On the mathematical theory of the geometric chuck

On the mathematical theory of the geometric chuck

Mar., t9o3.] Geometric C]tuck. PHYSICAL I95 SECTION. Stated 3Ieeling, held February 27, T90L On the Mathematical Theory of the Geometric Chuck. ...

386KB Sizes 2 Downloads 27 Views

Mar., t9o3.]

Geometric C]tuck.

PHYSICAL

I95

SECTION.

Stated 3Ieeling, held February 27, T90L

On the Mathematical Theory of the Geometric Chuck. BY ]~. A. PARTRIDGE, Ph.D.

( Concludedfrom p. z46. )

Calling the i n s t a n t at which Pl and P2 are s i m u l t a n e o u s l y equal to zero, the zero point of time, we h a v e the following expression for the r e c t a n g u l a r co-ordinates of the point E at a n y time t. x = el cos al w t + e2 cos a2 w t + e~ cos (p~ + a3 wt) + e4cos (P4 +a4 w t ) + e5 cos (P2 + as w t ) . • y -~- el sin c11 w t ~- e 2 sin a2 w t q- e, sin (p3 @ a, w t ) + e4 sin (P4 -b a4 w t ) q- e5 sin (t05 + a~ w t ) .

T h e curves traced by the geometric c h u c k are all algebraic. T h e v's are all i n t e g e r s or rational f r a c t i o n s ; in the l a t t e r case the value of a, is necessarily chosen so as to m a k e all the a's integers. Hence, we have the co-ordinates x and y expressed as the sum of sines and cosines of multiples of w t . T h e sines and cosines of multiple angles can be expressed as the sum of powers of t h e - s i n e of the the simple angle affected w i t h n u m e r i c a l coefficients. If the m u l t i p l e is an even m u l t i p l e of the simple angle, its sine can be expressed in powers of the sines w i t h the factor cos w t . If the m u l t i p l e be odd, it can be expressed in powers of the sine w i t h o u t the cosine factor. T h e cosine of an even m u l t i p l e angle can be expressed as a sine of powers of sines s i m p l y affected by n u m e r i c a l coefficients, b u t if the m u l t i p l e be odd in a d d i t i o n to numerical coefficients, we h a v e the factor cos w t . Then, in a n y case, by t r a n s p o s i n g all the t e r m s affected by t h e factor cos w t to one side and s q u a r i n g we can express x 2 and y~ in t e r m s of powers of sin w t and n u m e r i c a l coefficients.

F I G . 19 .

F I G . 2o.

FIG. 2I.

FIG. 22.

FIG. 23.

FxG. 24.

Mar., 19o3.]

Geometric

197

Chuck.

T h e n e l i m i n a t i n g s i n w t b y the dialytic m e t h o d we h a v e an e q u a t i o n b e t w e e n x and y. Hence, the curves are all algebraic. T h e curves traced b y the g e o m e t r i c chuck are all of even order. T h i s follows from t h e fact t h a t from the m e t h o d of their generation t h e y are all closed curves. T h e deficiency of the g e o m e t r i c c h u c k curves is always zero. It will, of course, be inferred, from t h e m o d e of generation, that t h e curves are unicursal, b u t the analytical demonstration is v e r y simple. H a v i n g d e v e l o p e d the p a r a m e t r i c expressions for x and y in powers of s i n w t with t h e factor cos w t m a k e the following s u b s t i t u t i o n s : Let then

wt

~- 2B

cos w t - ~ cos 2~ ~

sin wt =

sin 2~--

and t a n S = d I ~ tan2~ I + tan*~ 2 tan ~

I + tan2~

i +a ~ __

2d

I + d2

Since we h a v e d e v e l o p e d x and y in powers of s i n w t and the factor cos w t , b y s u b s t i t u t i n g the a b o v e values for s i n , a t and cos w t , we have expressed x and y rationally in t e r m s of a single parameter. H e n c e , the curves are unicursal. (Jorda~l: " C o u r s d'Analyse," Vol. I, §598, 599.) T h e degree of the curves is 2n where n equals the greatest of the a ' s . In the r e s u l t a n t of two e q u a t i o n s the coefficients of each e q u a t i o n ente~r in the degree of the variable in the other. Hence, t h a t which d e t e r m i n e s the degree of the r e s u l t a n t in x and y is the degree of the h i g h e s t p o w e r of s i n w t or the degree of the h i g h e s t p o w e r of " d " after h a v i n g m a d e t h e s u b s t i t u t i o n considered in the last paragraph. Now, the h i g h e s t p o w e r of s i n w t results from the h i g h e s t m u l t i p l e of w t ; t h a t is, t h e l a r g e s t "a." S u p p o s e this l a r g e s t a = n., If n is even, then t h e hig, hest p o w e r of s i n w t r e s u l t i n g from s i n n w t will be the (n - - I)

L FIG. 25 .

FIG. 26.

FIG. 27.

FIG. 28.

FIG. ~9.

FIG, 3o.

2 FIG. 3 t.

F I C . 3 2.

Fro. 33.

FIO. 34.

\ F I G . 35.

FIO. 36.

2o0

Partridge :

[ J. F. I.,

th, b u t it will be multiplied by the factor cos w t , so that subs t i t u t i n g the a b o v e values we g e t 2d ~n-a i__d 2 ~ 1 X I + d ~' in which expression the h i g h e s t p o w e r of d is d ~". T h e h i g h e s t p o w e r of sin w t resulting from cos n w t is the n t k , which gives on s u b s t i t u t i o n (

2d

-~n '

in which d ~" is the h i g h e s t p o w e r of d.

FIG. 37-

FIG, 3 8 .

FxG. 39.

FIG. 40.

Mar., 19o3. ]

Geometric

Chuck.

2o~

If n is odd, the h i g h e s t p o w e r of s i n w t resulting from will be the n th, which gives on s u b s t i t u t i o n

sin nwt

2d

n

T h e h i g h e s t p o w e r of d is d ~n. T h e h i g h e s t p o w e r of s i n w t r e s u l t i n g from cos n w t is the (n - - I) th with the factor c o s wt. This term s i n n - 1 w t cos w t gives the term \ i--~-d"]

\ ~ + d~J

in which the h i g h e s t p o w e r of d is d °". F r o m the a n a l y s i s we g e t the result that d zn is the h i g h e s t p o w e r of d u n d e r all circumstances. T h e p's do n o t affect this at all, since on replacing c o s (23 + n w t ) b y its e q u i v a l e n t cos P3 cos n w t ~ s i n p~ s i n n w t , t h e a b o v e reasoning a p p l i e s w i t h o u t modification. A s the d e n o m i n a t o r s are all powers of (I + d z) m u l t i p l y the expression for w and y b y (x + a~)2n and eliminate d b y the dialytic m e t h o d , and we g e t an e q u a t i o n in x and y of d e g r e e 2 n in b o t h x a n d y. Hence, the d e g r e e of the c u r v e s is 2n u n d e r all c i r c u m s t a n c e s . F o r t h e p u r p o s e of p e r f o r m i n g this d e v e l o p m e n t and elimination in a c t u a l eases I h a v e calculated the numerical coefficients of t h e p o w e r s of s i n n x and cos n x for all v a l u e s of n up to 2o. T h e y a c c o m p a n y this paper in t a b u l a r form. Another. m e t h o d of p e r f o r m i n g the elimination is to form tho e q u a t i o n of t h e t a n g e n t to the curve, w h i c h is particularly easy b y finding dx

b y simple differentiatiozl and inserting in t h e general e q u a tion of the t a n g e n t , and then finding the envelop of t h e tangent. If for any p u r p o s e polar co-ordinates are required, t h e y can b e easily o b t a i n e d b y the following transformation : ( I ) -1; = ex cos a w t + etc. (2) y = e x s i n a w t + etc. p cos O = x . p sin O ~ y.

Par[ridge

202 Multiply

,o =

(I)

[ / . F . I.,

."

by cos c~ a n d (2) by sin 0 and add ; we get

e~ cos a l w t cos 0 + e l s i n a l w t s i n 0 -~ etc. Multiply (I) by s i n 0 a n d (2) by cos 0 and

subtract; w e g e t 0 = el cos az w t s i n ~ ~ el s i n al w t cos ~ + etc. E l i m i n a t i n g w t by a n y of the m e t h o d s already described, we get an equation b e t w e e n p and ~. In order to illustrate t h e b e a u t y and variety of the curves .drawn by the geometric chuck, and to render the preceding t e x t clearer, I have d r a w n a number of curves which are a p p e n d e d to the paper. T h e following is a description of the figures. T h e first eighteen c u r v e s are produced by the combination of two circular m o t i o n s . T h e equations comprising all ,of them are : X ~

El COS Cl1 7Ut -+- e 2 c o s 0l 2 W ~ .

y =- e~ s i n a~ w t

Fig,

t.

~- e2 s i n a 2 w t ;

V1 =

I e 1 -~-

Fig.

2.

v 1 --~

I

I

~72 ~

I

e2 --'~

I

a 2 ~

2

'5 2

"5

Fig.

3.

Vl ~

@ 2

a I = e2

Fig. .Fig.

4. 5.

vz~4-2

I

:Fig. .Fig.

6.

7. 8.

"5

'5

a~ ~ e 2 ---~

3 "8

e 2 ~-

"8

a l ~-

i

v 1=-2

i

¢/2~--

I

"5

e2 ~

"5

a I

r

a2 ~

4

e1

"5

C2 ~

"125

z

a2 ~

4

"5

C2 ~

.2

v~=--2

vl~+3

H1

v ~ + 3

g l "~-

:Fig.

9.

Fig. m. F i g . II.

Fig.

12.

vl~-~+

3

v~ -~- + 3

a 1

I

eI

'5

-~ 3

a2 ~-~

"3

4 "4

i

e1

"5

a2 ~--e~ ~---

I

a2 --~

e1

"5 I

'5

4

F2 ~

a 1

V,~+3

Vl ~

3

f2 ~

"5

Fig.

a~ -~-

"5

e2 ~

4 "5

a~ ~---

4

e2 ~

0

Mar.,

Geometric Chuck.

t9o3. ]

F i g . 13.

F i g . 14.

F i g . 15.

vl =

-- 3

vt =

-- 3

va =

-- 3

a, =

I

alt =

el :

"5

e~ :

at =

I

~'l =

"5

¢~ =

I

a2=

"5

¢:t ~

"a I - ~ ¢t =

F i g . 16.

vx=--3

at = e~

F i g . 17.

F i g . 18.

vx ~ - - - 3

vt =

-- 3

203

I

a2 =

"5

¢2 =

at =

I

g'2 =

et =

"5 I

¢t ~

"5

"I

--

2 .2

--

2

"25

a2 = - 2

=

ax=

2

--

c2

=

2 "4

=

a~ = ~ cz

"3 --

--

2 "5

T h e c u r v e s shown in F i g s . 19 to 3 z are f o r m e d b y t h e comp o s itio n of t h r e e circular motions. T h e g e n e r a l e q u a t i o n s i n c l u d i n g t h e m are: x = e, cos al w t + e2 cos a2 w t + e3 cos (Pn + a3 w t ) . y -= e l s i n al w t + e2 sin a2 w t + ea sin (P3 + an wt). Fig.

19.

vl

-[- 3

=

W=

F i g . 20.

F i g . 21.

+

v~ -~- +

3

a2 =

4

e2 ~

"5

e 3 ~-

13

g3 ~

"2 "5

3

al =

I

el =

v2 ~ - - - - - 3

a2 =

4

e2 =

'5

a3 =

-- 5

e~ - -

"3

vl =

+

v2

3

a I =

I

el ~"

'5

3

a2=

4

e2=

"5

ez ~---

"3

a3 = F i g . 22.

vl =

-- 3



v2=+

3

Fig. 23 .

ct I = a z~-2

I

el = g2=

"5 "5

a s ~--- - -

II

e3 =

.2

vt=--3

a l --~.

!

et :

"5

% = + 3

a2=--2

e2:

"5

¢'3 :

.'2

a 3 :

F i g . 2 4.

Vl =

-- 3

aI

v2=

+

a2:--2

3

"5.

P i g . ~,6.

--

II

I

:

a~ 3 =

Fig.

-- 5

--

II

e l ~---

"5

e2-~

"5

es =

"2

vl =

-- 3

al_=

I

el :

"5

v~=

+

a~ ~

-- 2

e2 :

"5

a a :

--

II

e3 :

"2

Vl=--

v2 = - - 3

3

3

al :

eI :

"~

a2 : - 2

I

e~:

"5

as ~

e, =

"2

-{- 7

#~ ~

o

,#3 =

o

Pn=t8o°

jbs = o

Ps=I5

°

Ps--9o

20~ ~

I8°°

1Ot=o

.

Partridge :

204 Fig. a 7 .

F i g . 28.

I

e1 =

2

e ~ ~-~

"5 "5

as~---+ 7

es~

"3

a] ---~ - - I

e1

"5

at----- + 7

es=

"3

al=

el=

"75

vl =

--

3

aI ~

7J2 ~

~

3

a I ~

v 1 m_ - - 3

[j. F.I..

--

Ps = o

"5

F i g . 29 .

vr=--3

3

10

"4

3 F'.'g. 3 o.

r;1 ~

-- 3

V~ ~

--

IO --

J~$

as ---~ + 24

es =

ax ~

3

el =

"75

a2=

-- 6

e2 ----

"4

a l ~--- q- 24

#l ~---

"I 7

a l ~---

3

ex =

"75

24

eI =

I~OO

=

1#. " ~

o

Ps

I80°

"I7

=

3 F i g . 31 .

vl ~-~ ~

3 IO

"4

p. = o

3 aI ~

Figures

33 to 4o are

four

circular

x =

e~ cos a~ w t

(a 4 wt

+

motions.

+

/~4); Y =

curves The

-Jr

formed general

e~ cos a~ w t

+

by the

"4 combination

equations

of

are :

es cos (a2 w t + Ps) +

e4 co~

e1 s i n al w t + ¢2 sin a2 w t + es sin (a 2 w t

p,) + e4 sin (a, wt + P4). F i g . 32~

Vl

"~- 3

at =

i

t 1 -~-

"2

-~- 3

at= a4 =

x3 40

e,= et =

"5 "3

Vl ~--- "~ 3 Vt-----+3

at = a2=

I 4

e 1 ~--is-----

"2 "5

Pi=o

V| =

at =

13

es =

"5

Jbt ~--- o

a , ~--~

I4

e, -----

"3

vt=+3 vj~-~--3

at~-~ at=

I 4

e l~-G~--"

"a "5

#t=°

at =

at=--5

el=

"5

. ~ o

a t = - - 32

e, =

"3

6fi =

"2

~---

v2-----+3 Vt =

F i g . 33.

F i g . 34.

P i g . 35.

l t i g . 36.

gtl =

--

3

"{- 3

--

3

p,-----o

I

t1~

v~=+3

a l -=-- - - 2

G =

"5

/s =o

VIL =

as=--II

et=

"S

Pt =O

at=--38

e~=

"3

aI ~ I at= 4 at----'-- 5

el "~-tt~ e,-----

"2 "S "5

a t ~---

~,t ~

"3

"~" 3

~l ~--- " ~ 3 Vs~---~3 V,=--3

22

Pl=° p , ---~ o

-L

I I

~o

i I

~

i i I

o~ ~ ~e¢~o

o

o

o

÷÷÷~÷

I l

I I I I I I I I I ~

o

~oo

o

o

~D

~oo

÷÷÷÷

'"T?,,,,, I

I! II II li 11 II N II fl II II II II It U II It II II II

I

÷ ÷ ÷÷~_~

I

~_

I I I I I

It II I1 II II II II II li II K II II II II tl II II ~ ~ ~ ~ ~ ~ ~ ~ ~ ~,~ ~'~ ~

206 Pig,

Notes 37.

and

Comments.

al ---= x a 2 ---~~ 2

e l --~

"2

v2 = -4- 3

e~ =

"5

Ps = o

U8 =

a 2 =

II

~'8 =

"5

JOt =

16

e4 - =

"3

ax= I a,---~--2 a s~-lt

el ----e~= es~

"2 "5 "5

a4 ~

16

g4 ~

"2

a~ ---~

1

e~ =

"2

a8 =

7

es =

"5

a4 =

34

e, =

"3

"2

vl =

--

--

3

3

--

a4 = t

F i g , 38.

Fig.

39.

v~ = - - 3 z,~=-4-3 vs~--3 v~ ----- - -

3

vs = + 3 Fig. 40.

[J. F. I . , '

v~ = - -

3

a] .-~

*'2 - - - - -

3

a2 =

vs = - - 3

as= a 4 ~

WIRELESS

--

--

0

Ps=o /~o.

t', = o,

t

e~ =

2

e2 =

"5

ps =

7

e~ =

"5

p~ -~- o

20

e'a ~

"3

O~

M E S S A G / ~ S TO A M O V I N G T R A I N .

O n t h e o c c a s i o n of t h e r e c e n t F o r t y - s e v e n t h A n n u a l C o n v e n t i o n o f t h e American Association of General Passenger and Ticket Agents, the Grand T r u n k R a i l w a y g a v e a d e m o n s t r a t i o n of w i r e l e s s teleg~'aphy on a m o v i n g train. T h e e x p e r i m e n t w a s e n t i r e l y successful. T h e d e m o n s t r a t i o n w a s m a d e b y Dr. E. R u t h e r f o r d , F . R . S . C . , a n d Dr. H o w a r d T. B a r n e s , F . R S.C., b o t h o f t h e M a c d o n a l d P h y s i c a l L a b o r a t o r y o f t h e McGi]l U n i v e r s i t y , M o n t r e a l . S i g n a l s were e x c h a n g e d b e t w e e n a s t a t i o ~ a n d a t r a i n ( w h i c h w a s r u n n i n g a t t h e rate of 5o m i l e s a n h o u r ) . N o a t t e m p t : was m a d e to c o v e r d i s t a n c e s c o m p a r a b l e in l e n g t h w i t h t h o s e a t t a i n e d b y M a r c o n i a n d o t h e r s , b u t w i t h c o m p a r a t i v e l y s i m p l e l a b o r a t o r y a p p a r a t u s it w a s p o s s i b l e to k e e p t h e t r a i n in t o u c h with t h e s t a t i o n for f r o m 8 to io m i l e s . St. D o m i n i q u e was s e l e c t e d as t h e t r a n s m i t t i n g station, w h e r e t w o l a r g e metal' p l a t e v i b r a t o r s io x 12 feet, c o n n e c t e d with an i n d u c t i o n coil of t h e u s u a l p a t t e r n , w e r e s i t u a t e d . O n t h e t r a i n itself t h e w a v e s were r e c e i v e d b y c o l l e c t i n g w i r e s c o n n e c t e d to a c o h e r e r of nickel a n d silver p o w d e r . T h e r e l a y o p e r a t e d e l e c t r i c b e l l s in t h r e e cars. T h e c o l l e c t i n g wires w e r e r u n t h r o u g h t h e g u i d e s for t h e t r a i n s i g n a l - c o r d , a n d e x t e n d e d o n b o t h sides o f t h e c o h e r e r for a b o u t o n e c a r l e n g t h . T o o b t a i n t h e m a x i m u m effect it w o u l d h a v e beer~ b e t t e r to h a v e h a d a l o n g v e r t i c a l wire, but s i n c e t h i s w a s i m p o s s i b l e , t h e h o r i z o n t a l wire w a s u s e d . A l t h o u g h t h e s e were p l a c e d i n s i d e t h e steel frame, cars, s t r o n g a n d d e f i n i t e s i g n a l s were obtained o v e r t h e d i s t a n c e n a m e d . A n o t h e r difficulty m i l i t a t e d a g a i n s t o b t a i n i n g t h e m a x i m u m s e n s i t i v e n e s s , a s o w i n g to t h e n a t u r a l v i b r a t i o n o f t h e t r a i n r e s u l t i n g f r o m its g r e a t s p e e d , it w a s i m p o s s i b l e to h a v e t h e r e l a y a d j u s t e d to its m o s t s e n s i t i v e point. I n spite. o f t h e s e difficulties t h e d i s t a n c e to w h i c h s i g n a l s c o u l d be s e n t to t h e t r a i n w a s e m i n e n t l y s a t i s f a c t o r y , a n d w i t h m o r e refined a p p a r a t u s g r e a t e r d i s t a n c e s could, w i t h o u t d o u b t , be covered. T h e success of t h i s f o r m o f w i r e l e s s telegraphy, of which this was but a pioneer experiment, opens up yet another m e t h o d of p r o v i d i n g for t h e s a f e t y of t h e t r a v e l i n g p u b l i c . - - S c i e n l i f l c American.