VEGFR-targeted kinase inhibitors., J. Clin. Endocrinol. Metab. 99 (2014) E936-943.

795

doi:10.1210/jc.2013-2658.

796

[104] K.C. Bible, V.J. Suman, J.R. Molina, R.C. Smallridge, W.J. Maples, M.E. Menefee, J. Rubin,

797

K. Sideras, J.C. Morris, B. McIver, J.K. Burton, K.P. Webster, C. Bieber, A.M. Traynor, P.J.

798

Flynn, B.C. Goh, H. Tang, S.P. Ivy, C. Erlichman, Efficacy of pazopanib in progressive,

799

radioiodine-refractory, metastatic differentiated thyroid cancers: Results of a phase 2

800

consortium study, Lancet Oncol. 11 (2010) 962–972. doi:10.1016/S1470-2045(10)70203-5.

801

[105] K.C. Bible, V.J. Suman, M.E. Menefee, R.C. Smallridge, J.R. Molina, W.J. Maples, N.J.

802

Karlin, A.M. Traynor, P. Kumar, B.C. Goh, W.-T. Lim, A.R. Bossou, C.R. Isham, K.P.

803

Webster, A.K. Kukla, C. Bieber, J.K. Burton, P. Harris, C. Erlichman, A multiinstitutional

804

phase 2 trial of pazopanib monotherapy in advanced anaplastic thyroid cancer., J. Clin.

805

Endocrinol. Metab. 97 (2012) 3179–3184. doi:10.1210/jc.2012-1520.

806

[106] K.C. Bible, V.J. Suman, J.R. Molina, R.C. Smallridge, W.J. Maples, M.E. Menefee, J. Rubin,

807

N. Karlin, K. Sideras, J.C. Morris, B. McIver, I. Hay, V. Fatourechi, J.K. Burton, K.P.

808

Webster, C. Bieber, A.M. Traynor, P.J. Flynn, B. Cher Goh, C.R. Isham, P. Harris, C.

809

Erlichman, and the M.P. 2 C. Endocrine Malignancies Disease Oriented Group, Mayo Clinic

810

Cancer Center, A multicenter phase 2 trial of pazopanib in metastatic and progressive

811

medullary thyroid carcinoma: MC057H., J. Clin. Endocrinol. Metab. 99 (2014) 1687–1693.

812

doi:10.1210/jc.2013-3713.

813

[107] D.N. Hayes, A.S. Lucas, T. Tanvetyanon, M.K. Krzyzanowska, C.H. Chung, B.A. Murphy, J.

33

814

Gilbert, R. Mehra, D.T. Moore, A. Sheikh, J. Hoskins, M.C. Hayward, N. Zhao, W.

815

O’Connor, K.E. Weck, R.B. Cohen, E.E.W. Cohen, Phase II efficacy and pharmacogenomic

816

study of selumetinib (AZD6244; ARRY-142886) in iodine-131 refractory papillary thyroid

817

carcinoma with or without follicular elements, Clin. Cancer Res. 18 (2012) 2056–2065.

818

doi:10.1158/1078-0432.CCR-11-0563.

819

[108] M.H. Lee, S.E. Lee, D.W. Kim, M.J. Ryu, S.J. Kim, S.J. Kim, Y.K. Kim, J.H. Park, G.R.

820

Kweon, J.M. Kim, J.U. Lee, V. De Falco, Y.S. Jo, M. Shong, Mitochondrial localization and

821

regulation of BRAFV600E in thyroid cancer: a clinically used RAF inhibitor is unable to

822

block the mitochondrial activities of BRAFV600E., J. Clin. Endocrinol. Metab. 96 (2011)

823

E19-30. doi:10.1210/jc.2010-1071.

824

[109] F. Carlomagno, S. Anaganti, T. Guida, G. Salvatore, G. Troncone, S.M. Wilhelm, M. Santoro,

825

BAY 43-9006 inhibition of oncogenic RET mutants., J. Natl. Cancer Inst. 98 (2006) 326–334.

826

doi:10.1093/jnci/djj069.

827

[110] J. Abdulghani, P. Gokare, J.-N. Gallant, D. Dicker, T. Whitcomb, T. Cooper, J. Liao, J. Derr,

828

J. Liu, D. Goldenberg, N.K. Finnberg, W.S. El-Deiry, Sorafenib and Quinacrine Target

829

Anti-Apoptotic Protein MCL1: A Poor Prognostic Marker in Anaplastic Thyroid Cancer

830

(ATC)., Clin. Cancer Res. 22 (2016) 6192–6203. doi:10.1158/1078-0432.CCR-15-2792.

831

[111] H. Yi, T. Ye, M. Ge, M. Yang, L. Zhang, S. Jin, X. Ye, B. Long, L. Li, Inhibition of

832

autophagy enhances the targeted therapeutic effect of sorafenib in thyroid cancer., Oncol. Rep.

833

39 (2018) 711–720. doi:10.3892/or.2017.6118.

834

[112] Y. Ke, C. Xiang, Transferrin receptor-targeted HMSN for sorafenib delivery in refractory

835

differentiated thyroid cancer therapy., Int. J. Nanomedicine. 13 (2018) 8339–8354.

836

doi:10.2147/IJN.S187240.

837

[113] S. Kim, Y.D. Yazici, G. Calzada, Z.-Y. Wang, M.N. Younes, S.A. Jasser, A.K. El-Naggar,

838

J.N. Myers, Sorafenib inhibits the angiogenesis and growth of orthotopic anaplastic thyroid

34

839

carcinoma xenografts in nude mice., Mol. Cancer Ther. 6 (2007) 1785–1792.

840

doi:10.1158/1535-7163.MCT-06-0595.

841

[114] Y.C. Henderson, S.-H. Ahn, Y. Kang, G.L. Clayman, Sorafenib potently inhibits papillary

842

thyroid carcinomas harboring RET/PTC1 rearrangement., Clin. Cancer Res. 14 (2008)

843

4908–4914. doi:10.1158/1078-0432.CCR-07-1772.

844

[115] R.W. Alfano, S.H. Leppla, S. Liu, T.H. Bugge, J.M. Ortiz, T.C. Lairmore, N.S. Duesbery, I.C.

845

Mitchell, F. Nwariaku, A.E. Frankel, Inhibition of tumor angiogenesis by the matrix

846

metalloproteinase-activated anthrax lethal toxin in an orthotopic model of anaplastic thyroid

847

carcinoma., Mol. Cancer Ther. 9 (2010) 190–201. doi:10.1158/1535-7163.MCT-09-0694.

848

[116] M.S. Brose, C.M. Nutting, B. Jarzab, R. Elisei, S. Siena, L. Bastholt, C. de la Fouchardiere, F.

849

Pacini, R. Paschke, Y.K. Shong, S.I. Sherman, J.W.A. Smit, J. Chung, C. Kappeler, C. Peña, I.

850

Molnár,

851

iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised,

852

double-blind,

853

doi:10.1016/S0140-6736(14)60421-9.

M.J.

Schlumberger,

phase

3

trial.,

DECISION

Lancet

investigators,

(London,

Sorafenib

England).

384

in

(2014)

radioactive

319–328.

854

[117] W. Wang, J. Zhou, L. Zhao, S. Chen, Combination of SL327 and Sunitinib Malate leads to an

855

additive anti-cancer effect in doxorubicin resistant thyroid carcinoma cells., Biomed.

856

Pharmacother. 88 (2017) 985–990. doi:10.1016/j.biopha.2017.01.135.

857

[118] S. Broutin, N. Ameur, L. Lacroix, T. Robert, B. Petit, N. Oumata, M. Talbot, B. Caillou, M.

858

Schlumberger, C. Dupuy, J.-M. Bidart, Identification of soluble candidate biomarkers of

859

therapeutic response to sunitinib in medullary thyroid carcinoma in preclinical models., Clin.

860

Cancer Res. 17 (2011) 2044–2054. doi:10.1158/1078-0432.CCR-10-2041.

861

[119] W.-J. Jeong, J.-H. Mo, M.W. Park, I.J. Choi, S.-Y. An, E.-H. Jeon, S.-H. Ahn, Sunitinib

862

inhibits papillary thyroid carcinoma with RET/PTC rearrangement but not BRAF mutation.,

863

Cancer Biol. Ther. 12 (2011) 458–465. doi:10.4161/cbt.12.5.16303.

35

864

[120] T. Di Desidero, A. Fioravanti, P. Orlandi, B. Canu, R. Giannini, N. Borrelli, S. Man, P. Xu, G.

865

Fontanini, F. Basolo, R.S. Kerbel, G. Francia, R. Danesi, G. Bocci, Antiproliferative and

866

proapoptotic activity of sunitinib on endothelial and anaplastic thyroid cancer cells via

867

inhibition of Akt and ERK1/2 phosphorylation and by down-regulation of cyclin-D1., J. Clin.

868

Endocrinol. Metab. 98 (2013) E1465-73. doi:10.1210/jc.2013-1364.

869

[121] A. Lopergolo, V. Nicolini, E. Favini, L. Dal Bo, M. Tortoreto, D. Cominetti, M. Folini, P.

870

Perego, V. Castiglioni, E. Scanziani, M.G. Borrello, N. Zaffaroni, G. Cassinelli, C. Lanzi,

871

Synergistic cooperation between sunitinib and cisplatin promotes apoptotic cell death in

872

human medullary thyroid cancer., J. Clin. Endocrinol. Metab. 99 (2014) 498–509.

873

doi:10.1210/jc.2013-2574.

874

[122] L.L. Carr, D.A. Mankoff, B.H. Goulart, K.D. Eaton, P.T. Capell, E.M. Kell, J.E. Bauman,

875

R.G. Martins, Phase II study of daily sunitinib in FDG-PET-positive, iodine-refractory

876

differentiated thyroid cancer and metastatic medullary carcinoma of the thyroid with

877

functional

878

doi:10.1158/1078-0432.CCR-10-0994.

imaging

correlation,

Clin.

Cancer

Res.

16

(2010)

5260–5268.

879

[123] A. Bikas, P. Kundra, S. Desale, M. Mete, K. O’Keefe, B.G. Clark, L. Wray, R. Gandhi, C.

880

Barett, J.S. Jelinek, J.A. Wexler, L. Wartofsky, K.D. Burman, Phase 2 clinical trial of

881

sunitinib as adjunctive treatment in patients with advanced differentiated thyroid cancer, Eur.

882

J. Endocrinol. 174 (2016) 373–380. doi:10.1530/EJE-15-0930.

883

[124] D. Starenki, J.-I. Park, Mitochondria-targeted nitroxide, Mito-CP, suppresses medullary

884

thyroid carcinoma cell survival in vitro and in vivo., J. Clin. Endocrinol. Metab. 98 (2013)

885

1529–1540. doi:10.1210/jc.2012-3671.

886

[125] F.A. Rashid, Q. Mansoor, S. Tabassum, H. Aziz, W.O. Arfat, G.E. Naoum, M. Ismail, A.A.

887

Farooqi, Signaling cascades in thyroid cancer: Increasing the armory of archers to hit

888

bullseye., J. Cell. Biochem. 119 (2018) 3798–3808. doi:10.1002/jcb.26620.

36

889

[126] M.A. Walter, M.R. Benz, I.J. Hildebrandt, R.E. Laing, V. Hartung, R.D. Damoiseaux, A.

890

Bockisch, M.E. Phelps, J. Czernin, W.A. Weber, Metabolic imaging allows early prediction of

891

response to vandetanib., J. Nucl. Med. 52 (2011) 231–240. doi:10.2967/jnumed.110.081745.

892

[127] D. Starenki, N.K. Singh, D.R. Jensen, F.C. Peterson, J.-I. Park, Recombinant leukemia

893

inhibitory factor suppresses human medullary thyroid carcinoma cell line xenografts in mice.,

894

Cancer Lett. 339 (2013) 144–151. doi:10.1016/j.canlet.2013.07.006.

895

[128] S. Broutin, F. Commo, L. De Koning, B. Marty-Prouvost, L. Lacroix, M. Talbot, B. Caillou,

896

T. Dubois, A.J. Ryan, C. Dupuy, M. Schlumberger, J.-M. Bidart, Changes in signaling

897

pathways induced by vandetanib in a human medullary thyroid carcinoma model, as analyzed

898

by reverse phase protein array., Thyroid. 24 (2014) 43–51. doi:10.1089/thy.2013.0514.

899

[129] D. Starenki, S.-K. Hong, R. V Lloyd, J.-I. Park, Mortalin (GRP75/HSPA9) upregulation

900

promotes survival and proliferation of medullary thyroid carcinoma cells., Oncogene. 34

901

(2015) 4624–4634. doi:10.1038/onc.2014.392.

902

[130] D. Starenki, S.-K. Hong, P.-K. Wu, J.-I. Park, Vandetanib and cabozantinib potentiate

903

mitochondria-targeted agents to suppress medullary thyroid carcinoma cells., Cancer Biol.

904

Ther. 18 (2017) 473–483. doi:10.1080/15384047.2017.1323594.

905

[131] S. Leboulleux, L. Bastholt, T. Krause, C. de la Fouchardiere, J. Tennvall, A. Awada, J.M.

906

Gómez, F. Bonichon, L. Leenhardt, C. Soufflet, M. Licour, M.J. Schlumberger, Vandetanib in

907

locally advanced or metastatic differentiated thyroid cancer: A randomised, double-blind,

908

phase 2 trial, Lancet Oncol. 13 (2012) 897–905. doi:10.1016/S1470-2045(12)70335-2.

909

[132] S.A. Wells, B.G. Robinson, R.F. Gagel, H. Dralle, J.A. Fagin, M. Santoro, E. Baudin, R.

910

Elisei, B. Jarzab, J.R. Vasselli, J. Read, P. Langmuir, A.J. Ryan, M.J. Schlumberger,

911

Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a

912

randomized, double-blind phase III trial., J. Clin. Oncol. 30 (2012) 134–141.

913

doi:10.1200/JCO.2011.35.5040.

37

914

[133] W. Wang, H. Kang, Y. Zhao, I. Min, B. Wyrwas, M. Moore, L. Teng, R. Zarnegar, X. Jiang,

915

T.J. 3rd Fahey, Targeting Autophagy Sensitizes BRAF-Mutant Thyroid Cancer to

916

Vemurafenib., J. Clin. Endocrinol. Metab. 102 (2017) 634–643. doi:10.1210/jc.2016-1999.

917

[134] H. Song, J. Zhang, L. Ning, H. Zhang, D. Chen, X. Jiao, K. Zhang, The MEK1/2 Inhibitor

918

AZD6244 Sensitizes BRAF-Mutant Thyroid Cancer to Vemurafenib., Med. Sci. Monit. 24

919

(2018) 3002–3010. doi:10.12659/MSM.910084.

920

[135] W.-J. Wei, C.-T. Shen, H.-J. Song, Z.-L. Qiu, Q.-Y. Luo, Propranolol sensitizes thyroid

921

cancer cells to cytotoxic effect of vemurafenib., Oncol. Rep. 36 (2016) 1576–1584.

922

doi:10.3892/or.2016.4918.

923

[136] P.M. Sadow, C. Priolo, S. Nanni, F.A. Karreth, M. Duquette, R. Martinelli, A. Husain, J.

924

Clohessy, H. Kutzner, T. Mentzel, C. V Carman, A. Farsetti, E.P. Henske, E. Palescandolo,

925

L.E. Macconaill, S. Chung, G. Fadda, C.P. Lombardi, A.M. De Angelis, O. Durante, J.A.

926

Parker, A. Pontecorvi, H.F. Dvorak, C. Fletcher, P.P. Pandolfi, J. Lawler, C. Nucera, Role of

927

BRAFV600E in the first preclinical model of multifocal infiltrating myopericytoma

928

development and microenvironment., J. Natl. Cancer Inst. 106 (2014) pii: dju182.

929

doi:10.1093/jnci/dju182.

930

[137] K. Tsumagari, Z.Y. Abd Elmageed, A.B. Sholl, E.A. Green, S. Sobti, A.R. Khan, A. Kandil,

931

F. Murad, P. Friedlander, A.H. Boulares, E. Kandil, Bortezomib sensitizes thyroid cancer to

932

BRAF inhibitor in vitro and in vivo., Endocr. Relat. Cancer. 25 (2018) 99–109.

933

doi:10.1530/ERC-17-0182.

934

[138] H.-Y. Cha, B.-S. Lee, J.W. Chang, J.K. Park, J.H. Han, Y.-S. Kim, Y.S. Shin, H.K. Byeon,

935

C.-H. Kim, Downregulation of Nrf2 by the combination of TRAIL and Valproic acid induces

936

apoptotic cell death of TRAIL-resistant papillary thyroid cancer cells via suppression of

937

Bcl-xL., Cancer Lett. 372 (2016) 65–74. doi:10.1016/j.canlet.2015.12.016.

938

[139] A.M. Straight, K. Oakley, R. Moores, A.J. Bauer, A. Patel, R.M. Tuttle, J. Jimeno, G.L.

38

939

Francis, Aplidin reduces growth of anaplastic thyroid cancer xenografts and the expression of

940

several

941

doi:10.1007/s00280-005-0014-7.

angiogenic

genes.,

Cancer

Chemother.

Pharmacol.

57

(2006)

7–14.

942

[140] F. Furuya, H. Shimura, H. Suzuki, K. Taki, K. Ohta, K. Haraguchi, T. Onaya, T. Endo, T.

943

Kobayashi, Histone deacetylase inhibitors restore radioiodide uptake and retention in poorly

944

differentiated and anaplastic thyroid cancer cells by expression of the sodium/iodide

945

symporter thyroperoxidase and thyroglobulin., Endocrinology. 145 (2004) 2865–2875.

946

doi:10.1210/en.2003-1258.

947

[141] S.B. Bravo, M.E.R. Garcia-Rendueles, R. Seoane, V. Dosil, J. Cameselle-Teijeiro, L.

948

Lopez-Lazaro, J. Zalvide, F. Barreiro, C.M. Pombo, C. V Alvarez, Plitidepsin has a cytostatic

949

effect in human undifferentiated (anaplastic) thyroid carcinoma., Clin. Cancer Res. 11 (2005)

950

7664–7673. doi:10.1158/1078-0432.CCR-05-0455.

951

[142] E.J. Sherman, M.G. Fury, R.M. Tuttle, R. Ghossein, H. Stambuk, M. Baum, D. Lisa, Y.B. Su,

952

A. Shaha, D.G. Pfister, Phase II study of depsipeptide (DEP) in radioiodine (RAI)-refractory

953

metastatic nonmedullary thyroid carcinoma, J. Clin. Oncol. 27 (2009) e6059–e6059.

954

doi:10.1200/jco.2009.27.15_suppl.6059.

955

[143] Q. Xie, H. Chen, J. Ai, Y.-L. Gao, M.-Y. Geng, J. Ding, Y. Chen, Evaluation of in vitro and in

956

vivo activity of a multityrosine kinase inhibitor, AL3810, against human thyroid cancer., Acta

957

Pharmacol. Sin. 38 (2017) 1533–1542. doi:10.1038/aps.2017.107.

958

[144] Z. Jin, X. Cheng, H. Feng, J. Kuang, W. Yang, C. Peng, B. Shen, W. Qiu, Apatinib Inhibits

959

Angiogenesis Via Suppressing Akt/GSK3β/ANG Signaling Pathway in Anaplastic Thyroid

960

Cancer., Cell. Physiol. Biochem. 44 (2017) 1471–1484. doi:10.1159/000485583.

961

[145] K. Pozo, S. Zahler, K. Ishimatsu, A.M. Carter, R. Telange, C. Tan, S. Wang, R. Pfragner, J.

962

Fujimoto, E.G. Grubbs, M. Takahashi, S.C. Oltmann, J.A. Bibb, Preclinical characterization

963

of tyrosine kinase inhibitor-based targeted therapies for neuroendocrine thyroid cancer.,

39

964

Oncotarget. 9 (2018) 37662–37675. doi:10.18632/oncotarget.26480.

965

[146] V. De Falco, P. Buonocore, M. Muthu, L. Torregrossa, F. Basolo, M. Billaud, J.M. Gozgit, F.

966

Carlomagno, M. Santoro, Ponatinib (AP24534) is a novel potent inhibitor of oncogenic RET

967

mutants associated with thyroid cancer., J. Clin. Endocrinol. Metab. 98 (2013) E811-819.

968

doi:10.1210/jc.2012-2672.

969

[147] C. Mirantes, M.A. Dosil, N. Eritja, I. Felip, S. Gatius, M. Santacana, X. Matias-Guiu, X.

970

Dolcet, Effects of the multikinase inhibitors Sorafenib and Regorafenib in PTEN deficient

971

neoplasias., Eur. J. Cancer. 63 (2016) 74–87. doi:10.1016/j.ejca.2016.04.019.

972

[148] F. Liotti, M. De Pizzol, M. Allegretti, N. Prevete, R.M. Melillo, Multiple anti-tumor effects of

973

Reparixin

on

thyroid

974

doi:10.18632/oncotarget.16412.

cancer.,

Oncotarget.

8

(2017)

35946–35961.

975

[149] Z. Meng, N. Mitsutake, M. Nakashima, D. Starenki, M. Matsuse, S. Takakura, H. Namba, V.

976

Saenko, K. Umezawa, A. Ohtsuru, S. Yamashita, Dehydroxymethylepoxyquinomicin, a novel

977

nuclear Factor-kappaB inhibitor, enhances antitumor activity of taxanes in anaplastic thyroid

978

cancer cells., Endocrinology. 149 (2008) 5357–5365. doi:10.1210/en.2008-0279.

979

[150] D. V Starenki, H. Namba, V.A. Saenko, A. Ohtsuru, S. Maeda, K. Umezawa, S. Yamashita,

980

Induction of thyroid cancer cell apoptosis by a novel nuclear factor kappaB inhibitor,

981

dehydroxymethylepoxyquinomicin.,

982

doi:10.1158/1078-0432.CCR-04-0463.

Clin.

Cancer

Res.

10

(2004)

6821–6829.

983

[151] W. Zhu, Y. Ou, Y. Li, R. Xiao, M. Shu, Y. Zhou, J. Xie, S. He, P. Qiu, G. Yan, A

984

small-molecule triptolide suppresses angiogenesis and invasion of human anaplastic thyroid

985

carcinoma cells via down-regulation of the nuclear factor-kappa B pathway., Mol. Pharmacol.

986

75 (2009) 812–819. doi:10.1124/mol.108.052605.

987

[152] W. Zhu, S. He, Y. Li, P. Qiu, M. Shu, Y. Ou, Y. Zhou, T. Leng, J. Xie, X. Zheng, D. Xu, X.

988

Su, G. Yan, Anti-angiogenic activity of triptolide in anaplastic thyroid carcinoma is mediated

40

989

by targeting vascular endothelial and tumor cells., Vascul. Pharmacol. 52 (2010) 46–54.

990

doi:10.1016/j.vph.2009.10.006.

991

[153] S. Li, D. Zhang, S. Sheng, H. Sun, Targeting thyroid cancer with acid-triggered release of

992

doxorubicin from silicon dioxide nanoparticles., Int. J. Nanomedicine. 12 (2017) 5993–6003.

993

doi:10.2147/IJN.S137335.

994

[154] L. Kucerova, L. Feketeova, Z. Kozovska, M. Poturnajova, M. Matuskova, R. Nencka, P.

995

Babal, In vivo 5FU-exposed human medullary thyroid carcinoma cells contain a

996

chemoresistant CD133+ tumor-initiating cell subset., Thyroid. 24 (2014) 520–532.

997

doi:10.1089/thy.2013.0277.

998

[155] L.-M. Tseng, P.-I. Huang, Y.-R. Chen, Y.-C. Chen, Y.-C. Chou, Y.-W. Chen, Y.-L. Chang,

999

H.-S. Hsu, Y.-T. Lan, K.-H. Chen, C.-W. Chi, S.-H. Chiou, D.-M. Yang, C.-H. Lee, Targeting

1000

signal transducer and activator of transcription 3 pathway by cucurbitacin I diminishes

1001

self-renewing and radiochemoresistant abilities in thyroid cancer-derived CD133+ cells., J.

1002

Pharmacol. Exp. Ther. 341 (2012) 410–423. doi:10.1124/jpet.111.188730.

1003

[156] J. Park, W.G. Kim, L. Zhao, K. Enomoto, M. Willingham, S.-Y. Cheng, Metformin blocks

1004

progression of obesity-activated thyroid cancer in a mouse model., Oncotarget. 7 (2016)

1005

34832–34844. doi:10.18632/oncotarget.8989.

1006

[157] S. Park, M.C. Willingham, J. Qi, S.-Y. Cheng, Metformin and JQ1 synergistically inhibit

1007

obesity-activated

thyroid

1008

doi:10.1530/ERC-18-0071.

cancer.,

Endocr.

Relat.

Cancer.

25

(2018)

865–877.

1009

[158] C.-T. Shen, W.-J. Wei, Z.-L. Qiu, H.-J. Song, X.-Y. Zhang, Z.-K. Sun, Q.-Y. Luo, Metformin

1010

reduces glycometabolism of papillary thyroid carcinoma in vitro and in vivo., J. Mol.

1011

Endocrinol. 58 (2017) 15–23. doi:10.1530/JME-16-0134.

1012

[159] J.W.-C. Chang, K.-Y. Yeh, Y.-C. Shen, J.-J. Hsieh, C.-K. Chuang, S.-K. Liao, L.-H. Tsai,

1013

C.-H. Wang, Production of multiple cytokines and induction of cachexia in athymic nude

41

1014

mice by a new anaplastic thyroid carcinoma cell line., J. Endocrinol. 179 (2003) 387–394.

1015

doi:10.1677/joe.0.1790387.

1016

[160] J.W. Park, C.R. Han, L. Zhao, M.C. Willingham, S. Cheng, Inhibition of STAT3 activity

1017

delays obesity-induced thyroid carcinogenesis in a mouse model., Endocr. Relat. Cancer. 23

1018

(2016) 53–63. doi:10.1530/ERC-15-0417.

1019

[161] M.N. Younes, Y.D. Yazici, S. Kim, S.A. Jasser, A.K. El-Naggar, J.N. Myers, Dual epidermal

1020

growth factor receptor and vascular endothelial growth factor receptor inhibition with

1021

NVP-AEE788 for the treatment of aggressive follicular thyroid cancer., Clin. Cancer Res. 12

1022

(2006) 3425–3434. doi:10.1158/1078-0432.CCR-06-0793.

1023

[162] J.P. Couto, A. Almeida, L. Daly, M. Sobrinho-Simoes, J.F. Bromberg, P. Soares, AZD1480

1024

blocks growth and tumorigenesis of RET- activated thyroid cancer cell lines., PLoS One. 7

1025

(2012) e46869. doi:10.1371/journal.pone.0046869.

1026

[163] L. Zhang, M. Boufraqech, R. Lake, E. Kebebew, Carfilzomib potentiates CUDC-101-induced

1027

apoptosis

in

anaplastic

thyroid

1028

doi:10.18632/oncotarget.7760.

cancer.,

Oncotarget.

7

(2016)

16517–16528.

1029

[164] L. Zhang, Y. Zhang, A. Mehta, M. Boufraqech, S. Davis, J. Wang, Z. Tian, Z. Yu, M.B.

1030

Boxer, J.A. Kiefer, J.A. Copland, R.C. Smallridge, Z. Li, M. Shen, E. Kebebew, Dual

1031

inhibition of HDAC and EGFR signaling with CUDC-101 induces potent suppression of

1032

tumor growth and metastasis in anaplastic thyroid cancer., Oncotarget. 6 (2015) 9073–9085.

1033

doi:10.18632/oncotarget.3268.

1034 1035

[165] S. Ezzat, P. Huang, A. Dackiw, S.L. Asa, Dual inhibition of RET and FGFR4 restrains medullary thyroid cancer cell growth., Clin. Cancer Res. 11 (2005) 1336–1341.

1036

[166] R. St Bernard, L. Zheng, W. Liu, D. Winer, S.L. Asa, S. Ezzat, Fibroblast growth factor

1037

receptors as molecular targets in thyroid carcinoma., Endocrinology. 146 (2005) 1145–1153.

1038

doi:10.1210/en.2004-1134.

42

1039

[167] S.-C. Hua, T.-C. Chang, H.-R. Chen, C.-H. Lu, Y.-W. Liu, S.-H. Chen, H.-I. Yu, Y.-P. Chang,

1040

Y.-R. Lee, Reversine, a 2,6-disubstituted purine, as an anti-cancer agent in differentiated and

1041

undifferentiated

1042

doi:10.1007/s11095-012-0727-3.

thyroid

cancer

cells.,

Pharm.

Res.

29

(2012)

1990–2005.

1043

[168] M. Yalcin, E. Dyskin, L. Lansing, D.J. Bharali, S.S. Mousa, A. Bridoux, A.H. Hercbergs,

1044

H.Y. Lin, F.B. Davis, G. V Glinsky, A. Glinskii, J. Ma, P.J. Davis, S.A. Mousa,

1045

Tetraiodothyroacetic acid (tetrac) and nanoparticulate tetrac arrest growth of medullary

1046

carcinoma of the thyroid., J. Clin. Endocrinol. Metab. 95 (2010) 1972–1980.

1047

doi:10.1210/jc.2009-1926.

1048

[169] W.-J. Wei, Z.-K. Sun, C.-T. Shen, H.-J. Song, X.-Y. Zhang, Z.-L. Qiu, Q.-Y. Luo, Obatoclax

1049

and LY3009120 Efficiently Overcome Vemurafenib Resistance in Differentiated Thyroid

1050

Cancer., Theranostics. 7 (2017) 987–1001. doi:10.7150/thno.17322.

1051

[170] D. Champa, M.A. Russo, X.-H. Liao, S. Refetoff, R.A. Ghossein, A. Di Cristofano, Obatoclax

1052

overcomes resistance to cell death in aggressive thyroid carcinomas by countering Bcl2a1 and

1053

Mcl1 overexpression., Endocr. Relat. Cancer. 21 (2014) 755–767. doi:10.1530/ERC-14-0268.

1054

[171] D. Champa, A. Orlacchio, B. Patel, M. Ranieri, A.A. Shemetov, V. V Verkhusha, A.M.

1055

Cuervo, A. Di Cristofano, Obatoclax kills anaplastic thyroid cancer cells by inducing

1056

lysosome

1057

doi:10.18632/oncotarget.9121.

neutralization

and

necrosis.,

Oncotarget.

7

(2016)

34453–34471.

1058

[172] A. Antonelli, G. Bocci, P. Fallahi, C. La Motta, S.M. Ferrari, C. Mancusi, A. Fioravanti, T. Di

1059

Desidero, S. Sartini, A. Corti, S. Piaggi, G. Materazzi, C. Spinelli, G. Fontanini, R. Danesi, F.

1060

Da Settimo, P. Miccoli, CLM3, a multitarget tyrosine kinase inhibitor with antiangiogenic

1061

properties, is active against primary anaplastic thyroid cancer in vitro and in vivo., J. Clin.

1062

Endocrinol. Metab. 99 (2014) E572-81. doi:10.1210/jc.2013-2321.

1063

[173] A. Antonelli, G. Bocci, C. La Motta, S.M. Ferrari, P. Fallahi, A. Fioravanti, S. Sartini, M.

43

1064

Minuto, S. Piaggi, A. Corti, G. Ali, P. Berti, G. Fontanini, R. Danesi, F. Da Settimo, P.

1065

Miccoli, Novel pyrazolopyrimidine derivatives as tyrosine kinase inhibitors with antitumoral

1066

activity in vitro and in vivo in papillary dedifferentiated thyroid cancer., J. Clin. Endocrinol.

1067

Metab. 96 (2011) E288-96. doi:10.1210/jc.2010-1905.

1068

[174] A.K. Samadi, R. Mukerji, A. Shah, B.N. Timmermann, M.S. Cohen, A novel RET inhibitor

1069

with potent efficacy against medullary thyroid cancer in vivo., Surgery. 148 (2010) 1228–36;

1070

discussion 1236. doi:10.1016/j.surg.2010.09.026.

1071

[175] S.M. Cohen, R. Mukerji, B.N. Timmermann, A.K. Samadi, M.S. Cohen, A novel combination

1072

of withaferin A and sorafenib shows synergistic efficacy against both papillary and anaplastic

1073

thyroid cancers., Am. J. Surg. 204 (2012) 891–895. doi:10.1016/j.amjsurg.2012.07.027.

1074

[176] B.H. Park, K.H. Jung, M.K. Son, J.H. Seo, H.-S. Lee, J.-H. Lee, S.-S. Hong, Antitumor

1075

activity of Pulsatilla koreana extract in anaplastic thyroid cancer via apoptosis and

1076

anti-angiogenesis., Mol. Med. Rep. 7 (2013) 26–30. doi:10.3892/mmr.2012.1166.

1077

[177] Y. Zhou, C. Zhao, S. Gery, G.D. Braunstein, R. Okamoto, R. Alvarez, S.A. Miles, N.B. Doan,

1078

J.W. Said, J. Gu, H. Phillip Koeffler, Off-target effects of c-MET inhibitors on thyroid cancer

1079

cells., Mol. Cancer Ther. 13 (2014) 134–143. doi:10.1158/1535-7163.MCT-13-0187.

1080

[178] L.M. Kelly, G. Barila, P. Liu, V.N. Evdokimova, S. Trivedi, F. Panebianco, M. Gandhi, S.E.

1081

Carty, S.P. Hodak, J. Luo, S. Dacic, Y.P. Yu, M.N. Nikiforova, R.L. Ferris, D.L. Altschuler,

1082

Y.E. Nikiforov, Identification of the transforming STRN-ALK fusion as a potential

1083

therapeutic target in the aggressive forms of thyroid cancer., Proc. Natl. Acad. Sci. U. S. A.

1084

111 (2014) 4233–4238. doi:10.1073/pnas.1321937111.

1085

[179] A. Mehta, L. Zhang, M. Boufraqech, Y. Zhang, D. Patel, M. Shen, E. Kebebew, Carfilzomib

1086

is an effective anticancer agent in anaplastic thyroid cancer., Endocr. Relat. Cancer. 22 (2015)

1087

319–329. doi:10.1530/ERC-14-0510.

1088

[180] C. Nucera, M.A. Nehs, S.S. Nagarkatti, P.M. Sadow, M. Mekel, A.H. Fischer, P.S. Lin, G.E.

44

1089

Bollag, J. Lawler, R.A. Hodin, S. Parangi, Targeting BRAFV600E with PLX4720 displays

1090

potent antimigratory and anti-invasive activity in preclinical models of human thyroid cancer.,

1091

Oncologist. 16 (2011) 296–309. doi:10.1634/theoncologist.2010-0317.

1092

[181] D.G. McFadden, A. Vernon, P.M. Santiago, R. Martinez-McFaline, A. Bhutkar, D.M.

1093

Crowley, M. McMahon, P.M. Sadow, T. Jacks, p53 constrains progression to anaplastic

1094

thyroid carcinoma in a Braf-mutant mouse model of papillary thyroid cancer., Proc. Natl.

1095

Acad. Sci. U. S. A. 111 (2014) E1600-1609. doi:10.1073/pnas.1404357111.

1096

[182] V. Gunda, O. Bucur, J. Varnau, P. Vanden Borre, M.J. Bernasconi, R. Khosravi-Far, S.

1097

Parangi, Blocks to thyroid cancer cell apoptosis can be overcome by inhibition of the MAPK

1098

and PI3K/AKT pathways., Cell Death Dis. 5 (2014) e1104. doi:10.1038/cddis.2014.78.

1099

[183] V. Gunda, B. Gigliotti, D. Ndishabandi, T. Ashry, M. McCarthy, Z. Zhou, S. Amin, G.J.

1100

Freeman, A. Alessandrini, S. Parangi, Combinations of BRAF inhibitor and anti-PD-1/PD-L1

1101

antibody improve survival and tumour immunity in an immunocompetent model of orthotopic

1102

murine

1103

doi:10.1038/s41416-018-0296-2.

anaplastic

thyroid

cancer.,

Br.

J.

Cancer.

119

(2018)

1223–1232.

1104

[184] V. Gunda, K.A. Sarosiek, E. Brauner, Y.S. Kim, S. Amin, Z. Zhou, A. Letai, S. Parangi,

1105

Inhibition of MAPKinase pathway sensitizes thyroid cancer cells to ABT-737 induced

1106

apoptosis., Cancer Lett. 395 (2017) 1–10. doi:10.1016/j.canlet.2017.02.028.

1107

[185] M. Zou, E.Y. Baitei, R.A. Al-Rijjal, R.S. Parhar, F.A. Al-Mohanna, S. Kimura, C. Pritchard,

1108

H.A. Binessa, A.S. Alzahrani, H.H. Al-Khalaf, A. Hawwari, M. Akhtar, A.M. Assiri, B.F.

1109

Meyer, Y. Shi, TSH overcomes Braf(V600E)-induced senescence to promote tumor

1110

progression via downregulation of p53 expression in papillary thyroid cancer., Oncogene. 35

1111

(2016) 1909–1918. doi:10.1038/onc.2015.253.

1112

[186] M.A. Nehs, C. Nucera, S.S. Nagarkatti, P.M. Sadow, D. Morales-Garcia, R.A. Hodin, S.

1113

Parangi, Late intervention with anti-BRAF(V600E) therapy induces tumor regression in an

45

1114

orthotopic mouse model of human anaplastic thyroid cancer., Endocrinology. 153 (2012)

1115

985–994. doi:10.1210/en.2011-1519.

1116

[187] C. Nucera, A. Porrello, Z.A. Antonello, M. Mekel, M.A. Nehs, T.J. Giordano, D. Gerald, L.E.

1117

Benjamin, C. Priolo, E. Puxeddu, S. Finn, B. Jarzab, R.A. Hodin, A. Pontecorvi, V. Nose, J.

1118

Lawler, S. Parangi, B-Raf(V600E) and thrombospondin-1 promote thyroid cancer

1119

progression.,

1120

doi:10.1073/pnas.1004934107.

Proc.

Natl.

Acad.

Sci.

U.

S.

A.

107

(2010)

10649–10654.

1121

[188] M. Zou, E.Y. Baitei, H.A. BinEssa, F.A. Al-Mohanna, R.S. Parhar, R. St-Arnaud, S. Kimura,

1122

C. Pritchard, A.S. Alzahrani, A.M. Assiri, B.F. Meyer, Y. Shi, Cyp24a1 Attenuation Limits

1123

Progression of Braf(V600E) -Induced Papillary Thyroid Cancer Cells and Sensitizes Them to

1124

BRAF(V600E)

1125

doi:10.1158/0008-5472.CAN-16-2066.

Inhibitor

PLX4720.,

Cancer

Res.

77

(2017)

2161–2172.

1126

[189] P. Salerno, V. De Falco, A. Tamburrino, T.C. Nappi, G. Vecchio, R.E. Schweppe, G. Bollag,

1127

M. Santoro, G. Salvatore, Cytostatic activity of adenosine triphosphate-competitive kinase

1128

inhibitors in BRAF mutant thyroid carcinoma cells., J. Clin. Endocrinol. Metab. 95 (2010)

1129

450–455. doi:10.1210/jc.2009-0373.

1130

[190] K. Ohta, T. Endo, K. Haraguchi, J.M. Hershman, T. Onaya, Ligands for peroxisome

1131

proliferator-activated receptor gamma inhibit growth and induce apoptosis of human papillary

1132

thyroid

1133

doi:10.1210/jcem.86.5.7493.

carcinoma

cells.,

J.

Clin.

Endocrinol.

Metab.

86

(2001)

2170–2177.

1134

[191] Y. Kato, H. Ying, L. Zhao, F. Furuya, O. Araki, M.C. Willingham, S.-Y. Cheng,

1135

PPARgamma insufficiency promotes follicular thyroid carcinogenesis via activation of the

1136

nuclear

1137

doi:10.1038/sj.onc.1209299.

1138

factor-kappaB

signaling

pathway.,

Oncogene.

25

(2006)

2736–2747.

[192] S.M. Morris, A.J. Mhyre, S.S. Carmack, C.H. Myers, C. Burns, W. Ye, M. Ferrer, J.M. Olson,

46

1139

R.A. Klinghoffer, A modified gene trap approach for improved high-throughput cancer drug

1140

discovery., Oncogene. 37 (2018) 4226–4238. doi:10.1038/s41388-018-0274-4.

1141

[193] A. Vivaldi, R. Ciampi, A. Tacito, E. Molinaro, L. Agate, V. Bottici, A. Pinchera, P. Collecchi,

1142

R. Elisei, Celecoxib, a cyclooxygenase-2 inhibitor, potentiates the chemotherapic effect of

1143

vinorelbine in the medullary thyroid cancer TT cell line., Mol. Cell. Endocrinol. 355 (2012)

1144

41–48. doi:10.1016/j.mce.2012.01.015.

1145

[194] V. Quidville, N. Segond, A. Tebbi, R. Cohen, A. Jullienne, M. Lepoivre, S. Lausson,

1146

Anti-tumoral effect of a celecoxib low dose on a model of human medullary thyroid cancer in

1147

nude mice., Thyroid. 19 (2009) 613–621. doi:10.1089/thy.2008.0194.

1148

[195] C.-H. Wang, Y.-C. Shen, J.-J. Hsieh, K.-Y. Yeh, J.W.-C. Chang, Clodronate alleviates

1149

cachexia and prolongs survival in nude mice xenografted with an anaplastic thyroid carcinoma

1150

cell line., J. Endocrinol. 190 (2006) 415–423. doi:10.1677/joe.1.06490.

1151

[196] D.-M. Yang, H.-C. Teng, K.-H. Chen, M.-L. Tsai, T.-K. Lee, Y.-C. Chou, C.-W. Chi, S.-H.

1152

Chiou, C.-H. Lee, Clodronate-induced cell apoptosis in human thyroid carcinoma is mediated

1153

via the P2 receptor signaling pathway., J. Pharmacol. Exp. Ther. 330 (2009) 613–623.

1154

doi:10.1124/jpet.109.152447.

1155

[197] P.-Y. Salaun, C. Bodet-Milin, E. Frampas, A. Oudoux, C. Sai-Maurel, A. Faivre-Chauvet, J.

1156

Barbet, F. Paris, F. Kraeber-Bodere, Toxicity and efficacy of combined radioimmunotherapy

1157

and bevacizumab in a mouse model of medullary thyroid carcinoma., Cancer. 116 (2010)

1158

1053–1058. doi:10.1002/cncr.24792.

1159

[198] A. Wunderlich, S. Roth, A. Ramaswamy, B.H. Greene, C. Brendel, U. Hinterseher, D.K.

1160

Bartsch, S. Hoffmann, Combined inhibition of cellular pathways as a future therapeutic option

1161

in

1162

doi:10.1007/s12020-012-9665-4.

1163

fatal

anaplastic

thyroid

cancer.,

Endocrine.

42

(2012)

637–646.

[199] A. Wunderlich, M. Fischer, T. Schlosshauer, A. Ramaswamy, B.H. Greene, C. Brendel, D.

47

1164

Doll, D. Bartsch, S. Hoffmann, Evaluation of Aurora kinase inhibition as a new therapeutic

1165

strategy in anaplastic and poorly differentiated follicular thyroid cancer., Cancer Sci. 102

1166

(2011) 762–768. doi:10.1111/j.1349-7006.2011.01853.x.

1167

[200] Y.C. Henderson, Y. Chen, M.J. Frederick, S.Y. Lai, G.L. Clayman, MEK inhibitor

1168

PD0325901 significantly reduces the growth of papillary thyroid carcinoma cells in vitro and

1169

in vivo., Mol. Cancer Ther. 9 (2010) 1968–1976. doi:10.1158/1535-7163.MCT-10-0062.

1170

[201] M.A. Russo, K.S. Kang, A. Di Cristofano, The PLK1 inhibitor GSK461364A is effective in

1171

poorly differentiated and anaplastic thyroid carcinoma cells, independent of the nature of their

1172

driver mutations., Thyroid. 23 (2013) 1284–1293. doi:10.1089/thy.2013.0037.

1173

[202] L. Zhang, Z. Yang, L. Granieri, A. Pasculescu, A. Datti, S.L. Asa, Z. Xu, S. Ezzat,

1174

High-throughput drug library screening identifies colchicine as a thyroid cancer inhibitor.,

1175

Oncotarget. 7 (2016) 19948–19959. doi:10.18632/oncotarget.7890.

1176

[203] Y. Iwase, Y. Maitani, Dual functional octreotide-modified liposomal irinotecan leads to high

1177

therapeutic efficacy for medullary thyroid carcinoma xenografts., Cancer Sci. 103 (2012)

1178

310–316. doi:10.1111/j.1349-7006.2011.02128.x.

1179

[204] R. Levy, M. Grafi-Cohen, Z. Kraiem, Y. Kloog, Galectin-3 promotes chronic activation of

1180

K-Ras and differentiation block in malignant thyroid carcinomas., Mol. Cancer Ther. 9 (2010)

1181

2208–2219. doi:10.1158/1535-7163.MCT-10-0262.

1182

[205] M. Ahmed, S. Uddin, A.R. Hussain, A. Alyan, Z. Jehan, F. Al-Dayel, A. Al-Nuaim, S.

1183

Al-Sobhi, T. Amin, P. Bavi, K.S. Al-Kuraya, FoxM1 and its association with matrix

1184

metalloproteinases (MMP) signaling pathway in papillary thyroid carcinoma., J. Clin.

1185

Endocrinol. Metab. 97 (2012) E1–E13. doi:10.1210/jc.2011-1506.

1186

[206] J.-H. Mo, I.J. Choi, W.-J. Jeong, E.-H. Jeon, S.-H. Ahn, HIF-1alpha and HSP90: target

1187

molecules selected from a tumorigenic papillary thyroid carcinoma cell line., Cancer Sci. 103

1188

(2012) 464–471. doi:10.1111/j.1349-7006.2011.02181.x.

48

1189

[207] M. Ahmed, A.R. Hussain, P. Bavi, S.O. Ahmed, S.S. Al Sobhi, F. Al-Dayel, S. Uddin, K.S.

1190

Al-Kuraya, High prevalence of mTOR complex activity can be targeted using Torin2 in

1191

papillary

1192

doi:10.1093/carcin/bgu051.

thyroid

carcinoma.,

Carcinogenesis.

35

(2014)

1564–1572.

1193

[208] M. Ryder, M. Gild, T.M. Hohl, E. Pamer, J. Knauf, R. Ghossein, J.A. Joyce, J.A. Fagin,

1194

Genetic and pharmacological targeting of CSF-1/CSF-1R inhibits tumor-associated

1195

macrophages and impairs BRAF-induced thyroid cancer progression., PLoS One. 8 (2013)

1196

e54302. doi:10.1371/journal.pone.0054302.

1197

[209] S. Kotian, L. Zhang, M. Boufraqech, K. Gaskins, S.K. Gara, M. Quezado, N. Nilubol, E.

1198

Kebebew, Dual Inhibition of HDAC and Tyrosine Kinase Signaling Pathways with

1199

CUDC-907 Inhibits Thyroid Cancer Growth and Metastases., Clin. Cancer Res. 23 (2017)

1200

5044–5054. doi:10.1158/1078-0432.CCR-17-1043.

1201

[210] J.W. Chang, S.U. Kang, J.W. Choi, Y.S. Shin, S.J. Baek, S.-H. Lee, C.-H. Kim, Tolfenamic

1202

acid induces apoptosis and growth inhibition in anaplastic thyroid cancer: Involvement of

1203

nonsteroidal anti-inflammatory drug-activated gene-1 expression and intracellular reactive

1204

oxygen

1205

doi:10.1016/j.freeradbiomed.2013.10.818.

species

generation.,

Free

Radic.

Biol.

Med.

67

(2014)

115–130.

1206

[211] H.-Y. Che, H.-Y. Guo, X.-W. Si, Q.-Y. You, W.-Y. Lou, PP121, a dual inhibitor of tyrosine

1207

and phosphoinositide kinases, inhibits anaplastic thyroid carcinoma cell proliferation and

1208

migration., Tumour Biol. 35 (2014) 8659–8664. doi:10.1007/s13277-014-2118-3.

1209

[212] N. Burrows, M. Babur, J. Resch, S. Ridsdale, M. Mejin, E.J. Rowling, G. Brabant, K.J.

1210

Williams, GDC-0941 inhibits metastatic characteristics of thyroid carcinomas by targeting

1211

both the phosphoinositide-3 kinase (PI3K) and hypoxia-inducible factor-1alpha (HIF-1alpha)

1212

pathways., J. Clin. Endocrinol. Metab. 96 (2011) E1934-1943. doi:10.1210/jc.2011-1426.

1213

[213] N. Burrows, B. Telfer, G. Brabant, K.J. Williams, Inhibiting the phosphatidylinositide

49

1214

3-kinase pathway blocks radiation-induced metastasis associated with Rho-GTPase and

1215

Hypoxia-inducible

1216

doi:10.1016/j.radonc.2013.06.027.

factor-1

activity.,

Radiother.

Oncol.

108

(2013)

548–553.

1217

[214] S.-F. Lin, J.-D. Lin, C. Hsueh, T.-C. Chou, R.J. Wong, A cyclin-dependent kinase inhibitor,

1218

dinaciclib in preclinical treatment models of thyroid cancer., PLoS One. 12 (2017) e0172315.

1219

doi:10.1371/journal.pone.0172315.

1220

[215] F. Furuya, C. Lu, M.C. Willingham, S.-Y. Cheng, Inhibition of phosphatidylinositol 3-kinase

1221

delays tumor progression and blocks metastatic spread in a mouse model of thyroid cancer.,

1222

Carcinogenesis. 28 (2007) 2451–2458. doi:10.1093/carcin/bgm174.

1223

[216] A.R. Hussain, R. Bu, M. Ahmed, Z. Jehan, S. Beg, S. Al-Sobhi, F. Al-Dayel, A.K. Siraj, S.

1224

Uddin, K.S. Al-Kuraya, Role of X-Linked Inhibitor of Apoptosis as a Prognostic Marker and

1225

Therapeutic Target in Papillary Thyroid Carcinoma., J. Clin. Endocrinol. Metab. 100 (2015)

1226

E974-985. doi:10.1210/jc.2014-4356.

1227

[217] Y. Jiang, S. Hao, W. Tian, B. Gao, X. Zhang, S. Zhang, L. Guo, J. Yan, D. Luo, PI3K

1228

inhibitors IC87114 inhibits the migration and invasion of thyroid cancer cell in vitro and in

1229

vivo., J. Cell. Biochem. 119 (2018) 4097–4102. doi:10.1002/jcb.26604.

1230

[218] D. Somjen, M. Grafi-Cohen, S. Katzburg, G. Weisinger, E. Izkhakov, N. Nevo, O. Sharon, Z.

1231

Kraiem, F. Kohen, N. Stern, Anti-thyroid cancer properties of a novel isoflavone derivative,

1232

7-(O)-carboxymethyl daidzein conjugated to N-t-Boc-hexylenediamine in vitro and in vivo., J.

1233

Steroid Biochem. Mol. Biol. 126 (2011) 95–103. doi:10.1016/j.jsbmb.2011.04.009.

1234

[219] D. Liu, P. Hou, Z. Liu, G. Wu, M. Xing, Genetic alterations in the phosphoinositide

1235

3-kinase/Akt signaling pathway confer sensitivity of thyroid cancer cells to therapeutic

1236

targeting of Akt and mammalian target of rapamycin., Cancer Res. 69 (2009) 7311–7319.

1237

doi:10.1158/0008-5472.CAN-09-1077.

1238

[220] W. Cha, D.-W. Kim, S.D. Kim, E.-H. Jeon, W.-J. Jeong, S.-H. Ahn, Effect of perioperative

50

1239

treatment with a hypoxia-inducible factor-1-alpha inhibitor in an orthotopic surgical mouse

1240

model of thyroid cancer., Anticancer Res. 35 (2015) 2049–2054.

1241

[221] S.-F. Lin, J.-D. Lin, C. Hsueh, T.-C. Chou, C.-N. Yeh, M.-H. Chen, R.J. Wong, Efficacy of an

1242

HSP90 inhibitor, ganetespib, in preclinical thyroid cancer models., Oncotarget. 8 (2017)

1243

41294–41304. doi:10.18632/oncotarget.17180.

1244

[222] R. Malaguarnera, K.-Y. Chen, T.-Y. Kim, J.M. Dominguez, F. Voza, B. Ouyang, S.K.

1245

Vundavalli, J.A. Knauf, J.A. Fagin, Switch in signaling control of mTORC1 activity after

1246

oncoprotein expression in thyroid cancer cell lines., J. Clin. Endocrinol. Metab. 99 (2014)

1247

E1976-87. doi:10.1210/jc.2013-3976.

1248

[223] T.A. Werner, L. Dizdar, I. Nolten, J.C. Riemer, S. Mersch, S.C. Schutte, C. Driemel, P.E.

1249

Verde, K. Raba, S.A. Topp, M. Schott, W.T. Knoefel, A. Krieg, Survivin and XIAP - two

1250

potential biological targets in follicular thyroid carcinoma., Sci. Rep. 7 (2017) 11383.

1251

doi:10.1038/s41598-017-11426-3.

1252

[224] A. Mehta, L. Zhang, M. Boufraqech, Y. Liu-Chittenden, Y. Zhang, D. Patel, S. Davis, A.

1253

Rosenberg, K. Ylaya, R. Aufforth, Z. Li, M. Shen, E. Kebebew, Inhibition of Survivin with

1254

YM155 Induces Durable Tumor Response in Anaplastic Thyroid Cancer., Clin. Cancer Res.

1255

21 (2015) 4123–4132. doi:10.1158/1078-0432.CCR-14-3251.

1256

[225] L. Zhou, M. Zhang, Q. Fu, J. Li, H. Sun, Targeted near infrared hyperthermia combined with

1257

immune stimulation for optimized therapeutic efficacy in thyroid cancer treatment.,

1258

Oncotarget. 7 (2016) 6878–6890. doi:10.18632/oncotarget.6901.

1259

[226] S.-M. Kim, K.-C. Park, J.-Y. Jeon, B.-W. Kim, H.-K. Kim, H.-J. Chang, S.-H. Choi, C.-S.

1260

Park, H.-S. Chang, Potential anti-cancer effect of N-hydroxy-7-(2-naphthylthio) heptanomide

1261

(HNHA), a novel histone deacetylase inhibitor, for the treatment of thyroid cancer., BMC

1262

Cancer. 15 (2015) 1003. doi:10.1186/s12885-015-1982-6.

1263

[227] Y.S. Lee, S.-M. Kim, B.-W. Kim, H.J. Chang, S.Y. Kim, C.S. Park, K.C. Park, H.-S. Chang,

51

1264

Anti-cancer Effects of HNHA and Lenvatinib by the Suppression of EMT-Mediated Drug

1265

Resistance

1266

doi:10.1016/j.neo.2017.12.003.

in

Cancer

Stem

Cells.,

Neoplasia.

20

(2018)

197–206.

1267

[228] S.-F. Lin, J.-D. Lin, T.-C. Chou, Y.-Y. Huang, R.J. Wong, Utility of a histone deacetylase

1268

inhibitor (PXD101) for thyroid cancer treatment., PLoS One. 8 (2013) e77684.

1269

doi:10.1371/journal.pone.0077684.

1270

[229] B.E. Kessler, V. Sharma, Q. Zhou, X. Jing, L.A. Pike, A.A. Kerege, S.B. Sams, R.E.

1271

Schweppe, FAK Expression, Not Kinase Activity, Is a Key Mediator of Thyroid

1272

Tumorigenesis and Protumorigenic Processes., Mol. Cancer Res. 14 (2016) 869–882.

1273

doi:10.1158/1541-7786.MCR-16-0007.

1274

[230] X. Zhu, D.W. Kim, L. Zhao, M.C. Willingham, S.-Y. Cheng, SAHA-induced loss of tumor

1275

suppressor Pten gene promotes thyroid carcinogenesis in a mouse model., Endocr. Relat.

1276

Cancer. 23 (2016) 521–533. doi:10.1530/ERC-16-0103.

1277

[231] X. Zhu, K. Enomoto, L. Zhao, Y.J. Zhu, M.C. Willingham, P. Meltzer, J. Qi, S.-Y. Cheng,

1278

Bromodomain and Extraterminal Protein Inhibitor JQ1 Suppresses Thyroid Tumor Growth in

1279

a

1280

doi:10.1158/1078-0432.CCR-16-0914.

Mouse

Model.,

Clin.

Cancer

Res.

23

(2017)

430–440.

1281

[232] X. Gao, X. Wu, X. Zhang, W. Hua, Y. Zhang, Y. Maimaiti, Z. Gao, Y. Zhang, Inhibition of

1282

BRD4 suppresses tumor growth and enhances iodine uptake in thyroid cancer., Biochem.

1283

Biophys. Res. Commun. 469 (2016) 679–685. doi:10.1016/j.bbrc.2015.12.008.

1284

[233] A.M. Traynor, G.E. Leverson, D.F. Elson, H.R. Hernan, M.M. Larson, J.H. Blank, G.G.

1285

Fareau, K.B. Wisinski, R.J. Mattison, H. Chen, R.S. Sippel, Panobinostat, a novel histone

1286

deacetylase inhibitor, in advanced medullary and iodine-refractory differentiated thyroid

1287

cancer: A Wisconsin Oncology Network trial., J. Clin. Oncol. 31 (2013) e17025–e17025.

1288

doi:10.1200/jco.2013.31.15_suppl.e17025.

52

1289

[234] H. V Reddi, P. Madde, S.J. McDonough, M.A. Trujillo, J.C. 3rd Morris, R.M. Myers, K.W.

1290

Peng, S.J. Russell, B. McIver, N.L. Eberhardt, Preclinical efficacy of the oncolytic measles

1291

virus expressing the sodium iodide symporter in iodine non-avid anaplastic thyroid cancer: a

1292

novel therapeutic agent allowing noninvasive imaging and radioiodine therapy., Cancer Gene

1293

Ther. 19 (2012) 659–665. doi:10.1038/cgt.2012.47.

1294

[235] Z. Meng, S. Lou, J. Tan, K. Xu, Q. Jia, W. Zheng, S. Wang, Nuclear factor-kappa B inhibition

1295

can enhance therapeutic efficacy of 131I on the in vivo management of differentiated thyroid

1296

cancer., Life Sci. 91 (2012) 1236–1241. doi:10.1016/j.lfs.2012.09.026.

1297

[236] T.C. Beadnell, K.M. Mishall, Q. Zhou, S.M. Riffert, K.E. Wuensch, B.E. Kessler, M.L.

1298

Corpuz, X. Jing, J. Kim, G. Wang, A.C. Tan, R.E. Schweppe, The Mitogen-Activated Protein

1299

Kinase Pathway Facilitates Resistance to the Src Inhibitor Dasatinib in Thyroid Cancer., Mol.

1300

Cancer Ther. 15 (2016) 1952–1963. doi:10.1158/1535-7163.MCT-15-0702.

1301

[237] P. Pratheeshkumar, A.K. Siraj, S.P. Divya, S.K. Parvathareddy, R. Begum, R. Melosantos,

1302

S.S. Al-Sobhi, M. Al-Dawish, F. Al-Dayel, K.S. Al-Kuraya, Downregulation of SKP2 in

1303

Papillary Thyroid Cancer Acts Synergistically With TRAIL on Inducing Apoptosis via ROS.,

1304

J. Clin. Endocrinol. Metab. 103 (2018) 1530–1544. doi:10.1210/jc.2017-02178.

1305

[238] X. Shen, Y. Zhu, Z. Xiao, X. Dai, D. Liu, L. Li, B. Xiao, Antiviral Drug Ribavirin Targets

1306

Thyroid Cancer Cells by Inhibiting the eIF4E-beta-Catenin Axis., Am. J. Med. Sci. 354

1307

(2017) 182–189. doi:10.1016/j.amjms.2017.03.025.

1308

[239] E. Brauner, V. Gunda, P. Vanden Borre, D. Zurakowski, Y.S. Kim, K.V. Dennett, S. Amin,

1309

G.J. Freeman, S. Parangi, Combining BRAF inhibitor and anti PD-L1 antibody dramatically

1310

improves tumor regression and anti tumor immunity in an immunocompetent murine model of

1311

anaplastic thyroid cancer., Oncotarget. 7 (2016) 17194–17211. doi:10.18632/oncotarget.7839.

1312

[240] C. Passaro, M. Volpe, G. Botta, E. Scamardella, G. Perruolo, D. Gillespie, S. Libertini, G.

1313

Portella, PARP inhibitor olaparib increases the oncolytic activity of dl922-947 in in vitro and

53

1314

in vivo model of anaplastic thyroid carcinoma., Mol. Oncol. 9 (2015) 78–92.

1315

doi:10.1016/j.molonc.2014.07.022.

1316

[241] M.A. Nehs, S. Nagarkatti, C. Nucera, R.A. Hodin, S. Parangi, Thyroidectomy with

1317

neoadjuvant PLX4720 extends survival and decreases tumor burden in an orthotopic mouse

1318

model

1319

doi:10.1016/j.surg.2010.09.001.

1320 1321

of

anaplastic

thyroid

cancer.,

Surgery.

148

(2010)

1154–1162.

[242] J.F. Lyons, S. Wilhelm, B. Hibner, G. Bollag, Discovery of a novel Raf kinase inhibitor., Endocr. Relat. Cancer. 8 (2001) 219–225.

1322

[243] J.A. Fagin, How thyroid tumors start and why it matters: kinase mutants as targets for solid

1323

cancer pharmacotherapy., J. Endocrinol. 183 (2004) 249–256. doi:10.1677/joe.1.05895.

1324

[244] G. Salvatore, V. De Falco, P. Salerno, T.C. Nappi, S. Pepe, G. Troncone, F. Carlomagno, R.M.

1325

Melillo, S.M. Wilhelm, M. Santoro, BRAF is a therapeutic target in aggressive thyroid

1326

carcinoma., Clin. Cancer Res. 12 (2006) 1623–1629. doi:10.1158/1078-0432.CCR-05-2378.

1327

[245] D. Hong, L. Ye, R. Gagel, L. Chintala, A.K. El Naggar, J. Wright, R. Kurzrock, Medullary

1328

thyroid cancer: targeting the RET kinase pathway with sorafenib/tipifarnib., Mol. Cancer Ther.

1329

7 (2008) 1001–1006. doi:10.1158/1535-7163.MCT-07-2422.

1330

[246] F. Stenner, H. Liewen, M. Zweifel, A. Weber, J. Tchinda, B. Bode, P. Samaras, S. Bauer, A.

1331

Knuth, C. Renner, Targeted therapeutic approach for an anaplastic thyroid cancer in vitro and

1332

in vivo., Cancer Sci. 99 (2008) 1847–1852. doi:10.1111/j.1349-7006.2008.00882.x.

1333

[247] V. Gupta-Abramson, A.B. Troxel, A. Nellore, K. Puttaswamy, M. Redlinger, K. Ransone, S.J.

1334

Mandel, K.T. Flaherty, L.A. Loevner, P.J. O’Dwyer, M.S. Brose, Phase II trial of sorafenib in

1335

advanced

1336

doi:10.1200/JCO.2008.16.3279.

thyroid

cancer.,

J.

Clin.

Oncol.

26

(2008)

4714–4719.

1337

[248] R.T. Kloos, M.D. Ringel, M. V Knopp, N.C. Hall, M. King, R. Stevens, J. Liang, P.E.J.

1338

Wakely, V. V Vasko, M. Saji, J. Rittenberry, L. Wei, D. Arbogast, M. Collamore, J.J. Wright,

54

1339

M. Grever, M.H. Shah, Phase II trial of sorafenib in metastatic thyroid cancer., J. Clin. Oncol.

1340

27 (2009) 1675–1684. doi:10.1200/JCO.2008.18.2717.

1341

[249] E.T. Lam, M.D. Ringel, R.T. Kloos, T.W. Prior, M. V Knopp, J. Liang, S. Sammet, N.C. Hall,

1342

P.E.J. Wakely, V. V Vasko, M. Saji, P.J. Snyder, L. Wei, D. Arbogast, M. Collamore, J.J.

1343

Wright, J.F. Moley, M.A. Villalona-Calero, M.H. Shah, Phase II clinical trial of sorafenib in

1344

metastatic

1345

doi:10.1200/JCO.2009.25.0068.

medullary

thyroid

cancer.,

J.

Clin.

Oncol.

28

(2010)

2323–2330.

1346

[250] M. Ahmed, Y. Barbachano, A. Riddell, J. Hickey, K.L. Newbold, A. Viros, K.J. Harrington, R.

1347

Marais, C.M. Nutting, Analysis of the efficacy and toxicity of sorafenib in thyroid cancer: a

1348

phase II study in a UK based population., Eur. J. Endocrinol. 165 (2011) 315–322.

1349

doi:10.1530/EJE-11-0129.

1350

[251] P. Savvides, G. Nagaiah, P. Lavertu, P. Fu, J.J. Wright, R. Chapman, J. Wasman, A. Dowlati,

1351

S.C. Remick, Phase II trial of sorafenib in patients with advanced anaplastic carcinoma of the

1352

thyroid., Thyroid. 23 (2013) 600–604. doi:10.1089/thy.2012.0103.

1353

[252] https://www.thyroid.org/fda-approves-sorafenib-for-thyroid-carcinoma/.

1354

[253] M. Gallo, F. Michelon, A. Castiglione, F. Felicetti, A.A. Viansone, A. Nervo, C. Zichi, G.

1355

Ciccone, A. Piovesan, E. Arvat, Sorafenib treatment of radioiodine-refractory advanced

1356

thyroid cancer in daily clinical practice: a cohort study from a single center., Endocrine. 49

1357

(2015) 726–734. doi:10.1007/s12020-014-0481-x.

1358

[254] E.J. Sherman, L.A. Dunn, A.L. Ho, S.S. Baxi, R.A. Ghossein, M.G. Fury, S. Haque, C.S.

1359

Sima, G. Cullen, J.A. Fagin, D.G. Pfister, Phase 2 study evaluating the combination of

1360

sorafenib and temsirolimus in the treatment of radioactive iodine-refractory thyroid cancer.,

1361

Cancer. 123 (2017) 4114–4121. doi:10.1002/cncr.30861.

55

1362

[255] M.S. Brose, J. Smit, C.C. Lin, F. Pitoia, M. Fellous, Y. De Sanctis, M. Schlumberger, M. Tori,

1363

I. Sugitani, Timing of multikinase inhibitor initiation in differentiated thyroid cancer, Endocr.

1364

Relat. Cancer. 24 (2017) 237–242. doi:10.1530/ERC-17-0016.

1365

[256] S.-F. Lin, J.-D. Lin, C. Hsueh, T.-C. Chou, R.J. Wong, Potent effects of roniciclib alone and

1366

with sorafenib against well-differentiated thyroid cancer., Endocr. Relat. Cancer. 25 (2018)

1367

853–864. doi:10.1530/ERC-18-0150.

1368

[257] Y. Ke, C. Xiang, Transferrin receptor-targeted HMSN for sorafenib delivery in refractory

1369

differentiated thyroid cancer therapy., Int. J. Nanomedicine. 13 (2018) 8339–8354.

1370

doi:10.2147/IJN.S187240.

1371

[258] M. Kim, T.H. Kim, D.Y. Shin, D.J. Lim, E.Y. Kim, W.B. Kim, J.H. Chung, Y.K. Shong, B.H.

1372

Kim, W.G. Kim, Tertiary Care Experience of Sorafenib in the Treatment of Progressive

1373

Radioiodine-Refractory Differentiated Thyroid Carcinoma: A Korean Multicenter Study.,

1374

Thyroid. 28 (2018) 340–348. doi:10.1089/thy.2017.0356.

1375

[259] J. Capdevila, I. Matos, F.M. Mancuso, C. Iglesias, P. Nuciforo, C. Zafon, H.G. Palmer, Z.

1376

Ogbah, L. Muinos, J. Hernando, G. Villacampa, C.E. Peña, J. Tabernero, M.S. Brose, M.

1377

Schlumberger, A. Vivancos, Identification of Expression Profiles Defining Distinct Prognostic

1378

Subsets of Radioactive-Iodine Refractory Differentiated Thyroid Cancer from The DECISION

1379

Trial.,

1380

doi:10.1158/1535-7163.MCT-19-0211.

Mol.

Cancer

Ther.

(2019)

pii:

molcanther.0211.2019.

1381

56

1382

Legends

1383

Figure 1. Establishment and testing of drugs in PDXMs. Tumor fragments were obtained from

1384

thyroid cancer patients. The clinical-histopathologic parameters and genomic profiling by the

1385

next-generation sequencing of these specimens were analyzed for drug candidates. Non-necrotic

1386

areas of these tumors were incubated as organoids and implanted subcutaneously into

1387

immunodeficient mice. Genome and pathology of thyroid tumor cells from patients remain stable in

1388

PDXMs and patient-derived organoid. After tumor establishment and growth, biological assays of

1389

drug efficacy and biomarker prediction for targeted therapies were conducted. If the drugs showed

1390

efficacy in PDXMs, they could be developed for patients. PDXM, patient-derived xenograft model.

1391 1392

Figure 2. Examples of constructed GEMs with a thyroid-specific promoter and Cre recombinase.

1393

The oncogene could be placed downstream of a stop signal gene that is inserted between two loxP

1394

sites. The stop cassette prevents oncogene expression, and thyroid-specific promoter activates Cre

1395

recombinase targets the stop cassette to allow oncogene gene expression only in the thyroid.

1396

Similarly, under control of a thyroid-specific promoter, the Cre recombinase also targets the stop

1397

cassette, resulting in knock-out of tumor suppressor genes in the thyroid. Consequently, the

1398

recombinated gene alterations facilitate the carcinogenesis in thyroid. KI, knock in; KO, knock out;

1399

PTC, papillary thyroid cancer; FTC, follicular thyroid cancer; ATC, anaplastic thyroid cancer. Red

1400

arrow-head, loxp position; Green arrow, gene expression.

1401 1402

Figure 3. Primary signaling pathways in thyroid cancer and molecular targeted agents tested in

1403

mouse models. Ligand-mediated activation of RTK results in activation of the PI3K/AKT/mTOR

1404

and RAS/RAF/MAPK/ERK pathways [38,87]. This leads to initiation of tumor dedifferentiation,

1405

migration, survival, proliferation, and angiogenesis. Moreover, molecular inhibitors and their targets

1406

of action are shown. PI3K, phosphatidylinositol 3-kinase; PIP2, phosphatidylinositol 4,5-biphosphate; 57

1407

PIP3, phosphatidylinositol 3,4,5-triphosphate; PTEN, phosphatase and tensin homologue; PDK-1,

1408

3-Phosphoinositide Dependent Protein Kinase 1; AKT, V-Akt Murine Thymoma Viral Oncogene

1409

Homolog 1; STAT3, Signal Transducer and Activator of Transcription 3; MSK, mitogen- and

1410

stress-activated protein kinase; mTOR, mammalian target of rapamycin; S6K, Ribosomal Protein S6

1411

Kinase I; CDK, Cyclin Dependent Kinase; RAS, rat sarcoma viral oncogene homologue; NF1,

1412

neurofribomin 1; ARAF, V-Raf Murine Sarcoma 3611 Viral Oncogene Homolog 1; BRAF, V-Raf

1413

Murine Sarcoma Viral Oncogene Homolog B; CRAF, V-Raf-1 Murine Leukemia Viral Oncogene

1414

Homolog 1; MEK, mitogen-activated protein kinase; ERK, extracellular signal-regulated kinase;

1415

Vinexin, Sorbin and SH3 Domain Containing 3; ETS1, ETS Proto-Oncogene 1; MMP2, Matrix

1416

Metallopeptidase 2.

1417

1418

Figure 4. An example of mouse models bridging bench and bedside via translational research of

1419

thyroid cancer treatment. During the process of Sorafenib translation, the drug was initially tested in

1420

mouse model trials, and the preclinical results were well interpreted on basic aspect and in the field

1421

of potential clinical application. The interpretation on pharmacology, pharmacokinetics, and

1422

pharmacodynamics of Sorafenib built the footstone for clinical trials and the probability for potential

1423

translation. After phase II and III trials, the efficacy and safety of Sorafenib was confirmed and then

1424

the drug was approved for clinical application. In the stage of post-market, amelioration around

1425

Sorafenib have been still simultaneously researching in thyroid cancer mouse models and real-world

1426

clinical settings. As the results, drug resistant mechanisms and drug combinations were obtained,

1427

inspiring the future translational studies. DTC, differentiated thyroid cancer; ATC, anaplastic thyroid

1428

cancer; RRDTC, radioiodine refractory thyroid cancer. CDXMs, cell line-derived xenograft models;

1429

PDXM, patient-derived xenograft model.

58

Table 1. Outcomes of thyroid cancer mouse model-based preclinical studies on agents with completed clinical trials. Drug Targets Pre-clinical study Clinical trial Ref. Tumor Mice Survival Tumor Body Arm, phase Tumor Type Burden* Weight (Reference) Type Cabozantinib VEGFR, [42] MTC CDXM NR ↓50 – 80% Stable RCT, III [88] MTC PDGFR, RET PDXM NR ↓55 – 60% NR Everolimus

mTOR

[65,89,90]

DTC

GEM

Gefitinib Imatinib

EGFR [92,93] ABL, c-kit, [94,95] PDGF-R VEGFR, [27,97,98] FGFR, c-Kit, RET, PDGFR VEGFR, RET, [100] PDGFR, c-Kit VEGFR, [102,103] PDGFR, c-Kit

ATC ATC ATC

Selumetinib

MEK1

Sorafenib

VEGFR, [30,108–115] PDGFR, c-Kit, RET, RAF VEGFR, [103,117–121] PDGFR, c-Kit, RET, FLT3 VEGFR, [30,32,47,124–1 EGFR, RET 30]

Lenvatinib

Motesanib Pazopanib

Sunitinib

Vandetanib

Vemurafenib Pan-Raf

Depsipeptide HDAC1, 2

[59]

↑ 28%

Enrolled Median Median CR,% PR,% n OS, mo PFS, mo 330 26.6 11.2 ORR: 28%

SD,%

PD,%

Main adverse events (Grade ≥ 3)

NR

NR

Diarrhea (21.5%), HFSR (12.6%), hypocalcemia (10.7%), decreased weight (9.8%), fatigue (9.8%), hypertension (8.9%), asthenia (6.5%) Mucositis (15%), diarrhea (10%), neutropenia (5%), hypertriglyceridemia (5%) Anorexia (11%), diarrhea (4%), rash (7%) Lymphopenia (45.5%), edema (25%), anemia (18.2%), fatigue (12.5%), hyponatremia (12.5%) Hypertension (10-41.8%), diarrhea (8-10%), fatigue or asthenia (9.2%), decreased weight (9.6-12%), proteinuria (10%) Hypertension (25%), diarrhea (13%), weight loss (5%), abdominal pain (5%) Hypertension (13%), pharyngo-laryngeal pain (13%), raised ALT concentration (10.8%), lower-gastrointestinal haemorrhage (8.1%) Rash (18%), fatigue (8%), diarrhea (5%), peripheral edema (5%) HFSR (16-44.1%), weight loss (8.4%-11.5%), hypertension (9.7-16.1%), rash (16.1%)

↓50 – 75% Stable

Single, II [91] RRDTC 28

NR

11.8

0

10

66

18

CDXM NR CDXM NR

↓30–>90% NR ↓12 – 25% Stable

Single, II [81] RRDTC 27 Single, II [96] ATC 11

27.4 NR

3.9 NR

0 0

12 25

NR 50

38 12.5

CDXM NR PDXM NR

↓60–>90% Stable ↓50 – 60% ↓ 5–10%

RCT, III [99]

NE

18.3

1.5

63.2

23

6.9

MTC CDXM ↑ 33%

↓30 – 50% Stable

Single, II [101] RRDTC 93

NE

9.2

0

14

67

8

DTC ATC

GEM ↑ 21% CDXM NR

↓ 20% ↓ 5% ↓25 – 50% Stable

ATC

CDXM NR

↓30 – 70% NR

Single, II [104] Single, II [105] Single, II [106] Single, II [107]

NE 3.7 19.9 NR

11.7 2.1 9.4 7.4

0 NE 0 0

49 NE 14.3 3

NR NE 57.1 54

NR NE 17.1 28

ATC

CDXM ↑ 18% GEM NR PDXM NR

↓20 – 30% Stable ↓ 66% NR ↓50 – 60% ↓ 5–10%

RCT, III [116] RRDTC 417

NE

10.8

NR

12.2

41.8

NR

↓ 10% ↓ 10% ↓10 – 50% Stable

Single, II [122] RRDTC 35 Single, II [123] RRDTC 23

NE 56.5

NR 8

1 0

28 26

46 57

17 4

Neutropenia (34%), leukopenia (13-31%), diarrhea (17%), HFSR (17%), hypertension (13%), fatigue (11%)

↓50 – 80% ↓ 5% ↓ 5-30% Stable ↓50 – >80% ↓ 17% ↓30 – 50% NR No effect NR ↓50% NR ↓80 – 90% NR ↓25 – 30% NR

RCT, II [131] RRDTC 145 RCT, III [132] MTC 331

NR NR

11.1 19.3

NR 0

1 45

54 42

44 13

Diarrhea (10%), asthenia (7%), fatigue (5%).

DTC GEM ↑ 33% MTC CDXM NR

DTC ATC MTC [15,25,133–138] PTC ATC ATC PTC [139–141] MTC

PDXM ↑ 15% CDXM NR CDXM NR GEMs NR GEMs ↑ 75% CDXM NR PDXM NR GEM NR

RRDTC 382

RRDTC ATC MTC RRDTC

39 15 35 39

Single, II [102] RRDTC 51 (C1: NE 26, C2: (C1) 25) NE (C2) Single, II [142] RRDTC 20 33.2

15.1 (C1) 0 (C1) 38.5 (C1) 57.7 (C1) 3.8 (C1) Weight loss (5%), abdominal pain (5%) 8.9 (C2) 0 (C2) 27.3 (C2) 63.6 (C2) 4.5 (C2)

NR

0

0

65

35

Thrombosis/thrombus/embolism (5%), fatigue (5%), dysphagia (5%), dyspnea (5%), lymphopenia (5%), prolonged QTc interval (5%) *Tumor burden was evaluated according to the tumor weight/volume/activity data at day 10 and/or day 20 post drug delivery; NR, not reported; NE, not estimable; CI, confidence interval; CR, complete response; OS, overall survival; PD, progressive disease; PFS, progression-free survival; PR, partial response; DTC, differentiated thyroid cancer; PTC, papillary thyroid cancer; ATC, anaplastic thyroid cancer; MTC, medullary thyroid cancer; RRDTC, radioiodine refractory thyroid cancer; CDXM, cell line-derived xenograft model; PDXM, patient-derived xenograft model; GEM, genetically engineered model; RCT, randomized controlled trial; RECIST, response evaluation criteria in solid tumors; SD, stable disease; FGFR, fibroblast growth factor receptor; FLT3, Fms-like tyrosine kinase 3; MEK1, MAPK/ERK kinase 1; mTOR, mammalian target of rapamycin; PDGFR, platelet-derived growth factor receptor; RAF, rapidly accelerating fibrosarcoma; RET, glial cell line-derived neurotrophic factor receptor; VEGFR, vascular endothelial growth factor receptor; c-kit, stem cell factor receptor; EGFR, epidermal growth factor receptor; HFSR, hand-foot-skin reaction; HDAC, histone deacetylase. C1: Cohort 1, patients never received multikinase inhibitors; C2: Cohort 2 patients previously received multikinase inhibitors.

Table 2. Outcomes of thyroid cancer mouse model-based preclinical studies on agents with ongoing clinical trials. Drug

Action

Pre-clinical study Ref.

Tumor

Mice

Survival

Apatinib

Nintedanib

VEGFR2

VEGFR2

RTK

[143]

[144]

[145]

Phase

Tumor Type

Status

Body *

Type Anlotinib

Tumor

Clinical Trial No. Burden

Weight

ATC

CDXM

NR

↓ 60 – >90%

Stable

NCT02586337

II/ III

DTC

Recruiting

MTC

CDXM

NR

↓ 50 – 60%

Stable

NCT02586350

II/ III

MTC

Recruiting

ATC

CDXM

NR

↓ 10 – 60%

NR

NCT03199677

II

TC

Recruiting

NCT03167385

II

DTC

Recruiting

NCT03048877

III

DTC

Recruiting

NCT03300765

II

TC

Recruiting

NCT01788982

II

MTC/DTC

Active,

MTC

GEM

NR

↓ 50 – 60%

NR

not

recruiting Ponatinib

RTK

[146]

MTC

CDXM

NR

↓ > 90%

↓ < 10%

NCT03838692

II

MTC

Not recruiting

Regorafenib

RTK

[147]

ATC

GEM

NR

↓ 65%

NR

NCT02657551

II

TC

Recruiting

Tipifarnib

FTase

[46]

DTC

GEM

↑ 200%

↓ 50%

↓ < 10%

NCT02383927

II

TC

Recruiting

*Tumor burden was evaluated according to the tumor weight/volume/activity data on day 10 and/or day 20 post drug delivery; NR, not reported; VEGFR2, vascular endothelial growth factor receptor 2; RTK, receptor tyrosine kinase; Ftase, farnesyltransferase; DTC, differentiated thyroid cancer; PTC, papillary thyroid cancer; ATC, anaplastic thyroid cancer; MTC, medullary thyroid cancer; TC, thyroid cancer; CDXM, cell line-derived xenograft model; GEM, genetically engineered model.

yet

Table 3. Thyroid cancer mouse model-based preclinical studies on single-drug therapeutics with potential translation into clinical trials. No. Drug Target Tumor Mice Survival Tumor Body Weight No. Drug Target Type Burden* Chemotherapy NF-κB signaling pathway inhibitors 1 Docetaxel [94,148] Microtubule assembly ATC CDXM NR ↓ 30 – 50% Stable 1 DHMEQ [149,150] NF-κB 2 Cisplatin [121] DNA crosslinking ATC CDXM NR ↓ 20 – 50% Stable 2 Triptolide [151,152] NF-κB 3 TSH-SiO2-Doxorubicin [153] DNA topoisomerase II FTC CDXM NR ↓ 50 – 75% Stable JAK/STAT signaling pathway inhibitors 4 5FU [154] DNA synthesis MTC CDXM NR ↓ 20 – 40% NR 1 Cucurbitacin I [155] STAT3 RTK signaling pathway inhibitors 2 Metformin [156–158] STAT3

Mice

Survival Tumor Burden*

ATC ATC

CDXM NR CDXM NR

↓70–80% ↓ 50%

Stable NR

ATC FTC ATC FTC PTC

CDXM GEM CDXM GEM CDXM

↓5– 30% No effect ↓25-50% ↓5– 10% ↓ > 80%

NR Stable NR NR NR

ATC PTC

CDXM NR CDXM NR PDXM NR

↓ 5-30% ↓50–60% NR

Stable Stable NR

FTC PTC ATC

GEM ↑ 40% CDXM NR CDXM NR

↓ 30% ↓30–40% ↓20–30%

Stable NR NR

↑ 25-35% NE NR ↑ 20% NR

Body Weight

1 2 3 4 5

LIF [127,159] AEE788 [48,49,161] CUDC-101 [163,164] PD173074 [165,166] Tetraiodothyroacetic Acid [168]

RET, E2F1 EGFR/VEGFR EGFR and HDAC FGFR VEGF

MTC ATC/FTC ATC DTC/ATC ATC

CDXM CDXM CDXM CDXM CDXM

↓ 50 – 70% ↓ 50 – 80% ↓ 50 – 60% ↓ 50% ↓ 50 – 70%

↓ 9% Stable Stable Stable NR

3 S3I-201 [160] STAT3 4 AZD1480 [162] JAK1/2 Apoptosis signaling pathway inhibitors 1 Reversine [167] Apoptosis pathway 2 Obatoclax [169–171] Bcl-2

6 8 9

CLM3 [172,173] Withaferin A [174,175] Pulsatilla koreana extract [176]

Angiogenesis RET Angiogenesis

ATC MTC ATC

CDXM NR ↓ 40 – 50% CDXM ↑ > 30% ↓ 50 – 60% CDXM NR ↓ 50 – 60%

Stable ↑ 10% Stable

SRC signaling pathway inhibitors 1 SKI-606 [70] SRC 2 Dasatinib [69,71,72] SRC

c-MET

ATC

CDXM NR

↓ 5 – 20%

NR

BRAF MEK RAF MEK MEK MEK

ATC ATC PTC ATC ATC PTC

↑ 40% NR NR ↑ 80% NR ↑ 50% NR NR NR NR

↓ 50 – 70% ↓ 50 – 70% ↓ 50 – 85% ↓ 95% ↓ 25% ↓ 60 – 90% ↓ 80 – 90% ↓ 50% ↓ 50% ↓ 10 – 30%

↑ 50% NR Stable NR Stable NR NR NR Stable NR

Proteosome PPARγ COX-2 P2R Carcinoembryonic antigen Aurora kinase PLK1

ATC DTC MTC PTC MTC ATC ATC

CDXM GEM CDXM CDXM CDXM CDXM CDXM

↑ 25% NR NR NR NR NR NR

↓20–30% ↓50–>90% ↓ 50% ↓50–80% ↓50–80% ↓50 –80% ↓60–70%

Stable NR NR Stable ↓ < 8% Stable ↓ 7%

ATC ATC

CDXM CDXM CDXM CDXM CDXM CDXM PDXM GEM CDXM CDXM

Other drugs 1 Carfilzomib [163,179] 2 Rosiglitazone [190,191] 3 Celecoxib [193,194] 4 Clodronate [195,196] 5 I-131-F6 [197] 6 MLN8054 [30,198,199] 7 GSK461364A [201]

PTC ATC FTC ATC FTC FTC PTC PTC FTC ATC ATC

CDXM CDXM CDXM CDXM CDXM CDXM CDXM CDXM CDXM CDXM CDXM

NR ↑ 16% NR NR NR NR NR NR NR NR NR

↓ 30 – 50% ↓ 50% ↓ 50 – 70% ↓ 25 – 60% ↓ 30 – 40% ↓ 60% ↓ 20% ↓ 50% ↓ 80 – 85% ↓ 30% ↓ 30 – 70%

NR Stable Stable Stable Stable NR NR NR NR NR NR

8 9 10 11

Oct-CL [203] Thiostrepton [205] 17-AAG [206] PLX6134 [208]

p70S6K and TOPO 1 FoxM1 HIF-1a and HSP90 c-FMS/CSF1-R kinase

MTC PTC PTC PTC

CDXM CDXM CDXM GEM

↑ 50% NR NR NR

↓ > 70% ↓50–75% ↓80% ↓15%

Stable NR NR NR

12 13 14 15

Tolfenamic acid [210] Reparixin [148] Dinaciclib [214] Quinacrine [110]

NAG-1 CXCR1 and CXCR2 CDK Phospholipase A2

ATC ATC ATC ATC

CDXM CDXM CDXM CDXM

NR NR NR ↑ 45%

↓50-60% ↓60–70% ↓30–50% NE

NR Stable ↓ 7-8.1% NR

16 cD-tboc [218] 17 Ganetespib [221]

Estrogen pathway HSP90

18 YM155 [223,224] 19 AG-IR820 [225] 20 Lexatumumab [182]

Survivin and claspin Glucose metabolism TRAIL-R2

ATC ATC MTC ATC MTC PTC

CDXM CDXM CDXM CDXM CDXM CDXM

NR NR NR ↑ 119.0% NR NR

↓50-60% ↓ 60% ↓50–60% ↓ > 90% ↓60–70% ↓ 70%

Stable ↓ 4.5% ↓ 9.5% Stable Stable Stable

10 Crizotinib [177,178] MAPK signaling pathway inhibitors 1 PLX4720 [180–189] 2 Trametinib [192] 3 LY3009120 [169] 4 PA-L1/LF [115] 5 SL327 [117] 6 PD0325901 [28,181,200]

7 Colchicine [202] MEK1/2 and JNK 8 Salirasib [204] RAS mTOR signaling pathway inhibitors 1 Torin2 [65,67,207] mTOR 2 3 4 5

CUDC-907 [164,209] PP121 [211] GDC-0941 [212,213] LY294002 [182,215,216]

PI3K and HDAC PI3K/Akt PI3K, mTOR and HIF-1α PI3K

7 8

IC87114 [217] Temsirolimus [219,220]

PI3K mTOR

9 AZD8055 [222] mTOR HDAC signaling pathway inhibitors 1 HNHA [226,227] HDAC

NR NR NR NR NR

Tumor Type

PTC CDXM ↑ 175% ↓ 50% Stable ATC CDXM ↑ 186% ↓ 50% Stable 2 PXD101 [228] HDAC ATC CDXM NR ↓ 30 – 50% Stable 21 PF-271 [229] FAK PTC CDXM NR ↓ 50% NR 3 SAHA [230] HDAC FTC GEM NR ↑ 61.8% NR 22 JQ1 [157,231,232] BET FTC GEM ↑ 50% ↓ 60% Stable PTC CDXM ↑ 50% ↓ 30% Stable ATC CDXM ↑ 115% ↓ 30% Stable 4 Panobinostat [233] HDAC ATC CDXM NR ↓ 50 – 60% ↓5–13% *Tumor burden was evaluated according to the tumor weight/volume/activity data on day 10 and/or day 20 post drug delivery; NR, not reported; NE, not estimable; PTC, papillary thyroid cancer; ATC, anaplastic thyroid cancer; MTC, medullary thyroid cancer; CDXM, cell line-derived xenograft model; PDXM, patient-derived xenograft model; GEM, genetically engineered model; SD, stable disease; MEK, MAPK/ERK kinase; mTOR, mammalian target of rapamycin; RAF, rapidly accelerating fibrosarcoma; RET, glial cell line-derived neurotrophic factor receptor; VEGFR, vascular endothelial growth factor receptor; c-kit, stem cell factor receptor; EGFR, epidermal growth factor receptor; HDAC, histone deacetylase; NF-κB, nuclear factor kappa B; STAT3, Signal Transducer And Activator Of Transcription 3; JAK1/2, Janus Kinase 1/2; Bcl-2, B-Cell CLL/Lymphoma 2; SRC, V-Src Avian Sarcoma (Schmidt-Ruppin A-2) Viral Oncogene Homolog; PPARγ, Peroxisome proliferator-activated receptor gamma; COX-2, cyclooxygenase-2; P2R, P2 receptor; PLK1, Polo Like Kinase 1; p70S6K, 70 KDa Ribosomal Protein S6 Kinase 1; TOPO 1, Topoisomerase I; FoxM1, Forkhead Box M1; HIF-1a, Hypoxia Inducible Factor 1 Subunit Alpha; c-FMS/CSF1-R, Colony Stimulating Factor 1 Receptor; NAG-1, Non-Steroidal Anti-Inflammatory Drug-Activated Gene-1; CXCR1, C-X-C Motif Chemokine Receptor 1; CXCR2, C-X-C Motif Chemokine Receptor 2; CDK, Cyclin Dependent Kinase; HSP90, Heat Shock Protein 90; TRAIL-R2, TNF-Related Apoptosis-Inducing Ligand Receptor 2; FAK, Focal Adhesion Kinase; BET, bromodomain and extra terminal; SAHA, Suberoylanilide Hydroxamic Acid; DHMEQ, Dehydroxymethylepoxyquinomicin.

Table 4. Thyroid cancer mouse model-based preclinical studies on combined therapeutics with potential translation into clinical trials. No Drug Target Tumor Type Mice Survival Tumor Burden* Body Weight . 1 Imatinib and docetaxel [94] RTK, microtubule assembly ATC CDXM NR ↓ 60-70% Stable 2 MV-NIS and I-131 [234] NIS ATC CDXM NR ↓ 50-60% NR 3 Bay 11-7082 and I-131 [235] NF-κB and isotope therapy PTC CDXM NR ↓ 40-50% NR 4 Dasatinib and Trametinib [236] SRC and MEK ATC CDXM NR ↓ 50-70% NR 5 TRAIL and Bortezomib [237] ROS PTC CDXM NR ↓ 30-50% NR 6 TRAIL and Valproic Acid [138] ROS, HDAC PTC CDXM ↑ 45% ↓ > 90% NR 7 Vemurafenib and Bortezomib [137] BRAF and proteasome PTC CDXM NR ↓ 70% NR 8 Ribavirin and Paclitaxel [238] eIF4E-β-catenin axis ATC CDXM NR ↓ 70% Stable 9 Sorafenib and quinacrine [110] RTK and phospholipase A2 ATC CDXM ↑ 243.2% NE ↓ 15% 10 Embelin and LY294002 [216] PI3K, XIAP PTC CDXM NR ↓ 30-60% NR 11 SL327 and Sunitinib [117] MEK, RTK ATC CDXM NR ↓ 50% Stable 12 2ME2 and Cabozantinib [29] HIF, VEGFR MTC CDXM NR ↓ 60-80% Stable PDXM NR ↓ 60-80% Stable 13 PLX4032 and PHA665752 [80] c-MET ATC CDXM NR ↓ 80% Stable 14 RDEA119 and Temsirolimus [229] MEK and mTOR FTC CDXM NR ↓ 90% NR 15 Sorafenib and CQ [204] RTK and autophagy ATC CDXM NR ↓ 50-80% NR FTC CDXM NR ↓ 60-80% NR 16 PD-325901 and GDC-0941 [212] MEK and Pi3K PTC GEM NR ↓ 30-50% NR 17 10F.9G2 and PLX4720 [239] PDL-1 and BRAF ATC CDXM NR ↓ 80% NR 18 AZD8055 and AZD6244 [222] mTOR MEK ATC CDXM NR ↓ 60-90% NR 19 dl922-947 and Olaparib [240] PARP/pRb ATC CDXM NR ↓ 40-60% Stable 20 HCQ and Vemurafenib [133] Autophagy, BRAF ATC CDXM NR ↓ 60% Stable 21 Neoadjuvant therapy with PLX4720 [241] BRAF ATC CDXM ↑ > 40% ↓ > 90% ↓ 5-30% *Tumor burden was evaluated according to the tumor weight/volume/activity data on day 10 and/or day 20 post drug delivery; MV-NIS, measles virus encoding the human thyroidal sodium iodide symporter; TRAIL, tumor necrosis factor–related apoptosis-inducing ligand; 2ME2, 2-methoxyestradiol; CQ, chloroquine; HCQ, hydroxychloroquine; RTK, receptor tyrosine kinase; NIS, Na+/I− Symporter; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; SRC, Rous sarcoma oncogene; MEK, MAP kinase-ERK kinase; ROS, transcriptional regulator; HDAC, histone deacetylase; BRAF, v-Raf murine sarcoma viral oncogene homolog B; mTOR, mammalian target of rapamycin; PI3K, Phosphoinositide 3-kinases; XIAP, X-linked inhibitor of apoptosis protein; HIF, hypoxia inducible factor; VEGFR, vascular endothelial growth factor receptor; EGFR, epidermal growth factor receptor, PDL-1, programmed death-ligand 1; PRPP, poly (ADP-ribose) polymerase; ATC, anaplastic thyroid cancer; PTC, papillary thyroid cancer; MTC, medullary thyroid cancer; FTC, follicular thyroid cancer; CDXM, cell line-derived xenograft model; GEM, genetically engineered model; NR, not reported; NE, not estimable.

Table 5. List of abbreviations. Abbreviation

Full Name

ABL

Abelson Tyrosine-Protein Kinase 1

AKT

Rac-Alpha Serine/Threonine-Protein Kinase

ATC

Anaplastic Thyroid Cancer

AXL

Tyrosine-Protein Kinase Receptor UFO

BRAF

V-Raf Murine Sarcoma Viral Oncogene Homolog B

c-kit

Stem Cell Factor Receptor

CCK

Cholecystokinin

CCND1

Cyclin D1

CDK

Cyclin Dependent Kinase

CDXM

Cell Line-Derived Xenograft Model

CI

Confidence Interval

C-MET

Hepatocyte Growth Factor Receptor

CR

Complete Response

Cre

Cyclization Recombination Enzyme

loxP

Locus of X-Over P1 Bacteriophage; The Recognition Sites for Cre Recombinase

DDR

Discoidin Domain Receptor Tyrosine Kinase

DNA

Deoxyribonucleic Acid

DTC

Differentiated Thyroid Cancer

EGF

Epidermal Growth Factor

EGFR

Epidermal Growth Factor Receptor

Eph

Ephrin

ERK

Mitogen-Activated Protein Kinase 1

FAK

Protein Tyrosine Kinase 2

FGF

Fibroblast Growth Factor

FGFR

Fibroblast Growth Factor Receptor

FLT3

Fms-Like Tyrosine Kinase 3

FOXO3

Forkhead Box O3

GEM

Genetically Engineered Model

HDAC

Histone Deacetylase

HGF

Hepatocyte Growth Factor

HNHA

High Mobility Group Box 1

HSP90

Heat Shock Protein 90 Alpha Family Class A Member 1

IL-2Rγ

Interleukin 2 Receptor Subunit Gamma

JAK

Janus Kinase

KIT

Tyrosine-Protein Kinase Kit

LMR

Lemur Tyrosine Kinase

LTK

Leukocyte Receptor Tyrosine Kinase

MEK

Mitogen-Activated Protein Kinase Kinase 1

MEN2

Multiple Endocrine Neoplasia 2

MMP

Matrix Metallopeptidase

mRNA

Messenger RNA

MST1

Macrophage Stimulating 1

MTC

Medullary Thyroid Cancer

mTOR

Mechanistic Target of Rapamycin Kinase

MuSK

Muscle Associated Receptor Tyrosine Kinase

NE

Not Estimable

NGF

Nerve Growth Factor

NIS

Sodium/Iodide Symporter

NOD

Non Obese Diabetic Mouse Model

NR

Not Reported

ORR

Overall Response Rate

OS

Overall Survival

PAI-1

Plasminogen Activator Inhibitor-1

PD

Progressive Disease

PD1

Programmed Cell Death 1

PDGF

Platelet-Derived Growth Factor

PDGFR

Platelet Derived Growth Factor Receptor

PDGFRα

Platelet Derived Growth Factor Receptor Alpha

PDL1

Programmed Cell Death 1 Ligand 1

PDTC

Poorly Differentiated Thyroid Cancer

PDXM

Patient-Derived Xenograft Model

PFS

Progression-Free Survival

pH

Potential of Hydrogen

PI3K

Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Delta

PIK3CA

Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha

PIP2

Phosphatidylinositol 4,5-Biphosphate

PIP3

Phosphatidylinositol 3,4,5-Trisphosphate

PR

Partial Response

PTC

Papillary Thyroid Carcinoma

PTC1

Protein Patched Homolog 1

PTC3

Protein Patched Homolog 3

Pten

Phosphatase and Tensin Homolog

QTc

Corrected QT Interval

RAF

Murine Leukemia Viral Oncogene Homolog

RAS

Rat Sarcoma Viral Oncogene Homolog

RASSF1

Ras Association Domain Family Member 1

RCT

Randomized Controlled Trial

RECIST

Response Evaluation Criteria In Solid Tumors

RET

Glial Cell Line-Derived Neurotrophic Factor Receptor;

RNA

Ribonucleic Acid

ROR

Rar Related Orphan Receptor

ROS

Transmembrane Tyrosine-Specific Protein Kinase

RRDTC

Radioiodine Refractory Thyroid Cancer

RTK

Receptor Tyrosine Kinase

RYK

Receptor Like Tyrosine Kinase

S6K1

Ribosomal Protein S6 Kinase B1

scid

The Severe Combined Immunodeficiency

SD

Stable Disease

SEER

Surveillance and Epidemiology and End Results

SFK

Src Family Kinases

sgRNA

Single Guide RNA

SRC

V-Src Avian Sarcoma (Schmidt-Ruppin A-2) Viral Oncogene Homolog

STAT

Signal Transducers and Activators of Transcription

TERT

Telomerase Reverse Transcriptase

TIE

Tyrosine Kinase With Immunoglobulin Like and EGF Like Domains

TTF1

Thyroid Transcription Factor-1

TYK2

Tyrosine Kinase

uPa

Urokinase Plasminogen Activator

VEGF

Vascular Endothelial Growth Factor

VEGFR

Vascular Endothelial Growth Factor Receptor

Highlights 1. Traditional cell line-derived xenograft models and genetically engineered models have been modified, and innovative patient-derived xenograft models (PDXMs), including humanized PDXMs, have been established to accelerate the translation of anti-thyroid cancer therapeutics.

2. Experiments in thyroid cancer mouse models have dynamically revealed the ever-changing thyroid cancer

pathogenesis-related

signaling

pathways,

including

the

RAS/RAF/MEK/ERK,

PI3K/AKT/mTOR, SRC, and JAK-STAT pathways.

3. Novel inhibitors of VEGFR, MEK, mTOR, SRC, and STAT3 have been discovered and tested in multiple thyroid cancer mouse models, showing the potential for “bench-to-bedside” translation.

4. The future establishment of thyroid cancer mouse models may lay the foundation for comprehensive investigations in the field of thyroid cancer research through CRISPR/Cas-mediated target screening, humanized model-based drug testing, and multi-omics-associated mechanism exploring.

Conflict of Interest Statement The authors have no conflicts of interest to declare.