New titanosaur (Sauropoda, Dinosauria) records from the Morro do Cambambe Unit (Upper Cretaceous), Mato Grosso state, Brazil

New titanosaur (Sauropoda, Dinosauria) records from the Morro do Cambambe Unit (Upper Cretaceous), Mato Grosso state, Brazil

Cretaceous Research 103 (2019) 104155 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRe...

5MB Sizes 4 Downloads 84 Views

Cretaceous Research 103 (2019) 104155

Contents lists available at ScienceDirect

Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes

New titanosaur (Sauropoda, Dinosauria) records from the Morro do Cambambe Unit (Upper Cretaceous), Mato Grosso state, Brazil Kamila L.N. Bandeira a, *, Elaine Batista Machado a, b, Diogenes Campos c, Alexander W.A. Kellner a tica e Tafonomia de Vertebrados Fo rio de Sistema sseis, Departamento de Geologia e Paleontologia, Museu Nacional/UFRJ, Quinta da Boa Vista, s/ Laborato ~o Cristo ~o, 20940-040, Rio de Janeiro, RJ, Brazil  va nº, Sa b cio de Sa , Rua Andr Universidade Esta e Rocha, 838, Taquara, 22710-560, Rio de Janeiro, RJ, Brazil c Museu de Ci^ encias da Terra, CPRM. Av. Pasteur, 404, Urca, 22290-240, Rio de Janeiro, RJ, Brazil a

a r t i c l e i n f o

a b s t r a c t

Article history: Received 2 January 2019 Received in revised form 27 April 2019 Accepted in revised form 3 June 2019 Available online 10 June 2019

We report new dinosaur bones from the Upper Cretaceous of western Brazil. Although fragmentary remains are reported since the XIX century, in this paper we describe for the first time, well-preserved cervical, dorsal and caudal vertebrae and one femur of titanosaur specimens. They come from Morro do Cambambe strata and show similarities with non-Saltasaurinae lithostrotian titanosaurs, such as Trigonosaurus pricei, Uberabatitan riberoi and some Aeolosaurini taxa. Although the bones cannot be sure assigned to a single individual, those elements still consist in the most complete remains recovered for this formation. The taxa described here also helps to understand some gaps in the knowledge of the Late Cretaceous vertebrate fauna from Brazil, and indicate possible faunal similarities among Brazilian Cretaceous formations. © 2019 Published by Elsevier Ltd.

Keywords: Lithostrotia Aeolosaurini Mato Grosso Bauru Group Cambambe Unit Late Cretaceous

1. Introduction The Upper Cretaceous dinosaur fauna from Brazil has raised considerable interest in the last decades (e.g. Brusatte et al., 2017) with the description of new specimens from several outcrops of the ~o Paulo (Santucci and Bauru Group situated in the states of Sa Arruda-Campos, 2011, Bandeira et al., 2016a,b) and Minas Gerais (Martinelli and Teixeira, 2015; França et al., 2016; Silva Junior et al., 2017). However, there is still a lack of available information regarding dinosaurs from Upper Cretaceous strata that emerge in several other parts of the country, including Mato Grosso state, which shows great potential for new findings (e.g., Kellner and Campos, 2000). Although dinosaur specimens from this region are known since 1883 (Price, 1961), most material has only been briefly cited (for a detailed list, see Sales et al., 2017) or are fragmentary (Franco-Rosa et al., 2004) and provide very limited

* Corresponding author. E-mail addresses: [email protected] (K.L.N. Bandeira), machado.eb@ gmail.com (E.B. Machado), [email protected] (D. Campos), kellner@ acd.ufrj.br (A.W.A. Kellner). https://doi.org/10.1016/j.cretres.2019.06.001 0195-6671/© 2019 Published by Elsevier Ltd.

taxonomic information (e.g., Sales et al., 2017). Most of those finds are collected on strata of Morro do Cambambe quarry, or “Cambambe Unit” (sensu Sales et al., 2017), which some authors regard as part of the Bauru Group (Bauer and Largher, 1958, Weska, 1987, 2006) and others have raised the possibility that they represent a new geological unit (e.g., see Brusatte et al., 2017 for a recent discussion). The first report of vertebrate remains in this region was provided by Derby (1890), followed later by Evans (1894), who has mentioned the presence of a turtle shell and a vertebra of an unidentified reptile. Several isolated and incomplete elements have been eventually reported, mostly in abstracts or communications in scientific meetings (e.g., Price, 1961). Franco-Rosas et al. (2004) reported from the Morro do Cambambe one fragmentary dorsal vertebra, two middle caudal vertebrae, and a tibia that were attributed to Gondwanatitan e a genus previously reported from ~o Paulo (Kellner and the Presidente Prudente Formation in Sa Azevedo, 1999). Lastly Sales et al. (2017) published the description of a theropod (one partial tooth and two caudal vertebrae centra) and titanosaur bones (one partial tooth and one incomplete dorsal vertebra).

2

K.L.N. Bandeira et al. / Cretaceous Research 103 (2019) 104155

Here we report fourteen isolated dinosaur elements, all belonging to titanosaurs, that consist of the most complete dinosaur remains from the Morro do Cambambe quarry. This material has been briefly mentioned before (Bandeira et al., 2016b) and is fully described here, providing additional information about the dinosaur fauna from this region. 2. Geological settings The geological settings of the deposits from the “Cambambe Unit” are not well established. Derby (1890) was the first to attribute a Cretaceous age to these deposits. Bauer and Largher (1958) regarded the strata close to the Roncador River, which is situated near Morro do Cambambe, similar to the deposits of the Bauru Group, leading Oliveira and Mülhmann (1965) to consider them as part of this geological unit. However, Almeida (1984) suggested that all Cretaceous layers from the Mato Grosso state should be included in the Parecis Group, due the Paraguay Belt is separating the Parecis from the Bauru Group (Fig. 1). Weska et al. (1996) introduced the “Cambambe Formation”, considering this stratigraphic unit as part of the Bauru Group, which has been followed by subsequent authors (Lacerda et al., 2004). However Weska (2006) casted some doubts about the validity of this unit some years later. Anyhow, all deposits of the Morro Cambambe consist of conglomerates intercalated with medium-grained sandstones (Weska et al., 1996) that were deposited in a fluvio-lacustrine system associated with distal sections of alluvial fans under semi-arid climate conditions (Rosa et al., 1991; Weska, 2006). According to Brusatte et al. (2017) these deposits are equivalent in age to the upper interval of Presidente Prudente and Marilia Formations of the Bauru Group (Fig. 1).

Neuquensaurus australis (Lydekker, 1893); Opisthocoelicaudia skarzynskii Borsuk-Białynicka, 1977; Overosaurus paradasorum Coria et al., 2013; Petrobrasaurus puestohernandezi Filippi et al., 2011a,b; Pitekunsaurus macayai Filippi and Garrido 2008; Rapetosaurus krausei Curry-Rogers and Foster, 2001; Rinconsaurus caudamirus lez-Riga, 2003; Rocasaurus muniozi Salgado and Calvo and Gonza Azpilicueta, 2000; Saltasaurus loricatus Bonaparte and Powell, 1980; Shingopana songwensis Gorsack et al., 2017; Tapuiasaurus macedoi Zaher et al., 2011; Triunfosaurus leonardii Carvalho et al., 2017; Trigonosaurus pricei Campos et al., 2005; and Uberabatitan riberoi Salgado and Carvalho, 2008. Other lithostrotians used considered here are: CPP 248 (Santucci and Bertini, 2001); MAUrie Pv-N-414 (Filippi et al., 2013); and MCT 1487-R (known as “Se A” by Powell, 1987, 2003). Since most taxa lack complete cervical, dorsal and caudal sequences, we have only compared our material with elements of similar or near positions. Some specimens were on loan to the National Museum (Museu Nacional/UFRJ) during the drafting of this article, but on September 2, 2018 the main building of National Museum, including the paleontological collections, where caught in fire leading to its destruction. Thus, to date, the specimens DGM 199-R, DGM 194-R, DGM 198-R, DGM 195-R, DGM 193-R, DGM 200-R, DGM 196-R, DGM 192-R, DGM 197-R and DGM 201-R are lost. 4. Systematic paleontology Saurischia Seeley, 1887 Sauropodomorpha Huene, 1932 Sauropoda Marsh, 1878 Titanosauria Bonaparte and Coria, 1993 Lithostrotia Upchurch et al., 2004 Aff. Aeolosaurini Franco-Rosas et al. (2004)

3. Material and methods According to the available catalog data, the specimens were collected by Llewellyn Ivor Price, in 1941, during the “Anibal B. Bastos Expedition”. This expedition concentrated in three different  Fria district, at the regions located in the North of the Agua Northeastern, Eastern and Southeastern areas of the Morro do Cambambe. Most specimens came from the northeastern (Table 1). There are no noticeable size differences between the specimens, with the exception of DGM 206-R and DGM 202-R. Since they come from different places, they represent different individuals except for the two caudal vertebrae DGM 192-R, and for the ribs (DGM 198-R) that were found associated (Table 1). We employed the vertebral laminae (Wilson, 1999, 2002) and fossae (Wilson et al., 2011) nomenclature regarding the identification of those structures. Several titanosauriform materials are used on this work to compare with the specimens described below. The following taxa of titanosauriformes were used for comparisons purposes: Venenosaurus dicrocei Tidwell et al., 2001, Aeolosaurus maximus Santucci and Arruda-Campos, 2011; Aeolosaurus rionegrinus Powell, 1987; Aeolosaurus colhuehuapensis Casal et al., 2007; Alamosaurus sanjuanensis Gilmore, 1922; Andesaurus delgadoi Calvo and Bonaparte, 1991; Antarctosaurus giganteus von Huene, 1929; Argentinosaurus huinculensis Bonaparte and Coria, 1993; Austroposeidon magnificus Bandeira et al., 2016a; Brasilotitan nemophagus Machado et al., 2013; Baurutitan britoi Kellner et al., 2005; Bonitasaura salgadoi Apesteguía, 2004; Dreadnoughtus schrani Lacovara et al., 2014; Epachthosaurus sciuttoi Powell, 1990; Futalognkosaurs dukei Calvo et al., 2007a; Gondwanatitan faustoi Kellner and Azevedo, 1999; Isisaurus colberti (Jain and Bandyopadhyay, 1997); Malawisaurus dixeyi Jacobs et al., 1993 (Gomani, 2005); Maxakalisaurus topai Kellner et al., 2006; Mendozasaurus neguyalap Gonzalez-Riga, 2003; Muyelensaurus pecheni Calvo et al., 2007c;

5. Comparative description 5.1. Cervical vertebrae The three cervical vertebrae (Fig. 2, 3) were found in same locality and correspond to the anterior (DGM 194-R) and middle (DGM 199-R and DGM 206-R) section of the neck. The most complete is DGM 194-R which lacks only the left prezygapophysis and both cervical ribs. Compared to MCT 1487-R that shows a complete cervical series (Powell, 1987, 2003), DGM 194-R is most likely the 4th or 5th element (Fig. 2). The centrum is elongated, opisthocoelous and shows a deep concave lateral margin (Fig. 2A), likely Trigonosaurus, MCT 1487-R, Uberabatitan, Pitekunsaurus, Overosaurus and Shingopana (Campos et al., 2005, Powell, 2003, Salgado and Carvalho, 2008, Filippi et al., 2011a,b, Coria et al., 2013, Gorsack et al., 2017). However, in these taxa, this concave lateral margin lacks internal septa or lamination, differing from Rinconsaurus, Muyelensaurus and Saltasaurus (Calvo and Gonzalez-Riga, 2003; Calvo et al., 2007; Powell, 1992, 2003). The centrum of DGM 194-R differs from Gondwanatitan by lacking the two ventral depressions (Fig. 2A) present in the latter (Kellner and Azevedo, 1999). The transverse processes have extensive diapophyses (50% of the centrum total length) as Overosaurus, MCT 1487-R and Trigonosaurus but differing from them taxa due to the robustness. The parapophyses are laminar, slightly convex anteroposteriorly and between them the centrum exhibits a deep depression, like the anterior to middle vertebra of MCT 1487R, and the anteriormost vertebrae of Trigonosaurus and Overosaurus (Powell, 1987, 2003; Campos et al., 2005; Coria et al., 2013). Overosaurus differ from their by having the parapophysis ventrolaterally projected.

K.L.N. Bandeira et al. / Cretaceous Research 103 (2019) 104155

3

 Basin Fig. 1. Location map of the area with Upper Cretaceous fossiliferous outcrops in southeastearn Brazil: geological map of the Bauru Group, and geotectonic map of the Parana showing the Cretaceous area of the Bauru Group and the other Cretaceous areas restricted to the Mato Grosso state (yellow). Red star shows the locality of the “Morro do Cambambe” site. Modified from Brusatte et al. (2017). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

The neural spine is low (Fig. 2B), differing from Isisaurus, Futalognkosaurus, Bonitasaura, and the giant specimen of Alamosaurus (BIBE 45854) (Jain and Bandyopadhyay, 1997; Calvo et al., 2007b; Gallina and Apesteía, 2015; Tykoski and Fiorillo, 2016) and possibly, Austroposeidon (Bandeira et al., 2016a). It is slightly expanded laterally at the tip (Fig. 2B), forming a tuberosity (or

“bulbous apex”, Coria et al., 2013), similar to MCT 1487-R, Overosaurus, Shingopana and to a lesser degree to Trigonosaurus and Uberabatitan. This tuberosity differs from titanosaurs with low neural spines that lack such expansion (e.g., Rinconsaurus, Muyelensaurus, Rocasaurus, Saltasaurus, Neuquensaurus, Maxakalisaurus, Tapuiasaurus and possibly, Aeolosaurus maximus). In Brasilotitan,

4

K.L.N. Bandeira et al. / Cretaceous Research 103 (2019) 104155 Table 1 The fossil collected by Llewellyn Ivor Price during the “Anibal B. Bastos Expedition” (1941). Although some more detailed information was lost, more general details of which points (at on the Northeastern, Southeastern or Eastern) of the Morro do Cambambe could be recovered in the catalog. Area/section

Catalog number

Bones collected

Northeastern

DGM DGM DGM DGM DGM DGM DGM DGM DGM DGM DGM DGM DGM

Incomplete cervical neural arches

Southeastern Eastern

199-R 206-R 194-R 198-R 195-R 202-R 198-R 193-R 200-R 196-R 192-R 197-R 201-R

Almost complete cervical vertebra Cervical rib Complete neural arch of a dorsal vertebra Dorsal centrum Dorsal rib Middle caudal vertebra Chevron Partial right femur Two almost complete middle-to-posterior caudal vertebrae Incomplete posterior caudal vertebra Chevron

Fig. 2. The cervical vertebra (DGM 194-R) in: A) ventral, B) dorsal, C) left lateral, D) right lateral, E) posterior and F) anterior views. Scale bar: 5 cm.

the neural spine is even lower (Machado et al., 2013). The supradiapophyseal fossae extends immediately above the diapophyses and below the tuberosity, being less developed than in MCT 1487-R, Rinconsaurus, Trigonosaurus, Uberabatitan, Aeolosaurus maximus, and Brasilotitan. The spinoprezygapophyseal laminae are well-developed in DGM 194-R, showing an inflection that forms a dorsal expansion at the base of the left one (the right is incomplete, Fig. 2C). This feature is not observed in any titanosaur, but expansions on the spinoprezygapophyseal laminae are also observed in mostly of the elements of MCT 1487-R and in the 11th of the Overosaurus. However, in these taxa, the spinoprezygapophyseal lamina is anteriorly developed, being more vertically oriented in Overosaurus than in MCT 1487-R, which shows a progressive development of this feature throughout the cervical series, until it disappears abruptly at the 9th cervical. The spinoprezygapophyseal laminae in DGM 194-R are comparatively thick (Fig. 2B), similar to Trigonosaurus and Aeolosaurus maximus (Santucci and Arruda-Campos, 2011), differing from the thinner condition observed in MCT 1487-R,

Maxakalisaurus and Uberabatitan. Also, DGM 194-R differs from MCT 1487-R and Futalognkosaurus by the absence of a deep channel between both spinoprezygapophyseal laminae (Powell, 1987, Calvo et al., 2007b). The spinopostzygapophseal fossa is well developed and dorsally concave, like in Trigonosaurus, MCT 1487-R, Overosaurus, Rinconsaurus, Muyelensaurus and Uberabatitan. The zygapophyses are short, slightly surpassing the anterior border of the centrum (Fig. 2C, 2D), similar to Trigonosaurus, Overosaurus, MCT 1487-R, Rinconsaurus and Muyelensaurus (Campos et al., 2005; Coria et al., 2013; Powell, 1987, 2003; Calvo lez-Riga, 2003, Calvo et al., 2007c). The articular facets and Gonza of the prezygapophyses are dorsomedially oriented as in Trigonosaurus, Overosaurus, MCT 1487-R, Rinconsaurus and Muyelensaurus (Campos et al., 2005; Coria et al., 2013; Powell, 1987, lez-Riga, 2003, Calvo et al., 2007c). In 2003; Calvo and Gonza addition, the articular facets of this specimen are away from the level of the diapophyses (Fig. 2C), which differs from the most recognizable feature of Saltasaurinae (Salgado et al., 1997a,b). Under the prezygapophyses, shallow and marked prezygapophyseal

K.L.N. Bandeira et al. / Cretaceous Research 103 (2019) 104155

5

Fig. 3. The other two cervical vertebrae in: DGM 199-R, in left lateral (A) and (B) dorsal views. Scale bar: 5 cm. DGM 206-R, in left lateral (C) and dorsal (D) views. Scale bar: 10 cm.

Fig. 4. DGM 198-R, cervical rib in anterior view. Scale bar: 5 cm.

centrodiapophyseal fossae are present, but without signs of subdivisions (Fig. 2C, 2D), a condition similar to BIBE 45854 (Tykoski and Fiorillo, 2016). The centroprezygapophyseal (Fig. 2E) and the centropostzygapophyseal (Fig. 2F) laminae are short and robust, similar than of the ones observed in MCT 1487-R, Trigonosaurus and Uberabatitan (Powell, 1987; Campos et al., 2005; Salgado and Carvalho, 2008). The centroprezygapophyseal laminae also lack the two shallow and medially placed concavities (Fig. 2E), present in Overosaurus (Coria et al., 2013). The intraprezygapophyseal laminae are narrow, showing a consequently restricted spinoprezygapophyseal fossa (sprf), differing from MCT 1487-R, Overosaurus, Trigonosaurus, Maxakalisaurus, Uberabatitan, Rapetosaurus and other titanosaurs. The prezygapophyseal centrodiapophyseal fossae and the centrodiapophyseal fossae are extremely shallow in DGM 194-R (Fig. 2E), differing from other titanosaurs species. The postzygapophyseal articular facets are horizontally oriented as in Trigonosaurus, MCT 1487-R, Rinconsaurus, Muyelensaurus and Pitekunsaurus (Fig. 2F). The postzygodiapophyseal laminae are anteriorly thin, becoming thicker posteriorly, similar to Overosaurus, Trigonosaurus and MCT 1487-R. These laminae differ from DGM 194-R due to the postzygodiapophyseal laminae not invading

the end of the transverse processes (Fig. 2C, 2D), differing from Trigonosaurus, MCT 1487-R; and Overosaurus. Furthermore, the postzygapophyseal centrodiapophyseal fossae in DGM 194-R are reduced and shallow (Fig. 2F), which is an unexpected feature observed in this specimen and exclusive to it, when compared to other titanosaurs. DGM 199-R and DGM 206-R consist of the left part of neural arch, including prezygapophyses, diapophyses and postzygapophyses (Fig. 3). DGM 199-R differs from DGM 194-R by the invasion of the postzygodiapophyseal laminae in the end of the transverse process (Fig. 3A, 3B). Also, DGM 199-R does not shows the neural spine and most of the lamina associated to this part (Fig. 3B). DGM 206-R differs from DGM 194-R and DGM 199-R by the size and by the positioning of the prezygapophysis (Fig. 3C). The prezygodiapophyseal lamina preserved in DGM 206-R is wellmarked but not reach the articulation facet of the prezygapophysis (Fig. 3D), differing from the other cervical bones described here. DGM 206-R also shows a well-marked but not thick spinoprezygapophyseal lamina as in DGM 194-R, and this lamina is not anteriorly developed (it not develop to the direction of the articulation facet of the prezygapophysis), besides the spinoprezygapophyseal lamina of bouding a very narrow prezygapophyseal

6

K.L.N. Bandeira et al. / Cretaceous Research 103 (2019) 104155

Fig. 5. Dorsal neural arch (DGM 195-R) in A) anterior, B) posterior, C) right lateral and D) left lateral views. Scale bar: 5 cm.

Fig. 6. DGM 202-R, a dorsal centrum on A) anterior, B) left lateral and C) posterior view. Scale bar: 10 cm.

K.L.N. Bandeira et al. / Cretaceous Research 103 (2019) 104155

7

Fig. 7. DGM 198-R, a dorsal rib. (A) anterior view, (B) posterior view and (C) detail of the head with excavation and a little pneumatic fossa. Scale bar: 5 cm.

fossa (Fig. 3D). The postzygapophysis of DGM 206-R is positioned laterally on the centropostzygapophyseal lamina (Fig. 3C), a feature observed on anterior cervical vertebra of Uberabatitan (CPP-1091UrHo). Also, DGM 206-R shows a postzygodiapophyseal lamina, which invades the supradiapofiseal fossae, also only observed on Uberabatitan (Fig. 3C). 5.2. Cervical rib The cervical rib (DGM 203-R, Fig. 4A, 4B) is quite complete, only missing the most distal end of the posterior process and the articulation with diapophysis, also showing signals of weathering (Fig. 4A). DGM 203-R is proportionally robust in its general shape, like the cervical ribs of Aeolosaurus maximus and Overosaurus, but not as in Isisaurus, Futalognkosaurus and Austroposeidon. The anterior process is slightly rounded and does not to surpass the centrum (Fig. 4A, 4B), differing from Maxakalisaurus and Trigonosaurus (Kellner et al., 2006). The posterior process is not complete (Fig. 4A, 4B), but it is shorter than in the cervical ribs of Maxakalisaurus and Aeolosaurus maximus. 5.3. Dorsal vertebrae Two elements with distinct sizes from the dorsal series were recovered: one most complete neural arch (DGM 195-R, Fig. 5) and an incomplete centrum (DGM 202-R, Fig. 6). Using the complete dorsal series in titanosaurs (as in Trigonosaurus), we tentatively assume that the neural arch as belongs to the fifth or sixth dorsal vertebra (Fig. 5). No hyposphene-hypantrum is preserved (Fig. 5A, 5B). Although the neural spine is quite incomplete, the preserved portion indicates that it is low, undivided and slightly inclined posteriorly (Fig. 5A, 5B), similar to D5 of Trigonosaurus (Campos et al., 2005), D4 and D5 of Overosaurus (Coria et al., 2013), and

thus differing from the middle dorsal vertebrae from Rinconsaurus, Muyelensaurus, and Rapetosaurus, which possess strong inclination posteriorly of neural spine. The neural spine differs from Overosaurus due to the absence of the lateral expansions above the postzygapophyses on posterior view (Coria et al., 2013). Laterally, the spinodiapophyseal laminae show narrow but deep postzygapophyseal spinodiapophyseal fossae (Fig. 5C, 5D), similar to Overosaurus, Trigonosaurus, Gondwanatitan, Neuquensaurus and the D7 of Rapetosaurus (Curry Rogers, 2009). DGM 195-R exhibits the diapophyses connecting the centrum to a centrodiapophyseal laminae (Fig. 5C, 5D), which presents triangular recess similar to Trigonosaurus and Overosaurus (Coria et al., 2013), but differing from the last one due to laminae being bifid in the Argentinean species. As expected to a middle dorsal vertebra, the parapophyses is dorsally positioned, almost reaching the same height of the diapophyses (Fig. 5C, 5D). Also, near to the parapophyses, DGM 195-R shows short anterior centroparapophyseal laminae, with no fossa between these laminae and the centroprezygapophyseal laminae, differing from UFRGS-PV-033-K (Sales et al., 2017). The prezygapophyses are not anteriorly projected (Fig. 5A). A thick prespinal lamina is present, being present on the base of the most distal end. The postzygapophyses are close to neural spine, located below the posterior edge (Fig. 5B). The postspinal lamina is not preserved. The developed postzygodiapophyseal lamina is clearly observed on the left side (Fig. 5C), as in the Trigonosaurus and Overosaurus, but opposite in Neuquensaurus and other derived titanosaurians (Salgado, 1996; Gallina, 2011; Mannion and Otero, 2012) and it is absent in Opisthocoelicaudia. The centrum (DGM 202-R, Fig. 6) is compressed dorsoventrally. An extremely poorly preserved region of the neural arch is present (Fig. 6A) but shows a complete neural channel. A narrow and vertical pleurocoel is observed, especially on the left side

8

K.L.N. Bandeira et al. / Cretaceous Research 103 (2019) 104155

Fig. 8. Caudal vertebrae. A1eA4) DGM 193-R, Anterior-to-middle caudal vertebra in anterior, right lateral, left lateral and dorsal. B1eB4) DGM 192-R, Middle caudal vertebra in anterior, right lateral, left lateral, and dorsal views. C1eC4) DGM 192-R, Middle caudal vertebra in anterior, right lateral, left lateral, and dorsal views. D1eD4) DGM 197-R, Posterior caudal vertebra in anterior, right lateral, left lateral, and dorsal views. Scale bar: 5 cm.

(Fig. 6B). The posterior centrodiapophyseal lamina is thick. The posterior face is large, being mostly elliptical (Fig. 6C). Due to this general morphology, we assume that this is a posterior dorsal centrum.

5.4. Dorsal rib The dorsal rib (Fig. 7) was found isolated from the other specimens but associated with the cervical rib. We assigned as middle or posterior rib due to its slender and plate-like morphology (Fig. 7A, 7B), as well as in Opisthocoelicaudia, Maxakalisaurus and Aeolosaurus maximus. The capitulum and tuberculum are relatively well preserved, with small pneumatic foramina observed (Fig. 7C),

similar to Gondwanatitan (Kellner and Azevedo, 1999) and Maxakalisaurus (Kellner et al., 2006). 5.5. Caudal vertebrae The caudal vertebrae studied here have been compared to the most complete caudal vertebrae sequence known (e.g, Baurutitan, Dreadnoughtus), which we interpreted as being the 8th, 11th, 12th and 18th caudals (Fig. 8). Overall, they have similar preservation stage with broken appendices. They are clearly procoelous and exhibit a strong concave cotyle (Fig. 8A1, 8B1, 8C1, 8D1). Also, all caudal vertebrae exhibit their centra slightly laterally compressed, similar to all Aeolosaurus species (Powell, 1987; Casal et al., 2007; Santucci and Arruda-Campos, 2011, Fillipi et al., 2013), as well as

K.L.N. Bandeira et al. / Cretaceous Research 103 (2019) 104155

9

Fig. 9. DGM 200-R, anterior haemal arch in A) right and B) left lateral view. DGM 201-R, middle or posterior haemal arch in C) posterior and D) anterior view. Scale bar: 5 cm.

Fig. 10. DGM 196-R, left femur in A) posterior and B) anterior views. Scale bar: 10 cm.

Gondwanatitan (Kellner and Azevedo, 1999), Trigonosaurus (Campos et al., 2005), Baurutitan (Kellner et al., 2005) Panamericansaurus (Calvo and Porfiri, 2010), Petrobrasaurus (Filippi et al.,

2011a,b), Pitekunsaurus (Filippi and Garrido, 2008), Uberbabatitan (Salgado and Carvalho, 2008) CPP 248 and MAU-Pv-N-414. The centra have the posterior condyle slightly displaced dorsally

10

K.L.N. Bandeira et al. / Cretaceous Research 103 (2019) 104155

Fig. 11. Comparision among titanosaur cervical vertebrae (not on scale): A) Euhelopus zdanskyi, B) Malawisaurus dixeyi, C) Argyrosaurus superbus, D) Opisthocoelicaudia skarzynskii, E) Saltasaurus loricatus, F) Isisaurus colberti, G) Trigonosaurus pricei, H) Alamosaurus sanjuanensis, I) Rapetosaurus krausei, and J) DGM 194-R. AeH, are modificated from Lehman and Coulson, 2002, modificated from Curry-Rogers, 2009.

spine is extremely low, similar to what occurs to Aeolosaurus rionegrinus and Aeolosaurus colhuehuapensis (Fig. 8A2e8A4). The neural arch is similar to MP-288 due to the anteroposteriorly large postzygapophyses (Fig. 8A2, 8A3). Those specimens differs from Baurutitan, Trigonosaurus and Uberabatitan due to the postzygapophyses does not exhibit marked articular facets, similar to the 15th caudal of Gondwanatitan. Additionally, the articular facets of the postzygapophyses bears the mid length of the centrum of DGM 193-R, which is another feature common among Aeolosaurini (Franco-Rosas et al., 2004; Martinelli et al., 2011). The transverse process is absent, showing a small tuberosity on this region, similar to the middle caudal vertebra of Muyelensaurus (Calvo et al., 2007c). Lastly, the left spinoprezygapophyseal lamina is present and seems to be thick, differing for MP-285, MP-287 (Franco-Rosas et al., 2004), Trigonosaurus, Baurutitan, Uberabatitan, Gondwanatitan, CPP 248 and MAU-Pv-N-414. The two middle caudals (DGM 192-R, possible the 11th, Fig. 8B1e8B4, and 12th, Fig. 8C1e8C4) have elongated centra, with vertically elliptic anterior surface (Fig. 8B2, 8B3, 8C2, 8C3). The neural spine seems to be straight in one vertebra and directly posteriorly in the other (Fig. 8C3), and seems to be low and anteroposteriorly short. The prezygapophyses are short, differing from the genus Aeolosaurus (Fig. 8C2, 8C3). The articular facet of the right prezygapophysis preserved is flat and medially inclined (Fig. 8C3), similar to Muyelensaurus, Aeolosaurus rionegrinus, Gondwanantitan, Maxakalisaurus, Overosaurus and MAU-Pv-N-414, differing from Trigonosaurus and Baurutitan. The postzygapophyses are quite developed (Fig. 8B2, 8B3, 8C2, 8C3), with small articular facets placed on the ventral margin of the neural spine, similar to Gondwanatitan, Baurutitan, and Maxakalisaurus. Also, the articular facets are directed laterally, with the posterior margin surpasses the middle of the vertebral centra (Fig. 8B2, 8B3, 8C2, 8C3). In, DGM 197-R (Fig. 8D1-8D4) the neural arch is not preserved, although the insertion scars is still preserved (Fig. 8D2, 8D3). The anterior articulation face of the centrum is well-marked (Fig. 8D1) while the posterior one is poorly developed and not well delineated, like Maxakalisaurus (Kellner et al., 2006) and Aeolosaurus maximus (Santucci and Arruda-Campos, 2011) anddiffering from Baurutitan (Kellner et al., 2005), Dreadnougthus (Lacovara et al., lez-Riga, 2014), Rinconsaurus and Muyelensaurus (Calvo and Gonza 2003; Calvo et al., 2007b). Laterally, DGM 197-R shows a depressed centrum with convex lateral walls (Fig. 8D4), a feature shared with distal caudals from Pellegrinisaurs (Salgado, 1996). 5.6. Chevrons

(Fig. 8A2, 8A3, 8B2, 8B3, 8C2, 8C3), like Baurutitan, Trigonosaurus Uberabatitan, CPP 248 and MAU-Pv-N-414. The neural arch on DGM 193-R and both DGM 192-R are anteroposteriorly short and displaced, almost touching the anterior margin of the centra. All neural arches lack the transverse process (Fig. 8). The prezygapophyses are not preserved, except for one vertebra (one of the DGM 192-R, Fig. 8C2, 8C3, 8C4). The neural spines are preserved only on DGM 193-R (Fig. 8A4) and in the most complete of the DGM 192-R (Fig. 8C4). The DGM 193-R (8th? caudal vertebra, Fig. 8A1, 8A2e8A4) has the anterior surface of the centrum wider than high, with a circular outline (Fig. 8A1), which is similar to MP-285 (Franco-Rosas et al., 2004) Trigonosaurus (Campos et al., 2005) and Baurutitan Kellner et al., 2005, as well differ from the same height and width of Gondwanatitan (Kellner and Azevedo, 1999) and MP-287 (FrancoRosas et al., 2004). No signs of the lateral depression is presented, differing from Alamosaurus, Saltasaurus, Malawisaurus, Aeolosaurus rionegrinus, Gondwanatitan and the titanosauriform Venenosaurus (Tidwell et al., 2001) forming true fossae in the latter. The neural

Two incomplete chevrons (DGM 200-R, DGM 201-R, Fig. 9) were recovered from this site. Both are narrowly open in the proximal extremity (Fig. 9A1, 9A2, 9B1, 9B2), differing from Aeolosaurus maximus (Santucci and Arruda-Campos, 2011). Also, both chevrons presents only one of the articular facet preserved. The chevrons, have the proximal ramus slightly laterally compressed. The ventral process of the chevrons is transversely flattened, but in a lesser degree to the Baurutitan (Kellner et al., 2005) and Uberabatitan (Salgado and Carvalho, 2008). On the DGM 201-R, is more slender than DGM 200-R, and is probably the most anterior one. The articular facet of DGM 201-R is a single, weakly developed and medially placed (Fig. 9A1, 9A2), differing from Uberabatitan which has two articular facets (Salgado and Carvalho, 2008), and differing from Aeolosaurus maximus by the development of articular facets. Also, DGM 201-R has a thinner morphology (Fig. 9A3), similar to Maxakalisaurus (Kellner et al., 2006) and Aeolosaurus colhuehuapensis (Casal et al., 2007). The DGM 200-R exhibits very similar morphology to DGM 201-R, but it is more anteroposteriorly developed and closer proximally (Fig. 9B3). The DGM 200-R shows

K.L.N. Bandeira et al. / Cretaceous Research 103 (2019) 104155

11

an extensive posterior concave area near to the articulation with the centrum (Fig. 9B1, 9B2). 5.7. Femur The right femur (DGM 196-R, Fig. 10) is not complete, but, is small, straight and shows a gracile morphology. The general slender morphology is compatible with the femur of Muyelensaurus, Rinconsaurus, and Aeolosaurus maximus. As in many titanosauriformes, the lateral bulge is present (Fig. 10A), which is diagnostic for this group (Salgado et al., 1997a,b). This feature is less developed when compared to the lateral bulge of other derived titanosaurs, like Uberabatitan, Rapetosaurus, Tapuiasaurus and Saltasaurus (Fig. 10A). The articular head is poorly developed (Fig. 10A, 10B), especially when compared to Uberabatitan, Antarctosaurus giganteus, Dreadnoughtus, Alamosaurus and Opisthocoelicaudia (Borsuk-Białynicka, 1977) but being similar to Petrobrasaurus, Muylensaurus and Aeolosaurus maximus. However, the articular head differs from the one of Petrobrasaurus by the upward location in comparison with the Argentinian species (Fig. 10A, A0B). The articular head also extends little dorsally, differing from Muyelensaurus, Rinconsaurus and Aeolosaurus maximus. The fourth trochanter is very discrete, with a smooth excavation medially, suggesting the presence of a slightly concavity as in Muyelensaurus. The back face is severely damaged (Fig. 10B), so it is difficult to provide more comparisons. 6. Discussion The cervical vertebrae differ in length, on development of the laminae and the morphology of the neural arch along the axial sequence. Even in specimens that do not present all cervical elements, they show anterior vertebrae proportionately lower, middle-to-posterior cervical vertebrae more elongated, while the posterior elements are shorter and wider than tall. Furthermore, the neural arch of the most posterior cervical vertebrae are anteroposterior narrow, with the neural spine laterally expanded. This pattern was previously recognized in Trigonosaurus, and later observed in Futalognkosaurus, Alamosaurus, Rapetosaurus and Overosaurus. The recognition of these morphological differences are paramount to establish the general position of isolated elements within the neck, like the bones described on this work. This is especially important in a clade as Titanosauria, where there is a great variability of vertebra morphotypes (Fig. 11). Furthermore, the variation of morphological details in parts of the cervical vertebrae might be a phylogenetic signal. For example, the spinoprezygapophyseal lamina is generally thicker in more anterior cervicals in Futalognkosaurus but not in derived species such as Rapetosaurus and in Alamosaurus (BIBE 45854) which seems to have an equal development or with little variation between the laminae along the cervical sequence. As the anterior elements are scarce, detailed comparisons with DGM 194-R about the cervical laminae development will have to wait for specimens with a more complete cervical sequence to find possible systematic characters. Still regarding the phylogenetic position of the new specimens from Morro do Cambambe, they do not represent more derived titanosaurs (Saltasaurinae sensu Powell, 2003). The cervical vertebrae lack features such as deep pleurocoels, short prezygapophyses positioned near the level of the diapophysis, and long and posteriorly projected postzygapophyses of the

Fig. 12. Comparision among titanosaur dorsal vertebrae (not on scale): A) Euhelopus zdanskyi, B) Malawisaurus dixeyi, C) Argyrosaurus superbus, D) Opisthocoelicaudia skarzynskii, E) Saltasaurus loricatus, F) Isisaurus colberti, G) Trigonosaurus pricei, H) Alamosaurus sanjuanensis, I) Rapetosaurus krausei, and J) DGM 195-R. AeH, are modificated from Lehman and Coulson, 2002, modificated from Curry-Rogers, 2009.

12

K.L.N. Bandeira et al. / Cretaceous Research 103 (2019) 104155

Fig. 13. Comparations among middle caudal vertebrae of titanosaur (not in scale). A) DGM 193-R; B) Aeolosaurus rionegrinus; C) A. colhuehuapensis; D) Aeolosaurini CPP 248; E) Aeolosaurus maximus; F) Gondwanatitan faustoi; G) Trigonosaurus pricei; H) Uberabatitan ribeiroi; I) Baurutitan britoi. Modified from Martinelli et al., 2011.

Saltasaurinae. The dorsal neural arch also lack Saltasaurinae's transverse process positioned immediately dorsomedial to the diapophyseal facet. Also, the caudal vertebrae differ from this clade by lacking the strongly dorsoventrally flattened centrum of the anterior elements and by not having a more anterodorsal edge of the neural spine positioned posteriorly relative to the anterior border of the postzygapophyses. The new Cambambe specimens seems not to be a basal titanosaur, since lacks hyposphene-hypantrum articulation and show strongly procoelous caudal vertebrae, different from Andesaurus and Malawisaurus (Calvo and Bonaparte, 1991; Jacobs et al., 1993). The sole dorsal element recovered lacks the hyposphenehypantrum articulation, observed in the basal titanosaurians such as Epachthosaurus (Martínez et al., 2004). The positioning of the neural spine in middle dorsal also seems to have systematic information (Fig. 12). Species such as Malawisaurus (Fig. 12B) possess the neural spine are directed dorsally, whereas more derivated ones

like Saltasaurus (Fig. 12E), Trigonosaurus (Fig. 12G) and Rapetosaurus (Fig. 12I) possess the neural spine are more posteriorly inclined. As is well known, titanosaurs have procoelous caudals with a typical ball-and-socket articulation, although this character is not consistent across the clade. Some derived taxa as Rinconsaurus, and maybe Maxakalisaurus, present an intercalation of different vertebral types (procoelous, amphicoelous and biconvex articulation). Maxakalisaurus shows the procoelous vertebrae and one biconvex caudal vertebra, but the confirmation of this intercalation of vertebral types will have to await the discovery of new specimens of Maxakalisaurus. For instance, in Andesaurus and Malarguesaurus (Gonzalez Riga et al., 2009), platycoelous or amphicoelous middle and posterior caudal centra are related with procoelous anterior caudal ones. In our study case, the strongly procoelous caudal centra suggests a derived morphological state with respect to Andesaurus. The anteriorly displaced neural arch and the anterodorsally projected neural spine of the new caudal vertebrae described here (DGM 193-R and DGM 192-R) suggest some affinities with the Aeolosaurini. Several authors have classified caudal vertebrae in this clade (Kellner and Azevedo, 1999; Franco-Rosas et al., 2004; Campos et al., 2005; Kellner et al., 2006; França et al., 2016), or even in the genus Aeolosaurus (Bertini et al., 2001; Santucci and Bertini, 2001, Candeiro et al., 2006; Lopes and Buchmann, 2008). However, there are problems regarding these assignments mainly due to the uncertainties regarding the definition of this clade, including Aeolosaurus. In 2011, two independent revisions performed by Martinelli et al. (2011) and Santucci and Arruda-Campos (2011) reached different conclusions regarding the presence of the genus Aeolosaurus in Brazilian deposits. Martinelli et al. (2011) disagreed with the assignment of any Brazilian material known so far to this genus while Santucci and Arruda-Campos (2011) erected the species Aeolosaurus maximus. The latter is based on the caudal elements assigned to this genus by Santucci and Bertini (2001). Filippi et al. (2013) regarded as this species representing a different genus due to the absence of one synapomorphy of this genus (see Casal et al., 2007): the anterior position of the postzygapophysis in the anterior and middle caudal vertebrae. Santucci and Arruda-Campos (2011) have argued that the postzygapophysis position varies along the caudal sequence of Aeolosaurus rionegrinus and Aeolosaurus colhuehuapensis, which contradicts the published information of these species (Powell, 2003; Casal et al., 2007, Fillipi et al., 2013). Martinelli et al. (2011) also questioned the assignment of MP 287 Gondwanatitan sp made by Franco-Rosas et al. (2004), since it lacks the “heart-shaped” posterior articulation surface. It should be noted that the specimen described by Franco-Rosas et al. (2004),

Fig. 14. Comparision among titanosaurs femora. A) DGM 196-R, B) Epachtosaurus, C) Neuquensaurus australis, D) Dreadnoughthus schrani, E) Malawisaurus dixeyi, F) Alamosaurus sanjuenensis and G) Argyrosaurus sp. Modified from Sassani and Bivens, 2017.

K.L.N. Bandeira et al. / Cretaceous Research 103 (2019) 104155

DGM 193-R, and Aeolosaurus maximus lack the “heart-shaped” (Fig. 13). Furthermore, all three specimens differ from Gondwanatitan due to the anterior inclination of the neural arch, which is not only placed in the anterior region of the caudal center but is also anteriorly inclined (Fig. 13). The length of the neural spine is greater in Aeolosaurus maximus than in Gondwanatitan, and the prezygapophyses are more elongated in Aeolosaurus maximus and MP 287 than in Gondwanatitan. Therefore it seems likely that the holotype of Aeolosaurus maximus does not belong to the genus Gondwanatitan (contra Martinelli et al., 2011) The orientation of the postzygapophyses relative to the centrum leng are also clearly different between the so-called Aeolosaurini (Fig. 13). While in the species Aeolosaurus rionegrinus and Aeolosaurus colhuehuapensis the postzygapophyses are in the most anterior portion of the arch (Fig. 13B, 13C), in the other species they only reach the half or one immediately before the half of the length of the vertebral centrum (Fig. 13A, 13D-13I). Thus, the distance between the postzygapophyses (Fig. 13, blue line) and the final portion of the prezygapophyses (Fig. 13, red line) is minimal only in Aeolosaurus rionegrinus and Aeolosaurus colhuehuapensis, whereas in the other supposed Aeolosaurini species this distance can be two to three times greater. Regarding the femur, the presence of a low lateral bulge and a more elevated femoral head suggest that DGM 196-R represents a non-saltasaurine species (Fig. 14). The femur DGM 196-R exhibits as several other titanosaurs the proximal third of the shaft is directed medially although the distal morphology seems to be closer to vertical (Fig. 14). Despite the incompleteness of this material, they add new data to biogeographic inferences and the correlation of titanosaur faunas. Compared to other titanosaur faunas, the specimens described here show closer affinities with elements recovered from the Marília Formation. The presence of Aeolosaurini or closely related taxa (e.g., Trigonosaurus and Uberabatitan), as well as abelisaurids, suggests a faunal turnover (especially titanosaurs), which inhabited large geographical regions during the Late Cretaceous. Stratigraphic refinement particularly regarding the Cretaceous deposits of Mato Grosso might shed more light regarding this matter. 7. Conclusions The present specimens corroborate previous hypothesis that more than one aelosaurini species is present in the Cambambe Unit. Although not attributable to a single individual, some bones show affinities with taxa of the Marília Formation (Trigonosaurus and Uberabatitan), raising the possibility of similar titanosaur fauna represented in both units. Although the present sample is the most complete to be reported from Morro do Cambambe, the taxonomic identification of these specimens remains unclear. Funding Funding for this Project was provided by Conselho Nacional de gico [385064/2015-2, KLNB Desenvolvimento Científico e Tecnolo cio de S technical support scholarship], Universidade Esta a [Pesquisa Produtividade to EBM], and [Grant Number #304780/2013-8] ~o Carlos Chagas Filho de Amparo  and Fundaça a Pesquisa do Estado do Rio de Janeiro [FAPERJ #E-26/202.893/2015 to AWAK]. Acknowledgements We thank Rodrigo Machado (DNPM) for help regarding the specimen studied here and Rafael Gomes de Souza (Museu Nacional/UFRJ) for comments on earlier drafts of this manuscript. We are also grateful to Julio Silva and Tatiana M. Tavares for the more detailed review of English on this paper. Arthur Souza Brum

13

(Museu Nacional/UFRJ) is thanked for the drawings that illustrate this manuscript. We are grateful to the two anonymous reviewers, and for the editor E. Koutsoukos' comments, who improved the quality of the manuscript during the review process. References Almeida, F.F.M., 1984. Província Tocantins, setor sudoeste. In: Almeida, F.F.M., -cambriano do Brasil. Edgar Blücher, Sa ~o Paulo, pp. 265e281. Hasui, Y. (Eds.), Pre Apesteguía, S., 2004. Bonitasaura salgadoi gen. et sp. nov.: a beaked sauropod from the Late Cretaceous of Patagonia. Naturwissenschaften 91, 493e497. Bandeira, K.L.N., Simbras, F.M., Machado, E.B., Campos, D.A., Oliveira, G.R., Kellner, A.W.A., 2016a. A New Giant Titanosauria (Dinosauria: Sauropoda) from the Late Cretaceous Bauru Group, Brazil. PLoS ONE 11 (10), e0163373. https:// doi.org/10.1371/journal.pone.0163373. Bandeira, K.L.N., Machado, E.B., Campos, D.A., Kellner, A.W.A., 2016b. New Titanosauria (Sauropoda, Dinosauria) remains from the Cambambe Formation (Bauru Group, Late Cretaceous), Mato Grosso State. In: Boletim de Resumos do X sio Brasileiro de Paleontologia de Vertebrados; 2016. Sociedade Brasileira Simpo de Paleontologia, Rio de Janeiro. Rio de Janeiro. Bauer, M., Largher, G.N., 1958. A preliminary report of the eastern central part of the s, State of Mato Grosso and a portion of the western part of the state of Goia Brasil [technical report]. DEBSP/Petrobr as, Ponta Grossa. Bertini, R.J., Santucci, R.M., Campos, A.C.A., 2001. Titanossauros (Sauropoda: Sauceo Superior continental (Formaç~ rischia) no Creta ao Marília, Membro ~) de Monte Alto, Estado de S~ ~o com formas assoEchapora ao Paulo, e correlaça ^ngulo Mineiro [Titanosaurs (Sauropoda: Saurischia) in the Conciadas do Tria tinental Upper Cretaceous (Marília Formation, Echapor~ a Member) of Monte ^ngulo Alto, State of S~ ao Paulo, and correlation with associated forms of the Tria ^ncias 20 (1e2), 93e103. Mineiro]. Geocie Bonaparte, J.F., Powell, J.E., 1980. A continental assemblage of tetrapods from the Upper Cretaceous beds of El Brete, northwestern Argentina (Sauropoda-Coemoires de la Socie te  Ge ologique de France, lurosauria-Carnosauria-Aves). Me rie 139, 19e28. Nouvelle Se Bonaparte, J.F., Coria, R.A., 1993. Un nuevo y gigantesco sauropodo titanosaurio de la  n Rio Limay (Albiano-Cenomanio) de La Provincia del Neuque n, Formacio Argentina [A new giant titanosaur sauropod from the Rio Limay Formation n Province, Argentina]. Ameghiniana 30, (Albian-Cenomanian) of Neuque 271e282. Borsuk-Białynicka, M.M., 1977. A new camarasaurid sauropod Opisthocoelicaudia skarzynskii gen. n., sp. n. from the Upper Cretaceous of Mongolia. Palaeontologia Polonica 37 (5), 5e64. Brusatte, S.L., Candeiro, C.R.A., Simbras, F.M., 2017. The last dinosaurs of Brazil: The Bauru Group and its implications for the end-Cretaceous mass extinction. Anais ^ncias 89 (3), 1465e1485. da Academia Brasileira de Cie Calvo, J.O., Bonaparte, J.F., 1991. Andesaurus delgadoi gen. et sp. nov. (Saurischian Río Limay (AlbianoSauropoda), dinosaurio Titanosauridae de la Formacio n, Argentina [Andesaurus delgadoi gen. et sp. nov. Cenomaniano), Neuque (Saurischia-Sauropoda), a titanosaurid dinosaur from the Río Limay Formation n, Argentina]. Ameghiniana 28, 303e310. (Albian-Cenomanian), Neuque Calvo, J.O., Gonz alez-Riga, B.J., 2003. Rincosaurus caudamirus gen. et sp. nov., a new titanosaurid (Dinosauria, Sauropoda) from the Late Cretaceous of Patagonia, Argentina. Revista Geologica de Chile 30 (2), 333e353. lez Riga, B.J., Kellner, A.W.A., 2007a. A new Cretaceous Calvo, J.O., Porfiri, J.D., Gonza terrestrial ecosystem from Gondwana with the description of a new sauropod dinosaur. Anais da Academia Brasileira de Ciencias 79, 529e541. https://doi.org/ 10.1590/S0001-37652007000300013. lez Riga, B.J., Kellner, A.W.A., 2007b. Anatomy of Calvo, J.O., Porfiri, J.D., Gonza Futalognkosaurus dukei Calvo, Porfiri, Gonz alez Riga, & Kellner, 2007 (Dinosauria, Titanosauridae) from the Neuquen Group, Late Cretaceous, Patagonia, Argentina. Arquivos do Museu Nacional 65 (4), 511e526. Calvo, J.O., Gonz alez Riga, B.J., Porfiri, J.D., 2007c. A new titanosaur sauropod from n, Patagonia, Argentina. Arquivos do Museu the Late Cretaceous of Neuque Nacional 65 (4), 485e504. Rio de Janeiro. Calvo, J.O., Porfiri, J.D., 2010. Panamericansaurus schroederi gen. nov. sp. nov., un n, nuevo Sauropoda (Titanosauridae-Aeolosaurini) de la Provincia del Neuque Cret acico Superior de Patagonia, Argentina [Panamericansaurus schroederi gen. nov. sp. nov., a new Sauropoda (Titanosauridae-Aeolosaurini) from the Province n, Upper Cretaceous of Patagonia, Argentina]. Brazilian Geographical of Neuque Journal: Geosciences and Humanities research medium, Ituiutaba. 1, 100e115. Campos, D.A., Kellner, A.W.A., Bertini, R.J., Santucci, R.M., 2005. On a titanosaurid (Dinosauria, Sauropoda) vertebral column from the Bauru Group, Late Cretaceous of Brazil. Arquivos do Museu Nacional 63, 565e593. Candeiro, C.R.A., 2006. Los titanosaurideos (Dinosauria, Titanosauria) del Grupo ficas con los ge neros de la Patagonia Bauru y sus relaciones paleogeogra Argentina. Sociedade & Natureza 18, 77e89. Carvalho, I.S., Salgado, L., Lindoso, R.M., Araújo-Júnior, H.I., Costa Nogueira, F.C., Soares, J.A., 2017. A new basal titanosaur (Dinosauria, Sauropoda) from the Lower Cretaceous of BraziL. Journal of South American Earth Sciences 75, 74e84. https://doi.org/10.1016/j.jsames.2017.01.010. Casal, G., Martínez, R., Luna, M., Sciutto, J.C., Lamanna, M., 2007. Aeolosaurus col n Bajo Barreal, huehuapensis sp. nov. (Sauropoda, Titanosauria) de la Formacio Cret acico superior de Argentina [Aeolosaurus colhuehuapensis sp. nov.

14

K.L.N. Bandeira et al. / Cretaceous Research 103 (2019) 104155

(Sauropoda, Titanosauria), Of the Bajo Barreal Formation, Upper Cretaceous of Argentina]. Revista Brasileira de Paleontologia 10, 53e62. Coria, R.A., Filippi, L.S., Chiappe, L.M., García, R., Arcucci, A.B., 2013. Overosaurus paradasorum gen. et sp. nov., a new sauropod dinosaur (Titanosauria: Lithosn, Patagonia, Argentina. Zootaxa trotia) from the Late Cretaceous of Neuque 3683 (4), 357e376. Curry-Rogers, K.A., 2009. The Postcranial Osteology of Rapetosaurus krausei (Sauropoda: Titanosauria) from the Late Cretaceous of Madagascar. Journal of Vertebrate Paleontology 29 (4), 1046e1086. Derby, O.A., 1890. Notas sobre a geologia e paleontologia de Matto Grosso [Notes on the geology and paleontology of Mato Grosso]. Arquivos do Museu Nacional 9, 59e88. Evans, J.W., 1894. The geology of Matto Grosso (particularly the region drained by the Upper Paraguay). Quarterly Journal of the Geological Society of London 50, 85e104. Filippi, L.S., Garrido, A., 2008. Pitekunsaurus macayai gen. et sp. nov., nuevo titanosaurio (Saurischia, Sauropoda) del Cret acico Superior de la Cuenca Neuquina, Argentina[. Pitekunsaurus macayai gen. et sp. nov., a new titanosaur (Saurischia, Sauropoda) of Upper Cretaceous of Neuquen Basin, Argentina]. Ameghiniana 45, 575e590. Filippi, L.S., Canudo, J.I., Salgado, L., Garrido, A.C., García, R.A., Cerda, I., OTERO, A., 2011a. A new sauropod titanosaur from the Plottier Formation (Upper Creta gica Acta 9, 1e12. ceous) of Patagonia (Argentina). Geolo Filippi, L.S., García, R.A., Garrido, A.C., 2011b. A new titanosaur sauropod dinosaur from the Upper Cretaceous of North Patagonia, Argentina. Acta Palaeontologica Polonica 56 (3), 505e520. Filippi, L.S., Martinelli, A.G., Garrido, A.C., 2013. Registro de un dinosaurio Aeolocico Superior (Formacio  n Anasaurini (Sauropoda, Titanosauria) en el Creta n, Argentina, y comentarios sobre cleto) del norte de la provincia de Neuque aeolosaurinos sudamericanos. Revista Brasileira de Paleontologia 16 (1), 147e156. Franco-Rosas, A.C., Salgado, L., Rosas, C.F., Carvalho, I.S., 2004. Nuevos materiales de titanosaurios (Sauropoda) en el Cret acico Superior de Mato Grosso, Brasil [New titanosaurs materials (Sauropoda) in the Upper Cretaceous of Mato Grosso, Brazil]. Revista Brasileira de Paleontologia 7, 329e336. França, M.A.G., Marsola, J.C.D.E.A., Riff, D., Hsiou, A.S., Langer, M.C., 2016. New lower jaw and teeth referred to Maxakalisaurus topai (Titanosauria: Aeolosaurini) and their implications for the phylogeny of titanosaurid sauropods. PeerJ 4, e2054. https://doi.org/10.7717/peerj.2054. Gallina, P., 2011. Notes on the axial skeleton of the titanosaur Bonitasaura salgadoi (Dinosauria-Sauropoda). Anais da Academia Brasileira de Ciencias 83, 235e245. Gallina, P.A., Apesteguía, S., 2015. Postcranial anatomy of Bonitasaura salgadoi (Sauropoda,Titanosauria) from the Late Cretaceous of Patagonia. Journal of Vertebrate Paleontology 35 (3), e924957. Gilmore, C.W., 1922. Discovery of a sauropod dinosaur from the Ojo Alamo Formation of New Mexico. Smithsonian Miscellaneous Collections 81, 1e9. Gomani, E.M., 2005. Sauropod Dinosaurs from the Early Cretaceous of Malawi, Africa. Palaeontologia Electronica 8 (1), 37. lez-Riga, B.J., 2003. A new titanosaur (Dinosauria, Sauropoda) from the Upper Gonza Cretaceous of Mendoza, Argentina. Ameghiniana 40, 155e172. lez Riga, B.J., Previtera, E., Pivone, C.A., 2009. Malarguesaurus florenciae gen. Gonza et sp. nov., a new titanosauriform (Dinosauria, Sauropoda) from the Upper Cretaceous of Mendoza, Argentina. Cretaceous Research 30 (1), 135e148. Gorscak, E., O'Connor, P.M., Roberts, E.M., Stevens, N.J., 2017. The second titanosaurian (Dinosauria: Sauropoda) from the middle Cretaceous Galula Formation, southwestern Tanzania, with remarks on African titanosaurian diversity. Journal of Vertebrate Paleontology. https://doi.org/10.1080/02724634.2017.1343250. Jacobs, L.L., Winkler, D.A., Downs, W.R., Gomani, E.M., 1993. New material of an Early Cretaceous titanosaurid sauropod dinosaur from Malawi. Palaeontology, London 36 (3), 523e534. Jain, S.L., Bandyopadhyay, S., 1997. New Titanosaurid (Dinosauria: Sauropoda) from the Late Cretaceous of Central India. Journal of Vertebrate Paleontology 17 (1), 114e136. Norman, Okla.: University of Oklahoma. Kellner, A.W.A., Azevedo, S.A.K., 1999. A new sauropod dinosaur (Titanosauria) from the Late Cretaceous of Brazil. National Science Museum Monographs 15, 111e142. Kellner, A.W.A., Campos, D.A., 2000. Brief review of dinosaur studies and perspectives in Brazil. Anais da Academia Brasileira de Ciencias 72, 509e538. Kellner, A.W.A., Campos, D.A., Trotta, M.N.F., 2005. Description of a titanosaurid caudal series from the Bauru Group, Late Cretaceous of Brazil. Arquivos do Museu Nacional 63, 529e564. Kellner, A.W.A., Campos, D.A., Azevedo, S.A.K., Trotta, M.N.F., Henriques, D.D.R., Craik, M.M.T., Silva, H.P., 2006. On a new titanosaur sauropod from the Bauru Group, Late Cretaceous of Brazil. Boletim do Museu Naciona 74, 1e32. Lacerda, J.V., Abreu, W., Valente, C.R., Oliveira, C.C., Albuquerque, M.C. (Eds.), 2004. Geologia e Recursos Minerais do Estado de Mato Grosso [Geology and mineral ^nia. resources of Mato Grosso State]. CPRM, Goia Lacovara, K.J., Ibiricu, L.M., Lamanna, M.C., Poole, J.C., Schroeter, E.R., Ullmann, P.V., Voegele, K.K., Boles, Z.M., Egerton, V.M., Harris, J.D., Martínez, R.D., Novas, F.E., 2014. A Gigantic, Exceptionally Complete Titanosaurian Sauropod Dinosaur from Southern Patagonia, Argentina. Scientific Reports 4, 6196. https://doi.org/ 10.1038/srep06196. Lehman, T.M., Coulson, A.B., 2002. A juvenile specimen of the sauropod dinosaur Alamosaurus sanjuanensis from the Upper Cretaceous of Big Bend National Park, Texas. Journal of Paleontology 76, 156e172.

Lopes, R.P., Buchmann, F.S.C., 2008. Fossils of titanosaurs (Dinosauria, Sauropoda) from a new outcrop in Tri^ angulo Mineiro, southeastern Brazil. Revista Brasilera de Paleontologia 11, 69e72. Machado, E.B., Avilla, L.S., Nava, W.R., Campos, D.A., Kellner, A.W.A., 2013. A new titanosaur sauropod from the Late Cretaceous of Brazil. Zootaxa 3701 (3), 301e321. Mannion, P.D., Otero, A., 2012. A reappraisal of the Late Cretaceous Argentinean sauropod dinosaur Argyrosaurus superbus, with a description of a new titanosaur genus. Journal of Vertebrate Paleontology 32, 614e638. Martinelli, A.G., Teixeira, V.P.A., 2015. The Late Cretaceous vertebrate record from ^ngulo Mineiro, southeastern Brazil. Boletin Geothe Bauru Group in the Tria logico y Minero 126 (1), 129e158. Martinelli, A.G., Riff, D., Lopes, R.P., 2011. Discussion about the occurrence of the genus Aeolosaurus Powell 1987 (Dinosauria, Titanosauria) in the Upper Cretaceous of Brazil. Gaea 7, 34e40. Martínez, R.D., Gimenez, O., Rodriguez, J., Luna, M., Lamanna, M., 2004. An articulated specimen of the basal titanosaurian (Dinosauria: Sauropoda) Epachthosaurus sciuttoi from the early Late Cretaceous Bajo Barreal Formation of Chubut Province, Argentina. Journal of Vertebrate Paleontology 24, 107e120. Oliveira, M.A.M., Mülhmann, H., 1965. Geologia de semi-detalhe da regi~ ao de ~o Vicente e Chapada dos Guimara ~es. Ponta Grossa: PETROMutum, Jaciara, Sa BRAS/DEBSP. Powell, J.E., 1987. Morfologia del esqueleto axial de los dinosaurios titanosauridos (Saurichia, Sauropoda) del Estado de Minas Gerais, Brasil [Morphology of the axial skeleton of titanosaurid dinosaurs (Saurichia, Sauropoda) from the State of Minas Gerais, Brazil]. In: Congresso Brasileiro de Paleontologia, 10. Rio de Janeiro, Anais, 1. Sociedade Brasileira de Paleontologia, Rio de Janeiro, pp. 155e171. Powell, J.E., 1990. Epachthosaurus sciuttoi (gen. et sp. nov.) un dinosaurio saupodo del Creta cico de Patagonia (Provincia de Chubut, Argentina) [Epachro thosaurus sciuttoi (gen. et sp. nov.) a sauropod dinosaur from the Cretaceous of Patagonia (Province of Chubut, Argentina)]. In: 5º Congreso Argentino de n), Actas, pp. 123e128. Paleontología y Bioestratigrafía (Tucuma Powell, J.E., 1992. Osteología de Saltasaurus loricatus (Sauropoda-Titanosauridae) cico Superior del noroeste Argentina [Osteology of Saltasaurus loricatus del Creta (Sauropoda-Titanosauridae) from the Upper Cretaceous of northwestern Argentina]. In: Sanz, J.L., Buscalioni, A.D. (Eds.), Los Dinosaurios y su Entorno tico. Instituto “Juan de Valde s”, Cuenca, pp. 165e230. Bio Powell, J.E., 2003. Revision of South American titanosaurid dinosaurs: palaeobiological, palaeobiogeographical and phylogenetic aspects. Records of the Queen Victoria Museum 111, 1e173. urios do Brasil [abstract]. Anais da Academia BraPrice, L.I., 1961. Sobre os dinossa sileira de Ciencias 33 xxviiiexxix. Rosa, D.B., Weska, R.K., Lima, P.R.M., 1991. Formas de sílicas fibrosas associadas a  F evaporitos em rochas pertencentes a acies Cambambe (Grupo Bauru), na   ~o de Agua ~es, MT. In: SIMPOSIO regia Fria, Chapada dos Guimara DE GEOLOGIA , v. 1. Sociedade Brasileira de DO CENTRO-OESTE, 3, 1991, Cuiab a. Anais... Cuiaba Geologia/Núcleo Centro-Oeste, 1991, pp. 211e221. Sales, M.A.F., Martinelli, A.G., Francischini, H., Rubert, R.R., Marconato, L.P., Soares, M.S., Schultz, C.L., 2017. New dinosaur remains and the tetrapod fauna from the Upper Cretaceous of Mato Grosso State, central Brazil. Historical Biology 1e16. https://doi.org/10.1080/08912963.2017.1315414. Salgado, L., 1996. Pellegrinisaurus powelli nov. gen. et sp. (Sauropoda, Titanosauridae) from the Upper Cretaceous of Lago Pellegrini, northwestern Patagonia, Argentina. Ameghiniana 33 (4), 355e365. Salgado, L., Azpilicueta, C., 2000. Un nuevo saltasaurino (Sauropoda, Titanosaurcico Superior), idae) de la provincia de Río Negro (Formacíon Allen, Creta Patagonia, Argentina. Ameghiniana 37 (3), 259e264. Salgado, L., Carvalho, I.S., 2008. Uberabatitan ribeiroi, a new titanosaur from the Marília Formation (Bauru Group, Upper Cretaceous), Minas Gerais, Brazil. Palaeontology 51, 881e901. Salgado, L., Coria, R.A., Calvo, J.O., 1997a. Evolution of titanosaurid sauropods. I. Phylogenetic analysis based on the postcranial evidence. Ameghiniana 34 (1), 3e32. nero Aeolosaurus (SauSalgado, L., Coria, R.A., Calvo, J.O., 1997b. Presencia del ge  n Los Alamitos, Creta cico Superior de la ropoda, Titanosauridae) en la Formacio Provincia de Río Negro, Argentina [Presence of the genus Aeolosaurus (Sauropoda, Titanosauridae) in the Los Alamitos Formation, Upper Cretaceous of the Province of Río Negro, Argentina]. Revista Universidade Guarulhos Geociencias 2 (6), 44e49. Santucci, R.M., Arruda-Campos, A.C., 2011. A new sauropod (Macronaria, Titanosauria) from the Adamantina Formation, Bauru Group, Upper Cretaceous of Brazil and the phylogenetic relationships of Aeolosaurini. Zootaxa 3085, 1e33. ~o paleogeogra fica e biocronolo gica dos Santucci, R.M., Bertini, R.J., 2001. Distribuiça titanossauros (Saurischia, Sauropoda) do Grupo Bauru, Cret aceo Superior do sudeste brasileiro [Paleogeographic and biochronologic distribution of titanosaurs (Saurischia, Sauropoda) from the Bauru Group, Upper Cretaceous of southeastern Brazil]. Brazilian Journal of Genetics 31, 307e314. Silva Junior, J.C.G., Martinelli, A.G., Ribeiro, L.C.B., Marinho, T.S., 2017. Description of a juvenile titanosaurian dinosaur from the Upper Cretaceous of Brazil. Cretaceous Research 76 (2017), 19e27. Sassani, N., Bivens, G.T., 2017. The Chinese colossus: an evaluation of the phylogeny of Ruyangosaurus giganteus and its implications for titanosaur evolution. PeerJ Preprints 5, e2988v1. https://doi.org/10.7287/peerj.preprints.2988v1.

K.L.N. Bandeira et al. / Cretaceous Research 103 (2019) 104155 Tidwell, V., Carpenter, K., Meyer, S., 2001. New Titanosauriform (Sauropoda) from the Poison Strip Member of the Cedar Mountain Formation (Lower Cretaceous), Utah. In: Tanke, D.H., Carpenter, K. (Eds.), Mesozoic Vertebrate Life. Indiana University Press, pp. 139e165. Tykoski, R.S., Fiorillo, A.R., 2016. An articulated cervical series of Alamosaurus sanjuanensis Gilmore, 1922 (Dinosauria, Sauropoda) from Texas: new perspective on the relationships of North America's last giant sauropod. Journal of Systematic Palaeontology. https://doi.org/10.1080/14772019.2016. 1183150. Upchurch, P., Barrett, P.M., Dodson, P., 2004. Sauropoda. In: Weishampel, D.B., Dodson, P., Osmolska, H. (Eds.), The Dinosauria, second ed. University of California, Berkeley, pp. 259e322. o Argentino [The von Huene, F., 1929. Los saurisquios y ornitisquios del Cretace Saurischian and Ornithischian of Argentinian Cretaceous]. Anales del Museo de La Plata 3, 1e196.  ~o de Agua Weska, R.K., 1987. “Placers” diamantíferos da regia Fria, Chapada dos ~es. MT [dissertation]. Brasília: Universidade de Brasília. Guimara

15

ceo Superior mato-grossense [A synthesis Weska, R.K., 2006. Uma síntese do Creta of the Upper Cretaceous from Mato Grosso]. Geociencias 25, 71e86. ~o ao conhecimento do Weska, R.K., Svisero, D.P., Leonardos, O.H., 1996. Contribuiça Grupo Bauru no Estado de Mato Grosso, Brasil. Boletim de Resumos do IV sio sobre o Cret Simpo aceo do Brasil; 1996. Universidade Estadual Paulista, S~ ao Pedro. Rio Claro. Wilson, J., 1999. A nomenclature for vertebral laminae in sauropods and other saurischian dinosaurs. Journal of Vertebrate Paleontology 19, 639e653. Wilson, J.A., 2002. Sauropod dinosaur phylogeny: critique and cladistic analysis. Zool J Linn Soc-Lond 136, 217e276. Wilson, J.A., D'Emic, M.D., Ikejiri, T., Moacdieh, E.M., Whitlock, J.A., 2011. A nomenclature for vertebral fossae in sauropods and other saurischian dinosaurs. PLoS ONE 6, e17114. https://doi.org/10.1371/journal.pone.0017114. Zaher, H., Pol, D., Carvalho, A.B., Nascimento, P.M., Riccomini, C., Larson, P., JuarezValieri, R., Pires-Domingues, R., Silva Jr., N.J., Campos, D.A., 2011. A complete skull of an early Cretaceous sauropod and the evolution of advanced titanosaurians. PLoS ONE 6, e16663. https://doi.org/10.1371/journal.pone.0016663.