Journal Pre-proof Mouse Models of Thyroid Cancer: Bridging Pathogenesis and Novel Therapeutics Yuchen Jin, Min Liu, Ri Sa, Hao Fu, Lin Cheng, Libo Chen PII:
S0304-3835(19)30489-6
DOI:
https://doi.org/10.1016/j.canlet.2019.09.017
Reference:
CAN 114507
To appear in:
Cancer Letters
Received Date: 22 July 2019 Revised Date:
25 September 2019
Accepted Date: 30 September 2019
Please cite this article as: Y. Jin, M. Liu, R. Sa, H. Fu, L. Cheng, L. Chen, Mouse Models of Thyroid Cancer: Bridging Pathogenesis and Novel Therapeutics, Cancer Letters, https://doi.org/10.1016/ j.canlet.2019.09.017. This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2019 Elsevier B.V. All rights reserved.
Abstract Due to a global increase in the incidence of thyroid cancer, numerous novel mouse models were established to reveal thyroid cancer pathogenesis and test promising therapeutic strategies, necessitating a comprehensive review of translational medicine that covers (i) the role of mouse models in the research of thyroid cancer pathogenesis, and (ii) preclinical testing of potential anti-thyroid cancer therapeutics. The present review article aims to: (i) describe the current approaches for mouse modeling of thyroid cancer, (ii) provide insight into the biology and genetics of thyroid cancers, and (iii) offer guidance on the use of mouse models for testing potential therapeutics in preclinical settings. Based on research with mouse models of thyroid cancer pathogenesis involving the RTK, RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, SRC, and JAK-STAT signaling pathways, inhibitors of VEGFR, MEK, mTOR, SRC, and STAT3 have been developed as anti-thyroid cancer drugs for “bench-to-bedside” translation. In the future, mouse models of thyroid cancer will be designed to be ‘‘humanized” and “patient-like,” offering opportunities to: (i) investigate the pathogenesis of thyroid cancer through target screening based on the CRISPR/Cas system, (ii) test drugs based on new mouse models, and (iii) explore the underlying mechanisms based on multi-omics.
1
1
Mouse Models of Thyroid Cancer: Bridging
2
Pathogenesis and Novel Therapeutics
3
Yuchen Jin1*, Min Liu1, 2*, Ri Sa1, Hao Fu1, Lin Cheng1, and Libo Chen1
4
1
5
Shanghai 200233, People’s Republic of China.
6
2
7
200032, China.
8
*
9
E-mail addresses for authors:
Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital,
Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai,
Yuchen Jin and Min Liu were the co-first authors.
10
[email protected] (Yuchen Jin)
11
[email protected] (Ri Sa)
12
[email protected] (Hao Fu)
13
[email protected] (Lin Cheng)
14
[email protected] (Min Liu)
15
[email protected] (Libo Chen)
16 17
Addresses for correspondence:
18
Professor Libo Chen, MD & PhD, Department of Nuclear Medicine, Shanghai Jiao Tong University
19
Affiliated Sixth People’s Hospital, Shanghai 200233, People’s Republic of China.
20
Telephone: +86-21-64369181
21
Fax: +86-21-64844183
22
E-mail:
[email protected]
23 1
24
Financial support and conflicts of interest: This study was sponsored by the National Natural
25
Science Foundation of China (Grant Nos. 81671711 and 81701731) and Shanghai Key Discipline of
26
Medical Imaging (Grant No. 2017ZZ02005). None of the authors has any conflict of interest to
27
declare.
28 29
Manuscript length: 4408 words (main text)
30
Abstract: 199 words
31
References: 259
32
Figures: 4
33
Tables: 5
34
Abstract
35
Due to a global increase in the incidence of thyroid cancer, numerous novel mouse models were established to
36
reveal thyroid cancer pathogenesis and test promising therapeutic strategies, necessitating a comprehensive review
37
of translational medicine that covers (i) the role of mouse models in the research of thyroid cancer pathogenesis,
38
and (ii) preclinical testing of potential anti-thyroid cancer therapeutics. The present review article aims to: (i)
39
describe the current approaches for mouse modeling of thyroid cancer, (ii) provide insight into the biology and
40
genetics of thyroid cancers, and (iii) offer guidance on the use of mouse models for testing potential therapeutics in
41
preclinical settings. Based on research with mouse models of thyroid cancer pathogenesis involving the RTK,
42
RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, SRC, and JAK-STAT signaling pathways, inhibitors of VEGFR, MEK,
43
mTOR, SRC, and STAT3 have been developed as anti-thyroid cancer drugs for “bench-to-bedside” translation. In
44
the future, mouse models of thyroid cancer will be designed to be ‘‘humanized” and “patient-like,” offering
45
opportunities to: (i) investigate the pathogenesis of thyroid cancer through target screening based on the
46
CRISPR/Cas system, (ii) test drugs based on new mouse models, and (iii) explore the underlying mechanisms
47
based on multi-omics.
48 49
Keywords: Thyroid cancer; Mouse model; Preclinical testing; Anti-cancer therapeutics 2
50
Introduction
51
Thyroid cancers are endocrine-related tumors, and their incidence is increasing globally [1].
52
Surveillance and Epidemiology and End Results (SEER) indicated that the numbers of new cases of
53
thyroid cancer and thyroid cancer-related deaths in the USA in 2019 were expected to reach 52,070
54
and 2,170, respectively [2]. In China, there were about 90,000 new cases and 6,800 deaths in 2015
55
[3]. By 2030, the incidence of thyroid cancer is expected to rank second among all tumors in women
56
and ninth in men [4]. The most prevalent type of thyroid cancer, differentiated thyroid cancer (DTC),
57
originates in follicular cells and accounts for 90,800 of the total number of cases [1]. Within 10 years
58
after an initial operation, local recurrence and distant metastases occur in about 20% and 10% of
59
DTC cases, respectively. Despite the availability of I-131 therapy, metastasectomy, and radiotherapy,
60
only one-third of patients are identified as having a “complete response”; the remaining patients are
61
refractory to I-131 and have a poor prognosis [5]. Medullary thyroid cancer (MTC) and anaplastic
62
thyroid cancer (ATC) are rare forms that account for less than 2% of all thyroid cancers. However,
63
50% to 80% of MTC patients have metastatic disease at the time of diagnosis, with a five-year
64
survival of <50%; ATC is an extremely aggressive disease with a median overall survival of <1 year
65
[6]. Therefore, preclinical translational studies on its pathogenesis and novel therapeutics using
66
animal models of thyroid cancer are urgently needed.
67
In the past decade, spontaneous and transplantation mouse models have been used to explore the
68
biomedical features of thyroid cancer. These models produce thyroid tumors that resemble their
69
counterparts in humans, both histologically and genetically [7]. Sequencing results for the mouse and
70
human genomes have revealed the extent of their cross-species genomic similarity, indicating the
71
value of mouse models in thyroid cancer research [8]. Currently, genetic manipulation techniques,
72
such as conditional genetic recombination and the introduction of severe immunodeficiency, have
73
allowed for the development of new mouse models of thyroid cancer to mimic complicated clinical
74
settings, tumor heterogeneity, and disease status in thyroid cancer patients. Interestingly, such models 3
75
provide insight into thyroid cancer pathogenesis and facilitate preclinical testing of anti-cancer drugs.
76
Furthermore, mouse models are indispensable for elucidating the interaction of anti-cancer drugs
77
with thyroid cancer cells, the screening of drugs before clinical trials, and the interpretation of drug
78
efficacy and safety results for thyroid cancer patients in clinical trials [9].
79
Given the increasing number of newly established thyroid cancer mouse models, recently
80
discovered anti-thyroid cancer mechanisms, and potential anti-cancer therapeutics, we performed a
81
review of the currently available literature, including established thyroid cancer mouse models,
82
thyroid cancer pathogenesis, and new drugs for thyroid cancer therapy. We also discuss perspectives
83
for further applications of thyroid cancer mouse models, highlighting techniques for such modeling,
84
and provide guidance for the translation of anti-cancer drugs as individualized thyroid cancer
85
therapeutics.
86
Modeling
87
Anti-cancer investigations can be performed by injecting cultured cell-derived xenografts into
88
immunodeficient mice. Considerable work on drug testing relies on the use of these cell line-derived
89
xenograft models (CDXMs). CDXMs, as well as patient-derived xenograft models (PDXMs) and
90
genetically engineered models (GEMs), provide a basis to investigate thyroid cancer pathogenesis
91
and the pharmacological mechanisms of anti-thyroid cancer therapeutics. These three models are
92
described below.
93
CDXMs
94
The establishment of CDXMs is based on xenotransplants. Tumor cells can be engrafted
95
subcutaneously, orthotopically, or metastatically. Such thyroid cancer models commonly have been
96
built with authenticated cell lines (e.g., 8505C, TPC-1, FTC133) to investigate thyroid cancer-related
97
phenomena, including invasion, metastasis, and angiogenesis.
98
Subcutaneous tumor models are established by inoculating Matrigel-suspended thyroid tumor cells
99
into immunodeficient mice [10]. Although the progression of tumors can be monitored easily, the 4
100
models fail to imitate the microenvironment, invasional type, and metastatic patterns of thyroid
101
cancer, and thus may not be adequate for the prediction of clinical anti-cancer responses [11]. In fact,
102
in immunodeficient mice, subcutaneously transplanted thyroid cancer cells rarely metastasize, failing
103
to mimic the thyroid tumor microenvironment [12,13]. In contrast, thyroid cancer models involving
104
orthotropic transplants simulate the microenvironment, morphology, growth, and metastatic patterns,
105
thereby reflecting the clinical spectrum of thyroid cancer. Orthotropic transplants are established by
106
injecting thyroid tumor cells into the thyroid glands of immunodeficient mice under surgery, with or
107
without ultrasound examination [14]. Mouse models of metastatic thyroid cancer, established in
108
severely immunodeficient mice, mimic the metastatic patterns of thyroid cancers in human patients.
109
After intravenous or intraventricular injection with as few as 30,000 thyroid cancer cells, metastases
110
develop rapidly in the lungs and bones of these mice [15].
111
Approaches involving cell lines result in rapid development of thyroid tumors, generating cohorts
112
for preclinical investigation. However, CDXMs suffer from several drawbacks. First, cell lines may
113
have incurred changes in their microenvironment, especially after many passages, which may alter
114
the DNA structure, RNA/protein expression, and the status of thyroid cancer differentiation, thereby
115
decreasing the reliability of the experiments [16]. Second, in CDXMs, the tumor microenvironment,
116
including stroma and the immune system, is lacking [17]. Finally, tumor cell implantation is
117
accomplished through a wound and therefore may not accurately mimic local invasion through the
118
thyroid capsule [18]. In this respect, in preclinical experiments, their resemblance to thyroid cancers
119
in patients may not be adequate. However, because their experimental repeatability is excellent,
120
CDXMs have been widely used.
121
PDXMs
122
PDXMs are established by transplanting tissue or cells from tumors of patients into immunodeficient
123
mice. The growth of patient-derived tumor fragments creates a stroma-based tumor environment,
124
which is of value for investigating thyroid cancer pathogenesis, evaluating drug efficacy and safety,
5
125
and exploring tumor heterogeneity; for thyroid cancer patients, they allow individualization of drug
126
management [16].
127
For
establishing
thyroid
cancer
PDXMs,
NOD/Shi-scid/IL-2Rγnull
and
128
NOD.Cg-PrkdcscidIl-2rgtm1Wjl/SzJ mice are more commonly used than nude mice [12].
129
Patient-derived thyroid tumor fragments are required for the establishment of PDXMs. After
130
resection of thyroid tumors is performed, tumors are divided into several fragments. Next, the
131
fragments are digested into single-cell suspensions and injected into immunodeficient mice [19]. In
132
these fragments, cell–cell interactions and some tissue architecture of the original thyroid cancer
133
remain; therefore, these models mimic the thyroid tumor microenvironment [20].
134
PDXMs allow the real-time investigation of novel anti-thyroid cancer drugs [21] (Figure 1). Up to
135
date, multiple tumor PDXMs have been established and tested in preclinical trials, yielding
136
promising results [22–24]; Yet none of thyroid cancer PDXM has been applied in clinical trials,
137
which should be regarded as a gateway, inspiring the translational studies. So far, only vemurafenib
138
[25], obatoclax [25], LOXO-292 [26], Sorafeinib [27], Lenvatinib [27], PLX51107 [28], PD0325901
139
[28], and cabozantinib [29] were tested in thyroid cancer PDXM-based preclinical trials. Although
140
no evidence showed therapeutic drugs effective in thyroid cancer PDXMs could be also effective in
141
corresponding patients; According to stably maintained pathology [30], and genome [31] of patient
142
tumors in thyroid cancer PDXMs, PDXM-based pre-clinical trials may still show meaningful
143
benefits for finding and testing potential anti-thyroid cancer drugs. Based on the individualized
144
molecular pathogenesis of thyroid cancer, the application of PDXM may precisely reflect biological
145
characteristics of the disease in patient individuals and firmly accelerate the clinical translation
146
process of anti-thyroid cancer therapeutics. One minor problem——despite PDXMs overcome the
147
lack of a tumor microenvironment in CDXMs, implantation is still accomplished through a wound.
148
GEMs
6
149
Differing from mouse models involving grafts, GEMs are established by genome alterations using
150
genetic engineering tools [32]. GEMs are increasingly utilized for thyroid cancer investigations, for
151
these models offer the possibility to generate gene mutations, amplifications, deletions, and
152
translocations, allowing researchers to turn on/off oncogenes and tumor suppressor genes [7].
153
To evade normal cellular control systems, GEMs target genes that can be altered by Cre-mediated
154
gene recombination [33]. The expression of oncogenes caused by mutations, amplifications,
155
deletions, and translocations can be temporally or spatially controlled with promoters specific for
156
thyroid tissue (e.g., promoters for thyroglobulin, thyroid peroxidase, or calcitonin) (Figure 2)
157
[33–35].
158
Two important factors may influence the choice for the use of thyroid cancer GEMs. First, GEMs,
159
which exhibit the characteristic development of a thyroid tumor, circumvent most problems
160
associated with grafted models and meet the need for exploring the interactions between tumor cells,
161
the tumor microenvironment, and the immune system [36]. Second, however, the microenvironment
162
and the immune system remain based on mouse DNA, RNA, and proteins, and the thyroid cancer
163
phenotype may be different from that of thyroid cancer patients [37].
164
Translation
165
By use of the above mouse models, various biological systems and events that are involved in
166
thyroid cancer dedifferentiation, proliferation, and metastasis have been described, providing
167
potential targets for anti-thyroid cancer targeted therapy (Figure 3). To lay a foundation for potential
168
bench-to-bedside translation of targeted therapy, thyroid cancer mouse models are of value to
169
understand the specific mechanisms how thyroid cancers derived pathologically. Identification of the
170
genetic and molecular alterations in thyroid cancer cells has advanced our knowledge about thyroid
171
cancer pathogenesis, which involves the RTK, RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, SRC, and
172
JAK-STAT signaling pathways. Activation of RAS/RAF/MEK/ERK pathway are tend to transfer
173
follicular cells into PTC; Upregulated PI3K/AKT/mTOR changes the follicular cells into FTC; And 7
174
dysfunctional RTK pathway are prone to be observed in MTC, indicating that thyroid cancer patients
175
should be personally treated with specific anti-pathway drugs [38,39]. Necessarily, these potential
176
drugs should be tested in mouse models to evaluate the efficacy and safety of anti-thyroid cancer
177
therapeutics.
178
RTK Signaling Pathway
179
RTKs include 20 different surface receptor families, i.e., those of EGF, insulin, PDGF, VEGF, FGF,
180
CCK, NGF, HGF, Eph, AXL, TIE, RYK, DDR, RET, ROS, LTK, ROR, MuSK, LMR, and an
181
undetermined family, which act through growth factors, hormones, and other extracellular molecules
182
[40,41]. Mutations in RTKs are often found in thyroid cancers of patients. RET mutations are
183
commonly present in MTCs, including sporadic MTCs, familial MTCs, and multiple endocrine
184
neoplasia 2 (MEN2) syndromes [38,42]. RET/PTC, a rearranged form of RET, was the first genetic
185
alteration identified in papillary thyroid carcinoma (PTC) [43].
186
Thyroid cancer models with RET-PTC1 and RET-PTC3 gene rearrangements have been created by
187
using the Cre–loxP system. In GEMs, tumors with RET-PTC1 and RET-PTC3 develop into
188
non-invasive PTCs. RET/PTC rearrangements are early events in thyroid carcinogenesis and are
189
specific for dedifferentiation [44]. Based on the corresponding thyroid cancer mouse models, the
190
RTK signaling pathway has been identified as a controller of angiogenesis, proliferation, and
191
metastasis. In the process of thyroid cancer progression, RTKs, activated after ligand binding with
192
extracellular molecules, phosphorylate PI3K and MAPK, leading to activation of the
193
PI3K/AKT/mTOR and RAS/RAF/MEK/ERK pathways. The RTK signaling pathway and
194
subsequently the phenotypes of cell proliferation, dedifferentiation, survival, migration, and tumor
195
angiogenesis in thyroid tumors have been validated with both CDXMs and GEMs [43,45,46].
196
RTK inhibitors, including cabozantinib, gefitinib, imatinib, lenvatinib, motesanib, pazopanib,
197
sorafenib, sunitinib, and vandetanib, have been evaluated in preclinical studies and clinical trials,
198
which have yielded some promising results (Table 1). Some recently developed RTK inhibitors,
8
199
including anlotinib, apatinib, nintedanib, ponatinib, and regorafenib, which inhibit the
200
anti-angiogenesis-related targets of VEGFR, PDGFR, FGFR, KIT, and RET, have been tested in
201
mice and are being translated into clinical settings (Table 2). Other preclinically tested RTK
202
inhibitors, such as LIF, AEE788, CUDC-101, PD173074, tetraiodothyroacetic acid, CLM3,
203
withaferin A, Pulsatilla koreana extract, and crizotinib, have been tested in mouse models as
204
potential candidates for anti-thyroid cancer therapy (Table 3). Targeting RET and E2F1, LIF shows a
205
capacity for decreasing tumor burdens; tumor weights are reduced by 50–70% compared to the
206
control group, showing potential value for translation. AEE788 and CUDC-101, which inhibit EGFR,
207
show anti-proliferative activity in ATC/FTC-derived CDXMs [47–49]. Agents targeting RTKs have
208
been applied for redifferentiation of radioiodine-refractory DTCs. There is an inverse relationship
209
between PDGFRα activation and the transcriptional activity of thyroid transcription factor-1 (TTF1).
210
PDGFRα blockade promotes expression of sodium/iodide symporter (NIS), restoring iodine
211
transport in a thyroid cancer mouse model [50]. VEGF inhibitors include antibodies against VEGF
212
(bevacizumab) and VEGFR-2 (ramucirumab) and recombinant fusion protein against VEGF-A
213
(aflibercept). However, despite the positive results obtained with thyroid cancer CDXMs, for many
214
patients, VEGF-targeted therapy fails to show appreciable clinical benefit [27,51]. The observation
215
that sorafenib and lenvatinib are effective inhibitors of radioiodine-refractory PTCs in individual, but
216
not all, mice indicates that individualized therapeutics are of high value [27].
217
RAS/RAF/MEK/ERK Signaling Pathway
218
Components of the RAS/RAF/MEK/ERK signaling pathway are RAS and the downstream kinases
219
RAF, MEK, and ERK. RET, RAS, BRAF, and TERT mutations are mainly related to the Ras signaling
220
pathway [52]. The prevalence of RAS mutations is 18–55% in PDTCs, 45% in FTCs, 35% in
221
follicular variant-PTCs, and 4–60% in ATCs [53]. BRAFV600E is commonly detected in thyroid
222
cancers, especially in PTCs; the incidence of BRAFV600E varies from 29 to 70% in PTCs [38]. TERT
223
mutations usually accompany BRAFV600E mutations; most are found in aggressive, dedifferentiated
9
224
thyroid cancers, accounting for about 7–10% in PTCs [54].
225
K-RasG12D, N-RASQ61K, RET-PTC1, RET-PTC3, and BRAFV600E mice have been created using the
226
Cre–loxP system. In these models, H-RAS and K-RAS are responsible for hyperplasia [55,56]. In
227
GEMs, tumors with RET-PTC1, RET-PTC3, and BRAFV600E develop into non-invasive PTCs.
228
RET/PTC rearrangements are early events in thyroid carcinogenesis and are specific for
229
dedifferentiation [57]. In K-RASG12D, N-RASQ61K, and BRAFV600E GEMs, RAS mutations and
230
BRAFV600E lead to constitutive activation of RAS and BRAF, inducing thyroid cancer
231
dedifferentiation and proliferation [58]. In general, RAS mutations are associated with thyroid tumor
232
progression. However, thyroid carcinogenesis and dedifferentiation are not necessarily only driven
233
by RAS mutations; the combination of BRAF mutations and RAS mutations may be involved in
234
thyroid cancer formation and progression. The activated RAS/RAF/MEK/ERK signaling pathway
235
induces matrix degrading proteases, including MMP-1, -2, -3, and -9, and overexpression of
236
urokinase plasminogen activator (uPa). RAS (H-, K-, and N-RAS) and its downstream targets
237
promote migration of thyroid tumor cells [38,46]. Moreover, BRAFV600E-induced dedifferentiation is
238
associated with dysfunction of NIS. BRAFV600E causes poor radioiodine uptake in thyroid tumors and
239
may lead to therapeutic resistance to radioiodine therapy, which has been observed in thyroid cancer
240
GEMs exposed to radioiodine [59,60].
241
Some molecular therapeutics target the RAS/RAF/MEK/ERK signaling cascade. Inhibitors of the
242
RAS/RAF/MEK/ERK signaling pathway, including vemurafenib, selumetinib, dabrafenib, and
243
trametinib, have been investigated in thyroid cancer clinical trials, revealing promising results [9,61]
244
(Table 1). The allosteric MEK inhibitor CH5126766 is a candidate for clinical translation. In the
245
BRAFV600E GEM, CH5126766 induces a five-fold increase in NIS expression in thyroid cancer cells,
246
and reuptake radioiodine accumulation is twice as high as that observed after selumetinib treatment.
247
In addition, CH5126766 treatment prior to radioiodine delivery decreases thyroid tumor size
248
compared to radioiodine delivery without pretreatment [59].
10
249
PI3K/AKT/mTOR Signaling Pathway
250
The PI3K/AKT/mTOR signaling pathway is involved in thyroid cancer proliferation and in survival
251
and angiogenesis of tumor cells [62]. In thyroid cancer cells, PIK3CA mutations commonly exist in
252
FTCs, PDTCs, and ATCs [36].
253
In GEMs, activation of PIK3CA may lead to poor differentiation and rapid progression. In
254
addition, in FTC GEMs, amplification or mutation of PIK3CA, which encodes the catalytic subunit
255
of the PI3K converting PIP2 to PIP3, activates mTOR [38,63]. Higher mTOR levels lead to
256
downstream activation of S6K1 and 4E-BP1, which induce migration and invasion of thyroid tumor
257
cells. The matrix remodeling enzymes MMP-2/-9, uPa, and plasminogen activator inhibitor-1 (PAI-1)
258
are upregulated, resulting in invasiveness [64]. If mTOR is inhibited by stress signals, such as low
259
oxygen tension or low glucose in a low-pH extracellular setting, the beclin 1/PI3K complex is
260
activated, which enhances autophagy to overcome the hostile microenvironment and sustain tumor
261
proliferation [65]. In addition, with a transgenic mouse model of thyroid cancer, PI3K acts as a
262
negative controller of NIS, and PTEN as a positive regulator of TTF1 and NIS expression, balancing
263
differentiation and dedifferentiation [66].
264
The
PI3K/AKT/mTOR
pathway
contains
a
variety
of
therapeutic
targets.
Several
265
PI3K/AKT/mTOR pathway inhibitors, including everolimus, temsirolimus, torin2, CUDC-907,
266
PP121, GDC-0941, LY294002, IC87114, and AZD8055, have been tested preclinically and/or
267
clinically (Tables 1 and 3). Torin2, discovered through screening of compound libraries (3282 drugs),
268
suppresses thyroid tumor cell proliferation and, in CDXMs, inhibits thyroid tumor growth and
269
metastasis [67].
270
SRC Signaling Pathway
271
SRC family kinases (SFKs), which include SRC, FYN, YES, BLK, FGR, HCK, LCK, YRK, and
272
LYN, are non-receptor tyrosine kinases. Tyrosine kinase, G protein-coupled receptors, steroid
273
receptors, and Signal Transducers and Activators of Transcription (STAT) are activators of SFK,
11
274
which is involved in cell proliferation, motility, invasion, and angiogenesis [68].
275
Only a few studies have focused on the SRC pathway in thyroid cancer cells or in mouse models
276
of thyroid cancer. In CDXMs with a RET/PTC1 rearrangement, the SRC inhibitor dasatinib
277
suppresses tumor volume, suggesting that the SRC pathway is involved in regulating growth of
278
thyroid cancers [69]. In mice with ThrbPV/PVPten+/- thyroid cancer, SKI-606, an SRC/ABL dual
279
inhibitor, reduces tumor growth, invasion, and metastasis, effects that are related to inhibition of the
280
SRC pathway and the epithelial–mesenchymal transition [70]. These results suggest that the SRC
281
pathway influences the invasion and metastasis of thyroid cancer and that the activated SRC pathway
282
subsequently activates the MAPK, PI3K, FAK, and STAT pathways, promoting the progression of
283
thyroid cancers [69][69–72].
284
JAK-STAT Signaling Pathway
285
The JAK family includes JAK1, JAK2, JAK3, and TYK2, and the STAT family includes STAT1,
286
STAT2, STAT3, STAT4, STAT5a, STAT5b, and STAT6. JAK is activated by a combination of
287
cytokines or growth factors and their corresponding receptors, and activated JAK in turn activates
288
STAT, which can interact with DNA and regulate translation of various genes [73,74].
289
A high-fat diet induces the expression of STAT3, cyclin D1, and phosphorylated retinoblastoma
290
protein through the JAK2-STAT3 pathway, which leads to the development of ATCs in mice with
291
ThrbPV/PVPten+/- thyroid cancer. This suggests that, in these mice, STAT3 boosts the effects of a
292
high-fat diet by inducing development and progression of thyroid cancers [75]. Despite preclinical
293
results showing that the efficacies of cucurbitacin I, metformin, and S3I-201 are limited, the response
294
to the JAK1/2 inhibitor AZD1480 in PTC CDXMs is extensive (Table 3). These results indicate that
295
the JAK-STAT3 pathway may be involved in the development, progression, and metastasis of
296
thyroid tumors. However, other researchers have obtained opposite results, i.e., that STAT3 may be a
297
negative regulator of thyroid tumor growth, suggesting that the JAK-STAT3 pathway may inhibit
298
rather than promote thyroid cancer [76,77].
12
299
Other Signaling Pathways
300
Other signaling pathways may be related to the progression of thyroid tumors. The
301
RASSF1-MST1-FOXO3 pathway may be regulated by BRAFV600E gene mutations [78]; the activated
302
C-MET pathway may promote the growth, invasion, and metastasis of thyroid tumors [79,80]; and
303
the hedgehog pathway may be associated with the progression and metastasis of thyroid cancer
304
[38,81]. The corresponding therapeutics tested in preclinical settings are listed in Table 3.
305
Perspectives
306
Despite broad use of mouse models in thyroid cancer research, a certain amount of skepticism about
307
their relevance with human thyroid cancer and their value for clinical translation is presented in the
308
field of thyroid cancer research [11]. This is likely due to the differences between mice and humans,
309
but also to the fact that some clinical trials still fail despite the use of mouse models in the preceding
310
discovery research phases. According to Tables 1–4, the translational rate was only about 4–5%,
311
raising the awareness that thyroid cancer mouse models need to be further refined. Given the
312
increasing kinds of PDXMs and humanized PDXMs for thyroid cancer research, these best
313
approaches may facilitate in vivo drug tests and consequently accelerate the bench to bedside
314
translation. In the future, the ever-evolving establishment of thyroid cancer mouse models may solve
315
the significant issue that some therapeutic drug effective in mouse models but invalid in thyroid
316
cancer patients.
317
The dawn of a new century has witnessed not only the establishment of CDXMs, PDXMs, and
318
GEMs of thyroid cancer, but also the increasing applications of these models. To better translate
319
novel therapeutics into clinical settings, further advanced studies are essential in the areas of mouse
320
modeling, drug testing, target screening, and mechanism identification.
321
Mouse Modeling Based on Humanization
322
Humanized mice are now used as PDXMs in biological and medical research on thyroid cancer.
323
Severe combined immunodeficient mice that are highly deficient in T, B, and NK cells support the 13
324
engraftment of functional human immune cells [17,37]. These cells migrate into thyroid tumors and
325
replicate their natural microenvironment [37]. With the ongoing progress in immunology, scientists
326
are increasingly aware that the therapeutic effects of anti-cancer therapeutics are inseparable from
327
the role of the anti-tumor immune system. Anti-thyroid therapeutics applied systemically, especially
328
MEK inhibitors, CDK inhibitors, and PD1/PDL1 inhibitors, influence the immune system.
329
Consequently, the role and pharmacological mechanism of anti-apoptosis therapy, redifferentiation
330
therapy, and immunotherapy should be tested in the environment of a humanized immune system.
331
The humanized mouse model may lead to a revolution in mouse modeling. The newly established
332
mouse models may be “patient-like” and “humanized,” and may provide new, efficacious ways for
333
testing drugs for treatment of thyroid cancers.
334
Drug Testing Based on New Mouse Models
335
Dedifferentiated and highly aggressive thyroid cancers present challenges in the translation of
336
therapeutics into clinical applications. As shown in Table 1, most results of clinical trials match the
337
conclusions derived from preclinical studies, showing that the efficacy and safety of anti-thyroid
338
cancer drugs may be predicted from the data derived in preclinical studies. In clinical trials,
339
promising drugs, such as anlotinib, apatinib, nintedanib, ponatinib, regorafenib, and tipifarnib, may
340
be translated into clinical applications (Table 2). Future studies, many involving the use of thyroid
341
cancer mouse models, will continue to focus on “bench-to-bedside” translation. To date, numerous
342
drugs have been designed and tested in mouse models; promising drugs are listed in Table 3.
343
Additionally, drug combinations are of interest for the treatment of thyroid cancer; these are listed in
344
Table 4.
345
Target Screening Based on the CRISPR/Cas System
346
CRISPR is a method for gene editing derived from the bacterial anti-viral defense system. With the
347
intracellular delivery of Cas9 nuclease and synthetic guide RNA (sgRNA), genes can be cut at
348
desired positions [82]. The designed sgRNAs can be included in sgRNA libraries by
14
349
adeno-associated virus (AAV), which offers an alternative approach to screen anti-thyroid cancer
350
targets. For lung cancers and glioblastomas, AAV encoding sgRNA libraries are delivered to the
351
lungs and brains of mice expressing Cas9. As a result, the pathogenesis of cancers and anti-tumor
352
targets can be analyzed [83,84]. Target screens by delivery of sgRNA libraries can be performed with
353
thyroid tissue and could clarify the role of genes associated with thyroid cancer.
354
Mechanism Exploring Based on Multi-Omics
355
Omics methods involve high-throughput investigations of the genome, epigenome, transcriptome,
356
proteome, and metabolome. These methods are used to understand thyroid cancer pathogenesis, to
357
find the underlying molecular characteristics of thyroid tumors, and to reveal the phenotypes of
358
thyroid cancers [85]. With multi-omics analysis of thyroid cancer mouse models, the link between
359
genomic alterations and mRNAs, proteins, and metabolites in relation to thyroid cancer may be
360
revealed. Based on mouse models of thyroid cancer, the next phase of multi-omics analysis will
361
focus on dealing with thousands of mRNAs and proteins to reveal changes in the thyroid cancer
362
omics in a dynamic manner. For the biologic analysis of thyroid cancer, it will be highly desirable to
363
develop PDXMs that are useful in the development of drugs for precision therapy based on
364
personalized multi-omics data. Moreover, driven by such data, analysis of thyroid cancer GEMs is
365
likely to make large contributions to the research on thyroid cancer pathogenesis and to the
366
development of novel drugs [86].
367
Summary
368
Mouse models of thyroid cancer are of high importance for the development of therapeutic
369
interventions. In our opinion, CDXMs, PDXMs, and GEMs are all effective approaches for the
370
analysis of pathogenesis and for drug evaluations. CDXMs, as a flexible tool, have mostly been
371
utilized in thyroid cancer research, especially in tests of anti-thyroid cancer drugs. With CDXMs,
372
mechanisms of tumor differentiation, vascularization, proliferation, and metastasis have been
373
explored. GEMs have mainly been used for investigating effects of gene alterations, tumorigenesis, 15
374
confirming anti-thyroid cancer targets, and for investigating pharmacological mechanisms of
375
anti-thyroid cancer drugs. They have yielded specific targets and mechanism-based drugs for clinical
376
translation. Differing from CDXMs and GEMs, PDXMs are used in preclinical trials and for
377
screening drugs for individual patients. However, the development of PDXMs for thyroid cancer
378
investigations remains insufficient. Ideal thyroid cancer models will mimic thyroid cancer biology
379
and facilitate drug translation in cancer therapy. Therefore, advanced mouse models will be
380
necessary in cross-linking basic researches on thyroid cancer mechanisms and clinical studies on
381
potential anti-thyroid cancer therapeutics (Figure 4). The literature reveals that thyroid cancer mouse
382
models tend to be ‘‘humanized” and “patient-like.” They will offer opportunities to investigate
383
thyroid cancer mechanisms and to optimize anti-cancer drugs for “bench-to-bedside” translation.
384
Studies using thyroid cancer mouse models have provided information on the pathogenesis and
385
tumorigenesis of thyroid cancer and have been useful for both fundamental research and clinical
386
studies. The roles of signaling pathways, such as RAS/RAF/MEK/ERK and PI3K/AKT/mTOR, in
387
thyroid tumors have been analyzed using mouse models. In thyroid cancer GEMs, several gene
388
alterations, including RET/PTC rearrangements and the BRAFV600E mutation, have proved to be
389
oncogenic, validating the relevance of MAPK signaling pathways in PTC. In addition, RAS
390
mutations are involved in the development of PTCs and FTCs. Mice with overactivation of the
391
PI3K/AKT/mTOR signaling pathway develop FTCs. Other signaling pathways, including the SRC,
392
JAK-STAT, RASSF1-MST1-FOXO3, C-MET, and sonic hedgehog pathways, are studied as
393
potential targets for anti-thyroid cancer drugs. These studies have revealed mechanisms of thyroid
394
tumorigenesis and progression and have led to the development, testing, and translation of
395
anti-thyroid cancer drugs into clinical settings. Mouse models have confirmed the pathogenesis of
396
thyroid cancer and have led to the availability of new drugs for the treatment of thyroid cancer.
397
Consistent with the results on tumor pathogenesis, drugs such as MLN8054 (aurora kinase inhibitor),
398
radicicol (HSP90 inhibitor), HNHA (HDAC inhibitor), and PD-L1 antibody have been tested in
16
399
mouse models.
400
There remains a need for new screening methods to evaluate potential thyroid cancer therapeutics.
401
The development of mouse models, the understanding of the pathogenesis of thyroid cancer, and the
402
discovery of anti-thyroid cancer therapeutics will help in establishing individualized therapy. The
403
next step will be the discovery of drug response-related biomarkers, which will aid in the prediction
404
of the results of anti-tumor therapy and help in the management of thyroid cancer.
405
Abbreviations
406
See Table 5.
407
Acknowledgments
408
This study was supported by the National Natural Science Foundation of China (Grant Nos.
409
81671711 and 81701731) and the Shanghai Key Discipline of Medical Imaging (Grant No.
410
2017ZZ02005). We thank LetPub (www.letpub.com) for their linguistic assistance during the
411
preparation of this manuscript.
412
Conflict of interest
413
The authors have no conflicts of interest to declare.
17
414 415
References
416
[1]
H. Lim, S.S. Devesa, J.A. Sosa, D. Check, C.M. Kitahara, Trends in Thyroid Cancer
417
Incidence and Mortality in the United States, 1974-2013., JAMA. 317 (2017) 1338–1348.
418
doi:10.1001/jama.2017.2719.
419
[2]
7–34. doi:10.3322/caac.21551.
420 421
R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2019., CA. Cancer J. Clin. 69 (2019)
[3]
W. Chen, R. Zheng, P.D. Baade, S. Zhang, H. Zeng, F. Bray, A. Jemal, X.Q. Yu, J. He,
422
Cancer
423
doi:10.3322/caac.21338.
424
[4]
statistics
in
China,
2015.,
CA.
Cancer
J.
Clin.
66
(n.d.)
115–132.
L. Rahib, B.D. Smith, R. Aizenberg, A.B. Rosenzweig, J.M. Fleshman, L.M. Matrisian,
425
Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and
426
pancreas
427
doi:10.1158/0008-5472.CAN-14-0155.
428
[5]
cancers
in
the
united
states,
Cancer
Res.
74
(2014)
2913–2921.
C. Durante, N. Haddy, E. Baudin, S. Leboulleux, D. Hartl, J.P. Travagli, B. Caillou, M.
429
Ricard, J.D. Lumbroso, F. De Vathaire, M. Schlumberger, Long-term outcome of 444 patients
430
with distant metastases from papillary and follicular thyroid carcinoma: Benefits and limits of
431
radioiodine
432
doi:10.1210/jc.2005-2838.
433
[6]
therapy,
J.
Clin.
Endocrinol.
Metab.
91
(2006)
2892–2899.
B.R. Haugen, E.K. Alexander, K.C. Bible, G.M. Doherty, S.J. Mandel, Y.E. Nikiforov, F.
434
Pacini, G.W. Randolph, A.M. Sawka, M. Schlumberger, K.G. Schuff, S.I. Sherman, J.A. Sosa,
435
D.L. Steward, R.M. Tuttle, L. Wartofsky, 2015 American Thyroid Association Management
436
Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The
437
American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated
438
Thyroid Cancer, Thyroid. 26 (2016) 1–133. doi:10.1089/thy.2015.0020.
18
439
[7]
update., Mol. Cell. Endocrinol. 421 (2016) 18–27. doi:10.1016/j.mce.2015.06.029.
440 441
[8]
R.D. Dowell, The similarity of gene expression between human and mouse tissues., Genome Biol. 12 (2011) 101. doi:10.1186/gb-2011-12-1-101.
442 443
L.S. Kirschner, Z. Qamri, S. Kari, A. Ashtekar, Mouse models of thyroid cancer: A 2015
[9]
S. Saini, K. Tulla, A. V Maker, K.D. Burman, B.S. Prabhakar, Therapeutic advances in
444
anaplastic thyroid cancer: a current perspective., Mol. Cancer. 17 (2018) 154.
445
doi:10.1186/s12943-018-0903-0.
446
[10] M. Jia, Y. Shi, Z. Li, X. Lu, J. Wang, MicroRNA-146b-5p as an oncomiR promotes papillary
447
thyroid carcinoma development by targeting CCDC6., Cancer Lett. 443 (2019) 145–156.
448
doi:10.1016/j.canlet.2018.11.026.
449 450
[11] C.S. Kim, X. Zhu, Lessons from Mouse Models of Thyroid Cancer, Thyroid. 19 (2009) 1317–1331. doi:10.1089/thy.2009.1609.
451
[12] Y. Hiroshima, A. Maawy, Y. Zhang, N. Zhang, T. Murakami, T. Chishima, K. Tanaka, Y.
452
Ichikawa, M. Bouvet, I. Endo, R.M. Hoffman, Patient-derived mouse models of cancer need
453
to be orthotopic in order to evaluate targeted anti-metastatic therapy., Oncotarget. 7 (2016)
454
71696–71702. doi:10.18632/oncotarget.12322.
455
[13] S.-H. Ahn, Y. Henderson, Y. Kang, C. Chattopadhyay, P. Holton, M. Wang, K. Briggs, G.L.
456
Clayman, An orthotopic model of papillary thyroid carcinoma in athymic nude mice., Arch.
457
Otolaryngol. Head. Neck Surg. 134 (2008) 190–197. doi:10.1001/archoto.2007.36.
458
[14] A. Greco, S. Albanese, L. Auletta, P. Mirabelli, A. Zannetti, C. D’Alterio, G. Di Maro, F.M.
459
Orlandella, G. Salvatore, A. Soricelli, M. Salvatore, High-Frequency Ultrasound-Guided
460
Injection for the Generation of a Novel Orthotopic Mouse Model of Human Thyroid
461
Carcinoma., Thyroid. 26 (2016) 552–558. doi:10.1089/thy.2015.0511.
462
[15] L. Zhang, K. Gaskins, Z. Yu, Y. Xiong, M.J. Merino, E. Kebebew, An in vivo mouse model
463
of metastatic human thyroid cancer., Thyroid. 24 (2014) 695–704. doi:10.1089/thy.2013.0149.
19
464
[16] A.T. Byrne, D.G. Alférez, F. Amant, D. Annibali, J. Arribas, A. V Biankin, A. Bruna, E.
465
Budinská, C. Caldas, D.K. Chang, R.B. Clarke, H. Clevers, G. Coukos, V. Dangles-Marie,
466
S.G. Eckhardt, E. Gonzalez-Suarez, E. Hermans, M. Hidalgo, M.A. Jarzabek, S. de Jong, J.
467
Jonkers, K. Kemper, L. Lanfrancone, G.M. Mælandsmo, E. Marangoni, J.-C. Marine, E.
468
Medico, J.H. Norum, H.G. Palmer, D.S. Peeper, P.G. Pelicci, A. Piris-Gimenez, S.
469
Roman-Roman, O.M. Rueda, J. Seoane, V. Serra, L. Soucek, D. Vanhecke, A. Villanueva, E.
470
Vinolo, A. Bertotti, L. Trusolino, Interrogating open issues in cancer precision medicine with
471
patient-derived xenografts., Nat. Rev. Cancer. 17 (2017) 254–268. doi:10.1038/nrc.2016.140.
472
[17] P. De La Rochere, S. Guil-Luna, D. Decaudin, G. Azar, S.S. Sidhu, E. Piaggio, Humanized
473
Mice for the Study of Immuno-Oncology., Trends Immunol. 39 (2018) 748–763.
474
doi:10.1016/j.it.2018.07.001.
475
[18] P. Vanden Borre, D.G. McFadden, V. Gunda, P.M. Sadow, S. Varmeh, M. Bernasconi, T.
476
Jacks, S. Parangi, The next generation of orthotopic thyroid cancer models: immunocompetent
477
orthotopic mouse models of BRAF V600E-positive papillary and anaplastic thyroid
478
carcinoma., Thyroid. 24 (2014) 705–714. doi:10.1089/thy.2013.0483.
479
[19] R.E. Schweppe, N. Pozdeyev, L.A. Pike, C. Korch, Q. Zhou, S.B. Sams, V. Sharma, U.
480
Pugazhenthi, C. Raeburn, M.B. Albuja-Cruz, P. Reigan, D. V LaBarbera, I. Landa, J.A.
481
Knauf, J.A. Fagin, B.R. Haugen, Establishment and Characterization of Four Novel Thyroid
482
Cancer Cell Lines and PDX Models Expressing the RET/PTC1 Rearrangement, BRAFV600E,
483
or
484
doi:10.1158/1541-7786.MCR-18-1026.
485 486
RASQ61R
as
Drivers.,
Mol.
Cancer
Res.
17
(2019)
1036–1048.
[20] J. Jung, H.S. Seol, S. Chang, The Generation and Application of Patient-Derived Xenograft Model for Cancer Research., Cancer Res. Treat. 50 (2018) 1–10. doi:10.4143/crt.2017.307.
487
[21] L.A. Marlow, A.C. Mathias, L.K. Dawson, W.F. Durham, K.A. Meshaw, R.J. Mullin, D.L.
488
Small, A.J. Synnott, D. Milosevic, B.C. Netzel, S.K. Grebe, K. Wu, R.C. Smallridge, J.A.
20
489
Copland, Abstract 1458: Characterization of novel thyroid PDX models and their response to
490
combination therapies, in: Tumor Biol., American Association for Cancer Research, 2015: pp.
491
1458–1458. doi:10.1158/1538-7445.AM2015-1458.
492
[22] D. Laheru, P. Shah, N. V Rajeshkumar, F. McAllister, G. Taylor, H. Goldsweig, D.T. Le, R.
493
Donehower, A. Jimeno, S. Linden, M. Zhao, D. Song, M.A. Rudek, M. Hidalgo, Integrated
494
preclinical and clinical development of S-trans, trans-Farnesylthiosalicylic Acid (FTS,
495
Salirasib)
496
doi:10.1007/s10637-012-9818-6.
in
pancreatic
cancer.,
Invest.
New
Drugs.
30
(2012)
2391–2399.
497
[23] G. Colon-Otero, S.J. Weroha, N.R. Foster, P. Haluska, X. Hou, A.E. Wahner-Hendrickson, A.
498
Jatoi, M.S. Block, T.A. Dinh, M.W. Robertson, J.A. Copland, Phase 2 trial of everolimus and
499
letrozole in relapsed estrogen receptor-positive high-grade ovarian cancers., Gynecol. Oncol.
500
146 (2017) 64–68. doi:10.1016/j.ygyno.2017.04.020.
501
[24] T.K. Owonikoko, G. Zhang, H.S. Kim, R.M. Stinson, R. Bechara, C. Zhang, Z. Chen, N.F.
502
Saba, S. Pakkala, R. Pillai, X. Deng, S.-Y. Sun, M.R. Rossi, G.L. Sica, S.S. Ramalingam, F.R.
503
Khuri, Patient-derived xenografts faithfully replicated clinical outcome in a phase II
504
co-clinical trial of arsenic trioxide in relapsed small cell lung cancer., J. Transl. Med. 14
505
(2016) 111. doi:10.1186/s12967-016-0861-5.
506
[25] M. Duquette, P.M. Sadow, A. Husain, J.N. Sims, Z.A. Antonello, A.H. Fischer, C. Song, E.
507
Castellanos-Rizaldos, G.M. Makrigiorgos, J. Kurebayashi, V. Nose, P. Van Hummelen, R.T.
508
Bronson, M. Vinco, T.J. Giordano, D. Dias-Santagata, P.P. Pandolfi, C. Nucera,
509
Metastasis-associated MCL1 and P16 copy number alterations dictate resistance to
510
vemurafenib in a BRAFV600E patient-derived papillary thyroid carcinoma preclinical model,
511
Oncotarget. 6 (2015). doi:10.18632/oncotarget.6442.
512
[26] V. Subbiah, V. Velcheti, B.B. Tuch, K. Ebata, N.L. Busaidy, M.E. Cabanillas, L.J. Wirth, S.
513
Stock, S. Smith, V. Lauriault, S. Corsi-Travali, D. Henry, M. Burkard, R. Hamor, K. Bouhana,
21
514
S. Winski, R.D. Wallace, D. Hartley, S. Rhodes, M. Reddy, B.J. Brandhuber, S. Andrews,
515
S.M. Rothenberg, A. Drilon, Selective RET kinase inhibition for patients with RET-altered
516
cancers, Ann. Oncol. 29 (2018) 1869–1876. doi:10.1093/annonc/mdy137.
517
[27] S.Y. Kim, S.-M. Kim, H.-J. Chang, B.-W. Kim, Y.S. Lee, C.S. Park, K.C. Park, H.-S. Chang,
518
SoLAT (Sorafenib Lenvatinib alternating treatment): a new treatment protocol with
519
alternating Sorafenib and Lenvatinib for refractory thyroid Cancer., BMC Cancer. 18 (2018)
520
956. doi:10.1186/s12885-018-4854-z.
521
[28] X. Zhu, S. Park, W.K. Lee, S. Cheng, Potentiated anti-tumor effects of BETi by MEKi in
522
anaplastic
thyroid
cancer,
523
doi:10.1530/erc-19-0107.
Endocr.
Relat.
Cancer.
26
(2019)
739–750.
524
[29] H. Lin, X. Jiang, H. Zhu, W. Jiang, X. Dong, H. Qiao, X. Sun, H. Jiang, 2ME2 inhibits the
525
activated hypoxia-inducible pathways by cabozantinib and enhances its efficacy against
526
medullary
527
doi:10.1007/s13277-015-3816-1.
thyroid
carcinoma,
Tumor
Biol.
37
(2016)
381–391.
528
[30] A. Wunderlich, M. Khoruzhyk, S. Roth, A. Ramaswamy, B.H. Greene, D. Doll, D.K. Bartsch,
529
S. Hoffmann, Pretherapeutic drug evaluation by tumor xenografting in anaplastic thyroid
530
cancer., J. Surg. Res. 185 (2013) 676–683. doi:10.1016/j.jss.2013.06.017.
531
[31] L.A. Marlow, S.D. Rohl, J.L. Miller, J.A. Knauf, J.A. Fagin, M. Ryder, D. Milosevic, B.C.
532
Netzel, S.K. Grebe, H. V Reddi, R.C. Smallridge, J.A. Copland, Methodology, Criteria, and
533
Characterization of Patient-Matched Thyroid Cell Lines and Patient-Derived Tumor
534
Xenografts, J. Clin. Endocrinol. Metab. 103 (2018) 3169–3182. doi:10.1210/jc.2017-01845.
535
[32] G. Vitale, G. Gaudenzi, L. Circelli, M.F. Manzoni, A. Bassi, N. Fioritti, A. Faggiano, A.
536
Colao, Animal models of medullary thyroid cancer: state of the art and view to the future.,
537
Endocr. Relat. Cancer. 24 (2017) R1–R12. doi:10.1530/ERC-16-0399.
538
[33] M. Shimamura, M. Nakahara, F. Orim, T. Kurashige, N. Mitsutake, M. Nakashima, S. Kondo,
22
539
M. Yamada, R. Taguchi, S. Kimura, Y. Nagayama, Postnatal expression of BRAFV600E does
540
not induce thyroid cancer in mouse models of thyroid papillary carcinoma., Endocrinology.
541
154 (2013) 4423–4430. doi:10.1210/en.2013-1174.
542
[34] M.E.R. Garcia-Rendueles, J.C. Ricarte-Filho, B.R. Untch, I. Landa, J.A. Knauf, F. Voza, V.E.
543
Smith, I. Ganly, B.S. Taylor, Y. Persaud, G. Oler, Y. Fang, S.C. Jhanwar, A. Viale, A. Heguy,
544
K.H. Huberman, F. Giancotti, R. Ghossein, J.A. Fagin, NF2 Loss Promotes Oncogenic
545
RAS-Induced Thyroid Cancers via YAP-Dependent Transactivation of RAS Proteins and
546
Sensitizes
547
doi:10.1158/2159-8290.CD-15-0330.
Them
to
MEK
Inhibition.,
Cancer
Discov.
5
(2015)
1178–1193.
548
[35] R.M. Paragliola, F. Torino, G. Papi, P. Locantore, A. Pontecorvi, S.M. Corsello, Mouse
549
models of medullary thyroid cancer and developing new targeted therapies., Expert Opin.
550
Drug Discov. 11 (2016) 917–919. doi:10.1080/17460441.2016.1223036.
551
[36] N. Smith, C. Nucera, Personalized therapy in patients with anaplastic thyroid cancer: targeting
552
genetic and epigenetic alterations., J. Clin. Endocrinol. Metab. 100 (2015) 35–42.
553
doi:10.1210/jc.2014-2803.
554
[37] J.J. Morton, S.B. Keysar, L. Perrenoud, T.-S. Chimed, J. Reisinger, B. Jackson, P.N. Le, C.
555
Nieto, K. Gomez, B. Miller, D. Gao, H. Somerset, X.-J. Wang, A. Jimeno, Dual use of
556
hematopoietic and mesenchymal stem cells enhances engraftment and immune cell trafficking
557
in an allogeneic humanized mouse model of head and neck cancer., Mol. Carcinog. 57 (2018)
558
1651–1663. doi:10.1002/mc.22887.
559 560 561 562 563
[38] J.A. Fagin, S.A. Wells, Biologic and Clinical Perspectives on Thyroid Cancer., N. Engl. J. Med. 375 (2016) 1054–1067. doi:10.1056/NEJMra1501993. [39] V.T. DeVita, S.A. Rosenberg, T.S. Lawrence, Cancer: principles and practice of oncology [11ed.], 2018. [40] T. Regad, Targeting RTK Signaling Pathways in Cancer., Cancers (Basel). 7 (2015)
23
564
1758–1784. doi:10.3390/cancers7030860.
565
[41] A.I. Ségaliny, M. Tellez-Gabriel, M.-F. Heymann, D. Heymann, Receptor tyrosine kinases:
566
Characterisation, mechanism of action and therapeutic interests for bone cancers., J. Bone
567
Oncol. 4 (2015) 1–12. doi:10.1016/j.jbo.2015.01.001.
568
[42] F. Bentzien, M. Zuzow, N. Heald, A. Gibson, Y. Shi, L. Goon, P. Yu, S. Engst, W. Zhang, D.
569
Huang, L. Zhao, V. Vysotskaia, F. Chu, R. Bautista, B. Cancilla, P. Lamb, A.H. Joly, F.M.
570
Yakes, In vitro and in vivo activity of cabozantinib (XL184), an inhibitor of RET, MET, and
571
VEGFR2, in a model of medullary thyroid cancer., Thyroid. 23 (2013) 1569–1577.
572
doi:10.1089/thy.2013.0137.
573
[43] C. Romei, R. Elisei, RET/PTC Translocations and Clinico-Pathological Features in Human
574
Papillary
Thyroid
Carcinoma.,
575
doi:10.3389/fendo.2012.00054.
Front.
Endocrinol.
(Lausanne).
3
(2012)
54.
576
[44] R. Bellelli, D. Vitagliano, G. Federico, P. Marotta, A. Tamburrino, P. Salerno, O. Paciello, S.
577
Papparella, J.A. Knauf, J.A. Fagin, S. Refetoff, G. Troncone, M. Santoro, Oncogene-induced
578
senescence and its evasion in a mouse model of thyroid neoplasia., Mol. Cell. Endocrinol. 460
579
(2018) 24–35. doi:10.1016/j.mce.2017.06.023.
580
[45] K. Wong, F. Di Cristofano, M. Ranieri, D. De Martino, A. Di Cristofano, PI3K/mTOR
581
inhibition potentiates and extends palbociclib activity in anaplastic thyroid cancer., Endocr.
582
Relat. Cancer. 26 (2019) 425–436. doi:10.1530/ERC-19-0011.
583
[46] B.R. Untch, V. Dos Anjos, M.E.R. Garcia-Rendueles, J.A. Knauf, G.P. Krishnamoorthy, M.
584
Saqcena, U.K. Bhanot, N.D. Socci, A.L. Ho, R. Ghossein, J.A. Fagin, Tipifarnib Inhibits
585
HRAS-Driven Dedifferentiated Thyroid Cancers., Cancer Res. 78 (2018) 4642–4657.
586
doi:10.1158/0008-5472.CAN-17-1925.
587
[47] M.K. Gule, Y. Chen, D. Sano, M.J. Frederick, G. Zhou, M. Zhao, Z.L. Milas, C.E. Galer, Y.C.
588
Henderson, S.A. Jasser, D.L. Schwartz, J.A. Bankson, J.N. Myers, S.Y. Lai, Targeted therapy
24
589
of VEGFR2 and EGFR significantly inhibits growth of anaplastic thyroid cancer in an
590
orthotopic
591
doi:10.1158/1078-0432.CCR-10-2762.
murine
model.,
Clin.
Cancer
Res.
17
(2011)
2281–2291.
592
[48] M.N. Younes, O.G. Yigitbasi, Y.W. Park, S.-J. Kim, S.A. Jasser, V.S. Hawthorne, Y.D.
593
Yazici, M. Mandal, B.N. Bekele, C.D. Bucana, I.J. Fidler, J.N. Myers, Antivascular therapy of
594
human follicular thyroid cancer experimental bone metastasis by blockade of epidermal
595
growth factor receptor and vascular growth factor receptor phosphorylation., Cancer Res. 65
596
(2005) 4716–4727. doi:10.1158/0008-5472.CAN-04-4196.
597
[49] S. Kim, B.A. Schiff, O.G. Yigitbasi, D. Doan, S.A. Jasser, B.N. Bekele, M. Mandal, J.N.
598
Myers, Targeted molecular therapy of anaplastic thyroid carcinoma with AEE788., Mol.
599
Cancer Ther. 4 (2005) 632–640. doi:10.1158/1535-7163.MCT-04-0293.
600
[50] A. Lopez-Campistrous, E.E. Adewuyi, M.G.K. Benesch, Y.M. Ko, R. Lai, A. Thiesen, J.
601
Dewald, P. Wang, K. Chu, S. Ghosh, D.C. Williams, L.J. Vos, D.N. Brindley, T.P.W.
602
McMullen, PDGFRα Regulates Follicular Cell Differentiation Driving Treatment Resistance
603
and Disease Recurrence in Papillary Thyroid Cancer., EBioMedicine. 12 (2016) 86–97.
604
doi:10.1016/j.ebiom.2016.09.007.
605
[51] X.-G. Peng, Z.-F. Chen, K.-J. Zhang, P.-G. Wang, Z.-M. Liu, Z.-J. Chen, G.-Y. Hou, M. Niu,
606
VEGF Trapon inhibits tumor growth in papillary thyroid carcinoma., Eur. Rev. Med.
607
Pharmacol. Sci. 19 (2015) 235–240.
608 609 610 611
[52] S. Papp, S.L. Asa, When thyroid carcinoma goes bad: a morphological and molecular analysis., Head Neck Pathol. 9 (2015) 16–23. doi:10.1007/s12105-015-0619-z. [53] Y.E. Nikiforov, M.N. Nikiforova, Molecular genetics and diagnosis of thyroid cancer., Nat. Rev. Endocrinol. 7 (2011) 569–580. doi:10.1038/nrendo.2011.142.
612
[54] G.E. Lombardo, V. Maggisano, M. Celano, D. Cosco, C. Mignogna, F. Baldan, S.M. Lepore,
613
L. Allegri, S. Moretti, C. Durante, G. Damante, M. Fresta, D. Russo, S. Bulotta, E. Puxeddu,
25
614
Anti-hTERT siRNA-Loaded Nanoparticles Block the Growth of Anaplastic Thyroid Cancer
615
Xenograft., Mol. Cancer Ther. 17 (2018) 1187–1195. doi:10.1158/1535-7163.MCT-17-0559.
616
[55] S. Hoshi, N. Hoshi, M. Okamoto, J. Paiz, T. Kusakabe, J.M. Ward, S. Kimura, Role of
617
NKX2-1 in N-bis(2-hydroxypropyl)-nitrosamine-induced thyroid adenoma in mice.,
618
Carcinogenesis. 30 (2009) 1614–1619. doi:10.1093/carcin/bgp167.
619 620
[56] I.A. Prior, P.D. Lewis, C. Mattos, A comprehensive survey of Ras mutations in cancer., Cancer Res. 72 (2012) 2457–67. doi:10.1158/0008-5472.CAN-11-2612.
621
[57] L. Cheng, Y. Jin, M. Liu, M. Ruan, L. Chen, HER inhibitor promotes BRAF/MEK
622
inhibitor-induced redifferentiation in papillary thyroid cancer harboring BRAFV600E.,
623
Oncotarget. 8 (2017) 19843–19854. doi:10.18632/oncotarget.15773.
624
[58] E. Oikonomou, E. Koustas, M. Goulielmaki, A. Pintzas, BRAF vs RAS oncogenes: are
625
mutations of the same pathway equal? Differential signalling and therapeutic implications.,
626
Oncotarget. 5 (2014) 11752–11777. doi:10.18632/oncotarget.2555.
627
[59] J. Nagarajah, M. Le, J.A. Knauf, G. Ferrandino, C. Montero-Conde, N. Pillarsetty, A.
628
Bolaender, C. Irwin, G.P. Krishnamoorthy, M. Saqcena, S.M. Larson, A.L. Ho, V. Seshan, N.
629
Ishii, N. Carrasco, N. Rosen, W.A. Weber, J.A. Fagin, Sustained ERK inhibition maximizes
630
responses of BrafV600E thyroid cancers to radioiodine., J. Clin. Invest. 126 (2016)
631
4119–4124. doi:10.1172/JCI89067.
632
[60] D. Chakravarty, E. Santos, M. Ryder, J.A. Knauf, X.-H. Liao, B.L. West, G. Bollag, R.
633
Kolesnick, T.H. Thin, N. Rosen, P. Zanzonico, S.M. Larson, S. Refetoff, R. Ghossein, J.A.
634
Fagin, Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid
635
cancers with conditional BRAF activation., J. Clin. Invest. 121 (2011) 4700–11.
636
doi:10.1172/JCI46382.
637
[61] Y. Jin, M. Ruan, L. Cheng, H. Fu, M. Liu, S. Sheng, L. Chen, Radioiodine Uptake and
638
Thyroglobulin-Guided Radioiodine Remnant Ablation in Patients with Differentiated Thyroid
26
639
Cancer: A Prospective, Randomized, Open-Label, Controlled Trial, Thyroid. 29 (2018)
640
101–110. doi:10.1089/thy.2018.0028.
641
[62] I. Landa, T. Ibrahimpasic, L. Boucai, R. Sinha, J.A. Knauf, R.H. Shah, S. Dogan, J.C.
642
Ricarte-Filho, G.P. Krishnamoorthy, B. Xu, N. Schultz, M.F. Berger, C. Sander, B.S. Taylor,
643
R. Ghossein, I. Ganly, J.A. Fagin, Genomic and transcriptomic hallmarks of poorly
644
differentiated and anaplastic thyroid cancers., J. Clin. Invest. 126 (2016) 1052–66.
645
doi:10.1172/JCI85271.
646 647
[63] M.N. Nikiforova, Y.E. Nikiforov, Molecular diagnostics and predictors in thyroid cancer., Thyroid. 19 (2009) 1351–1361. doi:10.1089/thy.2009.0240.
648
[64] H. Guan, Y. Guo, L. Liu, R. Ye, W. Liang, H. Li, H. Xiao, Y. Li, INAVA promotes
649
aggressiveness of papillary thyroid cancer by upregulating MMP9 expression., Cell Biosci. 8
650
(2018) 26. doi:10.1186/s13578-018-0224-4.
651
[65] C. Tavares, C. Eloy, M. Melo, A. Gaspar da Rocha, A. Pestana, R. Batista, L. Bueno Ferreira,
652
E. Rios, M. Sobrinho Simões, P. Soares, mTOR Pathway in Papillary Thyroid Carcinoma:
653
Different Contributions of mTORC1 and mTORC2 Complexes for Tumor Behavior and
654
SLC5A5
655
doi:10.3390/ijms19051448.
mRNA
Expression.,
Int.
J.
Mol.
Sci.
19
(2018)
pii:
E1448.
656
[66] F. Feng, L. Yehia, Y. Ni, Y.S. Chang, S.M. Jhiang, C. Eng, A Nonpump Function of Sodium
657
Iodide Symporter in Thyroid Cancer via Cross-talk with PTEN Signaling., Cancer Res. 78
658
(2018) 6121–6133. doi:10.1158/0008-5472.CAN-18-1954.
659
[67] S.M. Sadowski, M. Boufraqech, L. Zhang, A. Mehta, P. Kapur, Y. Zhang, Z. Li, M. Shen, E.
660
Kebebew, Torin2 targets dysregulated pathways in anaplastic thyroid cancer and inhibits
661
tumor
662
doi:10.18632/oncotarget.3833.
663
growth
and
metastasis.,
Oncotarget.
6
(2015)
18038–18049.
[68] D.L. Wheeler, M. Iida, E.F. Dunn, The Role of Src in Solid Tumors, Oncologist. 14 (2009)
27
664
667–678. doi:10.1634/theoncologist.2009-0009.
665
[69] Y.C. Henderson, R. Toro-Serra, Y. Chen, J. Ryu, M.J. Frederick, G. Zhou, G.E. Gallick, S.Y.
666
Lai, G.L. Clayman, Src inhibitors in suppression of papillary thyroid carcinoma growth., Head
667
Neck. 36 (2014) 375–384. doi:10.1002/hed.23316.
668
[70] W.G. Kim, C.J. Guigon, L. Fozzatti, J.W. Park, C. Lu, M.C. Willingham, S. Cheng, SKI-606,
669
an Src inhibitor, reduces tumor growth, invasion, and distant metastasis in a mouse model of
670
thyroid
671
doi:10.1158/1078-0432.CCR-11-2892.
cancer.,
Clin.
Cancer
Res.
18
(2012)
1281–1290.
672
[71] C.M. Chan, X. Jing, L.A. Pike, Q. Zhou, D.-J. Lim, S.B. Sams, G.S. Lund, V. Sharma, B.R.
673
Haugen, R.E. Schweppe, Targeted inhibition of Src kinase with dasatinib blocks thyroid
674
cancer
675
doi:10.1158/1078-0432.CCR-11-3359.
growth
and
metastasis.,
Clin.
Cancer
Res.
18
(2012)
3580–3591.
676
[72] P. Vanden Borre, V. Gunda, D.G. McFadden, P.M. Sadow, S. Varmeh, M. Bernasconi, S.
677
Parangi, Combined BRAF(V600E)- and SRC-inhibition induces apoptosis, evokes an immune
678
response and reduces tumor growth in an immunocompetent orthotopic mouse model of
679
anaplastic thyroid cancer., Oncotarget. 5 (2014) 3996–4010. doi:10.18632/oncotarget.2130.
680
[73] T.J. Mitchell, S. John, Signal transducer and activator of transcription (STAT) signalling and
681
T-cell
682
doi:10.1111/j.1365-2567.2005.02091.x.
683 684
lymphomas.,
Immunology.
114
(2005)
301–312.
[74] W.X. Li, Canonical and non-canonical JAK–STAT signaling, Trends Cell Biol. 18 (2008) 545–551. doi:10.1016/j.tcb.2008.08.008.
685
[75] W.G. Kim, J.W. Park, M.C. Willingham, S. Cheng, Diet-induced obesity increases tumor
686
growth and promotes anaplastic change in thyroid cancer in a mouse model., Endocrinology.
687
154 (2013) 2936–2947. doi:10.1210/en.2013-1128.
688
[76] J.P. Couto, L. Daly, A. Almeida, J.A. Knauf, J.A. Fagin, M. Sobrinho-Simões, J. Lima, V.
28
689
Máximo, P. Soares, D. Lyden, J.F. Bromberg, STAT3 negatively regulates thyroid
690
tumorigenesis.,
691
doi:10.1073/pnas.1201232109.
692 693
Proc.
Natl.
Acad.
Sci.
U.
S.
A.
109
(2012)
E2361-2370.
[77] N. Sosonkina, D. Starenki, J.-I. Park, The Role of STAT3 in Thyroid Cancer., Cancers (Basel). 6 (2014) 526–544. doi:10.3390/cancers6010526.
694
[78] S.J. Lee, M.H. Lee, D.W. Kim, S. Lee, S. Huang, M.J. Ryu, Y.K. Kim, S.J. Kim, S.J. Kim,
695
J.H. Hwang, S. Oh, H. Cho, J.M. Kim, D.-S. Lim, Y.S. Jo, M. Shong, Cross-regulation
696
between oncogenic BRAF(V600E) kinase and the MST1 pathway in papillary thyroid
697
carcinoma., PLoS One. 6 (2011) e16180. doi:10.1371/journal.pone.0016180.
698
[79] R. Bu, S. Uddin, M. Ahmed, A.R. Hussain, S. Alsobhi, T. Amin, A. Al-Nuaim, F. Al-Dayel, J.
699
Abubaker, P. Bavi, K.S. Al-Kuraya, c-Met inhibitor synergizes with tumor necrosis
700
factor-related apoptosis-induced ligand to induce papillary thyroid carcinoma cell death., Mol.
701
Med. 18 (2012) 167–177. doi:10.2119/molmed.2011.00238.
702
[80] H.K. Byeon, H.J. Na, Y.J. Yang, H.J. Kwon, J.W. Chang, M.J. Ban, W.S. Kim, D.Y. Shin,
703
E.J. Lee, Y.W. Koh, J.-H. Yoon, E.C. Choi, c-Met-mediated reactivation of PI3K/AKT
704
signaling contributes to insensitivity of BRAF(V600E) mutant thyroid cancer to BRAF
705
inhibition., Mol. Carcinog. 55 (2016) 1678–1687. doi:10.1002/mc.22418.
706
[81] X. Sui, Y. Sui, Y. Wang, LARP7 in papillary thyroid carcinoma induces NIS expression
707
through suppression of the SHH signaling pathway., Mol. Med. Rep. 17 (2018) 7521–7528.
708
doi:10.3892/mmr.2018.8856.
709
[82] V. Anelli, J.A. Villefranc, S. Chhangawala, R. Martinez-McFaline, E. Riva, A. Nguyen, A.
710
Verma, R. Bareja, Z. Chen, T. Scognamiglio, O. Elemento, Y. Houvras, Oncogenic BRAF
711
disrupts thyroid morphogenesis and function via twist expression., Elife. 6 (2017) pii: e20728.
712
doi:10.7554/eLife.20728.
713
[83] R.J. Platt, S. Chen, Y. Zhou, M.J. Yim, L. Swiech, H.R. Kempton, J.E. Dahlman, O. Parnas,
29
714
T.M. Eisenhaure, M. Jovanovic, D.B. Graham, S. Jhunjhunwala, M. Heidenreich, R.J. Xavier,
715
R. Langer, D.G. Anderson, N. Hacohen, A. Regev, G. Feng, P.A. Sharp, F. Zhang,
716
CRISPR-Cas9 knockin mice for genome editing and cancer modeling., Cell. 159 (2014)
717
440–455. doi:10.1016/j.cell.2014.09.014.
718
[84] R.D. Chow, C.D. Guzman, G. Wang, F. Schmidt, M.W. Youngblood, L. Ye, Y. Errami, M.B.
719
Dong, M.A. Martinez, S. Zhang, P. Renauer, K. Bilguvar, M. Gunel, P.A. Sharp, F. Zhang,
720
R.J. Platt, S. Chen, AAV-mediated direct in vivo CRISPR screen identifies functional
721
suppressors in glioblastoma., Nat. Neurosci. 20 (2017) 1329–1341. doi:10.1038/nn.4620.
722
[85] S. Chakraborty, M.I. Hosen, M. Ahmed, H.U. Shekhar, Onco-Multi-OMICS Approach: A
723
New
Frontier
in
Cancer
724
doi:10.1155/2018/9836256.
Research.,
Biomed
Res.
Int.
2018
(2018)
9836256.
725
[86] E.A. Vucic, K.L. Thu, K. Robison, L.A. Rybaczyk, R. Chari, C.E. Alvarez, W.L. Lam,
726
Translating cancer “omics” to improved outcomes., Genome Res. 22 (2012) 188–95.
727
doi:10.1101/gr.124354.111.
728 729
[87] M. Xing, Molecular pathogenesis and mechanisms of thyroid cancer., Nat. Rev. Cancer. 13 (2013) 184–199. doi:10.1038/nrc3431.
730
[88] M. Schlumberger, R. Elisei, S. Müller, P. Schöffski, M. Brose, M. Shah, L. Licitra, J.
731
Krajewska, M.C. Kreissl, B. Niederle, E.E.W. Cohen, L. Wirth, H. Ali, D.O. Clary, Y. Yaron,
732
M. Mangeshkar, D. Ball, B. Nelkin, S. Sherman, Overall survival analysis of EXAM, a phase
733
III trial of cabozantinib in patients with radiographically progressive medullary thyroid
734
carcinoma., Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 28 (2017) 2813–2819.
735
doi:10.1093/annonc/mdx479.
736
[89] C. Mirantes, N. Eritja, M.A. Dosil, M. Santacana, J. Pallares, S. Gatius, L. Bergada, O.
737
Maiques, X. Matias-Guiu, X. Dolcet, An inducible knockout mouse to model the
738
cell-autonomous role of PTEN in initiating endometrial, prostate and thyroid neoplasias., Dis.
30
739
Model. Mech. 6 (2013) 710–720. doi:10.1242/dmm.011445.
740
[90] C.J. Guigon, L. Fozzatti, C. Lu, M.C. Willingham, S.-Y. Cheng, Inhibition of mTORC1
741
signaling reduces tumor growth but does not prevent cancer progression in a mouse model of
742
thyroid cancer., Carcinogenesis. 31 (2010) 1284–1291. doi:10.1093/carcin/bgq059.
743
[91] S.M. Lim, H. Chang, M.J. Yoon, Y.K. Hong, H. Kim, W.Y. Chung, C.S. Park, K.H. Nam,
744
S.W. Kang, M.K. Kim, B.S. Kim, S.H. Lee, H.G. Kim, I.I. Na, Y.S. Kim, M.Y. Choi, J.G.
745
Kim, K.U. Park, H.J. Yun, J.H. Kim, B.C. Cho, A multicenter, phase II trial of everolimus in
746
locally advanced or metastatic thyroid cancer of all histologic subtypes, Ann. Oncol. 24
747
(2013) 3089–3093. doi:10.1093/annonc/mdt379.
748
[92] Y. Nobuhara, N. Onoda, Y. Yamashita, M. Yamasaki, K. Ogisawa, T. Takashima, T.
749
Ishikawa, K. Hirakawa, Efficacy of epidermal growth factor receptor-targeted molecular
750
therapy in anaplastic thyroid cancer cell lines., Br. J. Cancer. 92 (2005) 1110–1116.
751
doi:10.1038/sj.bjc.6602461.
752
[93] B.A. Schiff, A.B. McMurphy, S.A. Jasser, M.N. Younes, D. Doan, O.G. Yigitbasi, S. Kim, G.
753
Zhou, M. Mandal, B.N. Bekele, F.C. Holsinger, S.I. Sherman, S.-C. Yeung, A.K. El-Naggar,
754
J.N. Myers, Epidermal growth factor receptor (EGFR) is overexpressed in anaplastic thyroid
755
cancer, and the EGFR inhibitor gefitinib inhibits the growth of anaplastic thyroid cancer.,
756
Clin. Cancer Res. 10 (2004) 8594–8602. doi:10.1158/1078-0432.CCR-04-0690.
757
[94] E. Kim, M. Matsuse, V. Saenko, K. Suzuki, A. Ohtsuru, N. Mitsutake, S. Yamashita, Imatinib
758
enhances docetaxel-induced apoptosis through inhibition of nuclear factor-kappaB activation
759
in
760
doi:10.1089/thy.2011.0380.
anaplastic
thyroid
carcinoma
cells.,
Thyroid.
22
(2012)
717–724.
761
[95] J. Kurebayashi, S. Okubo, Y. Yamamoto, M. Ikeda, K. Tanaka, T. Otsuki, H. Sonoo, Additive
762
antitumor effects of gefitinib and imatinib on anaplastic thyroid cancer cells., Cancer
763
Chemother. Pharmacol. 58 (2006) 460–470. doi:10.1007/s00280-006-0185-x.
31
764
[96] N.A. Pennell, G.H. Daniels, R.I. Haddad, D.S. Ross, T. Evans, L.J. Wirth, P.H. Fidias, J.S.
765
Temel, S. Gurubhagavatula, R.S. Heist, J.R. Clark, T.J. Lynch, A phase II study of gefitinib in
766
patients
767
doi:10.1089/thy.2007.0120.
with
advanced
thyroid
cancer.,
Thyroid.
18
(2008)
317–323.
768
[97] V. Gunda, B. Gigliotti, T. Ashry, D. Ndishabandi, M. McCarthy, Z. Zhou, S. Amin, K.E. Lee,
769
T. Stork, L. Wirth, G.J. Freeman, A. Alessandrini, S. Parangi, Anti-PD-1/PD-L1 therapy
770
augments lenvatinib’s efficacy by favorably altering the immune microenvironment of murine
771
anaplastic thyroid cancer., Int. J. Cancer. 144 (2019) 2266–2278. doi:10.1002/ijc.32041.
772
[98] S.M. Ferrari, G. Bocci, T. Di Desidero, G. Elia, I. Ruffilli, F. Ragusa, P. Orlandi, S.R. Paparo,
773
A. Patrizio, S. Piaggi, C. La Motta, S. Ulisse, E. Baldini, G. Materazzi, P. Miccoli, A.
774
Antonelli, P. Fallahi, Lenvatinib exhibits antineoplastic activity in anaplastic thyroid cancer in
775
vitro and in vivo., Oncol. Rep. 39 (2018) 2225–2234. doi:10.3892/or.2018.6306.
776
[99] M. Schlumberger, M. Tahara, L.J. Wirth, B. Robinson, M.S. Brose, R. Elisei, M.A. Habra, K.
777
Newbold, M.H. Shah, A.O. Hoff, A.G. Gianoukakis, N. Kiyota, M.H. Taylor, S.-B. Kim,
778
M.K. Krzyzanowska, C.E. Dutcus, B. de las Heras, J. Zhu, S.I. Sherman, Lenvatinib versus
779
placebo in radioiodine-refractory thyroid cancer., N. Engl. J. Med. 372 (2015) 621–630.
780
doi:10.1056/NEJMoa1406470.
781
[100] A. Coxon, J. Bready, S. Kaufman, J. Estrada, T. Osgood, J. Canon, L. Wang, R. Radinsky, R.
782
Kendall, P. Hughes, A. Polverino, Anti-tumor activity of motesanib in a medullary thyroid
783
cancer model., J. Endocrinol. Invest. 35 (2012) 181–190. doi:10.3275/7609.
784
[101] S.I. Sherman, L.J. Wirth, J.-P. Droz, M. Hofmann, L. Bastholt, R.G. Martins, L. Licitra, M.J.
785
Eschenberg, Y.-N. Sun, T. Juan, D.E. Stepan, M.J. Schlumberger, Motesanib Diphosphate in
786
Progressive Differentiated Thyroid Cancer, N. Engl. J. Med. 359 (2008) 31–42.
787
doi:10.1056/NEJMoa075853.
788
[102] D. Chan, Y. Zheng, J.W. Tyner, W.J. Chng, W.W. Chien, S. Gery, G. Leong, G.D.
32
789
Braunstein, H.P. Koeffler, Belinostat and panobinostat (HDACI): in vitro and in vivo studies
790
in
791
doi:10.1007/s00432-013-1465-6.
thyroid
cancer.,
J.
Cancer
Res.
Clin.
Oncol.
139
(2013)
1507–1514.
792
[103] C.R. Isham, B.C. Netzel, A.R. Bossou, D. Milosevic, K.W. Cradic, S.K. Grebe, K.C. Bible,
793
Development and characterization of a differentiated thyroid cancer cell line resistant to
794
VEGFR-targeted kinase inhibitors., J. Clin. Endocrinol. Metab. 99 (2014) E936-943.
795
doi:10.1210/jc.2013-2658.
796
[104] K.C. Bible, V.J. Suman, J.R. Molina, R.C. Smallridge, W.J. Maples, M.E. Menefee, J. Rubin,
797
K. Sideras, J.C. Morris, B. McIver, J.K. Burton, K.P. Webster, C. Bieber, A.M. Traynor, P.J.
798
Flynn, B.C. Goh, H. Tang, S.P. Ivy, C. Erlichman, Efficacy of pazopanib in progressive,
799
radioiodine-refractory, metastatic differentiated thyroid cancers: Results of a phase 2
800
consortium study, Lancet Oncol. 11 (2010) 962–972. doi:10.1016/S1470-2045(10)70203-5.
801
[105] K.C. Bible, V.J. Suman, M.E. Menefee, R.C. Smallridge, J.R. Molina, W.J. Maples, N.J.
802
Karlin, A.M. Traynor, P. Kumar, B.C. Goh, W.-T. Lim, A.R. Bossou, C.R. Isham, K.P.
803
Webster, A.K. Kukla, C. Bieber, J.K. Burton, P. Harris, C. Erlichman, A multiinstitutional
804
phase 2 trial of pazopanib monotherapy in advanced anaplastic thyroid cancer., J. Clin.
805
Endocrinol. Metab. 97 (2012) 3179–3184. doi:10.1210/jc.2012-1520.
806
[106] K.C. Bible, V.J. Suman, J.R. Molina, R.C. Smallridge, W.J. Maples, M.E. Menefee, J. Rubin,
807
N. Karlin, K. Sideras, J.C. Morris, B. McIver, I. Hay, V. Fatourechi, J.K. Burton, K.P.
808
Webster, C. Bieber, A.M. Traynor, P.J. Flynn, B. Cher Goh, C.R. Isham, P. Harris, C.
809
Erlichman, and the M.P. 2 C. Endocrine Malignancies Disease Oriented Group, Mayo Clinic
810
Cancer Center, A multicenter phase 2 trial of pazopanib in metastatic and progressive
811
medullary thyroid carcinoma: MC057H., J. Clin. Endocrinol. Metab. 99 (2014) 1687–1693.
812
doi:10.1210/jc.2013-3713.
813
[107] D.N. Hayes, A.S. Lucas, T. Tanvetyanon, M.K. Krzyzanowska, C.H. Chung, B.A. Murphy, J.
33
814
Gilbert, R. Mehra, D.T. Moore, A. Sheikh, J. Hoskins, M.C. Hayward, N. Zhao, W.
815
O’Connor, K.E. Weck, R.B. Cohen, E.E.W. Cohen, Phase II efficacy and pharmacogenomic
816
study of selumetinib (AZD6244; ARRY-142886) in iodine-131 refractory papillary thyroid
817
carcinoma with or without follicular elements, Clin. Cancer Res. 18 (2012) 2056–2065.
818
doi:10.1158/1078-0432.CCR-11-0563.
819
[108] M.H. Lee, S.E. Lee, D.W. Kim, M.J. Ryu, S.J. Kim, S.J. Kim, Y.K. Kim, J.H. Park, G.R.
820
Kweon, J.M. Kim, J.U. Lee, V. De Falco, Y.S. Jo, M. Shong, Mitochondrial localization and
821
regulation of BRAFV600E in thyroid cancer: a clinically used RAF inhibitor is unable to
822
block the mitochondrial activities of BRAFV600E., J. Clin. Endocrinol. Metab. 96 (2011)
823
E19-30. doi:10.1210/jc.2010-1071.
824
[109] F. Carlomagno, S. Anaganti, T. Guida, G. Salvatore, G. Troncone, S.M. Wilhelm, M. Santoro,
825
BAY 43-9006 inhibition of oncogenic RET mutants., J. Natl. Cancer Inst. 98 (2006) 326–334.
826
doi:10.1093/jnci/djj069.
827
[110] J. Abdulghani, P. Gokare, J.-N. Gallant, D. Dicker, T. Whitcomb, T. Cooper, J. Liao, J. Derr,
828
J. Liu, D. Goldenberg, N.K. Finnberg, W.S. El-Deiry, Sorafenib and Quinacrine Target
829
Anti-Apoptotic Protein MCL1: A Poor Prognostic Marker in Anaplastic Thyroid Cancer
830
(ATC)., Clin. Cancer Res. 22 (2016) 6192–6203. doi:10.1158/1078-0432.CCR-15-2792.
831
[111] H. Yi, T. Ye, M. Ge, M. Yang, L. Zhang, S. Jin, X. Ye, B. Long, L. Li, Inhibition of
832
autophagy enhances the targeted therapeutic effect of sorafenib in thyroid cancer., Oncol. Rep.
833
39 (2018) 711–720. doi:10.3892/or.2017.6118.
834
[112] Y. Ke, C. Xiang, Transferrin receptor-targeted HMSN for sorafenib delivery in refractory
835
differentiated thyroid cancer therapy., Int. J. Nanomedicine. 13 (2018) 8339–8354.
836
doi:10.2147/IJN.S187240.
837
[113] S. Kim, Y.D. Yazici, G. Calzada, Z.-Y. Wang, M.N. Younes, S.A. Jasser, A.K. El-Naggar,
838
J.N. Myers, Sorafenib inhibits the angiogenesis and growth of orthotopic anaplastic thyroid
34
839
carcinoma xenografts in nude mice., Mol. Cancer Ther. 6 (2007) 1785–1792.
840
doi:10.1158/1535-7163.MCT-06-0595.
841
[114] Y.C. Henderson, S.-H. Ahn, Y. Kang, G.L. Clayman, Sorafenib potently inhibits papillary
842
thyroid carcinomas harboring RET/PTC1 rearrangement., Clin. Cancer Res. 14 (2008)
843
4908–4914. doi:10.1158/1078-0432.CCR-07-1772.
844
[115] R.W. Alfano, S.H. Leppla, S. Liu, T.H. Bugge, J.M. Ortiz, T.C. Lairmore, N.S. Duesbery, I.C.
845
Mitchell, F. Nwariaku, A.E. Frankel, Inhibition of tumor angiogenesis by the matrix
846
metalloproteinase-activated anthrax lethal toxin in an orthotopic model of anaplastic thyroid
847
carcinoma., Mol. Cancer Ther. 9 (2010) 190–201. doi:10.1158/1535-7163.MCT-09-0694.
848
[116] M.S. Brose, C.M. Nutting, B. Jarzab, R. Elisei, S. Siena, L. Bastholt, C. de la Fouchardiere, F.
849
Pacini, R. Paschke, Y.K. Shong, S.I. Sherman, J.W.A. Smit, J. Chung, C. Kappeler, C. Peña, I.
850
Molnár,
851
iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised,
852
double-blind,
853
doi:10.1016/S0140-6736(14)60421-9.
M.J.
Schlumberger,
phase
3
trial.,
DECISION
Lancet
investigators,
(London,
Sorafenib
England).
384
in
(2014)
radioactive
319–328.
854
[117] W. Wang, J. Zhou, L. Zhao, S. Chen, Combination of SL327 and Sunitinib Malate leads to an
855
additive anti-cancer effect in doxorubicin resistant thyroid carcinoma cells., Biomed.
856
Pharmacother. 88 (2017) 985–990. doi:10.1016/j.biopha.2017.01.135.
857
[118] S. Broutin, N. Ameur, L. Lacroix, T. Robert, B. Petit, N. Oumata, M. Talbot, B. Caillou, M.
858
Schlumberger, C. Dupuy, J.-M. Bidart, Identification of soluble candidate biomarkers of
859
therapeutic response to sunitinib in medullary thyroid carcinoma in preclinical models., Clin.
860
Cancer Res. 17 (2011) 2044–2054. doi:10.1158/1078-0432.CCR-10-2041.
861
[119] W.-J. Jeong, J.-H. Mo, M.W. Park, I.J. Choi, S.-Y. An, E.-H. Jeon, S.-H. Ahn, Sunitinib
862
inhibits papillary thyroid carcinoma with RET/PTC rearrangement but not BRAF mutation.,
863
Cancer Biol. Ther. 12 (2011) 458–465. doi:10.4161/cbt.12.5.16303.
35
864
[120] T. Di Desidero, A. Fioravanti, P. Orlandi, B. Canu, R. Giannini, N. Borrelli, S. Man, P. Xu, G.
865
Fontanini, F. Basolo, R.S. Kerbel, G. Francia, R. Danesi, G. Bocci, Antiproliferative and
866
proapoptotic activity of sunitinib on endothelial and anaplastic thyroid cancer cells via
867
inhibition of Akt and ERK1/2 phosphorylation and by down-regulation of cyclin-D1., J. Clin.
868
Endocrinol. Metab. 98 (2013) E1465-73. doi:10.1210/jc.2013-1364.
869
[121] A. Lopergolo, V. Nicolini, E. Favini, L. Dal Bo, M. Tortoreto, D. Cominetti, M. Folini, P.
870
Perego, V. Castiglioni, E. Scanziani, M.G. Borrello, N. Zaffaroni, G. Cassinelli, C. Lanzi,
871
Synergistic cooperation between sunitinib and cisplatin promotes apoptotic cell death in
872
human medullary thyroid cancer., J. Clin. Endocrinol. Metab. 99 (2014) 498–509.
873
doi:10.1210/jc.2013-2574.
874
[122] L.L. Carr, D.A. Mankoff, B.H. Goulart, K.D. Eaton, P.T. Capell, E.M. Kell, J.E. Bauman,
875
R.G. Martins, Phase II study of daily sunitinib in FDG-PET-positive, iodine-refractory
876
differentiated thyroid cancer and metastatic medullary carcinoma of the thyroid with
877
functional
878
doi:10.1158/1078-0432.CCR-10-0994.
imaging
correlation,
Clin.
Cancer
Res.
16
(2010)
5260–5268.
879
[123] A. Bikas, P. Kundra, S. Desale, M. Mete, K. O’Keefe, B.G. Clark, L. Wray, R. Gandhi, C.
880
Barett, J.S. Jelinek, J.A. Wexler, L. Wartofsky, K.D. Burman, Phase 2 clinical trial of
881
sunitinib as adjunctive treatment in patients with advanced differentiated thyroid cancer, Eur.
882
J. Endocrinol. 174 (2016) 373–380. doi:10.1530/EJE-15-0930.
883
[124] D. Starenki, J.-I. Park, Mitochondria-targeted nitroxide, Mito-CP, suppresses medullary
884
thyroid carcinoma cell survival in vitro and in vivo., J. Clin. Endocrinol. Metab. 98 (2013)
885
1529–1540. doi:10.1210/jc.2012-3671.
886
[125] F.A. Rashid, Q. Mansoor, S. Tabassum, H. Aziz, W.O. Arfat, G.E. Naoum, M. Ismail, A.A.
887
Farooqi, Signaling cascades in thyroid cancer: Increasing the armory of archers to hit
888
bullseye., J. Cell. Biochem. 119 (2018) 3798–3808. doi:10.1002/jcb.26620.
36
889
[126] M.A. Walter, M.R. Benz, I.J. Hildebrandt, R.E. Laing, V. Hartung, R.D. Damoiseaux, A.
890
Bockisch, M.E. Phelps, J. Czernin, W.A. Weber, Metabolic imaging allows early prediction of
891
response to vandetanib., J. Nucl. Med. 52 (2011) 231–240. doi:10.2967/jnumed.110.081745.
892
[127] D. Starenki, N.K. Singh, D.R. Jensen, F.C. Peterson, J.-I. Park, Recombinant leukemia
893
inhibitory factor suppresses human medullary thyroid carcinoma cell line xenografts in mice.,
894
Cancer Lett. 339 (2013) 144–151. doi:10.1016/j.canlet.2013.07.006.
895
[128] S. Broutin, F. Commo, L. De Koning, B. Marty-Prouvost, L. Lacroix, M. Talbot, B. Caillou,
896
T. Dubois, A.J. Ryan, C. Dupuy, M. Schlumberger, J.-M. Bidart, Changes in signaling
897
pathways induced by vandetanib in a human medullary thyroid carcinoma model, as analyzed
898
by reverse phase protein array., Thyroid. 24 (2014) 43–51. doi:10.1089/thy.2013.0514.
899
[129] D. Starenki, S.-K. Hong, R. V Lloyd, J.-I. Park, Mortalin (GRP75/HSPA9) upregulation
900
promotes survival and proliferation of medullary thyroid carcinoma cells., Oncogene. 34
901
(2015) 4624–4634. doi:10.1038/onc.2014.392.
902
[130] D. Starenki, S.-K. Hong, P.-K. Wu, J.-I. Park, Vandetanib and cabozantinib potentiate
903
mitochondria-targeted agents to suppress medullary thyroid carcinoma cells., Cancer Biol.
904
Ther. 18 (2017) 473–483. doi:10.1080/15384047.2017.1323594.
905
[131] S. Leboulleux, L. Bastholt, T. Krause, C. de la Fouchardiere, J. Tennvall, A. Awada, J.M.
906
Gómez, F. Bonichon, L. Leenhardt, C. Soufflet, M. Licour, M.J. Schlumberger, Vandetanib in
907
locally advanced or metastatic differentiated thyroid cancer: A randomised, double-blind,
908
phase 2 trial, Lancet Oncol. 13 (2012) 897–905. doi:10.1016/S1470-2045(12)70335-2.
909
[132] S.A. Wells, B.G. Robinson, R.F. Gagel, H. Dralle, J.A. Fagin, M. Santoro, E. Baudin, R.
910
Elisei, B. Jarzab, J.R. Vasselli, J. Read, P. Langmuir, A.J. Ryan, M.J. Schlumberger,
911
Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a
912
randomized, double-blind phase III trial., J. Clin. Oncol. 30 (2012) 134–141.
913
doi:10.1200/JCO.2011.35.5040.
37
914
[133] W. Wang, H. Kang, Y. Zhao, I. Min, B. Wyrwas, M. Moore, L. Teng, R. Zarnegar, X. Jiang,
915
T.J. 3rd Fahey, Targeting Autophagy Sensitizes BRAF-Mutant Thyroid Cancer to
916
Vemurafenib., J. Clin. Endocrinol. Metab. 102 (2017) 634–643. doi:10.1210/jc.2016-1999.
917
[134] H. Song, J. Zhang, L. Ning, H. Zhang, D. Chen, X. Jiao, K. Zhang, The MEK1/2 Inhibitor
918
AZD6244 Sensitizes BRAF-Mutant Thyroid Cancer to Vemurafenib., Med. Sci. Monit. 24
919
(2018) 3002–3010. doi:10.12659/MSM.910084.
920
[135] W.-J. Wei, C.-T. Shen, H.-J. Song, Z.-L. Qiu, Q.-Y. Luo, Propranolol sensitizes thyroid
921
cancer cells to cytotoxic effect of vemurafenib., Oncol. Rep. 36 (2016) 1576–1584.
922
doi:10.3892/or.2016.4918.
923
[136] P.M. Sadow, C. Priolo, S. Nanni, F.A. Karreth, M. Duquette, R. Martinelli, A. Husain, J.
924
Clohessy, H. Kutzner, T. Mentzel, C. V Carman, A. Farsetti, E.P. Henske, E. Palescandolo,
925
L.E. Macconaill, S. Chung, G. Fadda, C.P. Lombardi, A.M. De Angelis, O. Durante, J.A.
926
Parker, A. Pontecorvi, H.F. Dvorak, C. Fletcher, P.P. Pandolfi, J. Lawler, C. Nucera, Role of
927
BRAFV600E in the first preclinical model of multifocal infiltrating myopericytoma
928
development and microenvironment., J. Natl. Cancer Inst. 106 (2014) pii: dju182.
929
doi:10.1093/jnci/dju182.
930
[137] K. Tsumagari, Z.Y. Abd Elmageed, A.B. Sholl, E.A. Green, S. Sobti, A.R. Khan, A. Kandil,
931
F. Murad, P. Friedlander, A.H. Boulares, E. Kandil, Bortezomib sensitizes thyroid cancer to
932
BRAF inhibitor in vitro and in vivo., Endocr. Relat. Cancer. 25 (2018) 99–109.
933
doi:10.1530/ERC-17-0182.
934
[138] H.-Y. Cha, B.-S. Lee, J.W. Chang, J.K. Park, J.H. Han, Y.-S. Kim, Y.S. Shin, H.K. Byeon,
935
C.-H. Kim, Downregulation of Nrf2 by the combination of TRAIL and Valproic acid induces
936
apoptotic cell death of TRAIL-resistant papillary thyroid cancer cells via suppression of
937
Bcl-xL., Cancer Lett. 372 (2016) 65–74. doi:10.1016/j.canlet.2015.12.016.
938
[139] A.M. Straight, K. Oakley, R. Moores, A.J. Bauer, A. Patel, R.M. Tuttle, J. Jimeno, G.L.
38
939
Francis, Aplidin reduces growth of anaplastic thyroid cancer xenografts and the expression of
940
several
941
doi:10.1007/s00280-005-0014-7.
angiogenic
genes.,
Cancer
Chemother.
Pharmacol.
57
(2006)
7–14.
942
[140] F. Furuya, H. Shimura, H. Suzuki, K. Taki, K. Ohta, K. Haraguchi, T. Onaya, T. Endo, T.
943
Kobayashi, Histone deacetylase inhibitors restore radioiodide uptake and retention in poorly
944
differentiated and anaplastic thyroid cancer cells by expression of the sodium/iodide
945
symporter thyroperoxidase and thyroglobulin., Endocrinology. 145 (2004) 2865–2875.
946
doi:10.1210/en.2003-1258.
947
[141] S.B. Bravo, M.E.R. Garcia-Rendueles, R. Seoane, V. Dosil, J. Cameselle-Teijeiro, L.
948
Lopez-Lazaro, J. Zalvide, F. Barreiro, C.M. Pombo, C. V Alvarez, Plitidepsin has a cytostatic
949
effect in human undifferentiated (anaplastic) thyroid carcinoma., Clin. Cancer Res. 11 (2005)
950
7664–7673. doi:10.1158/1078-0432.CCR-05-0455.
951
[142] E.J. Sherman, M.G. Fury, R.M. Tuttle, R. Ghossein, H. Stambuk, M. Baum, D. Lisa, Y.B. Su,
952
A. Shaha, D.G. Pfister, Phase II study of depsipeptide (DEP) in radioiodine (RAI)-refractory
953
metastatic nonmedullary thyroid carcinoma, J. Clin. Oncol. 27 (2009) e6059–e6059.
954
doi:10.1200/jco.2009.27.15_suppl.6059.
955
[143] Q. Xie, H. Chen, J. Ai, Y.-L. Gao, M.-Y. Geng, J. Ding, Y. Chen, Evaluation of in vitro and in
956
vivo activity of a multityrosine kinase inhibitor, AL3810, against human thyroid cancer., Acta
957
Pharmacol. Sin. 38 (2017) 1533–1542. doi:10.1038/aps.2017.107.
958
[144] Z. Jin, X. Cheng, H. Feng, J. Kuang, W. Yang, C. Peng, B. Shen, W. Qiu, Apatinib Inhibits
959
Angiogenesis Via Suppressing Akt/GSK3β/ANG Signaling Pathway in Anaplastic Thyroid
960
Cancer., Cell. Physiol. Biochem. 44 (2017) 1471–1484. doi:10.1159/000485583.
961
[145] K. Pozo, S. Zahler, K. Ishimatsu, A.M. Carter, R. Telange, C. Tan, S. Wang, R. Pfragner, J.
962
Fujimoto, E.G. Grubbs, M. Takahashi, S.C. Oltmann, J.A. Bibb, Preclinical characterization
963
of tyrosine kinase inhibitor-based targeted therapies for neuroendocrine thyroid cancer.,
39
964
Oncotarget. 9 (2018) 37662–37675. doi:10.18632/oncotarget.26480.
965
[146] V. De Falco, P. Buonocore, M. Muthu, L. Torregrossa, F. Basolo, M. Billaud, J.M. Gozgit, F.
966
Carlomagno, M. Santoro, Ponatinib (AP24534) is a novel potent inhibitor of oncogenic RET
967
mutants associated with thyroid cancer., J. Clin. Endocrinol. Metab. 98 (2013) E811-819.
968
doi:10.1210/jc.2012-2672.
969
[147] C. Mirantes, M.A. Dosil, N. Eritja, I. Felip, S. Gatius, M. Santacana, X. Matias-Guiu, X.
970
Dolcet, Effects of the multikinase inhibitors Sorafenib and Regorafenib in PTEN deficient
971
neoplasias., Eur. J. Cancer. 63 (2016) 74–87. doi:10.1016/j.ejca.2016.04.019.
972
[148] F. Liotti, M. De Pizzol, M. Allegretti, N. Prevete, R.M. Melillo, Multiple anti-tumor effects of
973
Reparixin
on
thyroid
974
doi:10.18632/oncotarget.16412.
cancer.,
Oncotarget.
8
(2017)
35946–35961.
975
[149] Z. Meng, N. Mitsutake, M. Nakashima, D. Starenki, M. Matsuse, S. Takakura, H. Namba, V.
976
Saenko, K. Umezawa, A. Ohtsuru, S. Yamashita, Dehydroxymethylepoxyquinomicin, a novel
977
nuclear Factor-kappaB inhibitor, enhances antitumor activity of taxanes in anaplastic thyroid
978
cancer cells., Endocrinology. 149 (2008) 5357–5365. doi:10.1210/en.2008-0279.
979
[150] D. V Starenki, H. Namba, V.A. Saenko, A. Ohtsuru, S. Maeda, K. Umezawa, S. Yamashita,
980
Induction of thyroid cancer cell apoptosis by a novel nuclear factor kappaB inhibitor,
981
dehydroxymethylepoxyquinomicin.,
982
doi:10.1158/1078-0432.CCR-04-0463.
Clin.
Cancer
Res.
10
(2004)
6821–6829.
983
[151] W. Zhu, Y. Ou, Y. Li, R. Xiao, M. Shu, Y. Zhou, J. Xie, S. He, P. Qiu, G. Yan, A
984
small-molecule triptolide suppresses angiogenesis and invasion of human anaplastic thyroid
985
carcinoma cells via down-regulation of the nuclear factor-kappa B pathway., Mol. Pharmacol.
986
75 (2009) 812–819. doi:10.1124/mol.108.052605.
987
[152] W. Zhu, S. He, Y. Li, P. Qiu, M. Shu, Y. Ou, Y. Zhou, T. Leng, J. Xie, X. Zheng, D. Xu, X.
988
Su, G. Yan, Anti-angiogenic activity of triptolide in anaplastic thyroid carcinoma is mediated
40
989
by targeting vascular endothelial and tumor cells., Vascul. Pharmacol. 52 (2010) 46–54.
990
doi:10.1016/j.vph.2009.10.006.
991
[153] S. Li, D. Zhang, S. Sheng, H. Sun, Targeting thyroid cancer with acid-triggered release of
992
doxorubicin from silicon dioxide nanoparticles., Int. J. Nanomedicine. 12 (2017) 5993–6003.
993
doi:10.2147/IJN.S137335.
994
[154] L. Kucerova, L. Feketeova, Z. Kozovska, M. Poturnajova, M. Matuskova, R. Nencka, P.
995
Babal, In vivo 5FU-exposed human medullary thyroid carcinoma cells contain a
996
chemoresistant CD133+ tumor-initiating cell subset., Thyroid. 24 (2014) 520–532.
997
doi:10.1089/thy.2013.0277.
998
[155] L.-M. Tseng, P.-I. Huang, Y.-R. Chen, Y.-C. Chen, Y.-C. Chou, Y.-W. Chen, Y.-L. Chang,
999
H.-S. Hsu, Y.-T. Lan, K.-H. Chen, C.-W. Chi, S.-H. Chiou, D.-M. Yang, C.-H. Lee, Targeting
1000
signal transducer and activator of transcription 3 pathway by cucurbitacin I diminishes
1001
self-renewing and radiochemoresistant abilities in thyroid cancer-derived CD133+ cells., J.
1002
Pharmacol. Exp. Ther. 341 (2012) 410–423. doi:10.1124/jpet.111.188730.
1003
[156] J. Park, W.G. Kim, L. Zhao, K. Enomoto, M. Willingham, S.-Y. Cheng, Metformin blocks
1004
progression of obesity-activated thyroid cancer in a mouse model., Oncotarget. 7 (2016)
1005
34832–34844. doi:10.18632/oncotarget.8989.
1006
[157] S. Park, M.C. Willingham, J. Qi, S.-Y. Cheng, Metformin and JQ1 synergistically inhibit
1007
obesity-activated
thyroid
1008
doi:10.1530/ERC-18-0071.
cancer.,
Endocr.
Relat.
Cancer.
25
(2018)
865–877.
1009
[158] C.-T. Shen, W.-J. Wei, Z.-L. Qiu, H.-J. Song, X.-Y. Zhang, Z.-K. Sun, Q.-Y. Luo, Metformin
1010
reduces glycometabolism of papillary thyroid carcinoma in vitro and in vivo., J. Mol.
1011
Endocrinol. 58 (2017) 15–23. doi:10.1530/JME-16-0134.
1012
[159] J.W.-C. Chang, K.-Y. Yeh, Y.-C. Shen, J.-J. Hsieh, C.-K. Chuang, S.-K. Liao, L.-H. Tsai,
1013
C.-H. Wang, Production of multiple cytokines and induction of cachexia in athymic nude
41
1014
mice by a new anaplastic thyroid carcinoma cell line., J. Endocrinol. 179 (2003) 387–394.
1015
doi:10.1677/joe.0.1790387.
1016
[160] J.W. Park, C.R. Han, L. Zhao, M.C. Willingham, S. Cheng, Inhibition of STAT3 activity
1017
delays obesity-induced thyroid carcinogenesis in a mouse model., Endocr. Relat. Cancer. 23
1018
(2016) 53–63. doi:10.1530/ERC-15-0417.
1019
[161] M.N. Younes, Y.D. Yazici, S. Kim, S.A. Jasser, A.K. El-Naggar, J.N. Myers, Dual epidermal
1020
growth factor receptor and vascular endothelial growth factor receptor inhibition with
1021
NVP-AEE788 for the treatment of aggressive follicular thyroid cancer., Clin. Cancer Res. 12
1022
(2006) 3425–3434. doi:10.1158/1078-0432.CCR-06-0793.
1023
[162] J.P. Couto, A. Almeida, L. Daly, M. Sobrinho-Simoes, J.F. Bromberg, P. Soares, AZD1480
1024
blocks growth and tumorigenesis of RET- activated thyroid cancer cell lines., PLoS One. 7
1025
(2012) e46869. doi:10.1371/journal.pone.0046869.
1026
[163] L. Zhang, M. Boufraqech, R. Lake, E. Kebebew, Carfilzomib potentiates CUDC-101-induced
1027
apoptosis
in
anaplastic
thyroid
1028
doi:10.18632/oncotarget.7760.
cancer.,
Oncotarget.
7
(2016)
16517–16528.
1029
[164] L. Zhang, Y. Zhang, A. Mehta, M. Boufraqech, S. Davis, J. Wang, Z. Tian, Z. Yu, M.B.
1030
Boxer, J.A. Kiefer, J.A. Copland, R.C. Smallridge, Z. Li, M. Shen, E. Kebebew, Dual
1031
inhibition of HDAC and EGFR signaling with CUDC-101 induces potent suppression of
1032
tumor growth and metastasis in anaplastic thyroid cancer., Oncotarget. 6 (2015) 9073–9085.
1033
doi:10.18632/oncotarget.3268.
1034 1035
[165] S. Ezzat, P. Huang, A. Dackiw, S.L. Asa, Dual inhibition of RET and FGFR4 restrains medullary thyroid cancer cell growth., Clin. Cancer Res. 11 (2005) 1336–1341.
1036
[166] R. St Bernard, L. Zheng, W. Liu, D. Winer, S.L. Asa, S. Ezzat, Fibroblast growth factor
1037
receptors as molecular targets in thyroid carcinoma., Endocrinology. 146 (2005) 1145–1153.
1038
doi:10.1210/en.2004-1134.
42
1039
[167] S.-C. Hua, T.-C. Chang, H.-R. Chen, C.-H. Lu, Y.-W. Liu, S.-H. Chen, H.-I. Yu, Y.-P. Chang,
1040
Y.-R. Lee, Reversine, a 2,6-disubstituted purine, as an anti-cancer agent in differentiated and
1041
undifferentiated
1042
doi:10.1007/s11095-012-0727-3.
thyroid
cancer
cells.,
Pharm.
Res.
29
(2012)
1990–2005.
1043
[168] M. Yalcin, E. Dyskin, L. Lansing, D.J. Bharali, S.S. Mousa, A. Bridoux, A.H. Hercbergs,
1044
H.Y. Lin, F.B. Davis, G. V Glinsky, A. Glinskii, J. Ma, P.J. Davis, S.A. Mousa,
1045
Tetraiodothyroacetic acid (tetrac) and nanoparticulate tetrac arrest growth of medullary
1046
carcinoma of the thyroid., J. Clin. Endocrinol. Metab. 95 (2010) 1972–1980.
1047
doi:10.1210/jc.2009-1926.
1048
[169] W.-J. Wei, Z.-K. Sun, C.-T. Shen, H.-J. Song, X.-Y. Zhang, Z.-L. Qiu, Q.-Y. Luo, Obatoclax
1049
and LY3009120 Efficiently Overcome Vemurafenib Resistance in Differentiated Thyroid
1050
Cancer., Theranostics. 7 (2017) 987–1001. doi:10.7150/thno.17322.
1051
[170] D. Champa, M.A. Russo, X.-H. Liao, S. Refetoff, R.A. Ghossein, A. Di Cristofano, Obatoclax
1052
overcomes resistance to cell death in aggressive thyroid carcinomas by countering Bcl2a1 and
1053
Mcl1 overexpression., Endocr. Relat. Cancer. 21 (2014) 755–767. doi:10.1530/ERC-14-0268.
1054
[171] D. Champa, A. Orlacchio, B. Patel, M. Ranieri, A.A. Shemetov, V. V Verkhusha, A.M.
1055
Cuervo, A. Di Cristofano, Obatoclax kills anaplastic thyroid cancer cells by inducing
1056
lysosome
1057
doi:10.18632/oncotarget.9121.
neutralization
and
necrosis.,
Oncotarget.
7
(2016)
34453–34471.
1058
[172] A. Antonelli, G. Bocci, P. Fallahi, C. La Motta, S.M. Ferrari, C. Mancusi, A. Fioravanti, T. Di
1059
Desidero, S. Sartini, A. Corti, S. Piaggi, G. Materazzi, C. Spinelli, G. Fontanini, R. Danesi, F.
1060
Da Settimo, P. Miccoli, CLM3, a multitarget tyrosine kinase inhibitor with antiangiogenic
1061
properties, is active against primary anaplastic thyroid cancer in vitro and in vivo., J. Clin.
1062
Endocrinol. Metab. 99 (2014) E572-81. doi:10.1210/jc.2013-2321.
1063
[173] A. Antonelli, G. Bocci, C. La Motta, S.M. Ferrari, P. Fallahi, A. Fioravanti, S. Sartini, M.
43
1064
Minuto, S. Piaggi, A. Corti, G. Ali, P. Berti, G. Fontanini, R. Danesi, F. Da Settimo, P.
1065
Miccoli, Novel pyrazolopyrimidine derivatives as tyrosine kinase inhibitors with antitumoral
1066
activity in vitro and in vivo in papillary dedifferentiated thyroid cancer., J. Clin. Endocrinol.
1067
Metab. 96 (2011) E288-96. doi:10.1210/jc.2010-1905.
1068
[174] A.K. Samadi, R. Mukerji, A. Shah, B.N. Timmermann, M.S. Cohen, A novel RET inhibitor
1069
with potent efficacy against medullary thyroid cancer in vivo., Surgery. 148 (2010) 1228–36;
1070
discussion 1236. doi:10.1016/j.surg.2010.09.026.
1071
[175] S.M. Cohen, R. Mukerji, B.N. Timmermann, A.K. Samadi, M.S. Cohen, A novel combination
1072
of withaferin A and sorafenib shows synergistic efficacy against both papillary and anaplastic
1073
thyroid cancers., Am. J. Surg. 204 (2012) 891–895. doi:10.1016/j.amjsurg.2012.07.027.
1074
[176] B.H. Park, K.H. Jung, M.K. Son, J.H. Seo, H.-S. Lee, J.-H. Lee, S.-S. Hong, Antitumor
1075
activity of Pulsatilla koreana extract in anaplastic thyroid cancer via apoptosis and
1076
anti-angiogenesis., Mol. Med. Rep. 7 (2013) 26–30. doi:10.3892/mmr.2012.1166.
1077
[177] Y. Zhou, C. Zhao, S. Gery, G.D. Braunstein, R. Okamoto, R. Alvarez, S.A. Miles, N.B. Doan,
1078
J.W. Said, J. Gu, H. Phillip Koeffler, Off-target effects of c-MET inhibitors on thyroid cancer
1079
cells., Mol. Cancer Ther. 13 (2014) 134–143. doi:10.1158/1535-7163.MCT-13-0187.
1080
[178] L.M. Kelly, G. Barila, P. Liu, V.N. Evdokimova, S. Trivedi, F. Panebianco, M. Gandhi, S.E.
1081
Carty, S.P. Hodak, J. Luo, S. Dacic, Y.P. Yu, M.N. Nikiforova, R.L. Ferris, D.L. Altschuler,
1082
Y.E. Nikiforov, Identification of the transforming STRN-ALK fusion as a potential
1083
therapeutic target in the aggressive forms of thyroid cancer., Proc. Natl. Acad. Sci. U. S. A.
1084
111 (2014) 4233–4238. doi:10.1073/pnas.1321937111.
1085
[179] A. Mehta, L. Zhang, M. Boufraqech, Y. Zhang, D. Patel, M. Shen, E. Kebebew, Carfilzomib
1086
is an effective anticancer agent in anaplastic thyroid cancer., Endocr. Relat. Cancer. 22 (2015)
1087
319–329. doi:10.1530/ERC-14-0510.
1088
[180] C. Nucera, M.A. Nehs, S.S. Nagarkatti, P.M. Sadow, M. Mekel, A.H. Fischer, P.S. Lin, G.E.
44
1089
Bollag, J. Lawler, R.A. Hodin, S. Parangi, Targeting BRAFV600E with PLX4720 displays
1090
potent antimigratory and anti-invasive activity in preclinical models of human thyroid cancer.,
1091
Oncologist. 16 (2011) 296–309. doi:10.1634/theoncologist.2010-0317.
1092
[181] D.G. McFadden, A. Vernon, P.M. Santiago, R. Martinez-McFaline, A. Bhutkar, D.M.
1093
Crowley, M. McMahon, P.M. Sadow, T. Jacks, p53 constrains progression to anaplastic
1094
thyroid carcinoma in a Braf-mutant mouse model of papillary thyroid cancer., Proc. Natl.
1095
Acad. Sci. U. S. A. 111 (2014) E1600-1609. doi:10.1073/pnas.1404357111.
1096
[182] V. Gunda, O. Bucur, J. Varnau, P. Vanden Borre, M.J. Bernasconi, R. Khosravi-Far, S.
1097
Parangi, Blocks to thyroid cancer cell apoptosis can be overcome by inhibition of the MAPK
1098
and PI3K/AKT pathways., Cell Death Dis. 5 (2014) e1104. doi:10.1038/cddis.2014.78.
1099
[183] V. Gunda, B. Gigliotti, D. Ndishabandi, T. Ashry, M. McCarthy, Z. Zhou, S. Amin, G.J.
1100
Freeman, A. Alessandrini, S. Parangi, Combinations of BRAF inhibitor and anti-PD-1/PD-L1
1101
antibody improve survival and tumour immunity in an immunocompetent model of orthotopic
1102
murine
1103
doi:10.1038/s41416-018-0296-2.
anaplastic
thyroid
cancer.,
Br.
J.
Cancer.
119
(2018)
1223–1232.
1104
[184] V. Gunda, K.A. Sarosiek, E. Brauner, Y.S. Kim, S. Amin, Z. Zhou, A. Letai, S. Parangi,
1105
Inhibition of MAPKinase pathway sensitizes thyroid cancer cells to ABT-737 induced
1106
apoptosis., Cancer Lett. 395 (2017) 1–10. doi:10.1016/j.canlet.2017.02.028.
1107
[185] M. Zou, E.Y. Baitei, R.A. Al-Rijjal, R.S. Parhar, F.A. Al-Mohanna, S. Kimura, C. Pritchard,
1108
H.A. Binessa, A.S. Alzahrani, H.H. Al-Khalaf, A. Hawwari, M. Akhtar, A.M. Assiri, B.F.
1109
Meyer, Y. Shi, TSH overcomes Braf(V600E)-induced senescence to promote tumor
1110
progression via downregulation of p53 expression in papillary thyroid cancer., Oncogene. 35
1111
(2016) 1909–1918. doi:10.1038/onc.2015.253.
1112
[186] M.A. Nehs, C. Nucera, S.S. Nagarkatti, P.M. Sadow, D. Morales-Garcia, R.A. Hodin, S.
1113
Parangi, Late intervention with anti-BRAF(V600E) therapy induces tumor regression in an
45
1114
orthotopic mouse model of human anaplastic thyroid cancer., Endocrinology. 153 (2012)
1115
985–994. doi:10.1210/en.2011-1519.
1116
[187] C. Nucera, A. Porrello, Z.A. Antonello, M. Mekel, M.A. Nehs, T.J. Giordano, D. Gerald, L.E.
1117
Benjamin, C. Priolo, E. Puxeddu, S. Finn, B. Jarzab, R.A. Hodin, A. Pontecorvi, V. Nose, J.
1118
Lawler, S. Parangi, B-Raf(V600E) and thrombospondin-1 promote thyroid cancer
1119
progression.,
1120
doi:10.1073/pnas.1004934107.
Proc.
Natl.
Acad.
Sci.
U.
S.
A.
107
(2010)
10649–10654.
1121
[188] M. Zou, E.Y. Baitei, H.A. BinEssa, F.A. Al-Mohanna, R.S. Parhar, R. St-Arnaud, S. Kimura,
1122
C. Pritchard, A.S. Alzahrani, A.M. Assiri, B.F. Meyer, Y. Shi, Cyp24a1 Attenuation Limits
1123
Progression of Braf(V600E) -Induced Papillary Thyroid Cancer Cells and Sensitizes Them to
1124
BRAF(V600E)
1125
doi:10.1158/0008-5472.CAN-16-2066.
Inhibitor
PLX4720.,
Cancer
Res.
77
(2017)
2161–2172.
1126
[189] P. Salerno, V. De Falco, A. Tamburrino, T.C. Nappi, G. Vecchio, R.E. Schweppe, G. Bollag,
1127
M. Santoro, G. Salvatore, Cytostatic activity of adenosine triphosphate-competitive kinase
1128
inhibitors in BRAF mutant thyroid carcinoma cells., J. Clin. Endocrinol. Metab. 95 (2010)
1129
450–455. doi:10.1210/jc.2009-0373.
1130
[190] K. Ohta, T. Endo, K. Haraguchi, J.M. Hershman, T. Onaya, Ligands for peroxisome
1131
proliferator-activated receptor gamma inhibit growth and induce apoptosis of human papillary
1132
thyroid
1133
doi:10.1210/jcem.86.5.7493.
carcinoma
cells.,
J.
Clin.
Endocrinol.
Metab.
86
(2001)
2170–2177.
1134
[191] Y. Kato, H. Ying, L. Zhao, F. Furuya, O. Araki, M.C. Willingham, S.-Y. Cheng,
1135
PPARgamma insufficiency promotes follicular thyroid carcinogenesis via activation of the
1136
nuclear
1137
doi:10.1038/sj.onc.1209299.
1138
factor-kappaB
signaling
pathway.,
Oncogene.
25
(2006)
2736–2747.
[192] S.M. Morris, A.J. Mhyre, S.S. Carmack, C.H. Myers, C. Burns, W. Ye, M. Ferrer, J.M. Olson,
46
1139
R.A. Klinghoffer, A modified gene trap approach for improved high-throughput cancer drug
1140
discovery., Oncogene. 37 (2018) 4226–4238. doi:10.1038/s41388-018-0274-4.
1141
[193] A. Vivaldi, R. Ciampi, A. Tacito, E. Molinaro, L. Agate, V. Bottici, A. Pinchera, P. Collecchi,
1142
R. Elisei, Celecoxib, a cyclooxygenase-2 inhibitor, potentiates the chemotherapic effect of
1143
vinorelbine in the medullary thyroid cancer TT cell line., Mol. Cell. Endocrinol. 355 (2012)
1144
41–48. doi:10.1016/j.mce.2012.01.015.
1145
[194] V. Quidville, N. Segond, A. Tebbi, R. Cohen, A. Jullienne, M. Lepoivre, S. Lausson,
1146
Anti-tumoral effect of a celecoxib low dose on a model of human medullary thyroid cancer in
1147
nude mice., Thyroid. 19 (2009) 613–621. doi:10.1089/thy.2008.0194.
1148
[195] C.-H. Wang, Y.-C. Shen, J.-J. Hsieh, K.-Y. Yeh, J.W.-C. Chang, Clodronate alleviates
1149
cachexia and prolongs survival in nude mice xenografted with an anaplastic thyroid carcinoma
1150
cell line., J. Endocrinol. 190 (2006) 415–423. doi:10.1677/joe.1.06490.
1151
[196] D.-M. Yang, H.-C. Teng, K.-H. Chen, M.-L. Tsai, T.-K. Lee, Y.-C. Chou, C.-W. Chi, S.-H.
1152
Chiou, C.-H. Lee, Clodronate-induced cell apoptosis in human thyroid carcinoma is mediated
1153
via the P2 receptor signaling pathway., J. Pharmacol. Exp. Ther. 330 (2009) 613–623.
1154
doi:10.1124/jpet.109.152447.
1155
[197] P.-Y. Salaun, C. Bodet-Milin, E. Frampas, A. Oudoux, C. Sai-Maurel, A. Faivre-Chauvet, J.
1156
Barbet, F. Paris, F. Kraeber-Bodere, Toxicity and efficacy of combined radioimmunotherapy
1157
and bevacizumab in a mouse model of medullary thyroid carcinoma., Cancer. 116 (2010)
1158
1053–1058. doi:10.1002/cncr.24792.
1159
[198] A. Wunderlich, S. Roth, A. Ramaswamy, B.H. Greene, C. Brendel, U. Hinterseher, D.K.
1160
Bartsch, S. Hoffmann, Combined inhibition of cellular pathways as a future therapeutic option
1161
in
1162
doi:10.1007/s12020-012-9665-4.
1163
fatal
anaplastic
thyroid
cancer.,
Endocrine.
42
(2012)
637–646.
[199] A. Wunderlich, M. Fischer, T. Schlosshauer, A. Ramaswamy, B.H. Greene, C. Brendel, D.
47
1164
Doll, D. Bartsch, S. Hoffmann, Evaluation of Aurora kinase inhibition as a new therapeutic
1165
strategy in anaplastic and poorly differentiated follicular thyroid cancer., Cancer Sci. 102
1166
(2011) 762–768. doi:10.1111/j.1349-7006.2011.01853.x.
1167
[200] Y.C. Henderson, Y. Chen, M.J. Frederick, S.Y. Lai, G.L. Clayman, MEK inhibitor
1168
PD0325901 significantly reduces the growth of papillary thyroid carcinoma cells in vitro and
1169
in vivo., Mol. Cancer Ther. 9 (2010) 1968–1976. doi:10.1158/1535-7163.MCT-10-0062.
1170
[201] M.A. Russo, K.S. Kang, A. Di Cristofano, The PLK1 inhibitor GSK461364A is effective in
1171
poorly differentiated and anaplastic thyroid carcinoma cells, independent of the nature of their
1172
driver mutations., Thyroid. 23 (2013) 1284–1293. doi:10.1089/thy.2013.0037.
1173
[202] L. Zhang, Z. Yang, L. Granieri, A. Pasculescu, A. Datti, S.L. Asa, Z. Xu, S. Ezzat,
1174
High-throughput drug library screening identifies colchicine as a thyroid cancer inhibitor.,
1175
Oncotarget. 7 (2016) 19948–19959. doi:10.18632/oncotarget.7890.
1176
[203] Y. Iwase, Y. Maitani, Dual functional octreotide-modified liposomal irinotecan leads to high
1177
therapeutic efficacy for medullary thyroid carcinoma xenografts., Cancer Sci. 103 (2012)
1178
310–316. doi:10.1111/j.1349-7006.2011.02128.x.
1179
[204] R. Levy, M. Grafi-Cohen, Z. Kraiem, Y. Kloog, Galectin-3 promotes chronic activation of
1180
K-Ras and differentiation block in malignant thyroid carcinomas., Mol. Cancer Ther. 9 (2010)
1181
2208–2219. doi:10.1158/1535-7163.MCT-10-0262.
1182
[205] M. Ahmed, S. Uddin, A.R. Hussain, A. Alyan, Z. Jehan, F. Al-Dayel, A. Al-Nuaim, S.
1183
Al-Sobhi, T. Amin, P. Bavi, K.S. Al-Kuraya, FoxM1 and its association with matrix
1184
metalloproteinases (MMP) signaling pathway in papillary thyroid carcinoma., J. Clin.
1185
Endocrinol. Metab. 97 (2012) E1–E13. doi:10.1210/jc.2011-1506.
1186
[206] J.-H. Mo, I.J. Choi, W.-J. Jeong, E.-H. Jeon, S.-H. Ahn, HIF-1alpha and HSP90: target
1187
molecules selected from a tumorigenic papillary thyroid carcinoma cell line., Cancer Sci. 103
1188
(2012) 464–471. doi:10.1111/j.1349-7006.2011.02181.x.
48
1189
[207] M. Ahmed, A.R. Hussain, P. Bavi, S.O. Ahmed, S.S. Al Sobhi, F. Al-Dayel, S. Uddin, K.S.
1190
Al-Kuraya, High prevalence of mTOR complex activity can be targeted using Torin2 in
1191
papillary
1192
doi:10.1093/carcin/bgu051.
thyroid
carcinoma.,
Carcinogenesis.
35
(2014)
1564–1572.
1193
[208] M. Ryder, M. Gild, T.M. Hohl, E. Pamer, J. Knauf, R. Ghossein, J.A. Joyce, J.A. Fagin,
1194
Genetic and pharmacological targeting of CSF-1/CSF-1R inhibits tumor-associated
1195
macrophages and impairs BRAF-induced thyroid cancer progression., PLoS One. 8 (2013)
1196
e54302. doi:10.1371/journal.pone.0054302.
1197
[209] S. Kotian, L. Zhang, M. Boufraqech, K. Gaskins, S.K. Gara, M. Quezado, N. Nilubol, E.
1198
Kebebew, Dual Inhibition of HDAC and Tyrosine Kinase Signaling Pathways with
1199
CUDC-907 Inhibits Thyroid Cancer Growth and Metastases., Clin. Cancer Res. 23 (2017)
1200
5044–5054. doi:10.1158/1078-0432.CCR-17-1043.
1201
[210] J.W. Chang, S.U. Kang, J.W. Choi, Y.S. Shin, S.J. Baek, S.-H. Lee, C.-H. Kim, Tolfenamic
1202
acid induces apoptosis and growth inhibition in anaplastic thyroid cancer: Involvement of
1203
nonsteroidal anti-inflammatory drug-activated gene-1 expression and intracellular reactive
1204
oxygen
1205
doi:10.1016/j.freeradbiomed.2013.10.818.
species
generation.,
Free
Radic.
Biol.
Med.
67
(2014)
115–130.
1206
[211] H.-Y. Che, H.-Y. Guo, X.-W. Si, Q.-Y. You, W.-Y. Lou, PP121, a dual inhibitor of tyrosine
1207
and phosphoinositide kinases, inhibits anaplastic thyroid carcinoma cell proliferation and
1208
migration., Tumour Biol. 35 (2014) 8659–8664. doi:10.1007/s13277-014-2118-3.
1209
[212] N. Burrows, M. Babur, J. Resch, S. Ridsdale, M. Mejin, E.J. Rowling, G. Brabant, K.J.
1210
Williams, GDC-0941 inhibits metastatic characteristics of thyroid carcinomas by targeting
1211
both the phosphoinositide-3 kinase (PI3K) and hypoxia-inducible factor-1alpha (HIF-1alpha)
1212
pathways., J. Clin. Endocrinol. Metab. 96 (2011) E1934-1943. doi:10.1210/jc.2011-1426.
1213
[213] N. Burrows, B. Telfer, G. Brabant, K.J. Williams, Inhibiting the phosphatidylinositide
49
1214
3-kinase pathway blocks radiation-induced metastasis associated with Rho-GTPase and
1215
Hypoxia-inducible
1216
doi:10.1016/j.radonc.2013.06.027.
factor-1
activity.,
Radiother.
Oncol.
108
(2013)
548–553.
1217
[214] S.-F. Lin, J.-D. Lin, C. Hsueh, T.-C. Chou, R.J. Wong, A cyclin-dependent kinase inhibitor,
1218
dinaciclib in preclinical treatment models of thyroid cancer., PLoS One. 12 (2017) e0172315.
1219
doi:10.1371/journal.pone.0172315.
1220
[215] F. Furuya, C. Lu, M.C. Willingham, S.-Y. Cheng, Inhibition of phosphatidylinositol 3-kinase
1221
delays tumor progression and blocks metastatic spread in a mouse model of thyroid cancer.,
1222
Carcinogenesis. 28 (2007) 2451–2458. doi:10.1093/carcin/bgm174.
1223
[216] A.R. Hussain, R. Bu, M. Ahmed, Z. Jehan, S. Beg, S. Al-Sobhi, F. Al-Dayel, A.K. Siraj, S.
1224
Uddin, K.S. Al-Kuraya, Role of X-Linked Inhibitor of Apoptosis as a Prognostic Marker and
1225
Therapeutic Target in Papillary Thyroid Carcinoma., J. Clin. Endocrinol. Metab. 100 (2015)
1226
E974-985. doi:10.1210/jc.2014-4356.
1227
[217] Y. Jiang, S. Hao, W. Tian, B. Gao, X. Zhang, S. Zhang, L. Guo, J. Yan, D. Luo, PI3K
1228
inhibitors IC87114 inhibits the migration and invasion of thyroid cancer cell in vitro and in
1229
vivo., J. Cell. Biochem. 119 (2018) 4097–4102. doi:10.1002/jcb.26604.
1230
[218] D. Somjen, M. Grafi-Cohen, S. Katzburg, G. Weisinger, E. Izkhakov, N. Nevo, O. Sharon, Z.
1231
Kraiem, F. Kohen, N. Stern, Anti-thyroid cancer properties of a novel isoflavone derivative,
1232
7-(O)-carboxymethyl daidzein conjugated to N-t-Boc-hexylenediamine in vitro and in vivo., J.
1233
Steroid Biochem. Mol. Biol. 126 (2011) 95–103. doi:10.1016/j.jsbmb.2011.04.009.
1234
[219] D. Liu, P. Hou, Z. Liu, G. Wu, M. Xing, Genetic alterations in the phosphoinositide
1235
3-kinase/Akt signaling pathway confer sensitivity of thyroid cancer cells to therapeutic
1236
targeting of Akt and mammalian target of rapamycin., Cancer Res. 69 (2009) 7311–7319.
1237
doi:10.1158/0008-5472.CAN-09-1077.
1238
[220] W. Cha, D.-W. Kim, S.D. Kim, E.-H. Jeon, W.-J. Jeong, S.-H. Ahn, Effect of perioperative
50
1239
treatment with a hypoxia-inducible factor-1-alpha inhibitor in an orthotopic surgical mouse
1240
model of thyroid cancer., Anticancer Res. 35 (2015) 2049–2054.
1241
[221] S.-F. Lin, J.-D. Lin, C. Hsueh, T.-C. Chou, C.-N. Yeh, M.-H. Chen, R.J. Wong, Efficacy of an
1242
HSP90 inhibitor, ganetespib, in preclinical thyroid cancer models., Oncotarget. 8 (2017)
1243
41294–41304. doi:10.18632/oncotarget.17180.
1244
[222] R. Malaguarnera, K.-Y. Chen, T.-Y. Kim, J.M. Dominguez, F. Voza, B. Ouyang, S.K.
1245
Vundavalli, J.A. Knauf, J.A. Fagin, Switch in signaling control of mTORC1 activity after
1246
oncoprotein expression in thyroid cancer cell lines., J. Clin. Endocrinol. Metab. 99 (2014)
1247
E1976-87. doi:10.1210/jc.2013-3976.
1248
[223] T.A. Werner, L. Dizdar, I. Nolten, J.C. Riemer, S. Mersch, S.C. Schutte, C. Driemel, P.E.
1249
Verde, K. Raba, S.A. Topp, M. Schott, W.T. Knoefel, A. Krieg, Survivin and XIAP - two
1250
potential biological targets in follicular thyroid carcinoma., Sci. Rep. 7 (2017) 11383.
1251
doi:10.1038/s41598-017-11426-3.
1252
[224] A. Mehta, L. Zhang, M. Boufraqech, Y. Liu-Chittenden, Y. Zhang, D. Patel, S. Davis, A.
1253
Rosenberg, K. Ylaya, R. Aufforth, Z. Li, M. Shen, E. Kebebew, Inhibition of Survivin with
1254
YM155 Induces Durable Tumor Response in Anaplastic Thyroid Cancer., Clin. Cancer Res.
1255
21 (2015) 4123–4132. doi:10.1158/1078-0432.CCR-14-3251.
1256
[225] L. Zhou, M. Zhang, Q. Fu, J. Li, H. Sun, Targeted near infrared hyperthermia combined with
1257
immune stimulation for optimized therapeutic efficacy in thyroid cancer treatment.,
1258
Oncotarget. 7 (2016) 6878–6890. doi:10.18632/oncotarget.6901.
1259
[226] S.-M. Kim, K.-C. Park, J.-Y. Jeon, B.-W. Kim, H.-K. Kim, H.-J. Chang, S.-H. Choi, C.-S.
1260
Park, H.-S. Chang, Potential anti-cancer effect of N-hydroxy-7-(2-naphthylthio) heptanomide
1261
(HNHA), a novel histone deacetylase inhibitor, for the treatment of thyroid cancer., BMC
1262
Cancer. 15 (2015) 1003. doi:10.1186/s12885-015-1982-6.
1263
[227] Y.S. Lee, S.-M. Kim, B.-W. Kim, H.J. Chang, S.Y. Kim, C.S. Park, K.C. Park, H.-S. Chang,
51
1264
Anti-cancer Effects of HNHA and Lenvatinib by the Suppression of EMT-Mediated Drug
1265
Resistance
1266
doi:10.1016/j.neo.2017.12.003.
in
Cancer
Stem
Cells.,
Neoplasia.
20
(2018)
197–206.
1267
[228] S.-F. Lin, J.-D. Lin, T.-C. Chou, Y.-Y. Huang, R.J. Wong, Utility of a histone deacetylase
1268
inhibitor (PXD101) for thyroid cancer treatment., PLoS One. 8 (2013) e77684.
1269
doi:10.1371/journal.pone.0077684.
1270
[229] B.E. Kessler, V. Sharma, Q. Zhou, X. Jing, L.A. Pike, A.A. Kerege, S.B. Sams, R.E.
1271
Schweppe, FAK Expression, Not Kinase Activity, Is a Key Mediator of Thyroid
1272
Tumorigenesis and Protumorigenic Processes., Mol. Cancer Res. 14 (2016) 869–882.
1273
doi:10.1158/1541-7786.MCR-16-0007.
1274
[230] X. Zhu, D.W. Kim, L. Zhao, M.C. Willingham, S.-Y. Cheng, SAHA-induced loss of tumor
1275
suppressor Pten gene promotes thyroid carcinogenesis in a mouse model., Endocr. Relat.
1276
Cancer. 23 (2016) 521–533. doi:10.1530/ERC-16-0103.
1277
[231] X. Zhu, K. Enomoto, L. Zhao, Y.J. Zhu, M.C. Willingham, P. Meltzer, J. Qi, S.-Y. Cheng,
1278
Bromodomain and Extraterminal Protein Inhibitor JQ1 Suppresses Thyroid Tumor Growth in
1279
a
1280
doi:10.1158/1078-0432.CCR-16-0914.
Mouse
Model.,
Clin.
Cancer
Res.
23
(2017)
430–440.
1281
[232] X. Gao, X. Wu, X. Zhang, W. Hua, Y. Zhang, Y. Maimaiti, Z. Gao, Y. Zhang, Inhibition of
1282
BRD4 suppresses tumor growth and enhances iodine uptake in thyroid cancer., Biochem.
1283
Biophys. Res. Commun. 469 (2016) 679–685. doi:10.1016/j.bbrc.2015.12.008.
1284
[233] A.M. Traynor, G.E. Leverson, D.F. Elson, H.R. Hernan, M.M. Larson, J.H. Blank, G.G.
1285
Fareau, K.B. Wisinski, R.J. Mattison, H. Chen, R.S. Sippel, Panobinostat, a novel histone
1286
deacetylase inhibitor, in advanced medullary and iodine-refractory differentiated thyroid
1287
cancer: A Wisconsin Oncology Network trial., J. Clin. Oncol. 31 (2013) e17025–e17025.
1288
doi:10.1200/jco.2013.31.15_suppl.e17025.
52
1289
[234] H. V Reddi, P. Madde, S.J. McDonough, M.A. Trujillo, J.C. 3rd Morris, R.M. Myers, K.W.
1290
Peng, S.J. Russell, B. McIver, N.L. Eberhardt, Preclinical efficacy of the oncolytic measles
1291
virus expressing the sodium iodide symporter in iodine non-avid anaplastic thyroid cancer: a
1292
novel therapeutic agent allowing noninvasive imaging and radioiodine therapy., Cancer Gene
1293
Ther. 19 (2012) 659–665. doi:10.1038/cgt.2012.47.
1294
[235] Z. Meng, S. Lou, J. Tan, K. Xu, Q. Jia, W. Zheng, S. Wang, Nuclear factor-kappa B inhibition
1295
can enhance therapeutic efficacy of 131I on the in vivo management of differentiated thyroid
1296
cancer., Life Sci. 91 (2012) 1236–1241. doi:10.1016/j.lfs.2012.09.026.
1297
[236] T.C. Beadnell, K.M. Mishall, Q. Zhou, S.M. Riffert, K.E. Wuensch, B.E. Kessler, M.L.
1298
Corpuz, X. Jing, J. Kim, G. Wang, A.C. Tan, R.E. Schweppe, The Mitogen-Activated Protein
1299
Kinase Pathway Facilitates Resistance to the Src Inhibitor Dasatinib in Thyroid Cancer., Mol.
1300
Cancer Ther. 15 (2016) 1952–1963. doi:10.1158/1535-7163.MCT-15-0702.
1301
[237] P. Pratheeshkumar, A.K. Siraj, S.P. Divya, S.K. Parvathareddy, R. Begum, R. Melosantos,
1302
S.S. Al-Sobhi, M. Al-Dawish, F. Al-Dayel, K.S. Al-Kuraya, Downregulation of SKP2 in
1303
Papillary Thyroid Cancer Acts Synergistically With TRAIL on Inducing Apoptosis via ROS.,
1304
J. Clin. Endocrinol. Metab. 103 (2018) 1530–1544. doi:10.1210/jc.2017-02178.
1305
[238] X. Shen, Y. Zhu, Z. Xiao, X. Dai, D. Liu, L. Li, B. Xiao, Antiviral Drug Ribavirin Targets
1306
Thyroid Cancer Cells by Inhibiting the eIF4E-beta-Catenin Axis., Am. J. Med. Sci. 354
1307
(2017) 182–189. doi:10.1016/j.amjms.2017.03.025.
1308
[239] E. Brauner, V. Gunda, P. Vanden Borre, D. Zurakowski, Y.S. Kim, K.V. Dennett, S. Amin,
1309
G.J. Freeman, S. Parangi, Combining BRAF inhibitor and anti PD-L1 antibody dramatically
1310
improves tumor regression and anti tumor immunity in an immunocompetent murine model of
1311
anaplastic thyroid cancer., Oncotarget. 7 (2016) 17194–17211. doi:10.18632/oncotarget.7839.
1312
[240] C. Passaro, M. Volpe, G. Botta, E. Scamardella, G. Perruolo, D. Gillespie, S. Libertini, G.
1313
Portella, PARP inhibitor olaparib increases the oncolytic activity of dl922-947 in in vitro and
53
1314
in vivo model of anaplastic thyroid carcinoma., Mol. Oncol. 9 (2015) 78–92.
1315
doi:10.1016/j.molonc.2014.07.022.
1316
[241] M.A. Nehs, S. Nagarkatti, C. Nucera, R.A. Hodin, S. Parangi, Thyroidectomy with
1317
neoadjuvant PLX4720 extends survival and decreases tumor burden in an orthotopic mouse
1318
model
1319
doi:10.1016/j.surg.2010.09.001.
1320 1321
of
anaplastic
thyroid
cancer.,
Surgery.
148
(2010)
1154–1162.
[242] J.F. Lyons, S. Wilhelm, B. Hibner, G. Bollag, Discovery of a novel Raf kinase inhibitor., Endocr. Relat. Cancer. 8 (2001) 219–225.
1322
[243] J.A. Fagin, How thyroid tumors start and why it matters: kinase mutants as targets for solid
1323
cancer pharmacotherapy., J. Endocrinol. 183 (2004) 249–256. doi:10.1677/joe.1.05895.
1324
[244] G. Salvatore, V. De Falco, P. Salerno, T.C. Nappi, S. Pepe, G. Troncone, F. Carlomagno, R.M.
1325
Melillo, S.M. Wilhelm, M. Santoro, BRAF is a therapeutic target in aggressive thyroid
1326
carcinoma., Clin. Cancer Res. 12 (2006) 1623–1629. doi:10.1158/1078-0432.CCR-05-2378.
1327
[245] D. Hong, L. Ye, R. Gagel, L. Chintala, A.K. El Naggar, J. Wright, R. Kurzrock, Medullary
1328
thyroid cancer: targeting the RET kinase pathway with sorafenib/tipifarnib., Mol. Cancer Ther.
1329
7 (2008) 1001–1006. doi:10.1158/1535-7163.MCT-07-2422.
1330
[246] F. Stenner, H. Liewen, M. Zweifel, A. Weber, J. Tchinda, B. Bode, P. Samaras, S. Bauer, A.
1331
Knuth, C. Renner, Targeted therapeutic approach for an anaplastic thyroid cancer in vitro and
1332
in vivo., Cancer Sci. 99 (2008) 1847–1852. doi:10.1111/j.1349-7006.2008.00882.x.
1333
[247] V. Gupta-Abramson, A.B. Troxel, A. Nellore, K. Puttaswamy, M. Redlinger, K. Ransone, S.J.
1334
Mandel, K.T. Flaherty, L.A. Loevner, P.J. O’Dwyer, M.S. Brose, Phase II trial of sorafenib in
1335
advanced
1336
doi:10.1200/JCO.2008.16.3279.
thyroid
cancer.,
J.
Clin.
Oncol.
26
(2008)
4714–4719.
1337
[248] R.T. Kloos, M.D. Ringel, M. V Knopp, N.C. Hall, M. King, R. Stevens, J. Liang, P.E.J.
1338
Wakely, V. V Vasko, M. Saji, J. Rittenberry, L. Wei, D. Arbogast, M. Collamore, J.J. Wright,
54
1339
M. Grever, M.H. Shah, Phase II trial of sorafenib in metastatic thyroid cancer., J. Clin. Oncol.
1340
27 (2009) 1675–1684. doi:10.1200/JCO.2008.18.2717.
1341
[249] E.T. Lam, M.D. Ringel, R.T. Kloos, T.W. Prior, M. V Knopp, J. Liang, S. Sammet, N.C. Hall,
1342
P.E.J. Wakely, V. V Vasko, M. Saji, P.J. Snyder, L. Wei, D. Arbogast, M. Collamore, J.J.
1343
Wright, J.F. Moley, M.A. Villalona-Calero, M.H. Shah, Phase II clinical trial of sorafenib in
1344
metastatic
1345
doi:10.1200/JCO.2009.25.0068.
medullary
thyroid
cancer.,
J.
Clin.
Oncol.
28
(2010)
2323–2330.
1346
[250] M. Ahmed, Y. Barbachano, A. Riddell, J. Hickey, K.L. Newbold, A. Viros, K.J. Harrington, R.
1347
Marais, C.M. Nutting, Analysis of the efficacy and toxicity of sorafenib in thyroid cancer: a
1348
phase II study in a UK based population., Eur. J. Endocrinol. 165 (2011) 315–322.
1349
doi:10.1530/EJE-11-0129.
1350
[251] P. Savvides, G. Nagaiah, P. Lavertu, P. Fu, J.J. Wright, R. Chapman, J. Wasman, A. Dowlati,
1351
S.C. Remick, Phase II trial of sorafenib in patients with advanced anaplastic carcinoma of the
1352
thyroid., Thyroid. 23 (2013) 600–604. doi:10.1089/thy.2012.0103.
1353
[252] https://www.thyroid.org/fda-approves-sorafenib-for-thyroid-carcinoma/.
1354
[253] M. Gallo, F. Michelon, A. Castiglione, F. Felicetti, A.A. Viansone, A. Nervo, C. Zichi, G.
1355
Ciccone, A. Piovesan, E. Arvat, Sorafenib treatment of radioiodine-refractory advanced
1356
thyroid cancer in daily clinical practice: a cohort study from a single center., Endocrine. 49
1357
(2015) 726–734. doi:10.1007/s12020-014-0481-x.
1358
[254] E.J. Sherman, L.A. Dunn, A.L. Ho, S.S. Baxi, R.A. Ghossein, M.G. Fury, S. Haque, C.S.
1359
Sima, G. Cullen, J.A. Fagin, D.G. Pfister, Phase 2 study evaluating the combination of
1360
sorafenib and temsirolimus in the treatment of radioactive iodine-refractory thyroid cancer.,
1361
Cancer. 123 (2017) 4114–4121. doi:10.1002/cncr.30861.
55
1362
[255] M.S. Brose, J. Smit, C.C. Lin, F. Pitoia, M. Fellous, Y. De Sanctis, M. Schlumberger, M. Tori,
1363
I. Sugitani, Timing of multikinase inhibitor initiation in differentiated thyroid cancer, Endocr.
1364
Relat. Cancer. 24 (2017) 237–242. doi:10.1530/ERC-17-0016.
1365
[256] S.-F. Lin, J.-D. Lin, C. Hsueh, T.-C. Chou, R.J. Wong, Potent effects of roniciclib alone and
1366
with sorafenib against well-differentiated thyroid cancer., Endocr. Relat. Cancer. 25 (2018)
1367
853–864. doi:10.1530/ERC-18-0150.
1368
[257] Y. Ke, C. Xiang, Transferrin receptor-targeted HMSN for sorafenib delivery in refractory
1369
differentiated thyroid cancer therapy., Int. J. Nanomedicine. 13 (2018) 8339–8354.
1370
doi:10.2147/IJN.S187240.
1371
[258] M. Kim, T.H. Kim, D.Y. Shin, D.J. Lim, E.Y. Kim, W.B. Kim, J.H. Chung, Y.K. Shong, B.H.
1372
Kim, W.G. Kim, Tertiary Care Experience of Sorafenib in the Treatment of Progressive
1373
Radioiodine-Refractory Differentiated Thyroid Carcinoma: A Korean Multicenter Study.,
1374
Thyroid. 28 (2018) 340–348. doi:10.1089/thy.2017.0356.
1375
[259] J. Capdevila, I. Matos, F.M. Mancuso, C. Iglesias, P. Nuciforo, C. Zafon, H.G. Palmer, Z.
1376
Ogbah, L. Muinos, J. Hernando, G. Villacampa, C.E. Peña, J. Tabernero, M.S. Brose, M.
1377
Schlumberger, A. Vivancos, Identification of Expression Profiles Defining Distinct Prognostic
1378
Subsets of Radioactive-Iodine Refractory Differentiated Thyroid Cancer from The DECISION
1379
Trial.,
1380
doi:10.1158/1535-7163.MCT-19-0211.
Mol.
Cancer
Ther.
(2019)
pii:
molcanther.0211.2019.
1381
56
1382
Legends
1383
Figure 1. Establishment and testing of drugs in PDXMs. Tumor fragments were obtained from
1384
thyroid cancer patients. The clinical-histopathologic parameters and genomic profiling by the
1385
next-generation sequencing of these specimens were analyzed for drug candidates. Non-necrotic
1386
areas of these tumors were incubated as organoids and implanted subcutaneously into
1387
immunodeficient mice. Genome and pathology of thyroid tumor cells from patients remain stable in
1388
PDXMs and patient-derived organoid. After tumor establishment and growth, biological assays of
1389
drug efficacy and biomarker prediction for targeted therapies were conducted. If the drugs showed
1390
efficacy in PDXMs, they could be developed for patients. PDXM, patient-derived xenograft model.
1391 1392
Figure 2. Examples of constructed GEMs with a thyroid-specific promoter and Cre recombinase.
1393
The oncogene could be placed downstream of a stop signal gene that is inserted between two loxP
1394
sites. The stop cassette prevents oncogene expression, and thyroid-specific promoter activates Cre
1395
recombinase targets the stop cassette to allow oncogene gene expression only in the thyroid.
1396
Similarly, under control of a thyroid-specific promoter, the Cre recombinase also targets the stop
1397
cassette, resulting in knock-out of tumor suppressor genes in the thyroid. Consequently, the
1398
recombinated gene alterations facilitate the carcinogenesis in thyroid. KI, knock in; KO, knock out;
1399
PTC, papillary thyroid cancer; FTC, follicular thyroid cancer; ATC, anaplastic thyroid cancer. Red
1400
arrow-head, loxp position; Green arrow, gene expression.
1401 1402
Figure 3. Primary signaling pathways in thyroid cancer and molecular targeted agents tested in
1403
mouse models. Ligand-mediated activation of RTK results in activation of the PI3K/AKT/mTOR
1404
and RAS/RAF/MAPK/ERK pathways [38,87]. This leads to initiation of tumor dedifferentiation,
1405
migration, survival, proliferation, and angiogenesis. Moreover, molecular inhibitors and their targets
1406
of action are shown. PI3K, phosphatidylinositol 3-kinase; PIP2, phosphatidylinositol 4,5-biphosphate; 57
1407
PIP3, phosphatidylinositol 3,4,5-triphosphate; PTEN, phosphatase and tensin homologue; PDK-1,
1408
3-Phosphoinositide Dependent Protein Kinase 1; AKT, V-Akt Murine Thymoma Viral Oncogene
1409
Homolog 1; STAT3, Signal Transducer and Activator of Transcription 3; MSK, mitogen- and
1410
stress-activated protein kinase; mTOR, mammalian target of rapamycin; S6K, Ribosomal Protein S6
1411
Kinase I; CDK, Cyclin Dependent Kinase; RAS, rat sarcoma viral oncogene homologue; NF1,
1412
neurofribomin 1; ARAF, V-Raf Murine Sarcoma 3611 Viral Oncogene Homolog 1; BRAF, V-Raf
1413
Murine Sarcoma Viral Oncogene Homolog B; CRAF, V-Raf-1 Murine Leukemia Viral Oncogene
1414
Homolog 1; MEK, mitogen-activated protein kinase; ERK, extracellular signal-regulated kinase;
1415
Vinexin, Sorbin and SH3 Domain Containing 3; ETS1, ETS Proto-Oncogene 1; MMP2, Matrix
1416
Metallopeptidase 2.
1417
1418
Figure 4. An example of mouse models bridging bench and bedside via translational research of
1419
thyroid cancer treatment. During the process of Sorafenib translation, the drug was initially tested in
1420
mouse model trials, and the preclinical results were well interpreted on basic aspect and in the field
1421
of potential clinical application. The interpretation on pharmacology, pharmacokinetics, and
1422
pharmacodynamics of Sorafenib built the footstone for clinical trials and the probability for potential
1423
translation. After phase II and III trials, the efficacy and safety of Sorafenib was confirmed and then
1424
the drug was approved for clinical application. In the stage of post-market, amelioration around
1425
Sorafenib have been still simultaneously researching in thyroid cancer mouse models and real-world
1426
clinical settings. As the results, drug resistant mechanisms and drug combinations were obtained,
1427
inspiring the future translational studies. DTC, differentiated thyroid cancer; ATC, anaplastic thyroid
1428
cancer; RRDTC, radioiodine refractory thyroid cancer. CDXMs, cell line-derived xenograft models;
1429
PDXM, patient-derived xenograft model.
58
Table 1. Outcomes of thyroid cancer mouse model-based preclinical studies on agents with completed clinical trials. Drug Targets Pre-clinical study Clinical trial Ref. Tumor Mice Survival Tumor Body Arm, phase Tumor Type Burden* Weight (Reference) Type Cabozantinib VEGFR, [42] MTC CDXM NR ↓50 – 80% Stable RCT, III [88] MTC PDGFR, RET PDXM NR ↓55 – 60% NR Everolimus
mTOR
[65,89,90]
DTC
GEM
Gefitinib Imatinib
EGFR [92,93] ABL, c-kit, [94,95] PDGF-R VEGFR, [27,97,98] FGFR, c-Kit, RET, PDGFR VEGFR, RET, [100] PDGFR, c-Kit VEGFR, [102,103] PDGFR, c-Kit
ATC ATC ATC
Selumetinib
MEK1
Sorafenib
VEGFR, [30,108–115] PDGFR, c-Kit, RET, RAF VEGFR, [103,117–121] PDGFR, c-Kit, RET, FLT3 VEGFR, [30,32,47,124–1 EGFR, RET 30]
Lenvatinib
Motesanib Pazopanib
Sunitinib
Vandetanib
Vemurafenib Pan-Raf
Depsipeptide HDAC1, 2
[59]
↑ 28%
Enrolled Median Median CR,% PR,% n OS, mo PFS, mo 330 26.6 11.2 ORR: 28%
SD,%
PD,%
Main adverse events (Grade ≥ 3)
NR
NR
Diarrhea (21.5%), HFSR (12.6%), hypocalcemia (10.7%), decreased weight (9.8%), fatigue (9.8%), hypertension (8.9%), asthenia (6.5%) Mucositis (15%), diarrhea (10%), neutropenia (5%), hypertriglyceridemia (5%) Anorexia (11%), diarrhea (4%), rash (7%) Lymphopenia (45.5%), edema (25%), anemia (18.2%), fatigue (12.5%), hyponatremia (12.5%) Hypertension (10-41.8%), diarrhea (8-10%), fatigue or asthenia (9.2%), decreased weight (9.6-12%), proteinuria (10%) Hypertension (25%), diarrhea (13%), weight loss (5%), abdominal pain (5%) Hypertension (13%), pharyngo-laryngeal pain (13%), raised ALT concentration (10.8%), lower-gastrointestinal haemorrhage (8.1%) Rash (18%), fatigue (8%), diarrhea (5%), peripheral edema (5%) HFSR (16-44.1%), weight loss (8.4%-11.5%), hypertension (9.7-16.1%), rash (16.1%)
↓50 – 75% Stable
Single, II [91] RRDTC 28
NR
11.8
0
10
66
18
CDXM NR CDXM NR
↓30–>90% NR ↓12 – 25% Stable
Single, II [81] RRDTC 27 Single, II [96] ATC 11
27.4 NR
3.9 NR
0 0
12 25
NR 50
38 12.5
CDXM NR PDXM NR
↓60–>90% Stable ↓50 – 60% ↓ 5–10%
RCT, III [99]
NE
18.3
1.5
63.2
23
6.9
MTC CDXM ↑ 33%
↓30 – 50% Stable
Single, II [101] RRDTC 93
NE
9.2
0
14
67
8
DTC ATC
GEM ↑ 21% CDXM NR
↓ 20% ↓ 5% ↓25 – 50% Stable
ATC
CDXM NR
↓30 – 70% NR
Single, II [104] Single, II [105] Single, II [106] Single, II [107]
NE 3.7 19.9 NR
11.7 2.1 9.4 7.4
0 NE 0 0
49 NE 14.3 3
NR NE 57.1 54
NR NE 17.1 28
ATC
CDXM ↑ 18% GEM NR PDXM NR
↓20 – 30% Stable ↓ 66% NR ↓50 – 60% ↓ 5–10%
RCT, III [116] RRDTC 417
NE
10.8
NR
12.2
41.8
NR
↓ 10% ↓ 10% ↓10 – 50% Stable
Single, II [122] RRDTC 35 Single, II [123] RRDTC 23
NE 56.5
NR 8
1 0
28 26
46 57
17 4
Neutropenia (34%), leukopenia (13-31%), diarrhea (17%), HFSR (17%), hypertension (13%), fatigue (11%)
↓50 – 80% ↓ 5% ↓ 5-30% Stable ↓50 – >80% ↓ 17% ↓30 – 50% NR No effect NR ↓50% NR ↓80 – 90% NR ↓25 – 30% NR
RCT, II [131] RRDTC 145 RCT, III [132] MTC 331
NR NR
11.1 19.3
NR 0
1 45
54 42
44 13
Diarrhea (10%), asthenia (7%), fatigue (5%).
DTC GEM ↑ 33% MTC CDXM NR
DTC ATC MTC [15,25,133–138] PTC ATC ATC PTC [139–141] MTC
PDXM ↑ 15% CDXM NR CDXM NR GEMs NR GEMs ↑ 75% CDXM NR PDXM NR GEM NR
RRDTC 382
RRDTC ATC MTC RRDTC
39 15 35 39
Single, II [102] RRDTC 51 (C1: NE 26, C2: (C1) 25) NE (C2) Single, II [142] RRDTC 20 33.2
15.1 (C1) 0 (C1) 38.5 (C1) 57.7 (C1) 3.8 (C1) Weight loss (5%), abdominal pain (5%) 8.9 (C2) 0 (C2) 27.3 (C2) 63.6 (C2) 4.5 (C2)
NR
0
0
65
35
Thrombosis/thrombus/embolism (5%), fatigue (5%), dysphagia (5%), dyspnea (5%), lymphopenia (5%), prolonged QTc interval (5%) *Tumor burden was evaluated according to the tumor weight/volume/activity data at day 10 and/or day 20 post drug delivery; NR, not reported; NE, not estimable; CI, confidence interval; CR, complete response; OS, overall survival; PD, progressive disease; PFS, progression-free survival; PR, partial response; DTC, differentiated thyroid cancer; PTC, papillary thyroid cancer; ATC, anaplastic thyroid cancer; MTC, medullary thyroid cancer; RRDTC, radioiodine refractory thyroid cancer; CDXM, cell line-derived xenograft model; PDXM, patient-derived xenograft model; GEM, genetically engineered model; RCT, randomized controlled trial; RECIST, response evaluation criteria in solid tumors; SD, stable disease; FGFR, fibroblast growth factor receptor; FLT3, Fms-like tyrosine kinase 3; MEK1, MAPK/ERK kinase 1; mTOR, mammalian target of rapamycin; PDGFR, platelet-derived growth factor receptor; RAF, rapidly accelerating fibrosarcoma; RET, glial cell line-derived neurotrophic factor receptor; VEGFR, vascular endothelial growth factor receptor; c-kit, stem cell factor receptor; EGFR, epidermal growth factor receptor; HFSR, hand-foot-skin reaction; HDAC, histone deacetylase. C1: Cohort 1, patients never received multikinase inhibitors; C2: Cohort 2 patients previously received multikinase inhibitors.
Table 2. Outcomes of thyroid cancer mouse model-based preclinical studies on agents with ongoing clinical trials. Drug
Action
Pre-clinical study Ref.
Tumor
Mice
Survival
Apatinib
Nintedanib
VEGFR2
VEGFR2
RTK
[143]
[144]
[145]
Phase
Tumor Type
Status
Body *
Type Anlotinib
Tumor
Clinical Trial No. Burden
Weight
ATC
CDXM
NR
↓ 60 – >90%
Stable
NCT02586337
II/ III
DTC
Recruiting
MTC
CDXM
NR
↓ 50 – 60%
Stable
NCT02586350
II/ III
MTC
Recruiting
ATC
CDXM
NR
↓ 10 – 60%
NR
NCT03199677
II
TC
Recruiting
NCT03167385
II
DTC
Recruiting
NCT03048877
III
DTC
Recruiting
NCT03300765
II
TC
Recruiting
NCT01788982
II
MTC/DTC
Active,
MTC
GEM
NR
↓ 50 – 60%
NR
not
recruiting Ponatinib
RTK
[146]
MTC
CDXM
NR
↓ > 90%
↓ < 10%
NCT03838692
II
MTC
Not recruiting
Regorafenib
RTK
[147]
ATC
GEM
NR
↓ 65%
NR
NCT02657551
II
TC
Recruiting
Tipifarnib
FTase
[46]
DTC
GEM
↑ 200%
↓ 50%
↓ < 10%
NCT02383927
II
TC
Recruiting
*Tumor burden was evaluated according to the tumor weight/volume/activity data on day 10 and/or day 20 post drug delivery; NR, not reported; VEGFR2, vascular endothelial growth factor receptor 2; RTK, receptor tyrosine kinase; Ftase, farnesyltransferase; DTC, differentiated thyroid cancer; PTC, papillary thyroid cancer; ATC, anaplastic thyroid cancer; MTC, medullary thyroid cancer; TC, thyroid cancer; CDXM, cell line-derived xenograft model; GEM, genetically engineered model.
yet
Table 3. Thyroid cancer mouse model-based preclinical studies on single-drug therapeutics with potential translation into clinical trials. No. Drug Target Tumor Mice Survival Tumor Body Weight No. Drug Target Type Burden* Chemotherapy NF-κB signaling pathway inhibitors 1 Docetaxel [94,148] Microtubule assembly ATC CDXM NR ↓ 30 – 50% Stable 1 DHMEQ [149,150] NF-κB 2 Cisplatin [121] DNA crosslinking ATC CDXM NR ↓ 20 – 50% Stable 2 Triptolide [151,152] NF-κB 3 TSH-SiO2-Doxorubicin [153] DNA topoisomerase II FTC CDXM NR ↓ 50 – 75% Stable JAK/STAT signaling pathway inhibitors 4 5FU [154] DNA synthesis MTC CDXM NR ↓ 20 – 40% NR 1 Cucurbitacin I [155] STAT3 RTK signaling pathway inhibitors 2 Metformin [156–158] STAT3
Mice
Survival Tumor Burden*
ATC ATC
CDXM NR CDXM NR
↓70–80% ↓ 50%
Stable NR
ATC FTC ATC FTC PTC
CDXM GEM CDXM GEM CDXM
↓5– 30% No effect ↓25-50% ↓5– 10% ↓ > 80%
NR Stable NR NR NR
ATC PTC
CDXM NR CDXM NR PDXM NR
↓ 5-30% ↓50–60% NR
Stable Stable NR
FTC PTC ATC
GEM ↑ 40% CDXM NR CDXM NR
↓ 30% ↓30–40% ↓20–30%
Stable NR NR
↑ 25-35% NE NR ↑ 20% NR
Body Weight
1 2 3 4 5
LIF [127,159] AEE788 [48,49,161] CUDC-101 [163,164] PD173074 [165,166] Tetraiodothyroacetic Acid [168]
RET, E2F1 EGFR/VEGFR EGFR and HDAC FGFR VEGF
MTC ATC/FTC ATC DTC/ATC ATC
CDXM CDXM CDXM CDXM CDXM
↓ 50 – 70% ↓ 50 – 80% ↓ 50 – 60% ↓ 50% ↓ 50 – 70%
↓ 9% Stable Stable Stable NR
3 S3I-201 [160] STAT3 4 AZD1480 [162] JAK1/2 Apoptosis signaling pathway inhibitors 1 Reversine [167] Apoptosis pathway 2 Obatoclax [169–171] Bcl-2
6 8 9
CLM3 [172,173] Withaferin A [174,175] Pulsatilla koreana extract [176]
Angiogenesis RET Angiogenesis
ATC MTC ATC
CDXM NR ↓ 40 – 50% CDXM ↑ > 30% ↓ 50 – 60% CDXM NR ↓ 50 – 60%
Stable ↑ 10% Stable
SRC signaling pathway inhibitors 1 SKI-606 [70] SRC 2 Dasatinib [69,71,72] SRC
c-MET
ATC
CDXM NR
↓ 5 – 20%
NR
BRAF MEK RAF MEK MEK MEK
ATC ATC PTC ATC ATC PTC
↑ 40% NR NR ↑ 80% NR ↑ 50% NR NR NR NR
↓ 50 – 70% ↓ 50 – 70% ↓ 50 – 85% ↓ 95% ↓ 25% ↓ 60 – 90% ↓ 80 – 90% ↓ 50% ↓ 50% ↓ 10 – 30%
↑ 50% NR Stable NR Stable NR NR NR Stable NR
Proteosome PPARγ COX-2 P2R Carcinoembryonic antigen Aurora kinase PLK1
ATC DTC MTC PTC MTC ATC ATC
CDXM GEM CDXM CDXM CDXM CDXM CDXM
↑ 25% NR NR NR NR NR NR
↓20–30% ↓50–>90% ↓ 50% ↓50–80% ↓50–80% ↓50 –80% ↓60–70%
Stable NR NR Stable ↓ < 8% Stable ↓ 7%
ATC ATC
CDXM CDXM CDXM CDXM CDXM CDXM PDXM GEM CDXM CDXM
Other drugs 1 Carfilzomib [163,179] 2 Rosiglitazone [190,191] 3 Celecoxib [193,194] 4 Clodronate [195,196] 5 I-131-F6 [197] 6 MLN8054 [30,198,199] 7 GSK461364A [201]
PTC ATC FTC ATC FTC FTC PTC PTC FTC ATC ATC
CDXM CDXM CDXM CDXM CDXM CDXM CDXM CDXM CDXM CDXM CDXM
NR ↑ 16% NR NR NR NR NR NR NR NR NR
↓ 30 – 50% ↓ 50% ↓ 50 – 70% ↓ 25 – 60% ↓ 30 – 40% ↓ 60% ↓ 20% ↓ 50% ↓ 80 – 85% ↓ 30% ↓ 30 – 70%
NR Stable Stable Stable Stable NR NR NR NR NR NR
8 9 10 11
Oct-CL [203] Thiostrepton [205] 17-AAG [206] PLX6134 [208]
p70S6K and TOPO 1 FoxM1 HIF-1a and HSP90 c-FMS/CSF1-R kinase
MTC PTC PTC PTC
CDXM CDXM CDXM GEM
↑ 50% NR NR NR
↓ > 70% ↓50–75% ↓80% ↓15%
Stable NR NR NR
12 13 14 15
Tolfenamic acid [210] Reparixin [148] Dinaciclib [214] Quinacrine [110]
NAG-1 CXCR1 and CXCR2 CDK Phospholipase A2
ATC ATC ATC ATC
CDXM CDXM CDXM CDXM
NR NR NR ↑ 45%
↓50-60% ↓60–70% ↓30–50% NE
NR Stable ↓ 7-8.1% NR
16 cD-tboc [218] 17 Ganetespib [221]
Estrogen pathway HSP90
18 YM155 [223,224] 19 AG-IR820 [225] 20 Lexatumumab [182]
Survivin and claspin Glucose metabolism TRAIL-R2
ATC ATC MTC ATC MTC PTC
CDXM CDXM CDXM CDXM CDXM CDXM
NR NR NR ↑ 119.0% NR NR
↓50-60% ↓ 60% ↓50–60% ↓ > 90% ↓60–70% ↓ 70%
Stable ↓ 4.5% ↓ 9.5% Stable Stable Stable
10 Crizotinib [177,178] MAPK signaling pathway inhibitors 1 PLX4720 [180–189] 2 Trametinib [192] 3 LY3009120 [169] 4 PA-L1/LF [115] 5 SL327 [117] 6 PD0325901 [28,181,200]
7 Colchicine [202] MEK1/2 and JNK 8 Salirasib [204] RAS mTOR signaling pathway inhibitors 1 Torin2 [65,67,207] mTOR 2 3 4 5
CUDC-907 [164,209] PP121 [211] GDC-0941 [212,213] LY294002 [182,215,216]
PI3K and HDAC PI3K/Akt PI3K, mTOR and HIF-1α PI3K
7 8
IC87114 [217] Temsirolimus [219,220]
PI3K mTOR
9 AZD8055 [222] mTOR HDAC signaling pathway inhibitors 1 HNHA [226,227] HDAC
NR NR NR NR NR
Tumor Type
PTC CDXM ↑ 175% ↓ 50% Stable ATC CDXM ↑ 186% ↓ 50% Stable 2 PXD101 [228] HDAC ATC CDXM NR ↓ 30 – 50% Stable 21 PF-271 [229] FAK PTC CDXM NR ↓ 50% NR 3 SAHA [230] HDAC FTC GEM NR ↑ 61.8% NR 22 JQ1 [157,231,232] BET FTC GEM ↑ 50% ↓ 60% Stable PTC CDXM ↑ 50% ↓ 30% Stable ATC CDXM ↑ 115% ↓ 30% Stable 4 Panobinostat [233] HDAC ATC CDXM NR ↓ 50 – 60% ↓5–13% *Tumor burden was evaluated according to the tumor weight/volume/activity data on day 10 and/or day 20 post drug delivery; NR, not reported; NE, not estimable; PTC, papillary thyroid cancer; ATC, anaplastic thyroid cancer; MTC, medullary thyroid cancer; CDXM, cell line-derived xenograft model; PDXM, patient-derived xenograft model; GEM, genetically engineered model; SD, stable disease; MEK, MAPK/ERK kinase; mTOR, mammalian target of rapamycin; RAF, rapidly accelerating fibrosarcoma; RET, glial cell line-derived neurotrophic factor receptor; VEGFR, vascular endothelial growth factor receptor; c-kit, stem cell factor receptor; EGFR, epidermal growth factor receptor; HDAC, histone deacetylase; NF-κB, nuclear factor kappa B; STAT3, Signal Transducer And Activator Of Transcription 3; JAK1/2, Janus Kinase 1/2; Bcl-2, B-Cell CLL/Lymphoma 2; SRC, V-Src Avian Sarcoma (Schmidt-Ruppin A-2) Viral Oncogene Homolog; PPARγ, Peroxisome proliferator-activated receptor gamma; COX-2, cyclooxygenase-2; P2R, P2 receptor; PLK1, Polo Like Kinase 1; p70S6K, 70 KDa Ribosomal Protein S6 Kinase 1; TOPO 1, Topoisomerase I; FoxM1, Forkhead Box M1; HIF-1a, Hypoxia Inducible Factor 1 Subunit Alpha; c-FMS/CSF1-R, Colony Stimulating Factor 1 Receptor; NAG-1, Non-Steroidal Anti-Inflammatory Drug-Activated Gene-1; CXCR1, C-X-C Motif Chemokine Receptor 1; CXCR2, C-X-C Motif Chemokine Receptor 2; CDK, Cyclin Dependent Kinase; HSP90, Heat Shock Protein 90; TRAIL-R2, TNF-Related Apoptosis-Inducing Ligand Receptor 2; FAK, Focal Adhesion Kinase; BET, bromodomain and extra terminal; SAHA, Suberoylanilide Hydroxamic Acid; DHMEQ, Dehydroxymethylepoxyquinomicin.
Table 4. Thyroid cancer mouse model-based preclinical studies on combined therapeutics with potential translation into clinical trials. No Drug Target Tumor Type Mice Survival Tumor Burden* Body Weight . 1 Imatinib and docetaxel [94] RTK, microtubule assembly ATC CDXM NR ↓ 60-70% Stable 2 MV-NIS and I-131 [234] NIS ATC CDXM NR ↓ 50-60% NR 3 Bay 11-7082 and I-131 [235] NF-κB and isotope therapy PTC CDXM NR ↓ 40-50% NR 4 Dasatinib and Trametinib [236] SRC and MEK ATC CDXM NR ↓ 50-70% NR 5 TRAIL and Bortezomib [237] ROS PTC CDXM NR ↓ 30-50% NR 6 TRAIL and Valproic Acid [138] ROS, HDAC PTC CDXM ↑ 45% ↓ > 90% NR 7 Vemurafenib and Bortezomib [137] BRAF and proteasome PTC CDXM NR ↓ 70% NR 8 Ribavirin and Paclitaxel [238] eIF4E-β-catenin axis ATC CDXM NR ↓ 70% Stable 9 Sorafenib and quinacrine [110] RTK and phospholipase A2 ATC CDXM ↑ 243.2% NE ↓ 15% 10 Embelin and LY294002 [216] PI3K, XIAP PTC CDXM NR ↓ 30-60% NR 11 SL327 and Sunitinib [117] MEK, RTK ATC CDXM NR ↓ 50% Stable 12 2ME2 and Cabozantinib [29] HIF, VEGFR MTC CDXM NR ↓ 60-80% Stable PDXM NR ↓ 60-80% Stable 13 PLX4032 and PHA665752 [80] c-MET ATC CDXM NR ↓ 80% Stable 14 RDEA119 and Temsirolimus [229] MEK and mTOR FTC CDXM NR ↓ 90% NR 15 Sorafenib and CQ [204] RTK and autophagy ATC CDXM NR ↓ 50-80% NR FTC CDXM NR ↓ 60-80% NR 16 PD-325901 and GDC-0941 [212] MEK and Pi3K PTC GEM NR ↓ 30-50% NR 17 10F.9G2 and PLX4720 [239] PDL-1 and BRAF ATC CDXM NR ↓ 80% NR 18 AZD8055 and AZD6244 [222] mTOR MEK ATC CDXM NR ↓ 60-90% NR 19 dl922-947 and Olaparib [240] PARP/pRb ATC CDXM NR ↓ 40-60% Stable 20 HCQ and Vemurafenib [133] Autophagy, BRAF ATC CDXM NR ↓ 60% Stable 21 Neoadjuvant therapy with PLX4720 [241] BRAF ATC CDXM ↑ > 40% ↓ > 90% ↓ 5-30% *Tumor burden was evaluated according to the tumor weight/volume/activity data on day 10 and/or day 20 post drug delivery; MV-NIS, measles virus encoding the human thyroidal sodium iodide symporter; TRAIL, tumor necrosis factor–related apoptosis-inducing ligand; 2ME2, 2-methoxyestradiol; CQ, chloroquine; HCQ, hydroxychloroquine; RTK, receptor tyrosine kinase; NIS, Na+/I− Symporter; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; SRC, Rous sarcoma oncogene; MEK, MAP kinase-ERK kinase; ROS, transcriptional regulator; HDAC, histone deacetylase; BRAF, v-Raf murine sarcoma viral oncogene homolog B; mTOR, mammalian target of rapamycin; PI3K, Phosphoinositide 3-kinases; XIAP, X-linked inhibitor of apoptosis protein; HIF, hypoxia inducible factor; VEGFR, vascular endothelial growth factor receptor; EGFR, epidermal growth factor receptor, PDL-1, programmed death-ligand 1; PRPP, poly (ADP-ribose) polymerase; ATC, anaplastic thyroid cancer; PTC, papillary thyroid cancer; MTC, medullary thyroid cancer; FTC, follicular thyroid cancer; CDXM, cell line-derived xenograft model; GEM, genetically engineered model; NR, not reported; NE, not estimable.
Table 5. List of abbreviations. Abbreviation
Full Name
ABL
Abelson Tyrosine-Protein Kinase 1
AKT
Rac-Alpha Serine/Threonine-Protein Kinase
ATC
Anaplastic Thyroid Cancer
AXL
Tyrosine-Protein Kinase Receptor UFO
BRAF
V-Raf Murine Sarcoma Viral Oncogene Homolog B
c-kit
Stem Cell Factor Receptor
CCK
Cholecystokinin
CCND1
Cyclin D1
CDK
Cyclin Dependent Kinase
CDXM
Cell Line-Derived Xenograft Model
CI
Confidence Interval
C-MET
Hepatocyte Growth Factor Receptor
CR
Complete Response
Cre
Cyclization Recombination Enzyme
loxP
Locus of X-Over P1 Bacteriophage; The Recognition Sites for Cre Recombinase
DDR
Discoidin Domain Receptor Tyrosine Kinase
DNA
Deoxyribonucleic Acid
DTC
Differentiated Thyroid Cancer
EGF
Epidermal Growth Factor
EGFR
Epidermal Growth Factor Receptor
Eph
Ephrin
ERK
Mitogen-Activated Protein Kinase 1
FAK
Protein Tyrosine Kinase 2
FGF
Fibroblast Growth Factor
FGFR
Fibroblast Growth Factor Receptor
FLT3
Fms-Like Tyrosine Kinase 3
FOXO3
Forkhead Box O3
GEM
Genetically Engineered Model
HDAC
Histone Deacetylase
HGF
Hepatocyte Growth Factor
HNHA
High Mobility Group Box 1
HSP90
Heat Shock Protein 90 Alpha Family Class A Member 1
IL-2Rγ
Interleukin 2 Receptor Subunit Gamma
JAK
Janus Kinase
KIT
Tyrosine-Protein Kinase Kit
LMR
Lemur Tyrosine Kinase
LTK
Leukocyte Receptor Tyrosine Kinase
MEK
Mitogen-Activated Protein Kinase Kinase 1
MEN2
Multiple Endocrine Neoplasia 2
MMP
Matrix Metallopeptidase
mRNA
Messenger RNA
MST1
Macrophage Stimulating 1
MTC
Medullary Thyroid Cancer
mTOR
Mechanistic Target of Rapamycin Kinase
MuSK
Muscle Associated Receptor Tyrosine Kinase
NE
Not Estimable
NGF
Nerve Growth Factor
NIS
Sodium/Iodide Symporter
NOD
Non Obese Diabetic Mouse Model
NR
Not Reported
ORR
Overall Response Rate
OS
Overall Survival
PAI-1
Plasminogen Activator Inhibitor-1
PD
Progressive Disease
PD1
Programmed Cell Death 1
PDGF
Platelet-Derived Growth Factor
PDGFR
Platelet Derived Growth Factor Receptor
PDGFRα
Platelet Derived Growth Factor Receptor Alpha
PDL1
Programmed Cell Death 1 Ligand 1
PDTC
Poorly Differentiated Thyroid Cancer
PDXM
Patient-Derived Xenograft Model
PFS
Progression-Free Survival
pH
Potential of Hydrogen
PI3K
Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Delta
PIK3CA
Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha
PIP2
Phosphatidylinositol 4,5-Biphosphate
PIP3
Phosphatidylinositol 3,4,5-Trisphosphate
PR
Partial Response
PTC
Papillary Thyroid Carcinoma
PTC1
Protein Patched Homolog 1
PTC3
Protein Patched Homolog 3
Pten
Phosphatase and Tensin Homolog
QTc
Corrected QT Interval
RAF
Murine Leukemia Viral Oncogene Homolog
RAS
Rat Sarcoma Viral Oncogene Homolog
RASSF1
Ras Association Domain Family Member 1
RCT
Randomized Controlled Trial
RECIST
Response Evaluation Criteria In Solid Tumors
RET
Glial Cell Line-Derived Neurotrophic Factor Receptor;
RNA
Ribonucleic Acid
ROR
Rar Related Orphan Receptor
ROS
Transmembrane Tyrosine-Specific Protein Kinase
RRDTC
Radioiodine Refractory Thyroid Cancer
RTK
Receptor Tyrosine Kinase
RYK
Receptor Like Tyrosine Kinase
S6K1
Ribosomal Protein S6 Kinase B1
scid
The Severe Combined Immunodeficiency
SD
Stable Disease
SEER
Surveillance and Epidemiology and End Results
SFK
Src Family Kinases
sgRNA
Single Guide RNA
SRC
V-Src Avian Sarcoma (Schmidt-Ruppin A-2) Viral Oncogene Homolog
STAT
Signal Transducers and Activators of Transcription
TERT
Telomerase Reverse Transcriptase
TIE
Tyrosine Kinase With Immunoglobulin Like and EGF Like Domains
TTF1
Thyroid Transcription Factor-1
TYK2
Tyrosine Kinase
uPa
Urokinase Plasminogen Activator
VEGF
Vascular Endothelial Growth Factor
VEGFR
Vascular Endothelial Growth Factor Receptor
Highlights 1. Traditional cell line-derived xenograft models and genetically engineered models have been modified, and innovative patient-derived xenograft models (PDXMs), including humanized PDXMs, have been established to accelerate the translation of anti-thyroid cancer therapeutics.
2. Experiments in thyroid cancer mouse models have dynamically revealed the ever-changing thyroid cancer
pathogenesis-related
signaling
pathways,
including
the
RAS/RAF/MEK/ERK,
PI3K/AKT/mTOR, SRC, and JAK-STAT pathways.
3. Novel inhibitors of VEGFR, MEK, mTOR, SRC, and STAT3 have been discovered and tested in multiple thyroid cancer mouse models, showing the potential for “bench-to-bedside” translation.
4. The future establishment of thyroid cancer mouse models may lay the foundation for comprehensive investigations in the field of thyroid cancer research through CRISPR/Cas-mediated target screening, humanized model-based drug testing, and multi-omics-associated mechanism exploring.
Conflict of Interest Statement The authors have no conflicts of interest to declare.